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Caveats

1. Typo in the program: "decades” -> "decade”.
Also, decade = ~5 yrs +- 3 yrs.

2. I have attempted a sampling of the landscape, not a
through review.

[My apologies to experiments that I have failed to
include, and also for any plots that are not the "latest”
from a given experiment.]



The Dark Matter Problem

A good problem to  Atoms Dark

have. There is a 497 Energy
known effect Dark 68.3%
looking for a Matter

particle signaTure...zs‘M

as opposed to
extensions of SM
looking for an
experimental
confirmation of
proposed particles.

A real challenge for an
experimentalist to study
this known energy density.



DM as a fundamental particle

Our picture of the universe is second quantized (particles
and fields) as encapsulated in the Standard Model (SM) of
particle physics. Can not easily introduce ether. Hence:

Postulate 1: DM is a particle.

‘Postulate 2: DM and SM particles interact with some
force that is very weak but much stronger than gravity.

Details of this force need to be

worked out. However, from

cosmological constraints, we can bM SM
relate mass and number density.

*If DM has a mass of 100 GeV, we
expect ~ 3 DM/liter

DM SM



DM Particle Candidates

Bayonic DM?
-- Gas Clouds? Dim Stars? Black Holes? Not enough.

Non-Baryonic Hot DM?

-- Neutrinos? Not enough.

Non-Baryonic Cold DM?
-- Axions? Heavy Sterile Neutrinos? WIMPS?



Axions: Microwave cavities

ADMX Achieved and Projected Sensitivity
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ADMX will be sensitive to cold DM in the 1-20 ueV range.
ADMX-TII, one of the possible G-2 DM experiments to be
operated in the next decade, will cover upto ~100 ueV.



Solar Axions: CAST ->TIAXO

o sl (CAST e Z Warm DM in the

10+ S o o 1 meV-1eV range

e will be covered by

10714 IAXO, the next

e | ... .= generation axion
107 10° 10° 107 10" o helioscope.
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o 1. Flat region. Constant
WIMP Miracle  |upm e
and annihilation.
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2. Exponential suppression as
temperature falls below mass of
dark matter particle.

A happy coincidence implied
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Detection Technigues

*Three major
categories of
investigations.

*Important to
maintain the
theoretical
connection
between these
approaches.

thermal freeze-out (early Univ.)
indirect detection (now)

direct detection

DM SM

productlon at colliders



1. Indirect Detection: Astrophysics
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Space-based: FERMI-LAT
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Fermi-LAT: Dwarf Spheroids
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Ground-based: Air Cerenkov Telescopes

- Elemmon (k)
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Ground-based Limits
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HESS: Galactic Center

Two bright point
sources => bottom
plot is after
subtraction. The
HESS J1745-290 (The Galactic Centre) gamma- r'GYS are
thought to come
from accelerated
charge particles
Impinging on a gas
cloud.

Supermova Remnant G0.9+0.1

Larger telescope
(CTA) proposed for
operations in the
next decade.

Emission along the Galactic Plane

Mystery Source HESS J1745-303
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AMS-02: Fall 2013 update

10° — ————rrrry ey

- The electron

"~ spectrum (xE?)
slowly falls
above 10 GeV

Electron

E® Flux [GeV /(s sr m® GeV)]

| —e— AMS-02 2013 TR

10 —+— PAMELA 2010 = i
= «— HEAT 2000 - i
L e e — Positron -
Energy [GeV] 4
The positron spectrum 10— pep et | =
(XxE3) displays a steady = I |
rise above ~30 GeV :

1 Il 1 — LLl P 1 1 L J—

1 10 107

Energy [GeV]



AMS-02: Electron + Positron Flux
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2. Dark Matter Production: LHC

Elastic Scattering (t-channel) Pair Production (s-channel)

- by I N

X Nuclear x Invisible
Recoill q DM

q q

Direct Searches Collider Searches

Radiation of a boson (photon, gluon, W,
Z) in the initial state makes the process

T
visible. q fﬁ DM
SM vertex well understood. Search for x E. miss
such "mono-boson” states. g DM




SUSY Production @ LHC

SUSY based search for DM involves investigating neutralino
production as the fundamental technique. Two types of
processes: 1) Cascade decays into LSP from heavier SUSY
states and 2) direct gaugino production.

Example of direct production: the tri-lepton final state.
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No detailed presentation of SUSY searches in this talk.
See Sunil Somalwar’s talk.



Model Independent Phenomenology-I

Fox, Harnik, Knopp and Tsai Phys. Rev. D 85, 056011 (2012)

Cast this process as a contact interaction with effective operators. The
two important operators used by CMS are:

_ o VI
0. - (mx/)\(zqy!q) o - (2er.y x[)\(zqy v54)
Vector Operator Axial-Vector Operator

The operators provide cross sections that depend on the scale A and
mpm. The mass of the DM particle. The vector operator leads to spin-
independent (ST) and the axial-vector operator to the spin-dependent
(SD) cross section:

Where p is the reduced mass

9(u 2 . 0.33( u )
O, =—|—= SD = _ | A2 m,,,, m
SI - A2 a \A l‘=( pm ' p )

(S (SD) Mpy + 1,




LHC Phenomenology-I (contd.)

Bai, Fox and Harnik, JHEP12(2010)048
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LHC Phenomenology-IT

Goodman, Ibe, Rajaraman, Shepherd, Tait and and Yu, Phys. Rev. D 82, 116010 (2010)

Considers a comprehensive set of effective operators. DM is assumed to be
a Dirac particle. The ATLAS analysis makes use of 5 of these operators:

Name | Initial state Type Operator

D1 qq scalar EZ, XXaq

D5 qq vector M%g XY¥xqvuq

D8 qq axial-vector Ml*; XYY X@V.7°q

1l o uv., =
D9 9 LEnsor M2ZX9" X499 uvd ~J_ Not used in
CcMS

D11 gg scalar y ;\143 )‘(xas(wa)2 “| analyses




LHC Phenomenology-IT (contd.)

Rather than set limits on WIMP-nucleon cross section, the
ATLAS Monojet approach is to examine the M.-My,, plane,
where M. is the suppression scale:

M« = M, /(gpm = 940)"? . where the g's are the couplings of
the mediator to DM and to quarks. M, is mediator mass

Observed upper limits on the cross section are converted
into lower bound on M..

In ATLAS analyses, exclusion regions are established for a
variety of the operators in this plane.

Recent work from these authors includes the case of Majorana DM
particles. J. Goodman, et. al, Phys. Lett. B 695, 185 (2011)



CMS Limi
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ATLAS Limits: Monojets @ 7TeV
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ATLAS Limits: Monojets w/Vector Operator

Results are presented in the form of an expected and
observed limit for the case of each assumed operator.
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3. Direct Detection

Basic goal: search for nuclear recoil from DM
elastic scattering.

*
*
L 4
L 4
*
L 4
L 4
*
L 4
*
L 4
L 4
L 4
L 4
L 4
.0
*

Simple dynamics. Cross section o (form factor)?

v
Spin-independent: Nucleon form factor gives rise to A®
enhancement due to coherence.

The dependence on g2 is also contained in the form-factors.

Spin-dependent: Form factor depends on nuclear spin. No
coherence enhancement.



Dark Matter Direct Detection (Personnel >= Grads) v3.2
800

a.-" A rapidly growing
g 0 community.
:It,,i; 400 . .
: New experiments coming
5 o online around the world.
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Annual WIMP Modulations

A WIMP detection signal should vary over the course of the year as
Earth revolves around the Sun, which is traversing the galaxy.

DAMA experiment
claims a signal.

June
WIMP Wind V)<
—_—
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i i (thrgef mass =§232.:8 kg: b

December

Cross-checks planned, at Gran L
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March 2012 ... CDMS refutes the modulation claim

. /2 (~Apr.1)
5 keV-11.9 keV nuclear recoil:
arXiv:1203.1309
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} J Recoil Energy [CoGeNT keVee]

0 050 121 185 251 320

We are of course looking at

lower energy

Hope to have a solid result at lower energy
soon!
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Xenon 100 Limit from July 2012
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A new twist to the modulation claim

Unmodulated Rate

winter

DM Wind

June |

Recoil Energy

Lee ef. al, arXiv:1308.1953v1

Gravitational focusing by the
sun enhances the DM flux
around March.

The change in velocity
distribution also distorts the
modulation size and phase.

Need to include this effect in
the various analyses.



A compact
history of

WIMP
Searches
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LZ is poised to possibly provide an
end-point to this saga ... hopefully
by discovering WIMPs or, by
ruling out most of the theoreftical
and experimentally accessible
landscape.
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Mike Witherell,sSUCSB



th Xenon?

Nobel element => Inert. Can be purified via gettering techniques.

No long-lived radio-isotopes. Metastable istopes useful in calibration.

High density (~3g/cm3)
=> Powerful self-shielding.

High A (131) => Large
elastic O
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Two-phase XE TPC: Two Signal Technique

PMT Array

Anode

~1 us width ‘ Gas phase _> |
Secondary |pp=— ) . —— | Grids

(52)

0-350 ps
depending
on depth
Primary
(S1) -

~40 ns width

>

- Cathode

Interaction




wees), —— Scintillation process in LXe

WIMP \ \ -
. e @ @rgy DepOSiﬁD' = = = = P»|Heat (no usable signal)
Heat (phonons) /// lonisation Scintillation (S1) Ionization

(e- and ions) /\
Ionization /' —e' ﬁRecombination (Sl)) C Escape (S2) )

/ +Xe
Recoil
N\, Xe,* Difference in in recombination
Excitation efficiency is exploited to discriminate
\ trecompinationy  0€tween electron and nuclear recoils.
Xe ~@==xe™ + Xe Xenon is transparent to its own
‘ Xe scintillation light !
*_ g o
RS 5y o L Figure of merit derived from plots of:

ipl Singlet
e / 3ns — Log (charge escaping recombination/
2Xe  2Xe UVIhght — total primary light produced)



NR Scintillation Yield

Understanding the quenching
at low energies in nuclear
recoil is the key establishing
the threshold.

Modeled using NEST and G4
optical model for light
collection

yield relative to Co-57 gamma

0.3 19.3
025 | A 16.1
02 | 1 12.9
0.15 | 19.7
0.1 f 164
0.05 | 132
0 L . : ) ] 0
1 10 100
nuclear recoil energy (keV)
| UX 2013
— — Aprile 2013 o
Aprile 2011< Xe100 limits NEST:
= Plante 2011 Zero field
""" Horn 2011a ——181 V/icm
----- Horn 2011b
= Manzur 2010

Data taken at non-zero field is translated by those
reporting the results, assuming reduction of 0.95
(Aprile 2013, 730 V/cm) or 0.9 (Horn 2011,
~4000 V/cm, from ZEPLIN-III). LUX is 181 V/cm.
All other data points actually taken at zero field.

{ pavysuotoyd) plath apnjosqe



The LUX detector

Thermosyphon

LN bath column
~ 7m diameter Water Cerenkov Shield.

Radiation shield

Titanium
Vessels

Anode grid
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PTFE reflector panels
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PMT holding
copper plates

i
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Cathode grid

Counterweight

350 kg of Lxe
122 photomultiplier tubes (top plus
bottom)




LUX: WIMP Search Result

L F ' ' | ' ]
2.6] A . L
! ) S1 range for analysis [2-30] phe is in energy 3 - ~25 keVnr.
R Lower end is lowest ever for Xe detector. LUX still has ~80%
2-4‘| \ S1 finding there, confirmed with different data sets, methods 7
o +\\ Total number of events: only 160 in 85.3 live-days X 118 kg
8 | A . Distribution of events completely consistent with ER in
"8' 2.21 \ log(S2/S1) space and consistgnt with BG in the volume
| :
S i |
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' i \ . Avoids ~5 keVee Xe-127_ _ _
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ER and NR Band Calibrations

25 lf .o " Novel Iow-enerlgy, homogeneousI beta source: higlh statistics, -
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LUX Limit

—_
OI

N

N

WIMP-nucleon cross section (cm2)

M
CDMS I1-Ge

ZEPLIN [l

y'S

(2013), 85 live days

PLR accounts not
only for S1 and 52
distributions in |
energy, but also]3-D
BG distribution.] It

helps avoid bias
e .. . . ..sihceitisnot., |

LUX +/- 10 expected sensitivity

10" 10° diglriminating with a

2 .
Mimp (GeV/c") rectilinear cut



Low-Mass WIMP Region

WIMP-nucleon cross section (cm2)

DMS || Ge
DAMA/LIBRA Favored

Fo-hear-same
e NR light
LUX (20183) yield df lower S1
threshold2 vs. 3 phe) and higher
light collection-efficiency

XENONH00 (2012)

6 7 8 9 210 12
My o (GEV/CY)



LZ Detector

A two-phase Xe
TPC with ~7 tonnes
of Xe in active
volume, of which
~6 tonnes will be
the fiducial volume.

Three layers of
shield/veto: Xe
“skin", Liquid
Scintillator, Water
tank.

Engineering design is in an advanced state.

— *”



LZ Reach for WIMP Search

10

s—section [cmz] (normalised to nucleon)
=

Cros

DATA listed top to bottom on plot

COUPP. 2011, using 3.5kg CF=3I detector. SD-proton

CoGeNT. 2011, Annual Modulation ROL. S

CDMS 11 }Snudan). 2011, reanalyzed data from OctD6-Seplf, Ge detector,
DAMAJLIBRA . 2008, no 1on channeling. 3sigma. S

CRESST 11,2011, 730kg~days, 1-sigma allowed region, S

XENONI10, 2008, measured Leff from Xe cube. using 58.6 live days. Sl
Edelweiss 11, 2011, Final Results, 384kg—-days. Sl

ZEPLIN 111, 2011, second science run. 1344kg—days, SI

XENONI0O, 2012, 225 live days (7650 kg—days). 'S

LUX 300 kg Projected Sensitivity: 30000 kg—d, 5-30 keV . 45% cff ,
LUX-ZEPLIN, proj 2012.7 tongne. BG. 5%% eff, St=1000d, 4-30 phe. Sl

/ |
T

/  XENONI00

LUX: 100 kg
<« fiducial Xe,
300 days run.

LZ: 6 tonnes
fiducial Xe,
1000 days run.
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10°
WIMP Mass [GeV/c’]
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Snowmass Projections
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Summary

* Dark Matter remains one of the leading
problems in physics today. It appeals to the
public's imagination and attracts scientifically
creative minds to work on it.

» The problem is being attacked in numerous ways.

* LHC will contribute in unique ways, in both model
independent and SUSY-based searches.

* LZ holds the promise to be the ultimate G2
direct WIMP search experiment.



