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Why we have to
understand QCD at
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1.1) Few common places useful to recall

@ Jet is a collimated bunch of particles.

® In a naive picture it is a macroscopic manifestation of a colored parton
(quark/gluons) produced/ejected during the proton hard scattering

@ Jets are THE tool to study hard

QCD effects at the LHC.

@ Jets are THE tool to study
colored BSM -
(Axigluons, squaks, gluinos etc...) .:' * -

@ All this is common sense.
What is a bit less obvious is
how much the hard QCDY/jets
affects EW physics at the LHC.
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1.2) Recall: LHC was designhed for EWSB mechanism

® The primary goal of the LHC was to uncover the EWSB mechanism
and test the SM self-consistency. The golden signature involve usually
colorless particles:

— Higgs decays to bosons: vy, Z, W.

— VH production, VBF H production.

— V'V scattering unitarization.

— DY W production for mass measurement.
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1.3) But large QCD corrections

 But the initial state partons and part of the final state ones are always
colored at the LHC in difference of LEP, ILC, TLEP.
» Any EW process experience at least O(a,) QCD corrections. The real

part of those corrections corresponds to jets production.
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1.4) LHC is a QCD machine

2 99.9999 % of the LHC events are QCD.
2 99% of the LHC events are QCD with at least 1 jet with p_. > 20 GeV

* In any EW event, a large contribution of PU soft QCD events O(20) at

8 TeV in 2012.
5 PP Vs=8TeV L,;,=538 pb”’ CMS Preliminary
_(,_3' 10 E -8~ Data
Q> — — NLO®NP(ABM11)
(@R N )] i
O] g NLO®NP(CT10)
L1 10" =
> = . T NLO®NP(HERAPDF15)
© 'U}_ C .
G % T o e NLO®NP(MSTW2008)
6| . == NLO®@NP(NNPDF21)
i : m‘:‘zlm
105 g— I*
10% ;0 <|y|]<0.5 Anti-k T(R=0.7’)
:I | 1 | | 1 | | | | 1 | | 1 | | | | 1 | 1 | | 1 | |
21 30 40 50 60 70
P, [GeV/c]
PhysicsResultsFSQ12031

06/01/2014

ul [-))
o (=]

B
o
T

N
o
T

Recorded Luminosity (pb !/0.04)
[ w
o o

oo

CMS Average Pileup, pp, 2012, Vs = 8 TeV

=

%

<u>=21

60

150

o
40 1> 70 7° ° ® 80
Mean number of interactions per crossing



1.5) Jets mimic EW final states

* The EW final states with neutrinos, T and y (to lesser extend electrons) can
be faked by jets:
— Heavy quarks decay (c,b,t): produce MET and leptons.
— Fragmentation tail: jets with leading EM component (n°) may fake
photons or electrons. Jets with leading tracks may fake T.
— Detector fiducial limitation and non linearities: fake MET.
@ [solation criteria reduces the effect, but jets production is so large than the

effect may remain significant.
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' “solve” QCD at
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2.1) Typical LHC collision

CONF E
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2.2) “Solve” the QCD for hadrons collisions

CONFINMENT

p=Q

HARD

SCATTE!%

UNDERLYIN
EVENT

@ Asymptotic freedom: Q scale (renormalization) large, GS(Q)~0.1.

@ Inclusive observables known at NNLO (V production). Differential in jets at NLO (going to
NNLO now). Large computation/analytical cost of extra orders: gluons colored (self-
interacting), massless (collinear/soft divergences).
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2.2) “Solve” the QCD for hadrons collisions

CONFINMENT

HARD

SCATTER%

UNDERLYIN
EVENT

@ Factorisation theorem: protons source of partons: x,,x, fractions of Ep. Independent on ME.
@ Euristically parametrised at Q, ~ 2 GeV.

@ Evolved to a large scale Q (factorisation) with an evolution function to take in account
soft/collinear radiation effects before hard scattering: DGLAP, CCFM, BFKL
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2.2) “Solve” the QCD for hadrons collisions

H=Q
HARD
SCATTE

UNDERLYI
EVENT

@ Jets are defined in IR safe manner. do ~a 5db /6 dkr/k;

@ But missing orders still important in IR regions:

soft multi-jets production. R ST
“Solution”: real emission resummation or PS. - homke<<py
Match to ME at Q_ <<y, y,
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2.2) “Solve” the QCD for hadrons collisions

HARD
SCATIE

UNDERLYI
EVENT

@ When typical inter-parton scale Q_~ 1 GeV, a (Q)~ 1.

The theory become non-perturbative. Similar situation to PDFs.
@ Solution: factorization theorem applied with universal (model dependent) fragmentation
functions and their scale evolution.
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2.2) “Solve” the QCD for hadrons collisions

HARD
SCATIE

UNDERLYI
EVENT

@ Large partons density at low x leads to collective effects.

@ Described by Multi-Partons interaction (MPI): independent mulptiple scatterings. At high
momentum called Double Parton Scattering.

@ All interactions might be color reconnected: coherent effects.
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2.3) Structure of the LHC QCD program

» Low PU min bias events: soft scattering including low p_ jets, UE,

fragmentation.
» High p_multi-jet events: hard matrix elements, QCD parameters (gluon

PDF, aS); collinear/soft radiation (ISR, FSR) and QCD evolution functions
(DGLAP, CCFM, BFKL)

®V + jets: hard matrix elements, quarks/gluon PDF, PS

®V + HF: s,c,b PDF; Mass scales and QCD: Heavy flavour schemes in
PDFs; gluons splitting.

@ All: Multi-Parton interactions (MPI); Hard version of MPI: Double parton
scattering (DPS).



Measure and
interpret jet results

L e E:
A T e T
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3.1) Experimental ingrediants: CMS

M HCAL
: Clusters
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hadron
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Particles Clusters and tracks
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[ CMS Preliminary 2010 Anti-k; R=0.5
| N5=7TeV. DATA (6.2 nb) P > 25 GeVic

® O(5-10%) difference between rec jets and

Mean Fraction of Jet Energy

gen jets before calibration. "
® Tracking provides a sensitivity to e
the details of the jet shapes and jet mass. 4
® 4-momenta are massive: m(n), m(K")... 02

0
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3.2) Experimental ingrediants: Atlas

LAr calorimeters H1/CDF).

@ Calo jets: calibrated topo clusters (heritage of non compensating

@ Track jets: tracks coming from the primary vertex.

@ Find seed cells above noise threshold.

@ Proceed with a 3D clustering around it.

@ Consider topo-clusters calibration by
reweighting the different layers to bring
the response to the EM scale.

® 4-momentum build under assumptions:

— Massless particles
— Coming from primary vertex

06/01/2014
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3.4) Jets definition 19

@ Jets are build out of particles.

Jets have to be defined infrared and collinear safe: € change in the event
kinematics produce only € change in jet kinematics.

* The naive definition: a cone around the initial parton direction. Unfortunately
not IR/Collinear safe in busy events.

» Today mostly iterative recombination algos used. Conic shape: anti-k

p, [GeV]

25
207"
157
107

by R=1

dij - m:’n( ﬁ, fj)ﬁR%/RZ

N = 1: k; - “Small fish eat first”

N = 0: CA - “Closest fish eat first“
N = -1: anti-k. “Big fish eat first”
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3.5) Typical measurement: Inclusive jets

* Elements explained below are generic for any analysis including jets.

@ Measurement: corrected for detector effect dopy, dop,
to “hadrons level” (unfolding) - C__.. dp,dy dp,dy P
— Related to limited detector response do?,. B dos
resolution to particle constituents of dp,dy dp,dy
the jet.
— Can be large due to steeply falling P 3
g_:gm?nza'lsi?ﬁmr 15<lyl<2 3

QCD spectra.
@ NLO calculation: corrected for
hadronization and MPI effects estimated

from LO+PS MC - C_..
— Related to absolute shift of jet p..

n — — — — — —

O \C -

—
LN L

o ©

— Can be large due to steeply falling
QCD spectra.

Non-Perburtavie Correction Factor

o o o
|

1000 2000
Jet P, (GeV)
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3.5) Typical measurement: Inclusive jets

* Experimental uncertainty: mainly 1-2 % uncertainty on the jet calibration
factors. Become 10% due to a typical slope of n ~ 5-6. do

® Theory uncertainty:

— Mainly expected effect of missing orders estimated by scale dependence.

apr &< PT

— At low p, NP uncertainty dominates, at high p.. PDF uncertainty

dominates.
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Data/Theory
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4.1) How to determine QCD parameters

HARD
SCATTERI

@ Go to a phase-space region sensitive to mainly hard scattering component.
@ The a (U,=Q) sensibility appears through the jets counting as function of Q.

@ The PDF(u.=Q) sensibility appears through the Q dependence of a (simple) process.
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4.2) LHC sensitivity

7 TeV LHC parton kinematics
109 F—ﬁ-nm—mmm—lm—rnﬂm

X, .= (M/7 TeV) exp(ty) WJSZW;
10°F Q=M
10k
.. CD Compton
5 Dijets Q : P
10° £ V+1 jet
< Light quarks density
2 10° - M =100 GeV /
NO E '
10° |
i y=,6 ; _ 4k
10° ZVIR Y T S DY: Single V/V*
10' Heavy quarks m
10° ? P E—
o 10 QCD Compton:
X V+HF
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4.3) Gluon from Inclusive jets

* Backbone of PDF extraction: HERA DIS data
dopis ~ (1= (1 — yu;)2) Fa(z, Q%) — y3; Fr(x, Q2)
Fa =z 3, e3(q(x) + q(x))
* HERA DIS data only indirectly sensitives to gluon (trough DGLAP evolution)
@ In this exercise we add CMS jet data on top of HERA DIS. No scale
uncertainty considered (very optimistic approximation).

- : lirni ? —1.9GeV”
3 ECMS Preliminary gluon, ¢* =1.9GeV? ,/,/;,;/r/’q?/ﬂ"i/?»r/e'mmary ; gluon, @ 1.9Ced
25k -,
;_H 2(} _______________________________
(SN T A N, W ;L L — )
::; ' : ; AN HERA DIS + CMS Jets| | % ]
I | Sty . HERADIS | % . ) B Exp. Uncert.
B Exp. Uncert. 0.5 Mod. Uncert.
(o] T— . Mod. Uncert. { |EEE Par. Uncert.
H I Par. Uncert. R 0.0 i "
¢ 00 : 5 02
a 0.2 2 0.1
(™) = .
: D-l : DlD
~ 00 £ -0.1
g —01 ® 0.2
T —0.2 =Y
('
. Iyl < 0.5
ChS 5imu|a:|,i|.:|r|lprqliminar-,- IO
NHNPOF2,1-NLO 0.5
1500 Iyl 0.6
0.4
02 Phys. Rev. D 87 (2013) 112002
= 1000 | | oo
B | W-o0.2 =
= PhysicsResultsSMP12028
500 | 0.6
- 1.8
—1.0

06/01/2014



4.3) Gluon from Inclusive jets

ATLAS
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NLO pQCD @
non-pert. corrections
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MNNPDF 2.1

HERAPDF 1.5

" ABM 11 NLO

® The ratio provide a better improvement

than each cross section taken separately.

But the effect seems to be small.

® But the scale uncertainties are also small.
Therefore neglecting scale uncertainties in the
ratio is much more correct than for the

absolute X sections.
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4.4) Light quarks from W asymmetry arXiv:1312.6283

W lepton -
. CMS Preliminary NLO 13 parameter fit
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4.5) Quarks from W+c and W asymmetry

larXiv:1312.6283 m

H] arXiv:1310.1138

e CMS Preliminary HERA | DIS + CMS W production

@® = 1.9 GeV?

CMS Prel. NLO free-s fit
exp. unc.

model unc.
parametrization unec.

Ol

CMS L=5.0fb" at {s =7 TeV
O BB T o T T
80 P >25GeV ‘;:“"_—’ ';’) - < |
= | p . >35Gev e s 1
O B 0.5 .
= i
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© 40 - e AR
L) B E_.Jg-_#’ =3 '
| =% Data e = 1
50 | © MsTwos T e
o CT10 W 05 L
= NNPDF23 —}— Stat. unceriainty : i E
Fay NNPDFEScc‘" Total uncertainiy zw o b :
i 4
0 A P | 10

0 05 1 15 2
i

® HERA I DIS do not have any sensitivity

to strangeness. Use input from fixed target

data with not so well known nuclear

corrections.
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4.6) Strong coupling U3jets % A%

O2jets, Uttbar X X5
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4.6) Strong coupling
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2
U3jets X Xg

O2jets, Uttbar X X5
R32 X g

@ Jet observables proportional to «y

® R32 is the less sensitive to PDF

® Scale uncertainties are dominant. Need NNLO to

promote them. Expected for dijets. But:
— 0, (Q~1TeV) tested.

E — Jet rates not so sensitives to PDF so can be
used for search for new fermions/ extra dim.

DO inclusive jets

CMS R,,

& 4 W #

T
CMS Prellmmary
CMS Incl. Jets : ag(M,)=0.1185"" "

CMS ff cross section
CMS5 3-Jet mass
CMS Incl. Jets

DO angular correlation
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Testing the soft
dynamics



5.1) “Solve” the QCD for hadrons collisions

BR=Q
HARD
SCATTER

UNDERLYIN
EVENT

@ Go to a region of phase space where the missing orders beyond NLO matters.

@ Study the interplay between collinear/IR re-summations (PS) and ME multi-jet topologies
at LO/NLO.

@ Emphasis different regimes: ISR/FSR dominated, color coherence sensitives, gluon splitting
to heavy quarks in ISR/FSR.
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5.2) FSR radiation effects

CMS preliminary, L =5 fb” Anti-k, R=0.5 s =7 TeV
g | 1 B
o 14F . + QCD-10-010
a I Theory uncertainty
= ) CIExp. uncertainty
= 1.2 i A T 4 p
o] I — - 1 -
=1 i =3 1 .
¥ ? - ? k3 — g ) § ]
8 _;;r,rrrnrm:mﬂ :.nﬂﬂ::"}ﬂﬂﬁ% ] :::fﬁﬁ:m?m -+
O 0.8F 1 T I y el "1'1'* b
0.6 o i T 4
[yl <0.5 1 05=slyl<10 T 10si<15
B0 1{::} 200 Ii):Dﬂl B0 1{I)Gl 200 1[;00 6O 1[I)0 200 1DI00
p, (GeV)
~ CMS preliminary, L = 5 fb” Anti-k; R=0.7 is =7 TeV
::j’ ] « Data
o 1.4F 1 = QCD-11-004 3
o I Theory uncertainty
= e 1 [COExp. uncertainty 3
.9 ;
-?: 1 - .v i 'u'l vy =1 4 '_ """"" B
S osfF ; l = ‘_'T[ 1 J
0.6 + l - .
[ wl<05 I 05=Ilyl<1.0 IT10=lyl<15
B0 100 200 1606 60 100 200 000 60 100 200 7500

@ Smaller R at LHC shows more tension
with NLO QCD predictions

and QCD parameters extracted independently

@ Jet radius choice is a compromise between
FSR out-of-cone migration «1In 1/R
NP out-of-cone migration o« 1/R

UE in-cone capture o« R?
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5.2) FSR radiation effects

CMS preliminary, L = 5 fb”’ (s =17TeV
,-r:-., : T T T T I T T T T T T T T I :
=) - |y| <0.5 ]
S 0.95F E
o C -
g 9% E
0.85F ot T =
E_ ¢Oi§ _E
0 8: ¢ [®] Data ]
- * ~-LO =
0.75F A —NLO -
C --- LO2NP ]
0.7—4 p B NLO®NP E
0.65F -
: 11 I 1 1 1 1 I :

60 100 200 1000

Jet P, (GeV)

SMP-13-002
CMS preliminary, L =5 fb"’ (s=7TeV
[ T T T T I T T T T T T T T I ]
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- ‘4 - B NLO®NP (G.Soyez) ]
- -~ PYTHIAG Z2 E
- ---HERWIG++ ]
- — POWHEG B
: 1 1 I 1 1 11 I :
60 100 200 1000

Jet o (GeV)

® Many uncertainties cancel out. Percentage precision!

@ Jet Radius Ratio:

O2jets,R1,NLO
02jets,R2,NLO

® A trick can be used to compute Rqs 1o
from O3jets,R1,NLO and O3jets, R2,NLO . Works better.

@ In fact the best is PS, but even better 2 jets NLO+PS (POWHEG).
® Moral: if you want to use jets for QCD parameters extraction do not go

too low in R otherwise you need re-summations.
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5.3) Gluon splitting in FSR
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m0.25 z —
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- A  ALPGEN 4F CTEQSM ]
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J. High Energy Phys. 12 (2013) 39

4
4
SubJet1 4 y
et=216.16 / 4
eta=-0.172 L
phi = 1.003 4
/ /
/
/
y
y
/
/ ”
/
/ / g
// S

SubJet2
et =194.54
eta=-0.530| '
phi = 0.662

CMS Exper\ment at LHC, CERN

Data recorded: Wed Dec 31 19:00:00 1969 EDT
Ru /E nt: 7/363
Lumi sectio

1.0 0.5 0 0.5 1.0 OriBit/Cro: ,zgo 1/ 25 3.0

Example of IVF for a BSM event

@7 - VV + b quark is a typical background for 3rd generation SUSY.
Frequently Z+bb looks like Z+b due to inefficiency of classical b-taggers.
In many searches MC used since data Z+bb do not benefit from sufficient

statistics.

@ Specially developed inclusive vertex finder used for b-quarks.
@ MC underestimate data by 40% in the collinear region
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5.4) Event shapes and ISR SMP-12-022

CMS Preliminary Vs=7TeV CMS Preliminary s =7 TeV
T T T T T T T T T T T T T T T T T T ] [T [ T T T [ T T T I T T T | T T T I —
L - = 110 < p,__ < 170 GeVic IR T
0 (a) 110 < p_ <170 GeVic = 0.7— (a) P, =] 3
— - - E e
S T - oo W b
o =" - — - - [t i B - — R - 717
sig— e by B S : el
c E | reige e lo. = F s =3
- — _ Ll g [ =Y . I
= — e |- 01— == —$— Data (5 b ) —
= 0 1__ ! . | —] - — . - — — Pythiag 72 .
= — LmT L — 1 = = F=E Pythiat Perugia-P0 |
= - | L I ,_ I -—G CIE_ | - - — Pythiag DET -
- — = . RIS e —— | — - - - Pythiad 4C (™
D'Dﬁf-t —c-eT---Z T E:?T['%E‘E T ol Herwig++ 23 b
— F}'thlaE r::: o B - Madgraph+PythiaG-Z 2 ]
: T E}%H r |_.r ' 1 [ L 1 | 1 1 I I I | I ] L
A | 1 | 1 | | 1 | 1 | [ -+ T LI UL 3
T T T T T | T T T T T T T T T L 12_ D ey —
2 = L = (b) el
= - (b) Lo 3 2 v B e S ==
= C i ] [ = b
e - . = 1 — : L
(] 1.5 — —] *—U—- e feptenien et tende TP E :__ =y 1 |
S N e - P ] . - P
= | Sty e e e 0.81 [
= | ) - | | L, 1 | b
C. | 10 8 -6 4 2
- In (7 )

® Transverse thrust: sensitive to large angle production of soft radiation.
® The combination of multi-jet ME production at .O and PS produce

the best description.
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5.5) Resummation approach arXiv 1204.0696

EPJC72(2012) 2216

* Measure ratio of inclusive dijets events to exclusive dijet events :
canlcelation of systematics

*|Ay| ~|An| < 9 !!! between the two most external jets (Mueller-Navlett).
* Hope to see non DGLAP dynamics in the ladders between two jets.

* Strategic region for VBF physics : large |Ay| and central jets veto

4. backward jet forward jet .
D =
a : T
L “ | I &
i o iIg i =
4 :-: - he = B =35GeV
inclusive jets - 5 o i . E ot
1 = & oo - lt =k :
C:)E_a Ao a s Pl Nacaedtaormcsedassna Ffessads asizonan men“
—
R o { i I:
e a . 1 L
cxclusive jots 2 =
i i
-
=il I:
e . = E, = 35 GeV
gi 2 T . N =
r &£ & ® & £ ¥ k&
] . - = [ e .
— ¢ ysssaplizifug r'.ﬂ.—*.l.*.—*—?—f-.*l?.ﬁL.J.ﬁ.i.*.l.ﬂi’.‘:%l.i.-‘.f.’.‘--.‘-.iH-.‘-.’-_‘{:}_p_m_w_n
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5.5) Resummation approach

* Ratio only described by PYTHIA (surprising ?).
Influence of the tune and MPI small.

* Deviation of most of the other models at large |Ay].
* Cascade, HEJ : include elements of CCFM or BFKL like dynamics.

CMS, pp, /s =7 TeV
_IIIIIIII|IIII|IIII|IIII|III| II|IIII|IIII|_
- |i| 2010 data diiet ]
— PYTHIAG 72 Jets -
_ p.>35GeV ]
= = PYTHIAS 4C T ]
- ly| < 4.7 i
[ mimimimims HERWIG ++ UE-7000-EE-3 §
T HEJ + ARIADNE .
C ommmmma CASCADE ]
= o5 E
- b Lecmmaas ; .
O :". L . .
: r-- :
I n -

L
- T g
- | _F“ UL TS -
- ped T ]
= - I e sl =
I

o 1 2 3 4 5
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ArXiv 1204.0696
EPJC72(2012) 2216

S. Alioli et al arxiv 1202.1475v1

r ——T T R S e
34— o
C Inclusive dijet production —
3.2 LHC @ 7 TeV ]
3— —HE N
- ---- POWHEG + PYTHIA .
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5.6) Discover the DPS?

mMmoa - 0B

Oupf — —
eff > C"E_F_SB

DPS

o ldo / d(0.105*AS)

Data/MC

0 =S N

107

00 P 0D 0OPORS

1

1072

o
O
o
—

Azimuthal angle W and Dijets

CMS Preliminary, pp — W + jets, {s = 7 TeV, J Ldt=5fb"

— MADGRAPH 5 + PYTHIA 6 (scaled to NLO)
---- MADGRAPH 5 + PYTHIA 6, no MPI (scaled to NLO)

---- PYTHIA 8 (scaled to NLO)

—&— Nata
_ pr(p, Er)-priijz) )

AS = arccos | —= A LS
(Ir*r{;ﬂfﬁﬂl-lr*r{udzll

=

o Uncertainty
S O L S
- _.---l__:-_-llh.;__:-_-_-_._.::E-J.!.n‘._.l__‘ P

k= e
'---III'I"_1

I|II
7

1.5 2 2.5 3

@ In the DPS there is no angular correlation between the 2 interactions,
while in SPS they are correlated back-to-back.
@ DPS can be extracted from processes where A && B have a much

larger cross section than SPS A+B.
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5.6) Discover the DPS?

40— _o— CMS (W + 2 jets)

—»— ATLAS (W + 2 jets)
CDF (4 jets)

—7— CDF (y + 3 jets)

—g=— Corrected CDF (y + 3 jets)

—=— DO {y + 3 jets)

—+— UAZ (4 jets - lower limit)
AFS (4 jets - no errors given)

O, [Mb]

35

30

25

P
o

o EJA OB l
T TR I

I

1 ||| 1 1 1 1 11 ||| 1 1 1 1 11 |||
0.1 0.2 1 2 345 10
Vs [TeV]

—

T
hS
=

-
o

o

.D ARRERERS
ot
=L

® The measurements performed till now do not allow to distinguish
between the dependence and in-dependence of v .

® Remaining Run I and Run II measurements may provide an answer there.
® DPS have contributions to soft VV production, background to Higgs
production. Need to be sure we understand it well.
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5.7) Run I/ll what else?

 The first Run II data would be used for high priority Standard Model

analyseS: ‘% 108? i___-i LHC: jets,W,Z,DY,y

— Inclusive V production Sl T

— V+jets production ° o HERAF'FW

— V+HF production o )

— VV production 1°5§_ = D:/// B (Tevat
® Those measurement are expected to 10 //;, o
provide the information for additional 10°E /,// o= 147V \\\\\\\\%}\\\
MC retuning on top of Run I: PS, MPI. 1l \\\\\\\\\
® Extra PDF constraints mainly through | oi & oo \\\\ N
DGLAP evolution: Cross sections ratios t"::-_-g..r- -
13 TeV/8 TeV + high p_ tails at 13 TeV vl ol HT"_;I"'M_ZI T R

10 10 10 10 10 10 1

X

would be of critical use.

my (GeV) Cross Section (pb) +error% -error % +scale% -scale% +(PDF+as)% -(PDF+as) %

125 49.85 19.6 -14.6 12.2 -8.4 7.4 -6.2

HXSWG gg— H



Jets substructure:
the new El Dorado
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6.1) A bit of history

@ Jet shapes existed already in the previous generation of colliders
(LEP, HERA, Tevatron) times.

— Study QCD parameters and soft gluon effects.
— Improve jets calibration for non-compensated calorlmeters

— D15t1ngu1sh jets flavours: E 112  Erpne>8GeV ]

* quark, gluon — all sorts of energy flows; ™" IE_ . 'I-I 1' '

* c-jet, b-jet — “charge” flow like vertices o5 inciusive k,

or displaced tracks. 04 | imowen
 Up/down — jet charge (see later...). 0z F ¢ L0

0 D_ | DIE I DI.4 I DI."EI | aﬂ.:m:a“'flrf :

* But the QCD matrix element: 90 ~o sd9 /0 dk;/ky DESY.08.208 -

— No intrinsic mass above b-quark mass (4-5 GeV depending on the
definition). Just QCD radiation. - (2) . (®)
(M2 10 =C (EL) a, (E) P2 R2,

— No intrinsic angular scale = no instrinsic multipolar structure.
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6.2) New boosted regime: come back of V- qq

'/lf ",
ﬁ—
# .
/

1) Substructure : AR < RJ.

2) Transition region : AR ~ R,

CMS Preliminary, 12.1 fo'at {s =8 TeV

_|III|III|III|

r e/u + Jets Combine
—— MadGraph
~-= MC@NLO

---- POWHEG

400 600

mtt [GeV]

CDF Il Preliminary

. ; —O- —— SM Expectation

3) SeDa rated JetS : AR > R — 10 ; -SM Uncertainties
J N§ o CDFIIData,J.Lz2.7fb'1

.:.J:x _.:‘“ - M_ ’

e —

e [o) B

/ £ 8ol
0 I |2(|>0‘ | ;1(‘)ol | ‘6(;0‘ | ‘8(|)ol | 1|0|00| | ;2‘06 | 1‘400
Unfolded M_[GeV/c?]

Typically pair production: _ aMy o 2My — 4My
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6.3) Jet mass and grooming algorithms

k.or CfAa l*"
— |
]

1

&

Initial jet O}/ p{r'*-"? > zow or ARj, s, < Rew Pruned jet

s oo PR, e Grooming remove soft large-angle
E o 4_ 250 f:njgéfa o ] +_~:P'UL> :.2232 sl.?m | radiation.
= ST ml<2.4 T + <PU> =12 + sim. | .
2 L - Wijets, MG+Pythiat | ® Many algorithms was suggested
+ <PU= =22 + sim. . . . . .
g r . <PU- =12+ sim. | (pruning/trimming/filtering).
=i ] ® Their impact is similar at leading order
= la | but might be sensitive to the
j i ' IR/Collinear details.
% 100 150

pruned jet mass (GeV)
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6.4) Measurement of W - qq parameters

B e e z R T T
3 -ﬂ E 18{}5— HEPTopTagger jets with R=1.5, default filtering _E
:_“} 400 };n 1EDE—J Lat=47f " f5=7TeV 3
o} i ] - 3
@ 8 120F [ & =
C = 100F [ wejets 3
o0 80F- [ 2:jets =
: [I-[]f ] ig;: - Single Top :;
" - = 2% Hadronic top partially merged C -
' 20F 3
of — T

pruned jet mass (Gel/) 0 50 100 150

{ W candidate mass [GeV]
”1}5'"'“ — 83.4 + [}.4 (S'E"-‘ll'Ir ,

(M) gata = 84.5 04 GeV,

lhgata = 86.9+ 0.8 GeV
Ly = 87.44+ 0.2 GeV

leptonic tep-ecandidafes.-

* Allow to monitor the jet mass calibration for
groomed jets with real substructure.

@ Tool limited to rr; € *% %] & [200 GeV, 450 GeV]

to go further subjet mass have to be considered.
@ Resolution typically of 8%.

¢ hadronic top candidate
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6.5) Substructure information

1 .
T = — o % min(d K .. Ao, ... 0K
N ffﬂz.f Ik (g 2% Nk)

do = ZEJ'I'}: x R
Fl.

CHE Preliminary, I'§| ifh'at {5 = Il Tel, W+ jEl'S-

';I_l" EDG LI L L | [rTrrrrrrr [TrrTr[rrrrrrrr
T CAR=08
= 250 < p._ < 350 GaV '+'E'ﬂ= |:|I+J=|=
Ll T
500 <24 _
60 < m < 100 GeV/ |:|‘5'"9h= Tep .wnmz
400 — Wijats Pythia — Wisjats Horwig
tfp-crld'ng EH‘: Seat + Sys
300 .

200

100

IIIIIIIIIIIIII|IIII|IIII|IIII|_
IIIIIIIIIIIIIIlIIIIlIIIIIIIIIr

e
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o — ¥ Pa 2
j-l r
]
|£:|:|.|.|_

Data / Sim

e R

=
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/ it ~0

qlg T,~0 T,~0 it ~1

47

® N-subjettiness indicate the polarity of the
jet (monopole, dipole etc...)

® Provide extra information with respect to
the groomed mass.

]

'_.ﬁlll 11T .:|||

CMS-JME-13-006
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6.6) To finish: jet charge

@ Idea! Weight the track charge by it's momentum power something (to be tuned).

@ Does it still exist with 40 PU and 100 GeV jets?
— Why not suggested out theorists fiends (2012 - arXiv:1209.3019v3).
— It works answered CMS/Atlas in 2013.

@ k = 0.3: tracks democracy is preferred to k = 1.0 leading track oligarchy.

CMS Preliminary, 193 fb" at s =8 TeW, W — v @ A T R B R
.:;: EI LI e e e B L B e e e e s e s e |E ..5 'I'n':l'_'n:— ATLAS F"E-Ii'ninar_.,- _: E — | — IAITILASI |P| ||.| T
& saw- aaw. ] = Eo_ 1 7 [ reliminary
C +'“‘“" +”“‘ ] £ poof E=8TeV.| Lat=58R" newm: 3 E . - v [ L d b
_F ] g E . I —— E =Ry fs=8TeV, |Ldt=538 -
= —MCW. —mcws < coof =110 G - s 3 % E‘_ ]
C ] o L ] il _
"-':l: E .1.".".-— [ et ey g :.\ it Sample
E ] - + e 5.2l Data MC
F 1 P LUl A Y —k=10 -x=10 3
uat E i 2 Fh% ]
cof = > [ \\Q —k=03 -x=03 ]
T ] = e
.- g 0F S é
,;: Ly L 1 - E 'E'.'I-_a'_‘_rﬁ-- ]
s EIW 3 f
= :E | |_r1r =..__..--.—__p.n=|.|_|:| r I _E
E-:f% r. I_LI—LI i l E z 1= | I T T N T M T A T NN SN N T N -
E L L 1 E 5 0 02 04 06 08 1
CEEE R e e 10) Positive Charge Efficiency
Jet Charge []
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6.7) What next?

@ The Run I started the era of substructure physics and sensitivity to V - qq
decays in the hadronic colliders.
@ Run IT would produce a large population of boosted vectors.
@ We would be able to validate our tools but one need to be careful to the
behavior in high PU and high p.. conditions of substructure algorithms.

@ Grooming may become a leading tool for PU cleaning even for QCD jets.

CMS Preliminary Simulation, f'; = 8 TeV, dijets

0.8

CA R=0.8

Inj<2.4

0.6

0.4

Normalized distribution

0.2

QcD 400 = p_= 600 GeV

+ <PU>=22 4 sim.
QCD1.1<p. < 1.4 TeV

+ <PU>=22 + sim.
W, 400 < p_ < 600 GeV

+ =:PU;-=22T+ sim.,
W, 1.1<p_<1.4TeV

+ =PU=>=22 + sim.

(GeV)

:;: m :;:

150

pruned jet mass (GeV)
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SUMMARY

1) LHC has provided and is about to finalize the bread and butter
measurements to improve/validate the the QCD calculations designed to
keep at the LHC a high sensitivity to the EW physics.

2) Run IT would benefit from those efforts and the tuning/measuring
machinery established for the Run I shall allow to quickly improve the
tunings to the new energy scale.

3) Our task is to guarantee the finalization of 8 TeV program which is the
“Golden age” of many topics that cannot be explored at higher PU.

4) Our task is to be ready for a bunch of High Priority measurements with
first “medium PU run” with lumi that that would be granted to us. We
need to defend a solid case.



B
ACKUP

VL




3.1) Dijet azimuthal decorrelation PhysRevLett.106.122003

L=29pb" Vs=7TeV |y <1.1

10° £ ¢ PI™>300 GeV (x10%) CMS 4 [ NLO QCD Predictions CTEQ 6.6 pT* > 300 GeV
= o 200 < pM™™ < 300 GeV (x10%) 2 L W, =y, = pr CMS
C max 2 = 2 —
a 140 <p_"" < 200 GeV (x10%) o - ®
10 i & 1 + i
= o 110 <pI™ < 140 GeV (x10) ' [ . | . . | . .
C o 80 <p™ <110 GeV w4 ol 200 < p7™* < 300 GeV
E ) L L
103 - L=2.9 pb1 = .a;@"j __ | |
= \s=7TeV 2 ¢ 0
— :\JS— - A ,_|1_| L o 0........
L% [~ IY| <141 o =3 ﬁ—&# % Q—;g = | I I | 1
= 102 & s g 8|3 B 140 < pT™ < 200 GeV
& = EI ,_L:;“—i 0
% 913 L * _.-.' 2 J_ + | 1
3 |3 @By " TF e
= 10 BT o " ,'E% = " L B B B T T —
S S i ol 213 L ! . . | . .
& E g o o
e BRI~ = all | 110 < p7™* < 140 GeV
1 Loz T,
K il 2 LK) ®
I . = 1 = 8.8 0 o o o ¢ PP —
1 __\--“ : . e = 1 1 | 1 1 | 1 1
107 & R PYTHIA6 D6T . -t 80 <FT™ < 110 GoV
= e e PYTHIAG Z2 __ + )
Lo B PYTHIAS 2 ',
1072 HERWIG++ - 000 0 0 0 0 0 0 o o
E - MADGRAPH L . ) 1 ) ) l ) )
C I I | I I | 1 I /2 2m/3 5n/6 1
/2 on/3 51t/6 T (AT Scale Dependence A{Pd" t [rad ]
PDF Uncertainty e
A  [rad] Non-Pert. Uncertainty

dijet

« At LO 2 jets are back to back : A@ ~ n. True at large p..

* Atlow p_ ISR and FSR play a significant role. NLO+NP starts to fail
to describe decorrelation. But LO+PS MC describe well.

06/01/2014  °Simple evidence of importance of PS : large corrections beyond NLO!



53

3.2) W tagger optimisation

10 CMS Profiminary, 1.3 it at 75 = 8 Toll Wajals CMS Praliminary, 19.3 ftr” at {5 =  TaV, Wajots ] CM3 Ff*""'"ﬂaf]' Simulation, {s = & TeV, W+jets
E FTTT T[T T T[T TR T[T T AT [T IT T[T T T [TI T T[T TIrT[TIT1] ¥ TTT[TTTT [T TTT [TT T [ T[T ITT[TTTIT[TTT E’-\‘ -‘-t:""-‘L:\::Ie—q\I_ T T | T T 1 | T T T | T LI
b ° CAR=08 . E T CAR =08 ' T T CAR =08
2 F 250 < p, « 350 GaV +oe |:|= - ] it 250 < py < 350 GaVr Frome DI"‘"‘ u,' B '“a\j“'vﬁ::ﬁ 260 < p_ < 360 GeV
3 [ pif<2a DH'E‘:THF .mw:.':z -] B0 - "!;:':;} el |:|:m3l: Tap .mmuz: - B -v“‘-'-\‘v{\ T
: ] 0.8 NN 7
aF — Wejet Pythis. — Wejcis Hormag 7} 4 — Wt Pythin — Wojets Herwg o "'5-"--: -
.lTpnnh:q Eﬂ:ﬂd-:p | - \:\.;‘ ]
I 0.6 N .
- | —— Mewal Network (MLF) S\
- 0.4 —— Lkeihood \ -
C L — T o\
.- - W
E I E L tJt, pruned \\ M
7o GE 3 T o 0.2 -—— i1,k axes 1’%—
z AT 3 =z H i - C, (B=1.7) W H
L illli.& |T|:|r:r||| |||W"n§ E ' II HHIII|L'L¢'|':IEI“FFHEIEH|||| II‘T:F L mass arop '-,jl
E E E - 3 0 . PR TR T AT T TN (NN TN TN (NN TN TN N NN M N X
01 07 03 04 05 08 07 08 ca 01 07 03 04 05 0B 07 08 09 0 0.2 0.4 0.6 0.8 .

Mass cut i> CMS-JME-13-006 -

@ N-subjettiness correlated to the prunned W mass: normal need a “dipole”
structure for a large mass.

@ On top of mass cut - A combination of many taggers (IN-subjettiness, mass drop,
C, etc...) improve slightly the S-B separation wrt to N-subjettiness.

@ More taggers considered by ATLAS: splitting scales etc...
@ Additional taggers brings 80% bkg rejection for 60% signal efficiency wrt to the
jet mass.
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3.3) Top tagging: generalisation

E LI L Y I N I N N N IS N BN AL B B o E LI L N Y L O B B
= 41 O L 4
L imi —e— Data 2012 | : [ ATLAS Prelimina —@— Data 2012 _
500 C ATLAS Pre"mlnary [ ttbar (with contained top) | S 500 L _‘ ry [ tibar {with contained top) |
L ILdt=20.3fb‘. \s=8TeV [ ttbar (non-contained top) - P L _[Ldl=203fb . NE=8TeV [ ttbar (non-contained top) |
- anti-k, R=1.0, Trimmed O w+jets - ) - anti-k, R=1.0, Trimmed O w+jets
[ p>350 GeV, jnj<1.2 [ single Top = [ p =350 GeV, n|<1.2 [ Single Top
400 = P oV i Z+ets ] z 400 L N i Z+ets ]
Statistical uncertainty L L Statistical uncertainty
300f 300F b
200 200 ]
100F 100~ -
% % 02 04 06 08 12
T
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ATLAS-CONF-

@ In top tagging we face a recursive splitting effect:
— T,, shows the top - Wb splitting

— T,, shows the top -~ Wb - qqgb splitting.

@ Other taggers:
— splitting scales Vd12, Vd23 (ATLAS-CONF-2013-084).

— Template method arXiv:1211.2202 (1211.2202)

aYa Y Ha NiaYula)
ZUI1O-UoJL
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3.4) W charge

55

infrared quantity (g

@ Jet charge does it make sense? Sum track charges would never work = non-
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3.3) W charge

56

@ Jet charge does it make sense? Sum track charges would never work = non-
infrared quantity.
@ [dea! Weight the track charge by it's momentum power something (to be tuned).

| .
0= e Yoy

[' PT J A ieTr

@ Does it work?

4/09/2013


http://arxiv.org/abs/1209.3019

3.3) W charge

57

@ Jet charge does it make sense? Sum track charges would never work = non-
infrared quantity :(
@ Idea! Weight the track charge by it's momentum power something (to be tuned).

| i
Q= Z-‘Jﬁx (p7)"

( )
pr ) P
@ Yes it does!
_-__ T T T T T t‘z'[b.] I
{6 L}-IN
Fermilab 10f /H o5 ‘o
Data EJ | d- O * Q8
Z[& osp d-quork u- 1 28
(1980) e : ool
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3.3) W/Z charge 8

@ Idea! Weight the track charge by it's momentum power something (to be tuned).

@ Does it still exist with 40 PU and 100 GeV jets?
— Why not suggested out theorists fiends (2012 - arXiv:1209.3019v3).
— It works answered CMS/Atlas in 2013.

@ k = 0.3: tracks democracy is preferred to k = 1.0 leading track oligarchy.

CMS Preliminary, 19.3 fb'at {s =8B TeVW, W — uv
L e e LI B B e o o e e o e o e o e B e

w FTTT .E" grrrtrrrrryrTT T T T T T T YT T T T Ty
E F T T T T T ] = 'I'l':l'_'|_— ‘qn‘qs F"E-II'I'III'IET'_-.' 3 E I T T | T rr[rri |. T .I LI :
5 zsaf- +me_ +m“‘ . = E : . 5 | ATLAS Preliminary |
E . = BOOE (5=ETeV. 5B 3 i ; i ;
E ] g BOp BUETELILAZSERS pemm 3 Stk js-8TeV,|Ldt-58b" -
= —MCW. —mcws < coof =110 G - s 3 % E‘_ ]
_ T C = MO OE - - -
-.:,: E ."."- [l » Bk Wy ? 1'% tt Sample
L C ] A0 +_ IE] = Fschogroned i _E E.: ?'f_l:'...ll. Dﬂ[a MC
F 1 P LUl A Y —k=10 -x=10 3
00 — = E o ]
s ] A \\x 0.3 03 ]
H 1 L i —k=0 k=03 |
50 — .
: . = | i
- == o ] 10E \\% 3
.;.' L e - -Eﬁ"-\.fﬁ___ ]
s BT : 3 *
:ﬂ_E E | |_r1r =..__..--.—__p.n=|.|_|:| r I _E
E... E r. |_|-|_|"I = g = | E ,.'i_: '|—| PRI [T ST T N TR TN T N TN T M B SO =
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3.4) W/Z polarization

59

involved.
@ But there is a trick with the acceptance...

@ Better acceptance for WL than WT

@ Jets substructure — Subjets — Could we measure the polarization?
@ Measure polarization = Measure subjet angles + boost into V rest frame. No JES

@ No sensitivity to the parity (no quark — anti-quark tagging yet)

Symmetric
low AR \
cos 6% ~ 0 P aam e
; E G.1er@ — W, only
ox z
Q
[ E— . ................... » E
ED.DE
Y rest 5
frame
‘9 A e T N R
’ Cos®,
CMS-JME-13-006
Lab. frame
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Asymmetric
high AR

cosO*~+1 /

*.0*

Lab. frame




3.4) W/Z polarization °0

@ Jets substructure — Subjets — Could we measure the polarization?
@ Measure polarization = Measure subjet angles + boost into V rest frame. No JES
involved.
@ But there is a trick with the acceptance...
@ No sensitivity to the parity (no quark — anti-quark tagging yet)
@ Better acceptance for WL than WT

Symmetric Asymmetric
low AR

high AR
cos 6%~ 0 Cos 6* ~ +1

CMS Preliminary Simulation, {5 - B TeV, Wsjels

o* 'g [ caR-nz —— W, only. 500 GeV ye*
£ ¢ '._PL; : — + simulation i
D . """""""""""" > E xm . r|-1|J < .‘Il:l} GV W, only, 600 GeV : .
Y rest E I:I.E-— —— + simulation ] A
E Z Y rest
frame 5 /
% - frame
b f’ % 02 04 06 n.amg HJ . v
e CMS-JME-13-006
Lab. frame

4/09/2013



3.4) W/Z polarization

61

@ Jets substructure — Subjets — Could we measure the polarization?
@ Measure polarization = Measure subjet angles + boost into V rest frame. No JES
involved.
@ But there is a trick with the acceptance...
@ W, are in average more dipolar than W_

Symmetric Asymmetric
low AR high AR
cos 6%~ 0 cosO* ~ 1
S . O*
- : IC!HSI Prlelllrrurtarly ‘_T.lrrll ulzlllu::n.I |sl= ?T:a‘u’.lw Jells_
'% N CAR=0.8 -—— Wy_only. 600 Ge .
g 0.3 N 1'1;;:5'3" o simulation n A
%‘J F B\sm, <100 GeV . W, only, 600/GeV :
E o2k —— + simulatipn _‘ Y reSt
E frame
‘9* 1 = 0.1F . be*
Lab. frame I TToE
N 1
CMS-JME-13-006 Lab. frame
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3.4) W/Z polarization

@ Jets substructure — Subjets — Could we measure the polarization?
@ Measure polarization = Measure subjet angles + boost into V rest frame. No JES
involved.
@ But there is a trick with the acceptance...
@ No sensitivity to the parity (no quark — anti-quark tagging yet)
@ Better acceptance for W, than W_

@ CMS measured the resolution:
@ o(AR) ~ 10 mrad : o(AR)/AR ~ 3% for p(W) = 500 GeV!!!
@ Do not impact W /W_ separation

CMS Preliminary Simulation, {5 - B Tel, W+jels
— T T T T T T T ]

CAR-D.E — W, only. 600 GeV' 1

0.3[" 20<p, «350GeV ) . 7
B mi<2 A — + simulation E

[ S0am <0GV W, only 600 GeV |

0.2 -_ —— + simulation

Mormalized Distribution

1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 1
GD 0.2 0.4 0.6 0.8 1
COo5 H_I

CMS-JME-13-006
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3.5) Subjet b-tagging

medium boost regime large boost regime
CMS'BTV'13'001 5. CMS Slmulallon Prellmlnary s = 8 TeV CMS Slmulatlon Prellmln.’arg.lr 'S = 8 TeV

—_ L B B T e —_ ALt M et 3
8 - cAR-08. 3004: 2500 GeVic __.:;,r— 8 : CAR-08, p 2700 GeW/c .-};'f
'S} r 75<=m <135 GeV/c® (pruned) / al 'S [ 75=m, =135 GeV/c” (pruned) 7.;’ -
= Fat jet CSV (JTA AR=0.8) / = Fat jet CSV (JTA AR<0.8) __./-'7
=4 o'} Subjet GBSV /)/ ‘510 SubjetCSV e
(35} A (23] -
_8 [ = Loose L _8 L e
=% o Medium =3 & Madium ,/" =
— o Tight e - s — i & Tight x__.-_-:'.'-':"@'
S ol k=] P
Rl e T jlotE o
% "f JTA = jet track association % i ."" JTA = jet-track association
_ 1 —_— et BT P SR AP I A S W N W A SN W S
=10°"0.102030.4 05 0.6 0.7 0.8 0.8 1 ='90"010203040506070809 1

b-tagging efficiency (H(120)—bb) b-tagging efficiency (H({120)—bb)

@ We need to prepare the boosted H - bb program
(first interesting source of bb jets).
B-tagging for highly boosted tops shall be improved.

@ CSV tagger: combine vertex and track counting info.
@ Fat-jet CSV tagger: apply CSV to Fat jets.
@ Subjet tagger: CSV tagger within R < 0.3.

2 tags for b and 1 for top.

@ Subjet b-tagging doing a great job till the subjets start to
merge. Tested in data with ttbar events.
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2.2) Jet mass calibration for substructure studies

64
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s © E-60GeV 4 E = 2000 GeV] g 06 : . ] 5] - ° E=250GeV E =500 GeV 1

0.4 Anti-k, R = 0.6, EM+JES — —_ L 4 - C ]

S IS P NPT IS AT I I N e [ r B 0.4+ v E =750 GeV -+ E =1500 GeV —

D 05 1 1-5 2 2-5 3 35 4 45 ﬁ 0-47 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ | -1 _I 11l | 111l ‘ I ‘ 111l J 111l ‘ 111l ‘ I J I ‘ 111l \ 111 l—

n,. 5 4 32 10 12 3 4 5 5 43210123435

arXiv :1112.6426 Jetn

arXiv:1306.4945v1 Jetn

@ ATLAS: p_ calib.; O(20%) remain etf.; additional mass calib., no PU calib.
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2.2) Jet mass calibration for substructure studies =

Jetresponse at EM scale

- L R N N AR R RN R
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arXiv:1303.4811

@ ATLAS: p_ calib.; O(20%) offset in mass; extra mass calib., no PU calib.
@ CMS: p_ calib. with PU corr. (track + jet Area); O(5%) otfset in Mass;
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http://cms.cern.ch/iCMS/jsp/openfile.jsp?type=DP&year=2013&files=DP2013_011.pdf

1.4) The boosted regime and substructure

- All V taggers might be described in the plane:

» =TT AR = \/(dg — d1)2 + (2 — m1)?
rr

- InY rest frame: 1 degrees of freedom 6",
- Boost: 1 degree of freedom r,. Then AR = f(6)!

A R = f(z) for jy| < 0.3, Madgraph

AR

I'I|'I T |IIIJ l'.lll'll

4/09/2013

66



1.4) The boosted regime and substructure

ATLAS Simulatio
Pythia Z' — tt, t — Wb

- All V taggers might be described in the plane: &,@

L= POLE AR =/ (pg — 01)2 + (12 — 11)2
rr

- In Y rest frame: 1 degrees of freedom 6",
- Boost: 1 degree of freedom r,. Then AR = f(6)!

:IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII_
OU 100 200 300 400 500 600 700 800

: arXiv:1306.4945v1 pY¥[Gev]
Symmetric - low AR | T

A R =f(z) for |n| < 0.3, Madgraph

o o
1

I'I|'I T |IIIJ l'.lll'll
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1.4) The boosted regime and substructure 08

- All V taggers might be described in the plane:

z = P11 AR = \/(*‘ifl’ﬂ - @-“51)2 + ('UQ — '1?1)2
pr

- In'Y rest frame: 1 degrees of freedom 6",
- Boost: 1 degree of freedom r,. Then AR = f(6)!

Symmetric - I,m

A R =f(z) for |n| < 0.3, Madgraph

AR(qQ

T
ATLAS Simulation 200
Pythia Z' — i, t — Wb 180

4:
o
)
5E

E|||||||||||||||||||||||||||||||||||||||
Ctl 100 200 300 400 500 600 700 800

arXiv:1306.4945v1 Py [GeV]

Asymmetric - w

[ S ‘ ................... » 3 ;.T .
Y rest 25t h
frame o Y rest
E R 4
Lab. frame s ¢
AR = X I N B Lab. frame
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1.5) Jet clustering and substructure: role of the
clustering order

CA no iteration CA with iteration
Pr.min=400 GeV, 70<m<100 GeV PT min=400 GeV, 70<m<100 GeV
! 1 i I T T T T

‘- 2 2 | _I 40 "
d"'..f - m;n( ;}, :})ﬁRIJ/R 06t | 05 FE

r -
04 - - 0.4 F 1
I 20

N = 1: k. - “Small fish eat first” Mo

N = O: CA - “Closest f|Sh eat f|rst" 0 ul.z ol.q g c:.a ol.e 1 0 ol.z ol.4 ol.s ol.s 1
N —_— _1: anti_kT "Big fiSh eat first" kt no iteration kt with iteration

Prmin=400 GeV, 70<m<100 GeV
T T T T

Pr min=400 GeV, 70<m<100 GeV
T T T T

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
z z

arXiv:1209.2858

4/09/2013

69



1.5) Jet clustering and substructure: role of R

X =2¥ = 47, Toy MC, Parton level
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@ Pairing of jets (superstructure) or looking for subjets (substructure) is an
equivalent activity! Fronter defined by R and M(V).

@ You need jets to make sense in QCD and calibration.

@ One can tune super/sub-structure cuts to have a smooth transition.
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1.6) V-tagging in a nutshell

» Remove soft large angle radiation GROOMING :
» Remove PU and UE prunning, trimming,

filtering
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1.6) V-tagging in a nutshell

» Remove soft large angle radiation GROOMING :

» Remove PU and UE prunning, trimming,
filtering
2 T =
TAGGING: TAGGING :
N-subj., 0 Jet mass,
Splitting . ¢ Mass drop...
scales... \/ W jet QCD jet \/

@ Use taggers to decide if the jet looks like a “rather symmetric
massive dipole” or “hard parton with a soft/collinear radiation”.

@ Could be done after or before grooming.

* Need to account for possible FSR in V production.

@ For example: Jet mass works well only after grooming;

Pruning can degradate N-subjettiness by removing asymmetric W;
4/09/2013




1.7) Algos: Prunning algorithm

/ ® 3
k. or C/A /@ !
— | —b
1 r“'
\‘.‘h‘. ® "r’:
Initial jet C.} P{E.‘fpiuﬁ > Zem or ﬂRJ]J‘z = Rcut F"r'l.II'IEdjl!t
arXiv:1209.2858
Signal do/dAdz [Tb] Background de/dAdz [Tb]
1.0 T T T T 4.0 T T ; 400.0
ptmin = 400 GeV l
1
0.8 | 3.2 0.8F) 320.0
oy ocut 0.260 .
— iy 0574
prun 0.200, 0.500 0.6F 2.4 0.6 4240.0
< * e
0.4F 11.6 0.4 4160.0
0.2F {1 [40.8 0.2 80.0
-0 02 04 06 0.8 o s
z
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: Mass drop + Filtering

J2
£
Yy Q
C/A ,r*"::»f E-,‘
i L :-_:I % 'il
e S o
o e I
it \\ O 1 -
- n]
N o)
\L_‘*_’r

Initial jet mi MF < e and U Yo

{a) The mass-drop and symmetric splitting criteria.

Initial jet

-
e

Rgy = min[0.3, 222

Filtered jet

(b) Filtering.

Allow up to 3 subjets to account for FSR.

Signal do/dAdz [fb]

1.0
ptmin = 400 GeV
0.8
oy rut 0.260 ]
— U 0.574
prun 0,200, 0.500 0.6F
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0.2
arXiv:1209.2858
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1.9) Top tagging: generalisation

Filtering + mass drop generalisation

Iteratively produce N subjets
without no « substructure »

Make
/L;o _\\\‘ﬁ: IG 3
@ % w‘\@
\8 Y @Y

L

ILAR Ll RS

Myp = mwiliﬂlﬁj (ﬂ'?ﬁzjlsjisjﬂ)

Recluster into few bricks (5) to
allow some QCD radiation.

Then combine into 3 groups using
W and top mass constraints.

Atlas : HEP TOP TAGGER
arxiv:1306.4945v1

4/09/2013
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@—»oe—>°@

Prunning generalisation

Iteratively uncluster up to 4
subjets: symmetric splittings
and not too far away.

Momentum fraction criterion: prsUtiet = 0.05 xpre
P pr

Adjacency criterion: AR(C,, C2) = 0.4 - 0.0004xpT(C)

Select events where subjets
and jet satisfy W and top
mass constraints.

CMS/JHU tagger :
arXiv:1204.2488
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