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Outline

® |ntroduction to gluon fusion

e Higgs ptH distribution in the HQET limit

® gluon fusion with quark mass effects in the SM
® uncertainties affecting the ptH distribution

® two-scales description of the Higgs ptH distribution

® gluon fusion BSM: MSSM and 2HDM
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Basic references
The POWHEG code to simulate the gluon fusion in the SM, MSSM and 2HDM

® can be found at http://powhegbox.mib.infn.it/

in the directories gg H_quark-mass-effects/
gg H MSSM/
gg H 2HDM/

® is described in Bagnaschi, Degrassi, Slavich,Vicini, JHEP 1202 (2012) 088, arXiv:1111.2854
extends the original code by Alioli, Nason, Oleari, Re, JHEP 0904 (2009) 002, arXiv:0812.0578
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Effective lagrangian in the HQET (large mtop limit)

® in the limit of large mt, the full QCD lagrangian is well approximated
by the (gauge invariant) effective lagrangian
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® the top triangle loop shrinks to a pointlike interaction vertex
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® the effective lagrangian is independent of the heavy quark mass
=> this process is a heavy quark counter

® in the effective lagrangian approach, one loop less to be computed

® delicate is the effective lagrangian approach:
in presence of light particles in the loop, in the high-energy limit

® Cross section dominated by the lowest order threshold kinematics
Large contribution due to soft gluon emission at the threshold
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The gluon fusion process: existing literature for the total cross section
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The gluon fusion process: existing literature for the total cross section
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The gluon fusion process: existing literature for the total cross section
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The gluon fusion process: existing literature for the total cross section
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The gluon fusion process: existing literature for the total cross section
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The gluon fusion process: existing literature for the total cross section
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The gluon fusion process: existing literature for the total cross section
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The gluon fusion process: existing literature for the total cross section
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The gluon fusion process: existing literature for the total cross section
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The total production cross section

® Yellow Report | of the Higgs Cross Section Working Group, arXiv:1101.0593
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® the gluon fusion process dominates Ty
but weak-boson fusion has a very good signal/background ratio | .
® the uncertainty bands include: PDF+alphas uncertainty, scale uncertainty g
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Heavy Quark Effective Theory (HQET)
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Higgs transverse momentum distribution in the HQET (heavy top limit)

e the Higgs transverse momentum is due to its recoil against QCD radiation :(O““”

Bozzi Catani De Florian Grazzini, arXiv:hep-ph/0508068

Alessandro Vicini - University of Milano TIFR, January 7th 2014



Higgs transverse momentum distribution in the HQET (heavy top limit)
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® at low ptH, the fixed order ptH distribution diverges for ptH =+ 0  (both at LO and at NLO)

® the resummation to all orders of the divergent log(ptH) terms is regular in the limit ptH — 0
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Resummation of log(ptH) terms and resummation scale Q
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T 0

process dependent
Wi (b, M as(ig), kg, k7)) = My (M, as(ug); M*/ g, M* /i, M"/Q°)
x exp{Gn(as(ug), Ls M /g, M*/Q%)}
universal

® the factorization (in conjugate space) of the cross section for multiple emissions
can be defined at a given scale Q called resummation scale

Bozzi Catani De Florian Grazzini, arXiv:hep-ph/0508068
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Matching NLO matrix elements and Parton Shower
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Matching NLO matrix elements and Parton Shower
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Matching NLO matrix elements and Parton Shower

_ - R?(®
dO_NLO—l—PS _ d(I)BBS((I)B) [AS(prJr_lln) + dq)R‘B ( R)
B(®p)

AS(pT((I)))] + d(I)RRf((I)R) _|_d(I)RR7"eg((I)R)

B® = B(®p) + [V((I)B) + /dq)R|BRS((I)RB)]

R = Rreg + R;,, Isthe sum of all the real emission squared matrix elements,

with a regular (divergent) behavior in the collinear limit

Ry, = R% + Rf the collinear divergent matrix elements can be split in the sum of
their singular part plus a finite remainder
R®  enters in the Sudakov form factor A® (pT((I)))
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Matching NLO matrix elements and Parton Shower
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AS(pT((I)))] + d(I)RRf((I)R) _|_d(I)RR7"eg((I)R)

B* = B(®p) + [V((I)B) + / dq’mBRS(@RB)]

R = Rreg + R;,, Isthe sum of all the real emission squared matrix elements,

with a regular (divergent) behavior in the collinear limit

R, = R% + Rf the collinear divergent matrix elements can be split in the sum of
their singular part plus a finite remainder
R®  enters in the Sudakov form factor A’ (pT((I)))

MC@NLO

POWHEG
h? 2 R® x Z2Py;(2)B(®
RS — QRdz'v Rf: Pr sziv X 4 J(z) ( B)
h? + Pr h? + Pr
R/ =R- R
at low ptH, the damping factor = |, R_div tends to its collinear approximation,

at large ptH, the damping factor — 0 and suppresses R_div in the Sudakov and in the square bracket

the scale h fixes the upper limit for the Sudakov form factor to play a role,
effectively is the upper limit for the inclusion of multiple parton emissions

the total cross section does NOT depend on the value of h
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YR2 comparisons arXiv:1201.3084

MCatNLO-HW
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Fig. 22: Uncertainty bands for the transverse-momentum spectrum of the Higgs boson at LHC, 7 TeV, for a Higgs
mass My = 120 GeV. On the upper plots, the MC@NLO+HERWIG result obtained using the non-default value
of the reference scale equal to M. On the lower plots, the POWHEG+PYTHIA output, using the non-default
R® + R/ separation. The uncertainty bands are obtained by changing p and ;. by a factor of two above and
below the central value, taken equal to My, with the restriction 0.5 < pg /pur < 2.

— MC@NLO should be run with the factorisation and renormalisation scale equal to Mjy;.

— POWHERG should be run with the h parameter equal to My /1.2. For My = 120 GeV, this setting
is achieved introducing the line hfact 100 in the powheg. input file.
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Quark mass effects (2011-2012)
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Gluon fusion in POWHEG with quark mass effects
(Bagnaschi Degrassi Slavich Vicini, arXiv:1 | | 1.2854)

® the code is an event generator which describes the process
pp = H*+X
with NLO-QCD accuracy matched with a QCD parton shower

o full NLO-EW corrections (Actis et al. 2009) are applied in a factorized form
to the QCD cross section

® the matrix elements retain the exact dependence on the quark masses in the loops
(top, bottom, charm, ...) NLO rea
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® the Complex Mass Scheme is implemented, relevant for heavy higgs searches
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Quark mass effects at NLO

® the Higgs transverse momentum is due to its recoil against QCD radiation

® at small ptH the leading contribution comes from radiation from the incoming partons
at larger ptH, the emitted partons can resolve the structure of the quark loops
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oy 6 65
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® triangle diagrams — one threshold at s=4 mq?
box diagrams — enhanced contribution at ptH ~ mq

in the case of the top, mass effects are evident for ptH > 150 GeV
with the bottom, the effects start at ptH ~ |10 GeV

® every diagram is proportional to the corresponding Higgs-fermion Yukawa coupling
— the bottom diagrams have a suppression factor mb/mt ~1/36 w.r.t. the corresponding top diagrams
— the squared bottom diagrams are negligible (in the SM)
the bottom effects are due to the top-bottom interference terms (genuine quantum effects)

M(gg — gH)|? = My + My|* = M > + 2Re(MM]) + | M|
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Quark mass effects at NLO
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® very good agreement with independent codes
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e at fixed order the distribution is divergent in the limit ptH — 0

® the top mass effects are small up to ptH ~ mtop
® the bottom diagrams distort the shape by O(10%)
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Quark mass effects in POWHEG

events are generated according to

do = B((I)l)d(i)l \

(

\

A (‘i’hp'?m) + A (‘i’hpT)

—+ Z qu ((i)ly (I)rad) d(i)ldq)l’ad y
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Quark mass effects in POWHEG

events are generated according to

( )

S _ | _ R (®,,d,,
do = B(‘I’l)d‘h AN ((I)lvp$zn) + A ((I)lapT) (BE@ ) d) AdPraq ¢
1
=+ Z chj ((i)la (I)rad) d(i)ldq)rad 9
q

quark mass effects affect
® the overall normalization (LO, NLO virtual and real corrections)

B(®1) = Byy(®1)+ Vye(®1) +

/dq)rad {f{gg ((I)l, (I)rad) + Z }%gq ((I)l, (I)rad) + ng (&)1, (I)rad>} + c.r.

q
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Quark mass effects in POWHEG

events are generated according to

( )

o _ | _ R (®q,®,,
do = DB(®1)d®; (A (21,p7") +A (21, pr7) (BE@ )d) d®rad ¢
1
+ Z qu‘ ((i)la (I)rad) d(i)ldq)rad 9
q

quark mass effects affect
® the overall normalization (LO, NLO virtual and real corrections)

B(®1) = Byy(®1)+ Vye(®1) +

/dq)rad {f{gg ((I)l, (I)rad) + Z }%gq ((I)l, (I)rad) + ng (&)1, (I)rad>} + c.r.

q

® the shape of the distributions (real emission amplitude, Sudakov form factor)

R((I)l 9 (I)rad)

A(Py, pr) :exp{_/dq)rad B(T,) H(kT_pT)}
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Quark mass effects in POWHEG
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e only top: at small ptH the Sudakov form factor is weakly affected by the exact top mass effects
from ptH~150 GeV we find the NLO behavior

® top+bottom: the bottom diagrams modify the Sudakov form factor — suppression at small ptH
the unitarity constraint enhances the distortion at intermediate ptH

A(®y,pr) = exp {— / AP aq R(El(’(;;ad) 0(kr — pT)}
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Quark mass effects after the resummation of multiple gluon emissions (beginning 201 3)

Heavy quark mass effects in pp » H + X at LHC7 (MC@NLO)
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e different impact of the quark-mass effects after the matching with Parton Shower
or after the analytical resummation

e MC@NLO and Mantler-Wiesemann share an additive matching approach
POWHEG has a different Sudakov form factor
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Comparison with MC@NLO

Heavy quark mass effects in pp - H + X at LHC? (MC@NLO)
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only top predictions (red vs yellow) in good agreement
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Comparison with MC@NLO

Heavy quark mass effects in pp - H + X at LHC? (MC@NLO)
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toptbottom predictions (black): visible difference
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Comparison with MC@NLO

_ : R (P
dO_NLO+PS _ d(I)BBS((I)B) [As(prfm) 4 d(I)R|B ( R)
B(®p)

A*(pr(®))| + dPrR! (Pr)

B* = B(®p) + [V((I)B) + /dq)R|BRS<(I)RB)]

R®  enters in the Sudakov form factor A® (pT((I)))

MC@NLO POWHEG
o
R® x —>P;;(z)B(® B2 2
X " ’LJ(Z) ( B) RS = > 2R, Rf: 2pT 2R
h= + p4 hs + p%.
R/ =R R
the universal collinear splitting function is used the scale h divides low from large ptH values

in the Sudakov

at low ptH, R tends to its collinear approximation
the full matrix element R is used only in the regular part at large ptH the damping factor suppresses R in the Sudakov

¢ the two approaches exactly agree at NLO-QCD, they differ by higher order corrections
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Comparison with analytical resummation
H. Mantler, M.Wiesemann, arXiv:1210.8263

L s (dGLO+NLL/dT)/(dﬁt?f-NLL/dT)

POWHEG ratio of distributions ~ -~ hil LHC@S TeV, my = 125 Gev ]
1.2 C -t HE = HR = Qpes =My / 2 E

1.2 r

11 F

1

0.9 -
exact mass dependence ——— ~LeTlI[1 |
0.8 F Migps m,oot exact mass dependence :||:‘||| &
NSRRI
4 o] L|||
0.7 ! ! ! ! ! ! ! ! ! ! L L | L .
°ReBR888988B8388g§s38 S 0 50 100 150 200 250 300
H
pr (GeV) pr [GeV]
<d0.res>f-0-‘|‘l-a- [do.res] dO'f'O' do.logs
2 2 2 2
dpr apr 1. dp dpr
resummation of logs(ptH) \ exact fixed order NLO calculation
applied to the LO process gg—H (only triangles) subtracted of its logs(ptH)
analogous to the shower term in MC@NLO analogous to Rf in MC@NLO
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Comments (beginning 2013)
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Comments (beginning 2013)

e the Higgs transverse momentum distribution is a multiscale observable in LO (mb, mt, MH)
and raises the question of the matching with multiple gluon radiation

® the range of validity of the resummation is different for top and bottom
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Comments (beginning 2013)

e the Higgs transverse momentum distribution is a multiscale observable in LO (mb, mt, MH)

and raises the question of the matching with multiple gluon radiation

® the range of validity of the resummation is different for top and bottom

e MC@NLO and MW use a similar reorganization of the perturbative expansion
and obtain a similar description of the small ptH region

both approaches assume the validity of the resummation up to a large scale

where the bottom contribution is already resolved
top and bottom in this region behave differently

e POWHEG includes higher orders differently;
the differences appear in higher orders and are beyond the accuracy of the calculation;
the size of the differences provides an estimate of missing higher orders

® the quark mass effects in POWHEG are, with good approximation, independent of hfact

Alessandro Vicini - University of Milano
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Quark mass effects (2013)

Recent developments in the treatment of the quark mass effects

e H.Mantler, M.Wiesemann, arXiv:1210.8263
S. Frixione, talk at Higgs Cross Section Working Group meeting, December 7th 2012
M. Grazzini, H. Sargsyan, arXiv:1306.458 |
A.Vicini, talk at the HXSWG meeting, July 23rd 2013
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Quark-mass effects in HRes  (Grazzini Sargsyan, arxiv:1306.4581)

® In the resummation formalism,
separate the pure top-quark contributions, from the bottom-quark ones

WWhLN2) W(N1,N2) 4 Wéﬁl’NZ)

top

where
W(NLNQ) b _ H(Nl,NQ) 2 2. (Nl,NQ) Z . 2 2
top ( ) T O-LO(mt) (mH/QD mt) eXp{g ( Q17mH/Q1)}
Wiat "2 (b) = [ULO(mu my) NN (my Q35 e, my) — opo (ma VYN (m3, /Q3;my)

x exp{GMN) (Lo,im% /Q3)}

T T T T | T T T T | T T T T T T T T | T T T T T T T T l T T T T l T T T T T T T T l T T T T

| pp~oH+X  Vs=8 TeV NLL+NLO  _ | pp~H+X  Vs=8 TeV NNLL+NNLO |
— 1.2

1.2

[ MSTW2008 NLO [ MSTW2008 NNLO

MF=MR=mH=125 GeV i | [Jfr=[l:g=mﬂ=125 GeV i
B Q1=mH/2 - __ Q1=mH/2 i
0.6 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 0.6 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0 20 40 60 80 100 0 20 40 60 80 100
pr (GeV) pr (GeV)
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A proposal to treat quark-mass effects with POWHEG

® |n the following identity the square bracket is a correction to the first, only-top, term
because of the yukawa suppression of the bottom coupling

M(t+b)]° = M@ + [IM(E+D)° — M)

® The first term contains the full top-quark squared amplitude;
the square bracket contains the top-bottom interference and the bottom squared amplitude
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A proposal to treat quark-mass effects with POWHEG

® |n the following identity the square bracket is a correction to the first, only-top, term
because of the yukawa suppression of the bottom coupling

M(t+b)]° = M@ + [IM(E+D)° — M)

® The first term contains the full top-quark squared amplitude;
the square bracket contains the top-bottom interference and the bottom squared amplitude

® The total cross section is independent of the choice of h
— the total cross section, including quark-mass effects, can be written as

o(t+b)=0c(t,h=mg/1.2)+ |c(t+b,h=mp) —o(t,h =my)
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A proposal to treat quark-mass effects with POWHEG

® |n the following identity the square bracket is a correction to the first, only-top, term
because of the yukawa suppression of the bottom coupling

M(t+b)]° = M@ + [IM(E+D)° — M)

® The first term contains the full top-quark squared amplitude;
the square bracket contains the top-bottom interference and the bottom squared amplitude

® The total cross section is independent of the choice of h
— the total cross section, including quark-mass effects, can be written as

o(t+b)=0c(t,h=mg/1.2)+ |c(t+b,h=mp) —o(t,h =my)

® Since the first term depends only on the top quark, a sensible choice is h=MH/I.2

® Since the square bracket contains the top-bottom interference and the bottom squared amplitude,
but no pure top-quark contribution, a sensible choiceis h=mb

® We propose to use the above formula also for the differential distributions
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Quark mass effects after the resummation of multiple gluon emissions (end 201 3)

e the Higgs ptH spectrum, with quark masses, is a 3 scales problem (mb, MH, mt),

the first “threshold” of the hard scattering process is at ptH ~ mb

M(t+b)> = [IM(@)|? + [2ReM () MT(b) + |M(b)]?]

high scale

low scale

® HRes: two different resummation scales (Ql and Q?2)
POWHEG: two different values of the parameter h (ht and hb)

MC@NLO: two different scales at which the shower is switched off

1.28 " h—4.75 GeV
1.24 h=9.5 GeV
1.2 | h=19 GeV
1.16 | Hres Q2 = my
112 L
1.08 |-

1.04 |
1 F
0.96 |
0.92 |
0.88 |
084 |
0.8 |
0.76 |
0.72
0.68 |
0.64
0.6

quark mass effects: POWHEG vs Hres

LHC 8 TeV, myg = 125 GeV

R — o(t,h=mpg/1.2)40(t+b,h)—0c(t,h)
- cuqeT(h=mg/1.2)

0 20 40 60 80
p (GeV)

100

1.3

M. Grazzini, H. Sargsyan, arXiv:1306.458 |

" MC@NLO

| L

50

100

150

250

200

® good agreement in the comparison of (MC@NLO, POWHEG) vs HRes

e the “old” differences between MC@NLO and POWHEG apparently stem from the region of
intermediate ptH, together with the unitarity constraint
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POWHEG comparison

=
)
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~
e
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=N
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s 0.01 |
0.001

0.1 U
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LO+NLL QCD
POWHEG
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pt (GeV)

5(%)
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-20
-30 £

-40

of two-scales vs one-scale approaches

LHC 14 TeV
LO-+NLL QCD

d = two-scale approach vs the one-scale (same h;)

50

® ht: 50 GeV (from helicity analysis) and 90 (from tuning with HRes)
hb: 4 mb (from helicity analysis) and mb (as in HRes)

100

pi (GeV)

150

® in the SM the top-quark amplitude is dominant and thus the choice of ht is crucial for the shape

e differences appear in the low (ptH<I0 GeV) and in the intermediate (20<ptH<50 GeV) regions

® setting hb=4 mb obviously reduces the difference between the two approaches
® in the intermediate ptH region, the differences do not exceed the 5% level
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POWHEG comparison of PYTHIA 6 vs PYTHIA 8 effects
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PYTHIA 8 tune AU2-CTEQ6L1 vs PYTHIA 6.4

0

50 100
p (GeV)

150

200

5(%)

20

15

10 -

-10

h =50
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LO+NLL QCD

5= (5EH 1) « 100

| PYTHIA 8 tune AU2-CTEQG6L1 vs PYTHIA 6.4

0

o0 100 150

pl (GeV)

e starting from the same LHEF events, shower with PYTHIA8 AU2 CTEQ6L

PYTHIA6.4

® important change (-7%) of the height of the peak of the distribution (from PY6 to PY8)

® unitarity forces the high-ptH tail of the distribution to increase, by +7%, for ptH>70 GeV

e the effect is almost independent of the chosen value of h

® the tuning of h is affected by the change of the shower (PYTHIA6 h = MH/I.2 ~105 GeV,
PYTHIA8 h =~90 GeV)
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Tuning POWHEG to mimic the HRes shape

H Res POWHEG 2
do; 1 do;

C= X )| -
T HRes H POWHEG H
1€bins Ttot dpJ_ Otot dpJ_

® HRes scales fixed at: QI=MH/2, Q2=mb
POWHEG scales scanned over: 50 < ht < |50 GeV (5 GeV steps), mb/2 <hb <2 mb (I GeV steps)

e for each scale choice in POWHEG, compute X?*; look for the global minimum

e two X? definitions: w(i) constant, w(i) proportional to the xsec
(prop. to xsec — more importance to the peak,
constant — more importance to the tail)

® the comparison of the shapes allows to apply a global rescaling factor
K_NNLO =0 NNLO/ o NLO = 1.254
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Tuning POWHEG to

mimic the HRes shape at LO+NLL

0.1 }

do/dp’ (pb/GeV)

| ﬁRes
POWHEG (55,2 my)
POWHEG h = 55

0.01 LHC 14 TeV .
LO+NLL QCD _ ]
%{1{
0.001 ' ' '
0 50 100 150
p (GeV)

® at LO+NLL the result does not depend on w(i)

200

§(%)

30 F
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-10

-20

-30

LHC 14 TeV
LO+NLL QCD
§ = (POMHEG _ 1) 4 100

HRes

IHRes
POWHEG (55,2 myp)
POWHEG h = 55

50

100 150

H (GeV)

the preferred ht ~ Q/I, a variation of hb modifies X* at the percent level
® the preferred h is close the QI1=MH/2

two scales fit

one scale fit h=
ht=55 GeV, hb=2 mb

55 GeV
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Tuning POWHEG to mimic the HRes shape at NLO+NNLL

do /dpl (pb/GeV)

}IIRes
POWHEG (85,2m)
POWHEG h = 85
POWHEG h = 95

0.1

0.01 LHC 14 TeV

NLO-+NNLL QCD

| POWHEG rescaled by K_NNLO
0.001 ' '

0 50 100 150
pT (GeV)

200

§(%)

30
20 |

10 Hf:

-10 H
-20 H

-30

LHC {4 TeV POWHEG (85,2ms)
- POWHEG |h # 85

NLO-4NNLL QCD
§ = (HHEG 1) % 100

EHRes

I I}iIfRes

POWHEG |h ;: 05 ceeeene.

POWHEG rescaled by K __

LNLO

0

50 100

150

p (GeV)

® HRes predictions computed with Q1=MH/2 and Q2=mb
® a large value of h forces POWHEG to mimic the large ptH tail of the HRes NLO+NNLL
® the best fit mimics the shape at the +5% level for ptH<I100 GeV

e the fit results depends on the importance ( w(i) ) that we give to the tail of the distribution

® the use of PYTHIAS8 forces the tuning towards smaller values of ht (w.r.t. PYTHIA®6)

one scale fit

h=85 GeV w(i) prop.to xsec

h=95 GeV w(i) constant

two scales fit ht=85 GeV, hb=2 mb
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POWHEG resummation uncertainty band compared to HRes

1. | | | |
: HRes min-max ] ..
POWHEC min-max 1 scale variation

POWHEG (80,2mp) - HRes at NLO+NNLL: MH/4 < QI<MH, mb/2<Q2<2mb
POWHEG (150,mp/2) - | POWHEG: 50 < ht < 150 GeV, mb/2 <hb <2 mb

0.1
: | for fixed renormalization and factorization scales MR=pF=MH

| min-max envelope:
in each bin consider the minimum and the maximum values

do /dpi (pb/GeV)

0.01 LHC 14 TeV

11 ® the lower (upper) edge of the (rescaled) POWHEG envelope
has an integrated xsec compatible with the corresponding
0.001 | | | HRes lower (upper) edge integrated xsec

0 50 100 150 200 at the 6% (-2%) level

p (GeV)

(NLO+NNLL)-QCD
Q1,2 vs htp uncertainty bands

e the POWHEG predictions, rescaled by a global factor K_NNLO, are compatible with the HRes results

the POWHEG uncertainty band, varying ht and hb, is comparable in width with the one by HRes
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SM Conclusions

® The use of hfact to control the range where multiple parton emissions plays a role
allows to treat in a different way top and bottom parts of the amplitude

® A simple combination of 3 POWHEG runs reproduces quite accurately the LO+NLL Hres calculation
the reweighting factors to match the new HRes should be mostly due to NNLO-QCD corrections
rather than to quark-mass effects

® The 2-scales recipe is conservative (resummation is applied only where we know it is valid)

The agreement between POWHEG, HRes and MC@NLO suggests that
previous discrepancies were due to the bottom contribution enhanced by resummation effects
i.e. different Sudakov factors + unitarity constraint
(it is not yet clarified if those effects were properly treated, it deserves further investigation)

® The effects of the bottom treatment in the SM are small but not negligible
they can be further enhanced in the MSSM by tanf8
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The gluon fusion process in the MSSM in POWHEG

® the code is an event generator D
which describes the MSSM processes
PP = ho+X, pp = Ho*+X, pp = A+X
with NLO-QCD accuracy matched with QCD parton shower

»,

® at LO, the exact contribution of quarks and squarks is included
at NLO, the quark contribution is included exactly
NLO-QCD corrections to the squark diagrams and SUSY-QCD corrections
are included via expansions

— X

" “ho/Ho/A

® NLO-EW corrections due to light-quark loops (Aglietti et al, 2004), with MSSM couplings,
are factorized w.r.t. the MSSM NLO-QCD cross section

Checks

e the total and differential cross section has been carefully checked in close collaboration
with the authors of SusHi (Harlander, Liebler, Mantler)
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MSSM: Feynman diagrams

: wquarkj (e)
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The MSSM code: input file

® the MSSM parameters can be computed in two renormalization schemes:
DRbar (e.g. with SoftSusy) or On-Shell (e.g. with FeynHiggs)

® depending on the scheme chosen, the parameters (Higgs mass, squark masses, mixing angles)
necessary to POWHEG to compute the cross section, must be determined as follows:

DRbar: a SLHA-compliant file must be computed e.g. by SoftSusy

OS: POWHEG uses the FeynHiggs library (it must be installed, version > 2.9)
to compute masses and couplings

® once the MSSM parameters are computed, the simulation proceeds exactly as in the SM case:
a scan in the MSSM parameter space is as simple as the generation of the input files

® the POWHEG run (before showering) yields in output a SLHA-compliant file with

the values of all the parameters used in the computation;
this file can be read by PYTHIA, if necessary, for a consistent evaluation of the decay processes
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The MSSM code: basic analytical structure

M(gg — gH)|? = |[My + Mg+ My|?
= [M]? 4+ 2Re(M M) + [My|? + 2Re(MgM]) + 2Re(M M) + | Mg|?

"

® the bottom contribution can receive an impor

tanf enhancement
e the interference of the bottom and squarks diagrams may yield non negligible effects
e the ptH distribution can be significantly distorted by MSSM corrections
— relevance of an exact treatment of the mass effects (absent in the HQET SM analysis)

» it has an impact on the estimate of the acceptance
» it is an observable per se
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Ratios full MSSM/SM, hg production

mQ=mU=mD=1000 GeV, X'=2500 GeV, M3=800 GeV, M,=2 M;=200 GeV
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Ratios full MSSM/SM, hg production

mQ=mU=mD=1000 GeV, X'=2500 GeV, M3=800 GeV, M,=2 M;=200 GeV
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MSSM: role of the squarks, light higgs, ratio full MSSM vs MSSM only quarks

1 ! 1 !
LHC HIGGS XS WG 2011

® the squarks induce always a negative correction: moderate when 0(MSSM) » o(SM)
mQ=mU=mD=500 GeV, X'=1250 GeV, M5=400 GeV, M,=2 M;=200 GeV more sizeable when G(MSSM) < a(SM)
2m 5 T | e L L S R . e e A e S PO WL PR T e e T 2(X) Bgpmimeed, S0 _of ol =00l i wbeesbrmln ko] T  E— T
. l¢ _
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® |n the Yellow Report arXiv:1101.0593 the cross section for neutral Higgs production
have been computed including only the quark contributions.
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The 2HDM in a nutshell

® 2 complex scalar doublets ®; and ®, withVEVs v; and v,
3 d.o.f. are the longitudinal polarization of Ws and Z
5 d.of. are in the physical spectrum: 2 charged scalars, 2 neutrals CP-even, | neutral CP-odd

® input parameters are: &, tanP= v,/vy, Mh,MH, MA, M1, M,

® the presence of additional discrete symmetries forbids the appearance of tree-level FCNC
leading to different types of models;

the couplings of the Higgs scalars to fermions are:

Type 1 Type 11 Lepton-specific Flipped
% | cosa/sin 3 cos o/ sin 3 cos o/ sin 3 cos a/ sin 3
4 1 cosa/sinf3 —sin a/ cos B cos o/ sin 3 —sin v/ cos B
¢ | cosa/sin 3 —sina/ cos 3 —sina/ cos B cos a/ sin 3
% | sina/sin 8 sin o/ sin 3 sin o/ sin 8 sin a/ sin 8
4 | sina/sinf cos a/ cos 3 sin o/ sin 3 cos o/ cos
& | sina/sinf3 cos a/ cos cos a/ cos 3 sin o/ sin 8
4 | cot B cot 8 cot (3 cot 3
4 | —cotf tan 8 —cot 8 tan 8
S | —cotp tan tan 3 —cot 8
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a 2HDM run in POWHEG

® model input parameters

the user chooses -the values of the input parameters «, tanf3 and the Higgs mass (Mh, MH, MA)
-the type of 2HDM model ( | and Il implemented, same conventions as in SusHi)
and writes them in  powheg.input

the same values should be written in the HDECAY input file hdecay.in together with a choice
for Mi, M]_z

HDECAY must be started first to compute the Higgs decay widths in that parameter space point;
the total widths are written in br.l3_2HDM, br.hd_2HDM, br.ad_2HDM
— these files must be present in the POWHEG run directory

e QCD and generation parameters are defined as usual in powheg.input
the complex pole scheme, relevant for the heavy Higgs studies, is not yet available

Alessandro Vicini - University of Milano TIFR, January 7th 2014



Differences with respect to the SM analysis

e in the type ll, the coupling to down-type fermions is enhanced by tanf3
the role of the bottom-quark amplitude, in the interference with the top, but also squared,
can be radically different than in the SM

® some trivial cases are excluded by the experimental available constraints on a light scalar;
other scenarios (e.g. heavy Higgs searches in the decoupling limit) can be delicate

® the inclusion of resummation effects is more problematic than in the SM:
it is a 3 scales problem (O(mb), O(m_phi), O(mt) ), like in the SM, but
the bottom amplitude is NOT a small correction, it can be the leading contribution

e following a two-scales approach,
up to which scale can we safely apply the resummation formalism to the top (bottom) contributions ?
are these scales dependent on MH ?

® is a one-scale approach viable?
if yes, up to which scale can we safely apply the resummation formalism ?
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Exact matrix elements and collinear limit

Mm)P = Y MMRm)P =y MG (m) fpl + MRz (m)

>\17)\27>\3::|:1 >\17)\27>\3::|:]—

® we discuss the validity of the collinear approximation of the amplitude,
to find the value of ptH where the non-factorizable terms become important;
o ° ° . .
a 10% deviation is considered relevant Mezact(pt)[?

C(pl) =
(PL) Mo (piF) /5|2

® the breaking of the collinear approximation signals that
the log(ptH) resummation formalism, which is based on the collinear factorization hypothesis
can not be applied in a fully justified way
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Exact matrix elements and collinear limit

Mm)P = Y MMRm)P =y MG (m) fpl + MRz (m)

>\17>\27>\3::|:1 >\17)\27>\3::|:]-

® we discuss the validity of the collinear approximation of the amplitude,
to find the value of ptH where the non-factorizable terms become important;
o . ° . .
a 10% deviation is considered relevant Mezact(pt)[?

C(pl) =
(PL) Mo (piF) /5|2

® the breaking of the collinear approximation signals that
the log(ptH) resummation formalism, which is based on the collinear factorization hypothesis
can not be applied in a fully justified way

® 8 helicity amplitudes: 2
related by parity (4+4) and by the symmetry of the process | M2
® we discuss, at fixed partonic s, the 3 amplitudes
with a soft+collinear or only collinear divergence for u—0 ) i
(NP s
® dominance of the amplitudes with soft+collinear divergence T

® the results depend on partonic s; the choice of the smallest possible s allowed value guarantees
that the contribution under study has the largest PDF weight at hadron level
(small changes when using other choices of s)
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Toy example to illustrate the role of tanf: light Higgs with mh=125 GeV

1
tan 3

M = M + tan 8 M amplitudes evaluated with: only top, only bottom, top+bottom

tanf=1

ptH

tanf3=5

ptH

— ptH

08|

02}

06

04

— ptH

Ll e T ————— O O BRSO
0 50 100 150 200 250 300 150 200 250 300 300

tan=10

Lo T—— PtH

100 150 200 250 300 0 50 100 150 200 250 300

e the single-quark ratios are independent of tanf3
e for the full amplitude, the scale choice at which the collinear approximation fails

is dominated by the bottom at large tanf3
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Toy example to illustrate the role of tanf3: heavy Higgs with MH=500 GeV
1

M = on M + tan g M" amplitudes evaluated with: only top, only bottom, top+bottom
C C C
1.2?— 121 2] \
—  —— of \ tanP=|
081 081 R |
0.4?— 0.4; 0.4k
02; 0.2; 0»2;
T TR e e e e T
C C C
1.2; 1.2; 1.21\
p—_—— —_— o\ tanf3=5
os \ os \ os
06| \ 06 \ 06|
04} 0'4; oal
0.2?— 0.2; 02} —_—
C C C
P —— s\ tan=10
" \ | \\< I
0»6; 0-6; 06|
02 02 02

® the large MH value pushes the scale at which the collinear approximation fails
for the only-bottom case, towards hb ~ 50 GeV
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Comments

® in the two-scales approach,
the scale at which the factorization breaks, for the only-top and for the only-bottom amplitudes,
is independent of tanf3, but depends on MH:

for the top, ht ~ O(60 GeV) with MH=125 GeV and ht ~ O(125 GeV) for MH=500 GeV
for the bottom, hb ~ O(20 GeV) with MH=125 GeV and hb ~ O(60 GeV) for MH=500 GeV

it is possible to prepare a table of ht and hb as a function of MH

® in the two-scales approach,
we use ht for the only-top squared amplitude
hb for the interference terms and bottom squared amplitude
we potentially miss the resummation of terms proportional to the top-bottom interference
(only keep the first term from the fixed-order calculation)

® a one-scale approach is possible,
but the value of the scale h from the amplitude analysis strongly depends on tanf3
there are regimes where a one-scale approach offers a good approximation of the two-scales results
but it requires an ad hoc tuning

® the usage of h=MH/1.2 for a heavy Higgs is not justified! (e.g.for MH=500 GeV we get h=416 GeV)
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Light and Heavy CP-even Higgs and in a decoupling limit

e in a type Il 2HDM, the choice &=B-T1/2 is called a decoupling limit because
it makes the light CP-even scalar h SM-like, i.e.the couplings to the fermions are like in the SM

® the couplings of the heavy CP-even scalar H to the fermions instead
are tan enhanced (down type) or suppressed (up type) w.r.t. the SM ones

1 I T T
' NLO
r . h=19 GeV ——
| |'I'="- light h P
1 hy = 62.5,hy =19 GeV —
1 SM h; = 65,hy =19 GeV —
g 01 :- ]
O r ]
CD r 4
~~
2 -
= LHC 8 TeV'™,,
o L
<) LO+NLL QCD ™)
S 01 H e i
= 0-0 : my = 125 GeV - ]
_a_ by
a=p—m/2 ng!!_!J_- -
tan 8 = 40 "‘4==_=i_=
0.001 L ' L
0 50 100 150 200

pt (GeV)

® in this decoupling limit the light CP-even scalar is SM-like (cfr red vs black)
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Light and Heavy CP-even Higgs and in a decoupling limit

® the prediction for the heavy CP-even scalar is dominated by the bottom-quark amplitude

® the use of ht=MH)/|.2 as single scale (light green line) is not justified

® the use of ht as single scale (blue line) differs from the two-scales treatment at the £30% level

® given the bottom dominance, the two-scales result is perfectly approximated by h=hb=60 GeV

0.01 ¢
=
[<b]
3
é 0.001 3
T
=
~
o) i
=
0.0001 ¢
le-05
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Alessandro Vicini - University of Milano

5(%)

200

150

100

50

-50

| | h—60GeV —
h =125 GV ——
h = mH/1.2
R LHC 8 TeV bl oo |
LO+NLL QCD hy =125, hy = 60 GeV ———
mpyg = 500 GeV
a=p0—m/2
tan 8 = 40
r-""f— L o g
- e " R L T
,J/r; heavy H
0 50 100 150
Pl (GeV)

TIFR, January 7th 2014

200



Conclusions

® Higgs production via gluon fusion in the 2HDM available in the POWHEG-BOX
directory gg H 2HDM

e it requires HDECAY to consistently compute the total decay width in the 2HDM

® the enhanced role of the bottom-quark amplitude requires a two-scale approach
to set the resummation scales

® a one-scale approach may provide a good approximation of the two-scales results,
but the precise single scale strongly depends on tanf3

® the precise measurement of the Higgs ptH distribution can help to recognize a BSM signal,
even with a total rate for the light scalar compatible with the present data
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Back-up
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Basic references for the Higgs ptH spectrum, including multiple parton emissions

® Analytical resummation of the Higgs ptH spectrum in HQET

Balazs, Yuan, arXiv:hep-ph/0001 103
Bozzi, Catani, De Florian, Grazzini, arXiv:hep-ph/0508068
De Florian, Ferrera, Grazzini, Tommasini, arXiv:l109.2109

® Shower Montecarlo description of the Higgs ptH spectrum in HQET

Frixione, Webber, arXiv:hep-ph/0309186
Alioli, Nason, Oleari, Re, arXiv:0812.0578
Hamilton, Nason, Re, Zanderighi, arXiv:1309.0017

® quark mass effects
Bagnaschi, Degrassi, Slavich,Vicini, arXiv:1111.2854
Mantler, Wiesemann, arXiv:1210.8263
S. Frixione, talk at Higgs Cross Section Working Group meeting, December 7th 2012
Grazzini, Sargsyan, arXiv:1306.458 |
S. Frixione, talk at the HXSWG meeting, July 23rd 2013
A.Vicini, talk at the HXSWG meeting, July 23rd 2013
Banfi, Monni, Zanderighi, arXiv:1308.4634
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http://link.springer.com/article/10.1007%252FJHEP02%25282012%2529088
http://link.springer.com/article/10.1007%252FJHEP02%25282012%2529088
http://arxiv.org/abs/arXiv:1210.8263
http://arxiv.org/abs/arXiv:1210.8263
http://iopscience.iop.org/1126-6708/2009/04/002/
http://iopscience.iop.org/1126-6708/2009/04/002/

Multiple parton emissions via Parton Shower

® the Parton Shower “dresses” the hard event with QCD radiation
® QCD emissions are enhanced in the collinear limit

® The cross section factorizes in the collinear limit,
so that multiple emissions can be described iterating a basic factorization formula

o dit AP
Moia Py — (Mo [2d®, 52 TP, o (2)ds

® The showering process stops when the virtuality of the last emission is below the Aqcoscale
where QCD becomes non perturbative (hadronization regime i.e. hadrons formation)
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Multiple parton emissions via Parton Shower

® the Parton Shower “dresses” the hard event with QCD radiation
® QCD emissions are enhanced in the collinear limit

® The cross section factorizes in the collinear limit,
so that multiple emissions can be described iterating a basic factorization formula

o dit AP
Moia Py — (Mo [2d®, 52 TP, o (2)ds

® The showering process stops when the virtuality of the last emission is below the Aqcoscale

where QCD becomes non perturbative (hadronization regime i.e. hadrons formation)

® The multiple gluon emission via Parton Shower algorithmically implements the resummation

of the divergent log(ptH) terms,
yielding a regular limit for ptH — 0

® The Parton Shower has LL-QCD accuracy

is unitary, i.e. it preserves the LO cross section of the hard scattering process
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Multiple parton emissions via Parton Shower

® the Parton Shower “dresses” the hard event with QCD radiation
® QCD emissions are enhanced in the collinear limit

® The cross section factorizes in the collinear limit,
so that multiple emissions can be described iterating a basic factorization formula

o dit AP
Moia Py — (Mo [2d®, 52 TP, o (2)ds

® The showering process stops when the virtuality of the last emission is below the Aqcoscale
where QCD becomes non perturbative (hadronization regime i.e. hadrons formation)

® The multiple gluon emission via Parton Shower algorithmically implements the resummation
of the divergent log(ptH) terms,
yielding a regular limit for ptH — 0

® The Parton Shower has LL-QCD accuracy
is unitary, i.e. it preserves the LO cross section of the hard scattering process

® We wish to merge the properties of the Parton Shower
with the NLO-QCD accuracy for the total cross section from fixed order results
without making double countings
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HRes uncertainty bands at LO+NLL and at NLO+NNLL

do/dp’ (pb/GeV)

0.1 ¢

0.01 ¢

0.001

HRes

LHC 14 TeV

mp/4< Q1 <mpg
mp/2 < Q2 < 2my,

envelope of min-max predictions

LO+NLL
NLO+NNLL

5(%)

50

100 150 200

Alessandro Vicini - University of Milano

o0

40

30

20

10

| | LO+NLL| |-
HRes LO+NNLL Jr
LHC 14 TeV i
= mazomin 100 [

size of the enyelope of min-max predictions

50 100 150
ptl (GeV)

TIFR, January 7th 2014

200



Collinear approximation of the full amplitude summed over helicities

Mm)PP = ) MMWRAm)P = Y M (m) p A+ MM ()]
c A1,A2,A3==x1 A1,A2,A3==x1
1.4:—
1.2}
1'0: ’Mexact(pf)‘Q

C(pt) =
(PL) Mo (pF) /05 |2

0.8
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c
1'45 sum over helicities of the amplitudes evaluated with:
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SM: open questions about the Higgs transverse momentum distribution
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non perturbative parameter have a strong impact

on the low ptH tail of the distribution

need to perform a tuning of the
non-perturbative parameters
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using the NLO-SMC to compare with the data
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POWHEG has a strong enhancement of the

j€«———shape at large pt (due to the large K-factor)

which brings it accidentally very close to HNNLO
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MSSM: perturbative content

1
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MSSM: perturbative content
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Parametrization of the inclusion of higher order contributions

very preliminary!!

_ : R (®
AoNLOPS — 40 BY (@) | A%(PI) + A ((q);) A*(pr(@))| + dBR! (Bp)
RS:R_I_b(R_R) R:RH ETULO(t+b)
RI = (1-b)(R— R) + Ryg W HQET

we can set the b parameter (0 < b < |) from the input file

the Sudakov does not contain quark mass effects, present only in the regular terms
b = 0 (similar to the MC@NLO approach, but the Sudakov is still non universal)

b =1 the Sudakov contains the exact real matrix element; there are no extra regular terms,
beyond the qgbar initiated process
(identical by construction to the POWHEG approach)

the b parameter can help to parametrize the uncertainty band associated to the quark mass effects
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The Higgs ptH distribution: estimate of the quark mass uncertainty

very preliminary!!

® the use of the b parameter allows to span
a whole range of intermediate cases
between the prescriptions

d la MC@NLO and the POWHEG one

® in all the cases the total cross-section
is exactly preserved

e the band of the blu/black curves provides an
estimate of the size of the uncertainty
in the evaluation of quark mass effects

® in purple: NLO results

e for MH=500 GeV, top mass effects

| MH=500GeV are important already at low ptH
MH=500 GeV M
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Quark mass effects at fixed order (no resummation, no Parton Shower)
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® very good agreement between independent codes

M(gg — gH)|? = My + My|* = M2 + 2Re(M M) + | M, |?

® every diagram is proportional to the corresponding Higgs-fermion Yukawa coupling
— the bottom diagrams have a suppression factor mb/mt ~1/36 w.r.t. the corresponding top diagrams
— the squared bottom diagrams are negligible (in the SM)

the bottom effects are due to the top-bottom interference terms (genuine quantum effects)
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Exact matrix elements and collinear limit

Mm)P = Y MMRm)P =y MG (m) fpl + MRz (m)

>\17)\27>\3::|:1 >\17)\27>\3::|:]—

® we discuss the validity of the collinear approximation of the amplitude,
to find the value of ptH where the non-factorizable terms become important;
o ° ° . .
a 10% deviation is considered relevant Mezact(pt)[?

C(pl) =
(PL) Mo (piF) /5|2

® the breaking of the collinear approximation signals that
the log(ptH) resummation formalism, which is based on the collinear factorization hypothesis
can not be applied in a fully justified way
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® we discuss the validity of the collinear approximation of the amplitude,
to find the value of ptH where the non-factorizable terms become important;
o . ° . .
a 10% deviation is considered relevant Mezact(pt)[?

C(pl) =
(PL) Mo (piF) /5|2

® the breaking of the collinear approximation signals that
the log(ptH) resummation formalism, which is based on the collinear factorization hypothesis
can not be applied in a fully justified way

® 8 helicity amplitudes: 2
related by parity (4+4) and by the symmetry of the process | M2
® we discuss, at fixed partonic s, the 3 amplitudes
with a soft+collinear or only collinear divergence for u—0 ) i
(NP s
® dominance of the amplitudes with soft+collinear divergence T

® the results depend on partonic s; the choice of the smallest possible s allowed value guarantees
that the contribution under study has the largest PDF weight at hadron level
(small changes when using other choices of s)
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Scale variation (preliminary)
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e Canonical renormalization and factorization scale variation (red) computed with the new recipe

e Comparison with the present quark-mass-effect POWHEG version in the POWHEG-box (blue)
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