

The gluon fusion process in POWHEG in the SM, MSSM and 2HDM: the Higgs transverse momentum distribution

Alessandro Vicini
University of Milano, INFN Milano

TIFR, January 7th 2014

in collaboration with: E. Bagnaschi, G. Degrassi, P. Slavich

Outline

- Introduction to gluon fusion
- Higgs pT distribution in the HQET limit
- gluon fusion with quark mass effects in the SM
- uncertainties affecting the pT distribution
- two-scales description of the Higgs pT distribution
- gluon fusion BSM: MSSM and 2HDM

Basic references

The POWHEG code to simulate the gluon fusion in the SM, MSSM and 2HDM

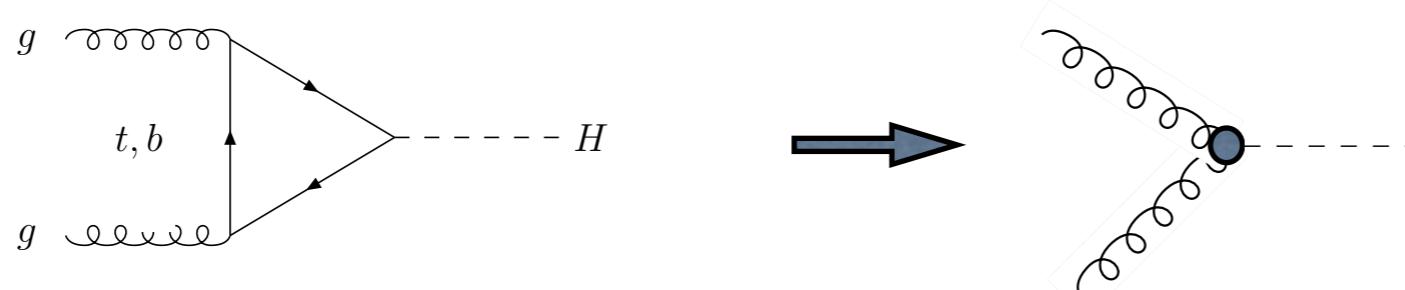
- can be found at <http://powhegbox.mib.infn.it/>
in the directories `gg_H_quark-mass-effects/`
`gg_H_MSSM/`
`gg_H_2HDM/`
- is described in Bagnaschi, Degrassi, Slavich, Vicini, JHEP 1202 (2012) 088, [arXiv:1111.2854](https://arxiv.org/abs/1111.2854)
extends the original code by Alioli, Nason, Oleari, Re, JHEP 0904 (2009) 002, [arXiv:0812.0578](https://arxiv.org/abs/0812.0578)

Effective lagrangian in the HQET (large mtop limit)

- in the limit of large m_t , the full QCD lagrangian is well approximated by the (gauge invariant) effective lagrangian

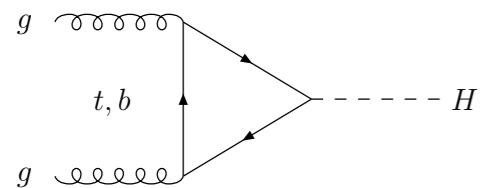
$$\mathcal{L}_{eff} = -\frac{1}{4} \left[1 - \frac{\alpha_s}{3\pi} \frac{H}{v} (1 + \Delta) \right] \text{Tr} G_{\mu\nu} G^{\mu\nu}$$

- the top triangle loop shrinks to a pointlike interaction vertex



- the effective lagrangian is independent of the heavy quark mass
⇒ this process is a heavy quark counter
- in the effective lagrangian approach, one loop less to be computed
- delicate is the effective lagrangian approach:
in presence of light particles in the loop, in the high-energy limit
- Cross section dominated by the lowest order threshold kinematics
Large contribution due to soft gluon emission at the threshold

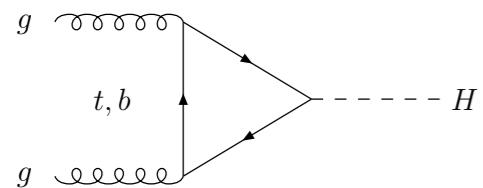
The gluon fusion process: existing literature for the total cross section



LO-QCD

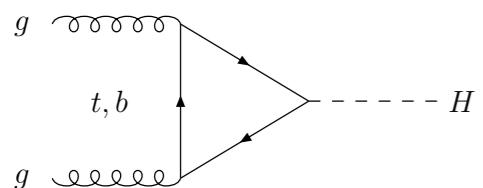
Georgi Glashow Machacek Nanopoulos 1978

The gluon fusion process: existing literature for the total cross section

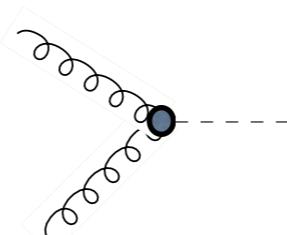


LO-QCD

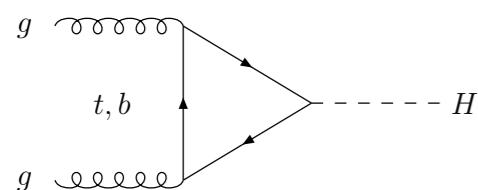
Georgi Glashow Machacek Nanopoulos 1978



Effective theory (HQET) $m_{top} \rightarrow \text{infinity}$

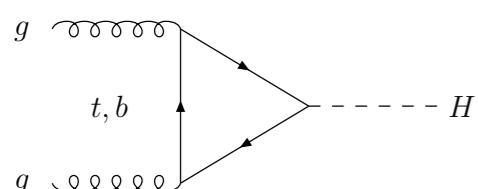


The gluon fusion process: existing literature for the total cross section

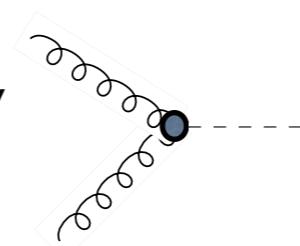


LO-QCD

Georgi Glashow Machacek Nanopoulos 1978



Effective theory (HQET) $m_{top} \rightarrow \text{infinity}$



NLO-QCD

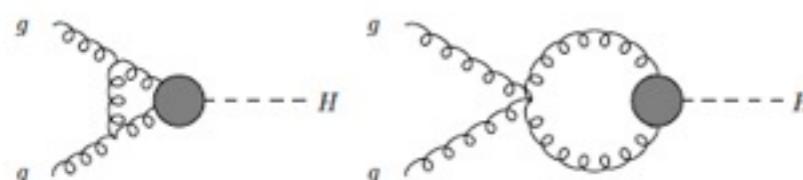
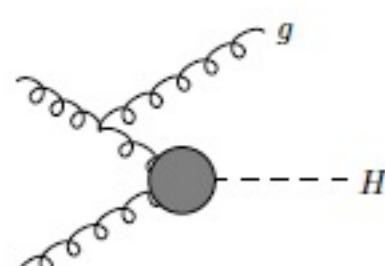
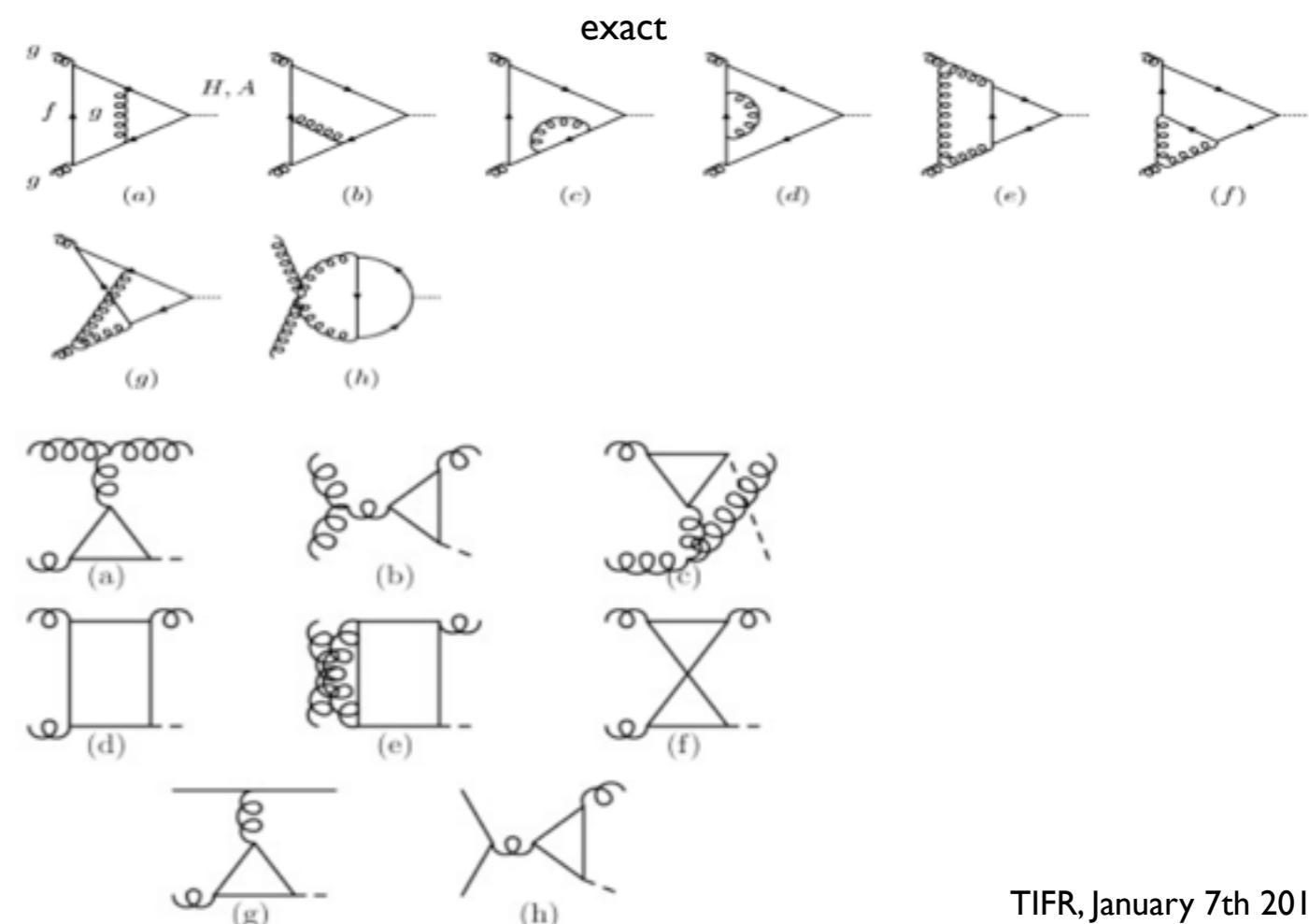
HQET
exact

Dawson 1991, Djouadi Graudenz Spira Zerwas 1992
Spira Djouadi Graudenz Zerwas 1995
Aglietti Bonciani Degrassi AV 2007
Anastasiou Beerli Bucherer Daleo Kunszt 2007

HIGLU

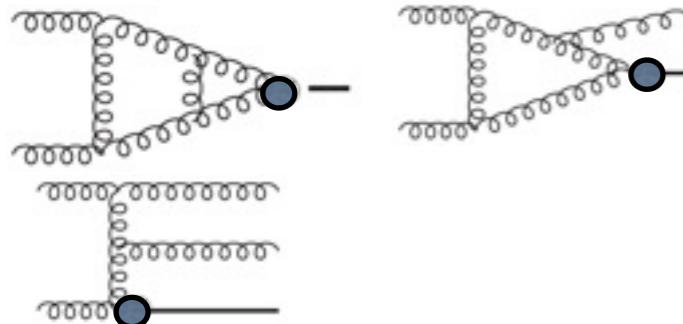
POWHEG
FeHipro

HQET



The gluon fusion process: existing literature for the total cross section

The gluon fusion process: existing literature for the total cross section

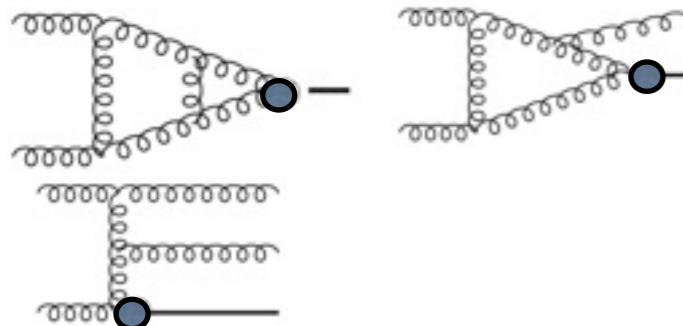


NNLO-QCD
HQET

Anastasiou Melnikov 2002
Harlander Kilgore 2002
Ravindran Smith van Neerven 2003

iHixs, ggh@nnlo, HNNLO

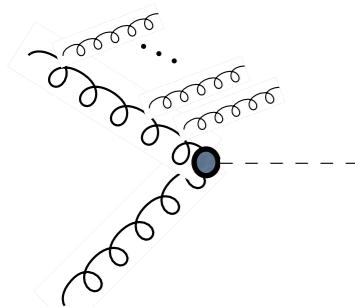
The gluon fusion process: existing literature for the total cross section



NNLO-QCD
HQET

Anastasiou Melnikov 2002
Harlander Kilgore 2002
Ravindran Smith van Neerven 2003

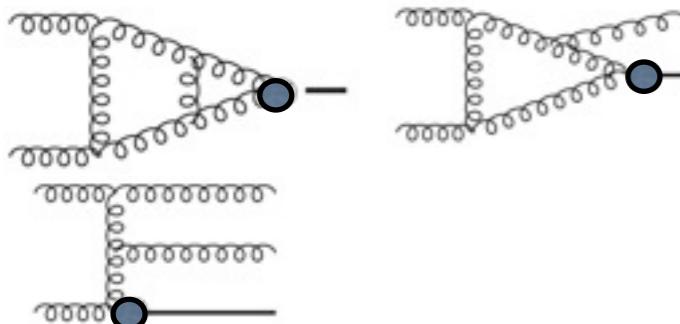
iHixs, ggh@nnlo, HNNLO



NNLO-QCD + soft gluon resummation NNLL-QCD
HQET

Catani De Florian Grazzini Nason 2003
Moch Vogt 2005 Idilbi Ji Yuan 2006
Ravindran Smith van Neerven 2007

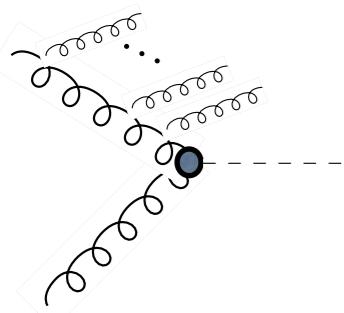
The gluon fusion process: existing literature for the total cross section



NNLO-QCD
HQET

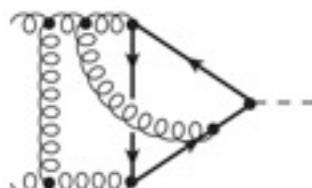
Anastasiou Melnikov 2002
Harlander Kilgore 2002
Ravindran Smith van Neerven 2003

iHixs, ggh@nnlo, HNNLO



NNLO-QCD + soft gluon resummation NNLL-QCD
HQET

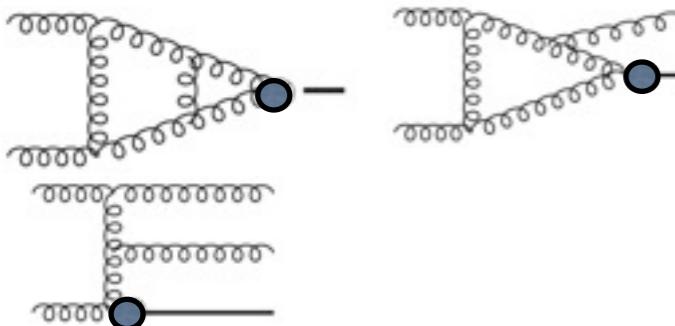
Catani De Florian Grazzini Nason 2003
Moch Vogt 2005 Idilbi Ji Yuan 2006
Ravindran Smith van Neerven 2007



NNLO-QCD + finite top mass effects

Marzani Ball Del Duca Forte AV 2008
Harlander Ozeren 2009 Pak Rogal Steinhauser 2009
Harlander Mantler Marzani Ozeren 2009

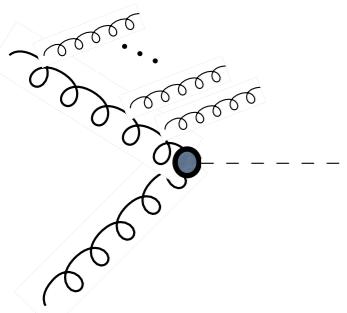
The gluon fusion process: existing literature for the total cross section



NNLO-QCD
HQET

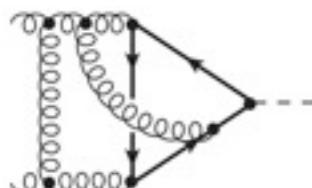
Anastasiou Melnikov 2002
Harlander Kilgore 2002
Ravindran Smith van Neerven 2003

iHixs, ggh@nnlo, HNNLO



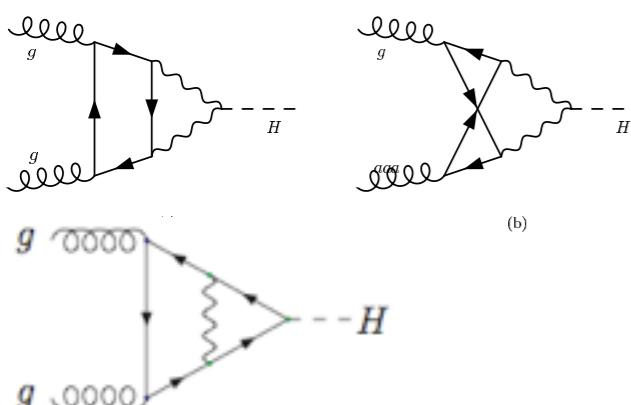
NNLO-QCD + soft gluon resummation NNLL-QCD
HQET

Catani De Florian Grazzini Nason 2003
Moch Vogt 2005 Idilbi Ji Yuan 2006
Ravindran Smith van Neerven 2007



NNLO-QCD + finite top mass effects

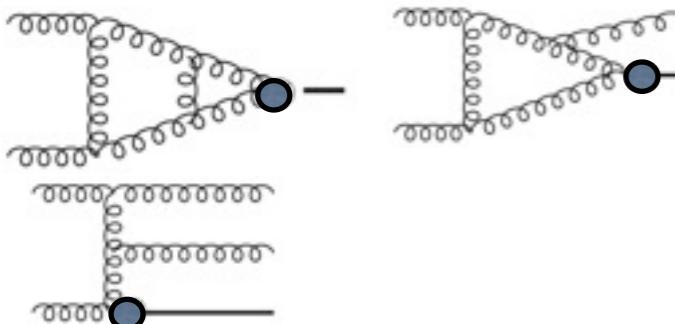
Marzani Ball Del Duca Forte AV 2008
Harlander Ozeren 2009 Pak Rogal Steinhauser 2009
Harlander Mantler Marzani Ozeren 2009



NLO-EW

Djouadi Gambino 1994
Aglietti Bonciani Degrassi AV 2004
Degrassi Maltoni 2004
Actis Passarino Sturm Uccirati 2008

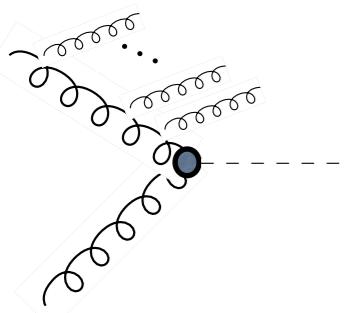
The gluon fusion process: existing literature for the total cross section



NNLO-QCD
HQET

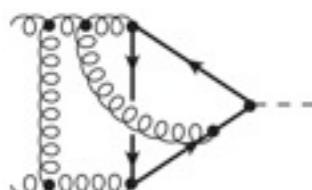
Anastasiou Melnikov 2002
Harlander Kilgore 2002
Ravindran Smith van Neerven 2003

iHixs, ggh@nnlo, HNNLO



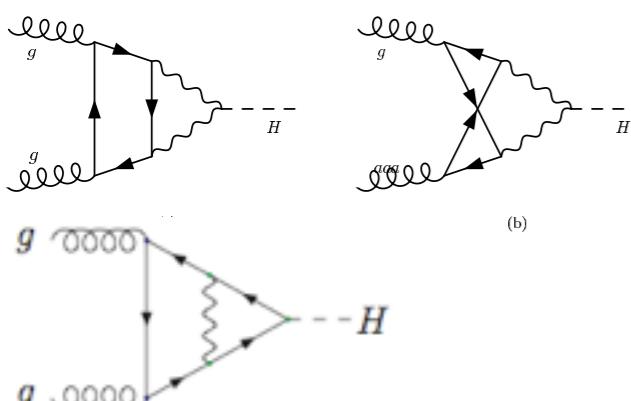
NNLO-QCD + soft gluon resummation NNLL-QCD
HQET

Catani De Florian Grazzini Nason 2003
Moch Vogt 2005 Idilbi Ji Yuan 2006
Ravindran Smith van Neerven 2007



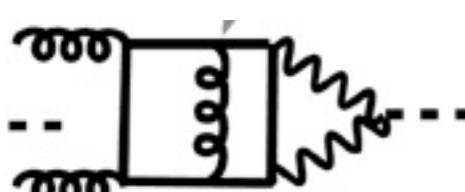
NNLO-QCD + finite top mass effects

Marzani Ball Del Duca Forte AV 2008
Harlander Ozeren 2009 Pak Rogal Steinhauser 2009
Harlander Mantler Marzani Ozeren 2009



NLO-EW

Djouadi Gambino 1994
Aglietti Bonciani Degrassi AV 2004
Degrassi Maltoni 2004
Actis Passarino Sturm Uccirati 2008



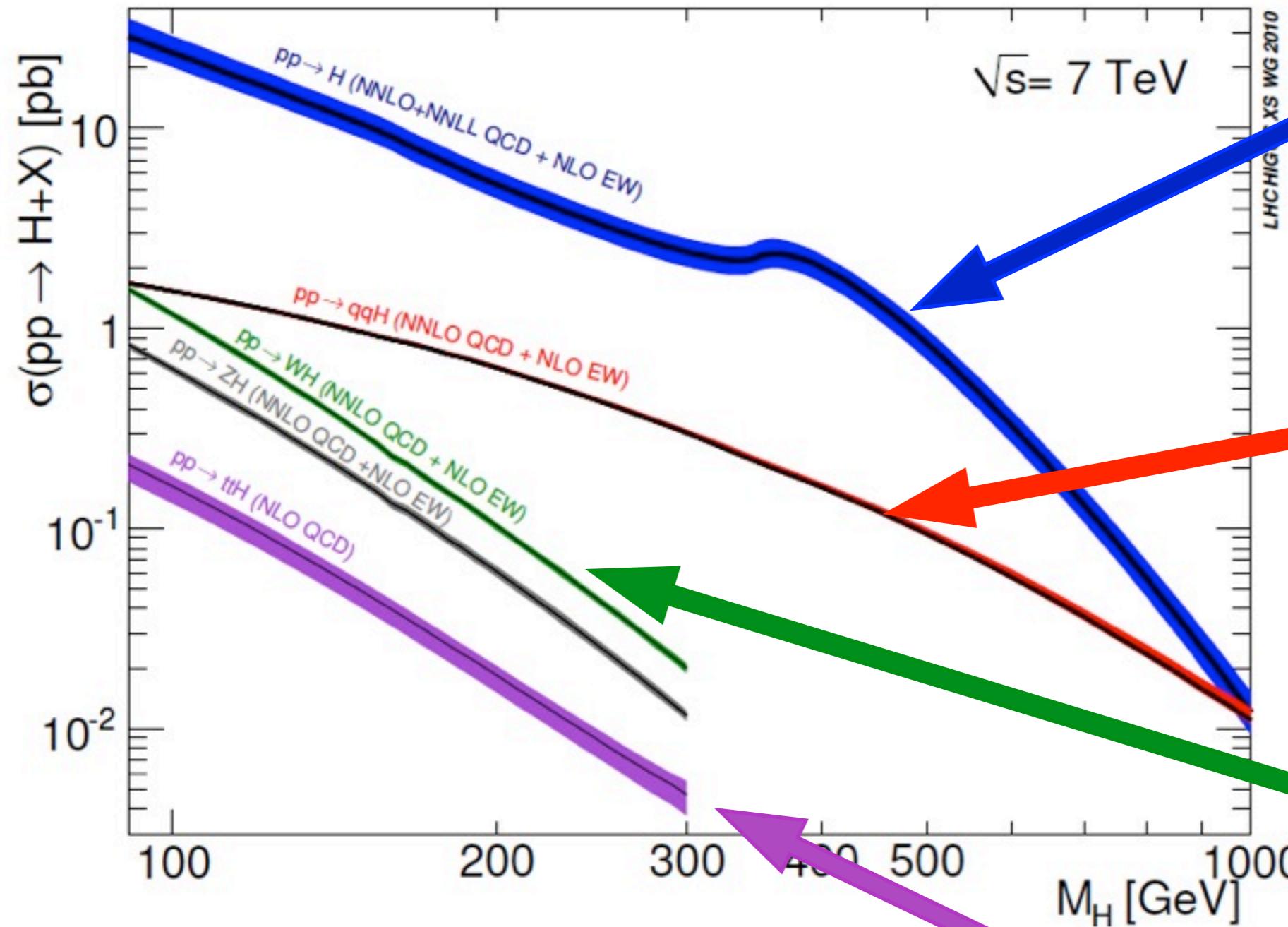
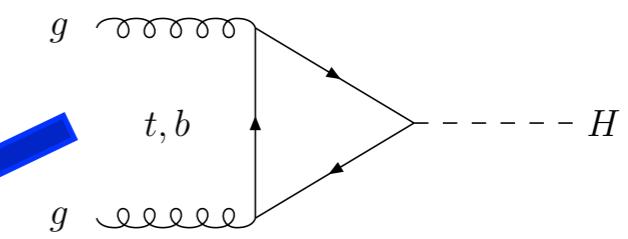
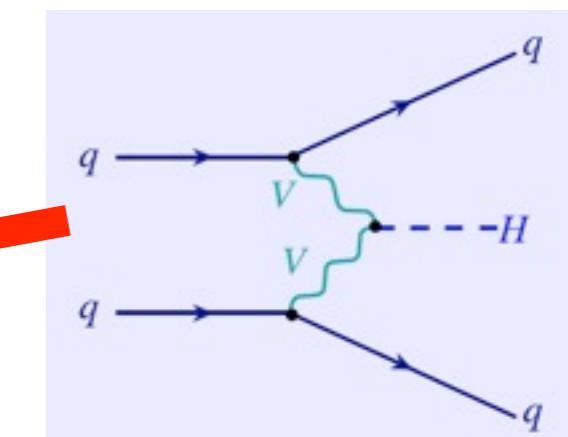
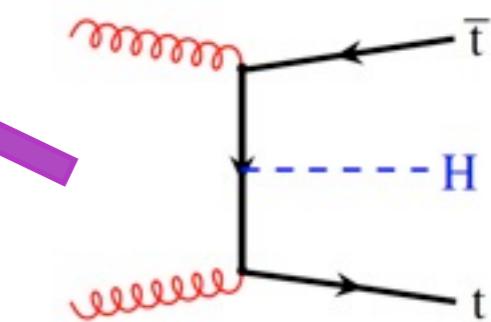
mixed NLO EWxQCD

Anastasiou Boughezal Petriello 2009

iHixs

The total production cross section

- Yellow Report I of the Higgs Cross Section Working Group, arXiv:1101.0593

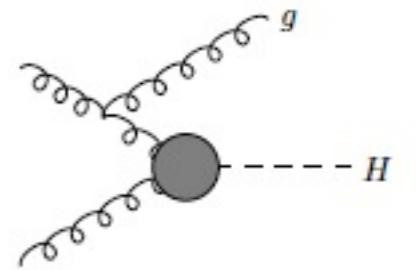


- the gluon fusion process dominates but weak-boson fusion has a very good signal/background ratio
- the uncertainty bands include: PDF+alphas uncertainty, scale uncertainty

Heavy Quark Effective Theory (HQET)

Higgs transverse momentum distribution in the HQET (heavy top limit)

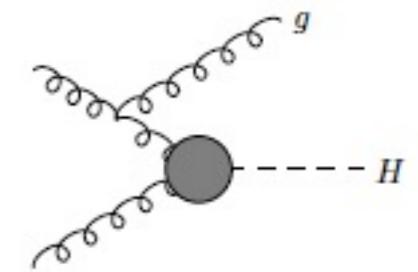
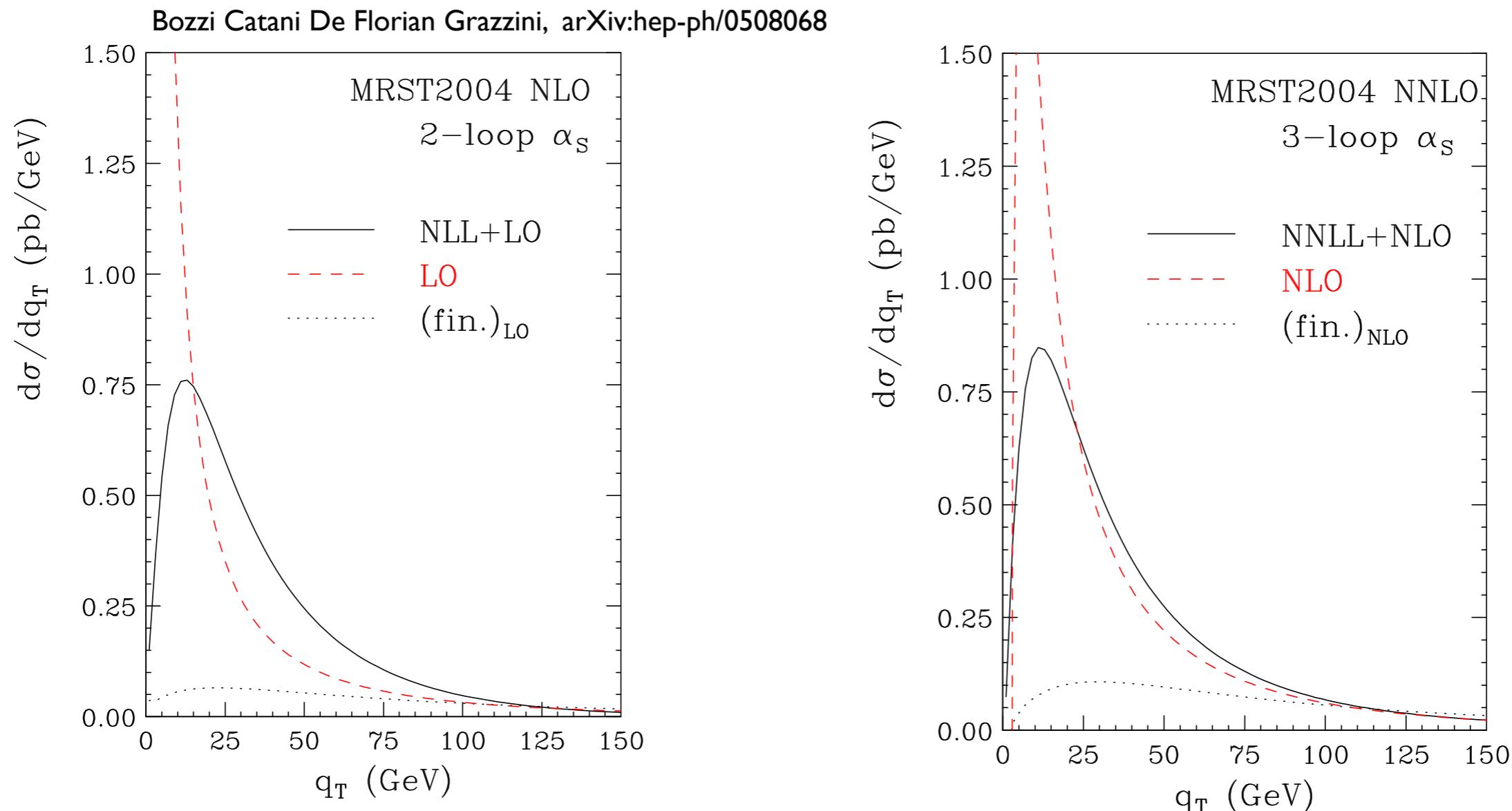
- the Higgs transverse momentum is due to its recoil against QCD radiation



Bozzi Catani De Florian Grazzini, arXiv:hep-ph/0508068

Higgs transverse momentum distribution in the HQET (heavy top limit)

- the Higgs transverse momentum is due to its recoil against QCD radiation



- at low p_{TH} , the fixed order p_{TH} distribution diverges for $p_{\text{TH}} \rightarrow 0$ (both at LO and at NLO)
- the resummation to all orders of the divergent $\log(p_{\text{TH}})$ terms is regular in the limit $p_{\text{TH}} \rightarrow 0$

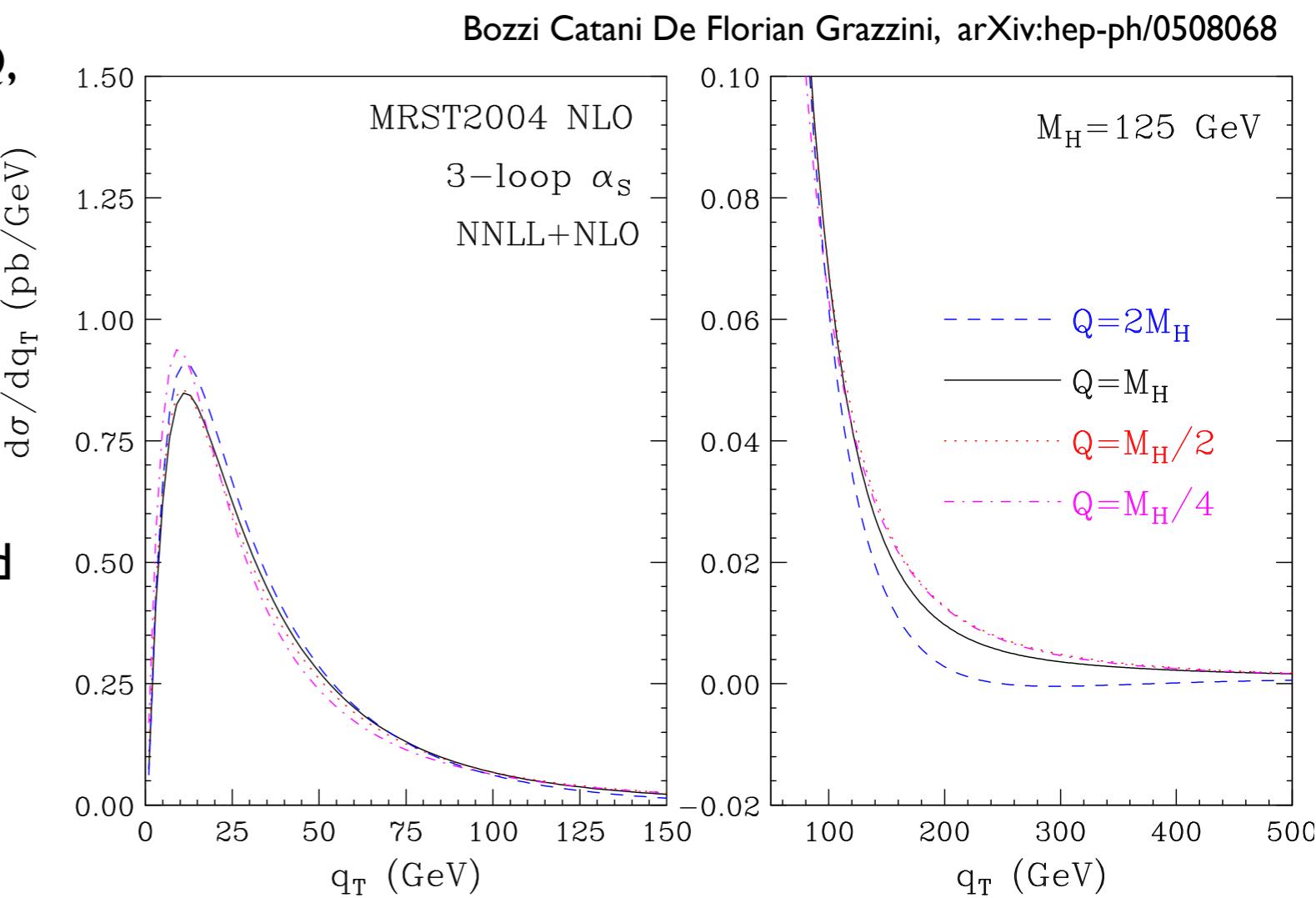
Resummation of $\log(ptH)$ terms and resummation scale Q

$$\frac{d\hat{\sigma}_{Vab}^{(\text{res.})}}{dq_T^2}(q_T, M, \hat{s}; \alpha_S(\mu_R^2), \mu_R^2, \mu_F^2) = \frac{M^2}{\hat{s}} \int_0^\infty db \frac{b}{2} J_0(bq_T) \mathcal{W}_{ab}^V(b, M, \hat{s}; \alpha_S(\mu_R^2), \mu_R^2, \mu_F^2),$$

$$\mathcal{W}_N^V(b, M; \alpha_S(\mu_R^2), \mu_R^2, \mu_F^2) = \mathcal{H}_N^V(M, \alpha_S(\mu_R^2); M^2/\mu_R^2, M^2/\mu_F^2, M^2/Q^2) \times \exp\{\mathcal{G}_N(\alpha_S(\mu_R^2), L; M^2/\mu_R^2, M^2/Q^2)\},$$

process dependent
universal

- the factorization (in conjugate space) of the cross section for multiple emissions can be defined at a given scale Q called resummation scale
- the physical result does not depend on Q , but at fixed order in perturbation theory a residual dependence on Q is left
- the choice of Q effectively determines the range of ptH where the resummation is effective
- the total cross section does NOT depend on the value of Q



Matching NLO matrix elements and Parton Shower

Matching NLO matrix elements and Parton Shower

$$d\sigma^{\text{NLO+PS}} = d\Phi_B \bar{B}^s(\Phi_B) \left[\Delta^s(p_{\perp}^{\min}) + d\Phi_{R|B} \frac{R^s(\Phi_R)}{B(\Phi_B)} \Delta^s(p_T(\Phi)) \right] + d\Phi_R R^f(\Phi_R) + d\Phi_R R_{reg}(\Phi_R)$$

$$\bar{B}^s = B(\Phi_B) + \left[V(\Phi_B) + \int d\Phi_{R|B} R^s(\Phi_{R|B}) \right]$$

Matching NLO matrix elements and Parton Shower

$$d\sigma^{\text{NLO+PS}} = d\Phi_B \bar{B}^s(\Phi_B) \left[\Delta^s(p_{\perp}^{\min}) + d\Phi_{R|B} \frac{R^s(\Phi_R)}{B(\Phi_B)} \Delta^s(p_T(\Phi)) \right] + d\Phi_R R^f(\Phi_R) + d\Phi_R R_{reg}(\Phi_R)$$

$$\bar{B}^s = B(\Phi_B) + \left[V(\Phi_B) + \int d\Phi_{R|B} R^s(\Phi_{R|B}) \right]$$

$R = R_{reg} + R_{div}$ is the sum of all the real emission squared matrix elements, with a regular (divergent) behavior in the collinear limit

$R_{div} = R^s + R^f$ the collinear divergent matrix elements can be split in the sum of their singular part plus a finite remainder
 R^s enters in the Sudakov form factor $\Delta^s(p_T(\Phi))$

Matching NLO matrix elements and Parton Shower

$$d\sigma^{\text{NLO+PS}} = d\Phi_B \bar{B}^s(\Phi_B) \left[\Delta^s(p_\perp^{\min}) + d\Phi_{R|B} \frac{R^s(\Phi_R)}{B(\Phi_B)} \Delta^s(p_T(\Phi)) \right] + d\Phi_R R^f(\Phi_R) + d\Phi_R R_{reg}(\Phi_R)$$

$$\bar{B}^s = B(\Phi_B) + \left[V(\Phi_B) + \int d\Phi_{R|B} R^s(\Phi_{R|B}) \right]$$

$R = R_{reg} + R_{div}$ is the sum of all the real emission squared matrix elements, with a regular (divergent) behavior in the collinear limit

$R_{div} = R^s + R^f$ the collinear divergent matrix elements can be split in the sum of their singular part plus a finite remainder
 R^s enters in the Sudakov form factor $\Delta^s(p_T(\Phi))$

POWHEG

$$R^s = \frac{h^2}{h^2 + p_T^2} R_{div} \quad R^f = \frac{p_T^2}{h^2 + p_T^2} R_{div}$$

MC@NLO

$$R^s \propto \frac{\alpha_s}{t} P_{ij}(z) B(\Phi_B) \quad R^f = R - R^s$$

at low pT , the damping factor $\rightarrow 1$, R_{div} tends to its collinear approximation,
at large pT , the damping factor $\rightarrow 0$ and suppresses R_{div} in the Sudakov and in the square bracket

the scale h fixes the upper limit for the Sudakov form factor to play a role,
effectively is the upper limit for the inclusion of multiple parton emissions

the total cross section does NOT depend on the value of h

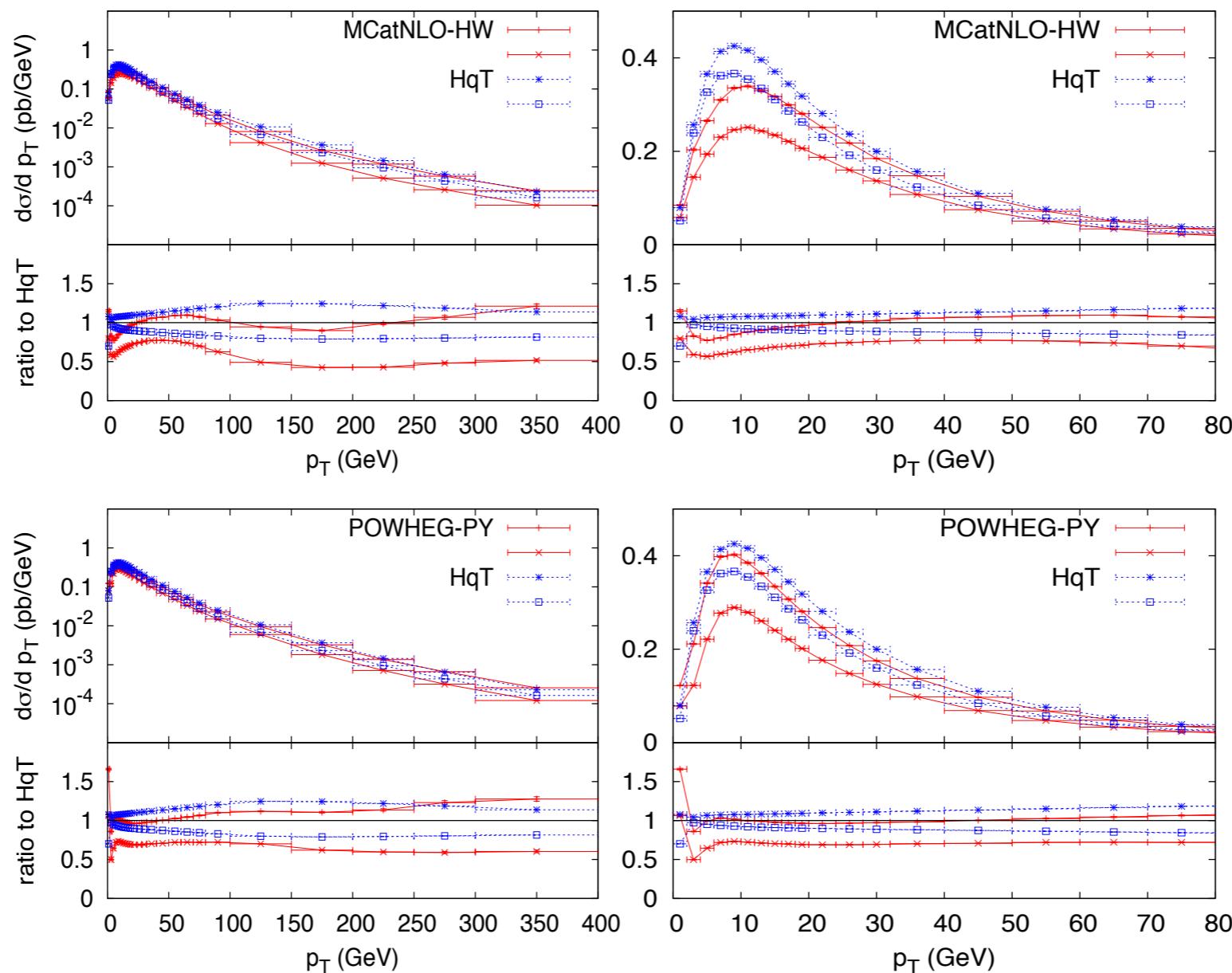


Fig. 22: Uncertainty bands for the transverse-momentum spectrum of the Higgs boson at LHC, 7 TeV, for a Higgs mass $M_H = 120$ GeV. On the upper plots, the MC@NLO+HERWIG result obtained using the non-default value of the reference scale equal to M_H . On the lower plots, the POWHEG+PYTHIA output, using the non-default $R^s + R^f$ separation. The uncertainty bands are obtained by changing μ_R and μ_F by a factor of two above and below the central value, taken equal to M_H , with the restriction $0.5 < \mu_R/\mu_F < 2$.

- MC@NLO should be run with the factorisation and renormalisation scale equal to M_H .
- POWHEG should be run with the h parameter equal to $M_H/1.2$. For $M_H = 120$ GeV, this setting is achieved introducing the line `hfact 100` in the `powheg.input` file.

Quark mass effects (2011-2012)

Gluon fusion in POWHEG with quark mass effects

(Bagnaschi Degrassi Slavich Vicini, arXiv:1111.2854)

- the code is an event generator which describes the process

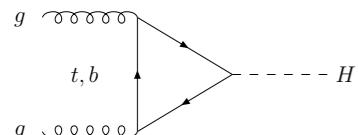
$$pp \rightarrow H + X$$

with NLO-QCD accuracy matched with a QCD parton shower

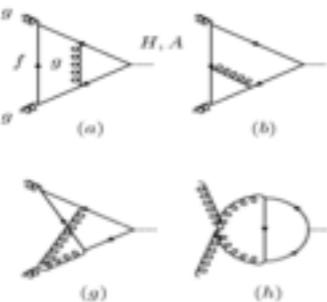
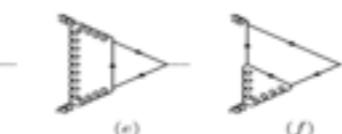
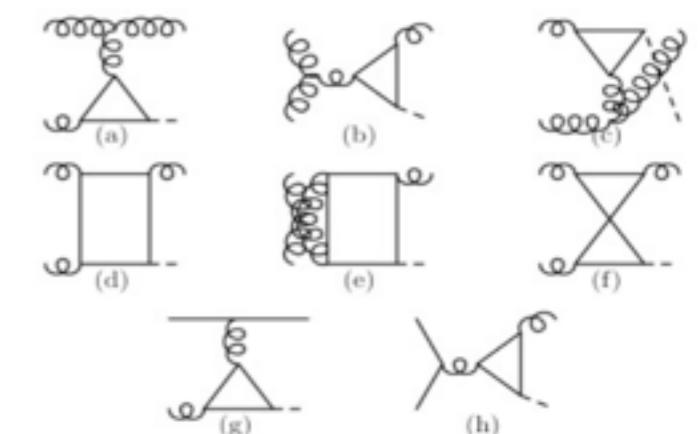
- full NLO-EW corrections (Actis et al. 2009) are applied in a factorized form to the QCD cross section

- the matrix elements retain the exact dependence on the quark masses in the loops
(top, bottom, charm, ...)

LO



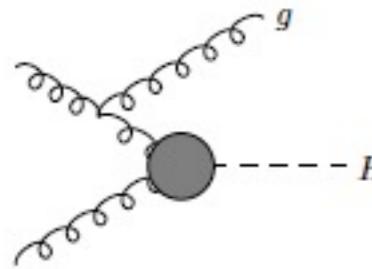
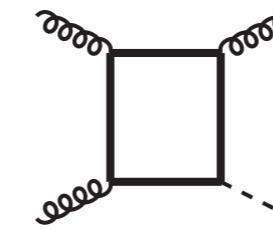
NLO virtual



- the Complex Mass Scheme is implemented, relevant for heavy higgs searches

Quark mass effects at NLO

- the Higgs transverse momentum is due to its recoil against QCD radiation
- at small p_{TH} the leading contribution comes from radiation from the incoming partons
at larger p_{TH} , the emitted partons can resolve the structure of the quark loops



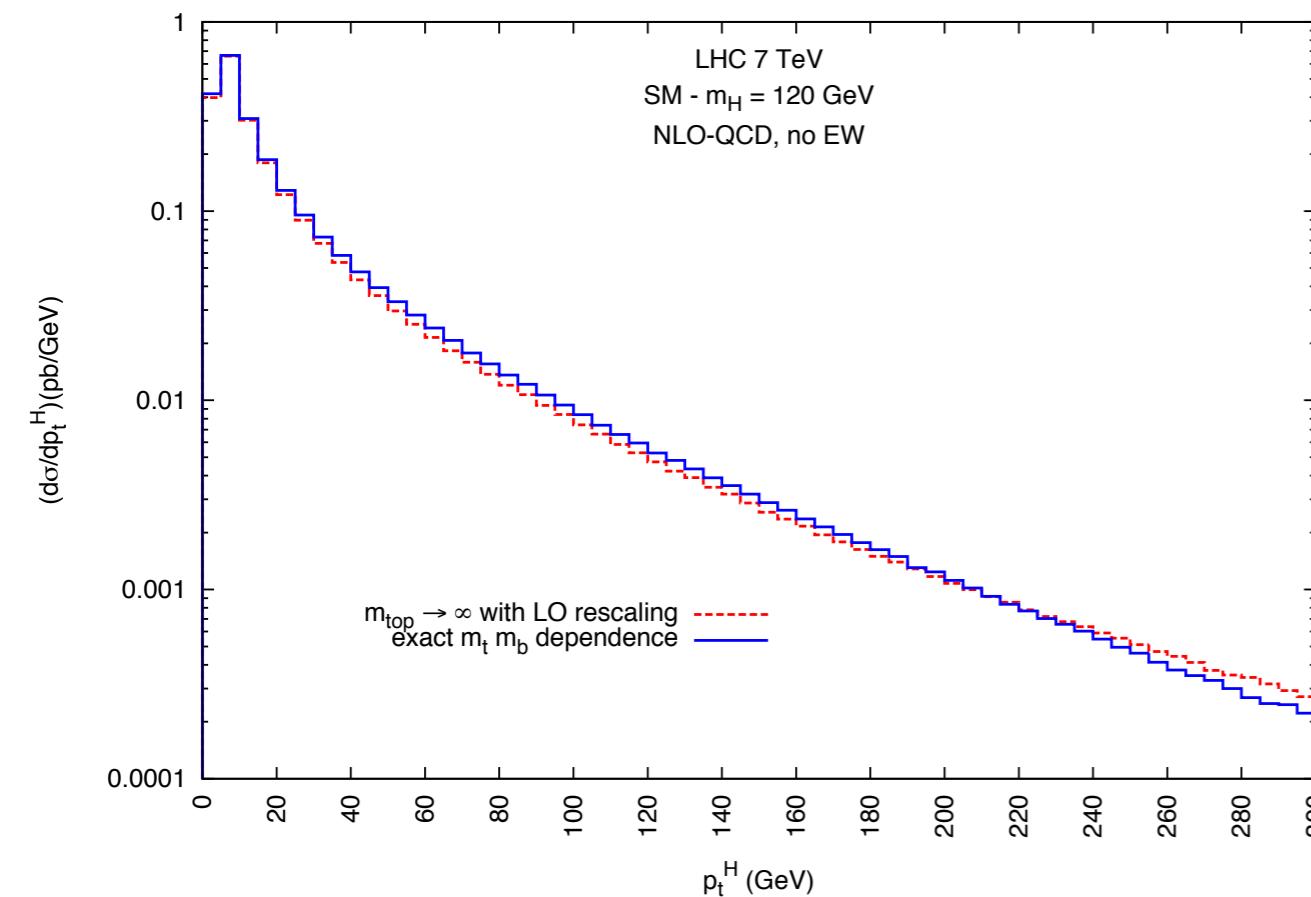
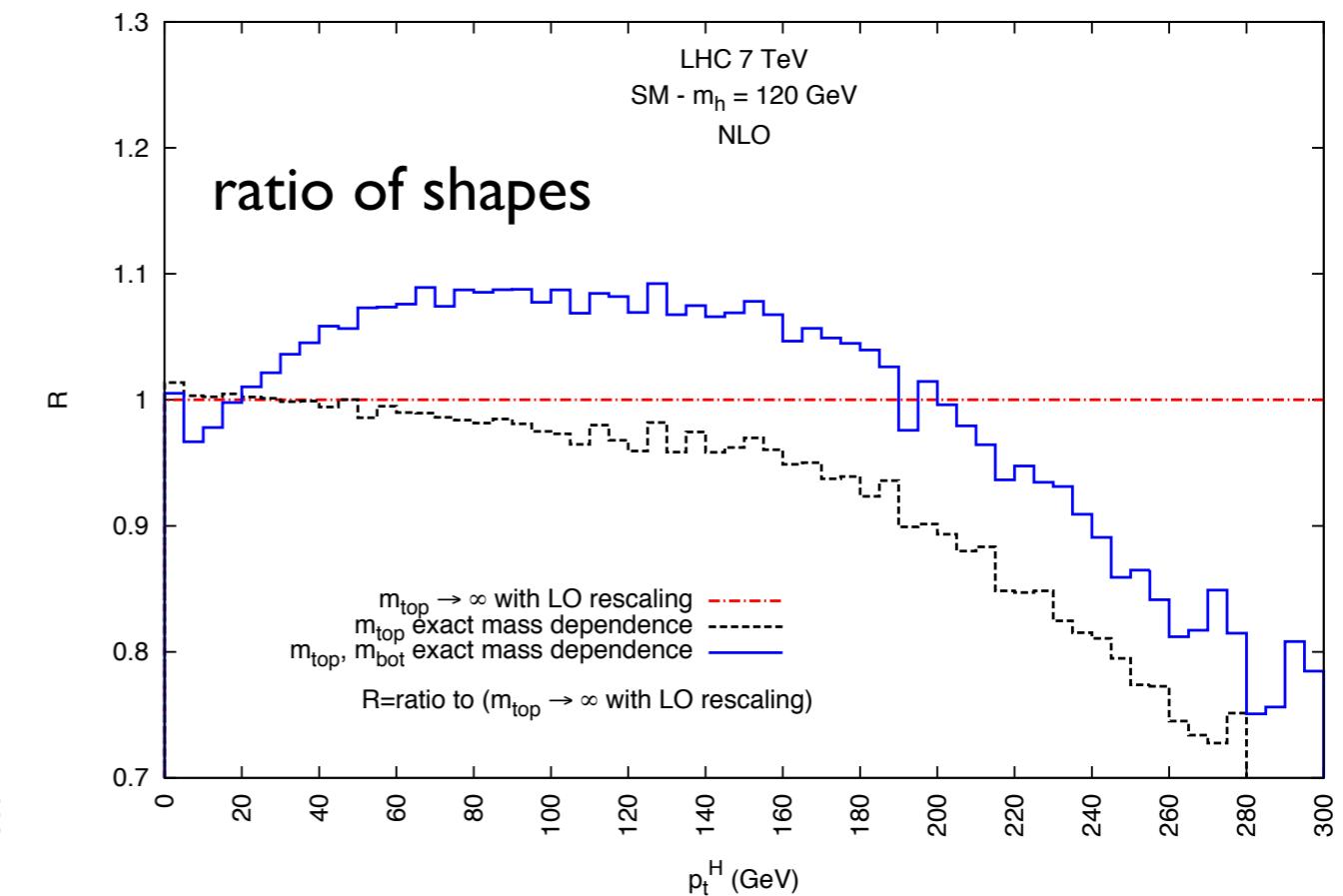
- triangle diagrams \rightarrow one threshold at $s=4 m_q^2$
box diagrams \rightarrow enhanced contribution at $p_{\text{TH}} \sim m_q$

in the case of the top, mass effects are evident for $p_{\text{TH}} > 150 \text{ GeV}$
with the bottom, the effects start at $p_{\text{TH}} \sim 10 \text{ GeV}$

- every diagram is proportional to the corresponding Higgs-fermion Yukawa coupling
 - the bottom diagrams have a suppression factor $m_b/m_t \sim 1/36$ w.r.t. the corresponding top diagrams
 - the squared bottom diagrams are negligible (in the SM)
the bottom effects are due to the top-bottom interference terms (genuine quantum effects)

$$|\mathcal{M}(gg \rightarrow gH)|^2 = |\mathcal{M}_t + \mathcal{M}_b|^2 = |\mathcal{M}_t|^2 + 2\text{Re}(\mathcal{M}_t \mathcal{M}_b^\dagger) + |\mathcal{M}_b|^2$$

Quark mass effects at NLO



- very good agreement with independent codes
- at fixed order the distribution is divergent in the limit $p_t^H \rightarrow 0$
- the top mass effects are small up to $p_t^H \sim m_{top}$
- the bottom diagrams distort the shape by $O(10\%)$

Quark mass effects in POWHEG

events are generated according to

$$d\sigma = \bar{B}(\bar{\Phi}_1) d\bar{\Phi}_1 \left\{ \Delta(\bar{\Phi}_1, p_T^{min}) + \Delta(\bar{\Phi}_1, p_T) \frac{R(\bar{\Phi}_1, \Phi_{\text{rad}})}{B(\bar{\Phi}_1)} d\Phi_{\text{rad}} \right\} \\ + \sum_q R_{q\bar{q}}(\bar{\Phi}_1, \Phi_{\text{rad}}) d\bar{\Phi}_1 d\Phi_{\text{rad}},$$

Quark mass effects in POWHEG

events are generated according to

$$d\sigma = \bar{B}(\bar{\Phi}_1) d\bar{\Phi}_1 \left\{ \Delta(\bar{\Phi}_1, p_T^{min}) + \Delta(\bar{\Phi}_1, p_T) \frac{R(\bar{\Phi}_1, \Phi_{\text{rad}})}{B(\bar{\Phi}_1)} d\Phi_{\text{rad}} \right\} + \sum_q R_{q\bar{q}}(\bar{\Phi}_1, \Phi_{\text{rad}}) d\bar{\Phi}_1 d\Phi_{\text{rad}},$$

quark mass effects affect

- the overall normalization (LO, NLO virtual and real corrections)

$$\bar{B}(\bar{\Phi}_1) = B_{gg}(\bar{\Phi}_1) + V_{gg}(\bar{\Phi}_1) + \int d\Phi_{\text{rad}} \left\{ \hat{R}_{gg}(\bar{\Phi}_1, \Phi_{\text{rad}}) + \sum_q \hat{R}_{gq}(\bar{\Phi}_1, \Phi_{\text{rad}}) + \hat{R}_{qg}(\bar{\Phi}_1, \Phi_{\text{rad}}) \right\} + c. r.$$

Quark mass effects in POWHEG

events are generated according to

$$d\sigma = \bar{B}(\bar{\Phi}_1) d\bar{\Phi}_1 \left\{ \Delta(\bar{\Phi}_1, p_T^{min}) + \Delta(\bar{\Phi}_1, p_T) \frac{R(\bar{\Phi}_1, \Phi_{\text{rad}})}{B(\bar{\Phi}_1)} d\Phi_{\text{rad}} \right\} + \sum_q R_{q\bar{q}}(\bar{\Phi}_1, \Phi_{\text{rad}}) d\bar{\Phi}_1 d\Phi_{\text{rad}},$$

quark mass effects affect

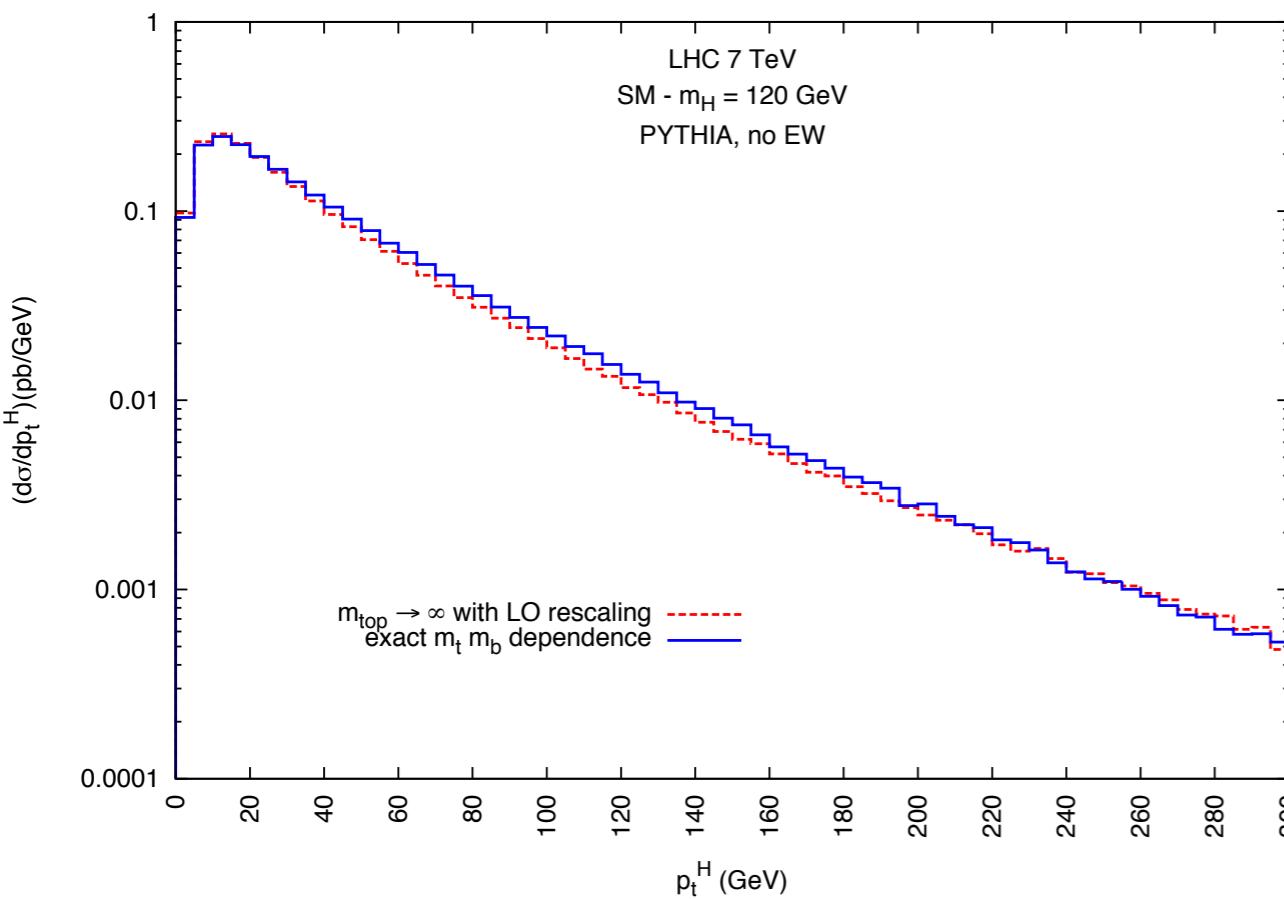
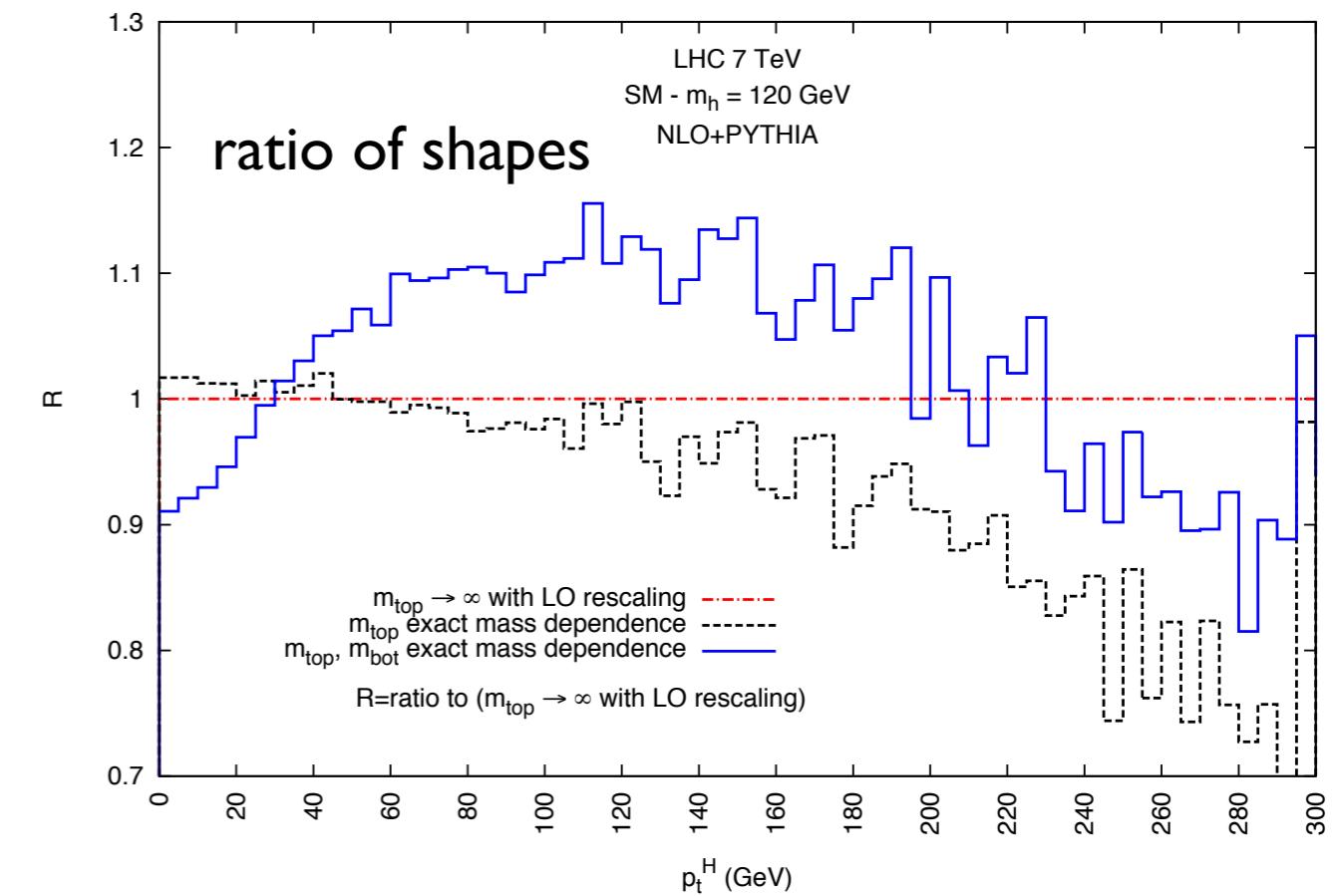
- the overall normalization (LO, NLO virtual and real corrections)

$$\bar{B}(\bar{\Phi}_1) = B_{gg}(\bar{\Phi}_1) + V_{gg}(\bar{\Phi}_1) + \int d\Phi_{\text{rad}} \left\{ \hat{R}_{gg}(\bar{\Phi}_1, \Phi_{\text{rad}}) + \sum_q \hat{R}_{gq}(\bar{\Phi}_1, \Phi_{\text{rad}}) + \hat{R}_{qg}(\bar{\Phi}_1, \Phi_{\text{rad}}) \right\} + c. r.$$

- the shape of the distributions (real emission amplitude, Sudakov form factor)

$$\Delta(\bar{\Phi}_1, p_T) = \exp \left\{ - \int d\Phi_{\text{rad}} \frac{R(\bar{\Phi}_1, \Phi_{\text{rad}})}{B(\bar{\Phi}_1)} \theta(k_T - p_T) \right\}$$

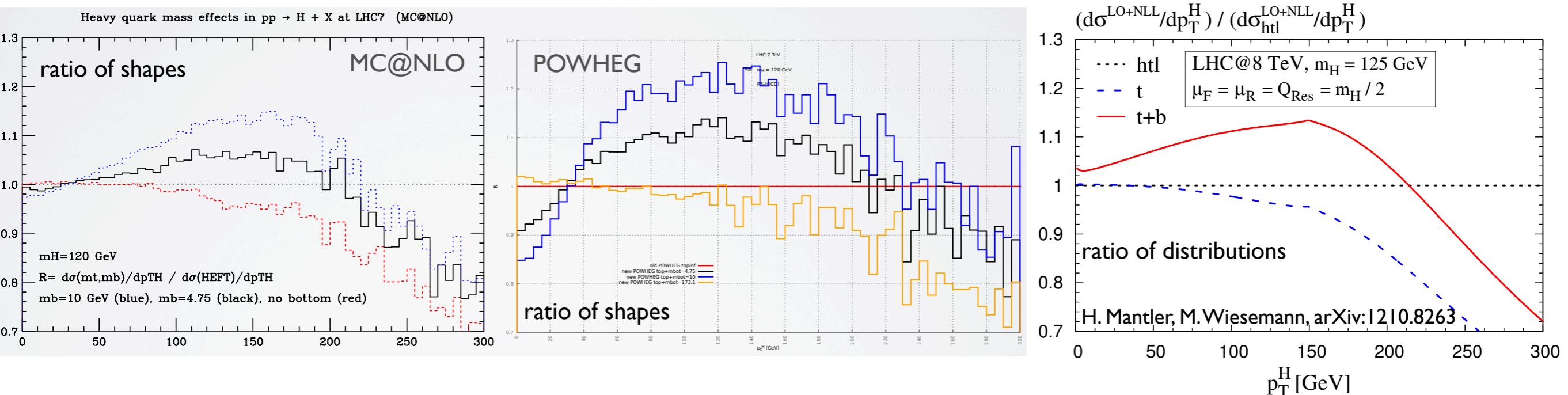
Quark mass effects in POWHEG



- only top: at small p_t^H the Sudakov form factor is weakly affected by the exact top mass effects from $p_t^H \sim 150$ GeV we find the NLO behavior
- top+bottom: the bottom diagrams modify the Sudakov form factor → suppression at small p_t^H the unitarity constraint enhances the distortion at intermediate p_t^H

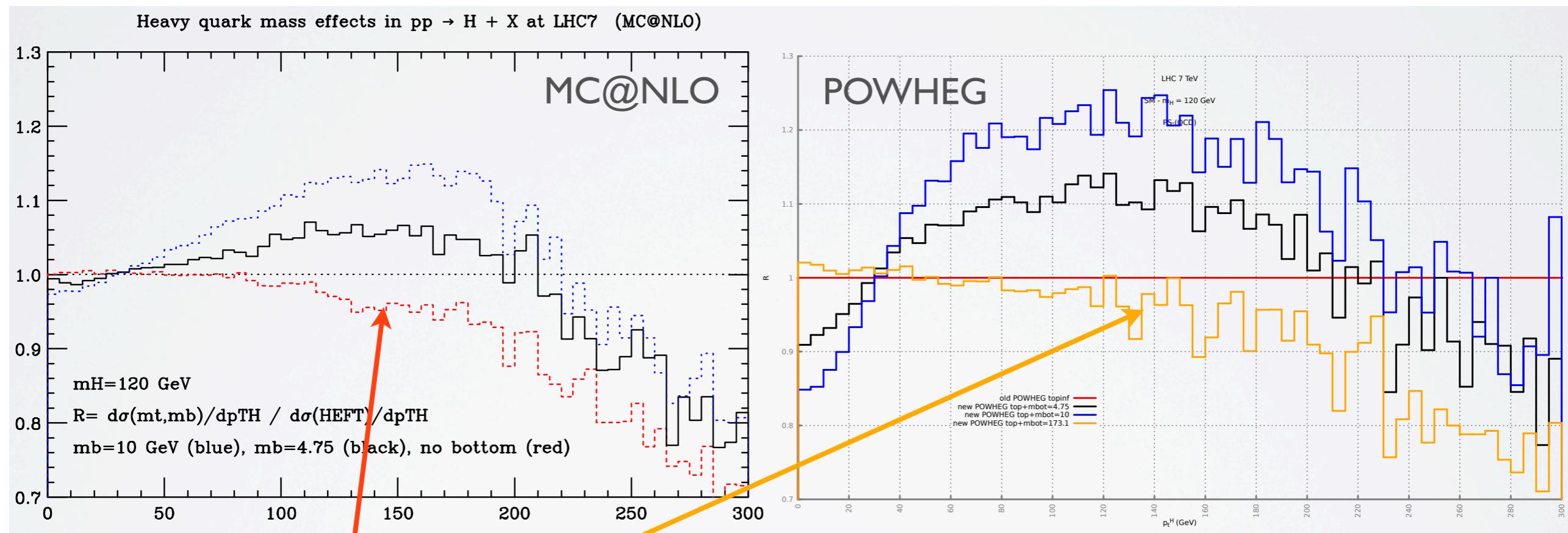
$$\Delta(\bar{\Phi}_1, p_T) = \exp \left\{ - \int d\Phi_{rad} \frac{R(\bar{\Phi}_1, \Phi_{rad})}{B(\bar{\Phi}_1)} \theta(k_T - p_T) \right\}$$

Quark mass effects after the resummation of multiple gluon emissions (beginning 2013)



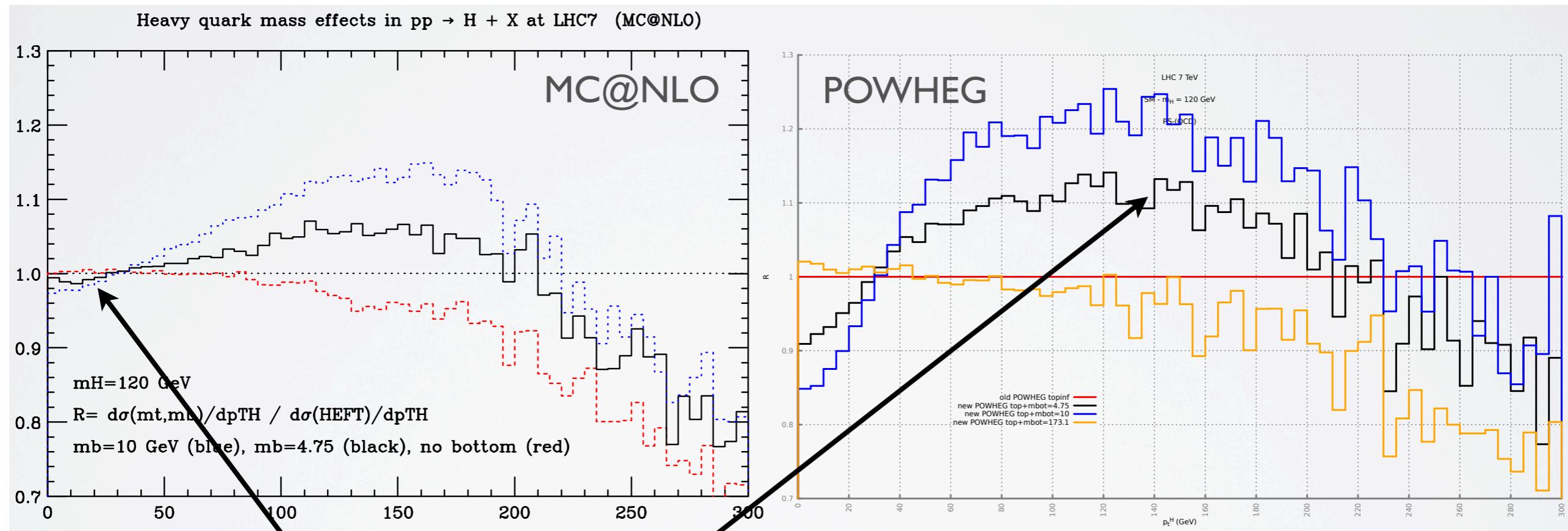
- different impact of the quark-mass effects after the matching with Parton Shower or after the analytical resummation
- MC@NLO and Mantler-Wiesemann share an additive matching approach
POWHEG has a different Sudakov form factor

Comparison with MC@NLO



only top predictions (red vs yellow) in good agreement

Comparison with MC@NLO



only top predictions (red vs yellow) in good agreement

top+bottom predictions (black): visible difference

Comparison with MC@NLO

$$d\sigma^{\text{NLO+PS}} = d\Phi_B \bar{B}^s(\Phi_B) \left[\Delta^s(p_{\perp}^{\min}) + d\Phi_{R|B} \frac{R^s(\Phi_R)}{B(\Phi_B)} \Delta^s(p_T(\Phi)) \right] + d\Phi_R R^f(\Phi_R)$$

$$\bar{B}^s = B(\Phi_B) + \left[V(\Phi_B) + \int d\Phi_{R|B} R^s(\Phi_{R|B}) \right]$$

R^s enters in the Sudakov form factor $\Delta^s(p_T(\Phi))$

MC@NLO

$$R^s \propto \frac{\alpha_s}{t} P_{ij}(z) B(\Phi_B)$$

$$R^f = R - R^s$$

the universal collinear splitting function is used in the Sudakov

the full matrix element R is used only in the regular part

POWHEG

$$R^s = \frac{h^2}{h^2 + p_T^2} R, \quad R^f = \frac{p_T^2}{h^2 + p_T^2} R$$

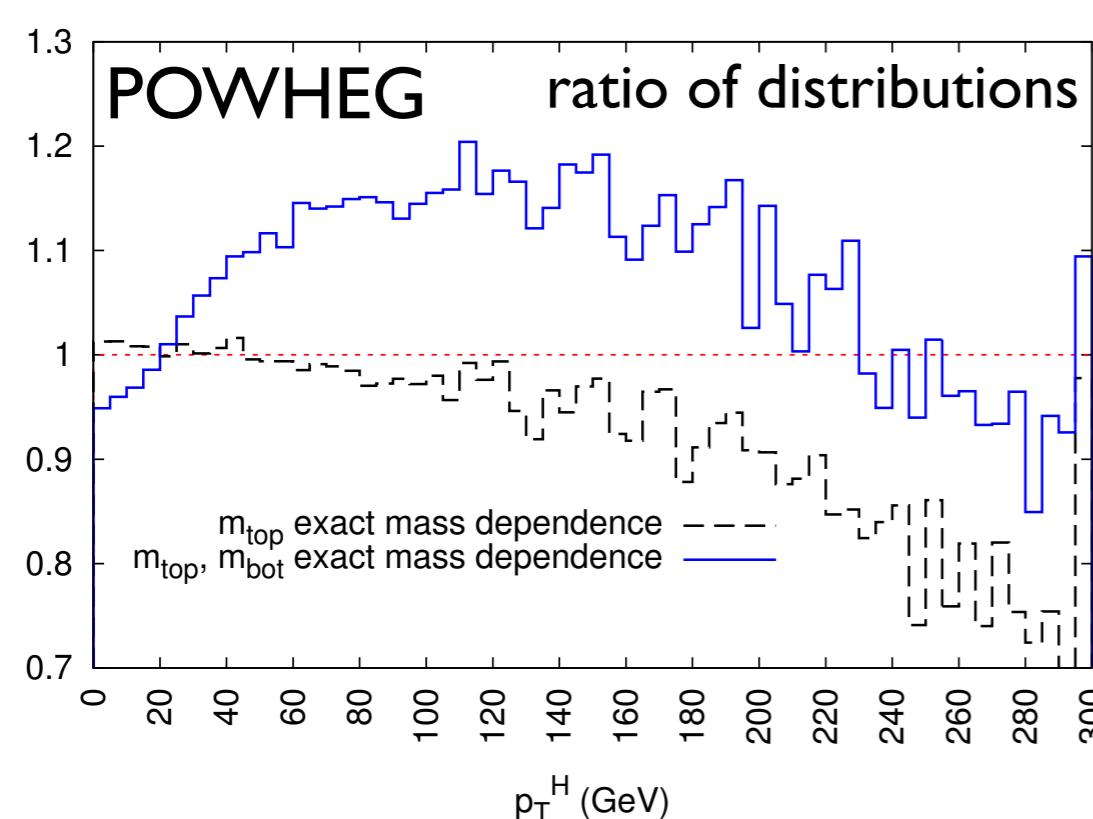
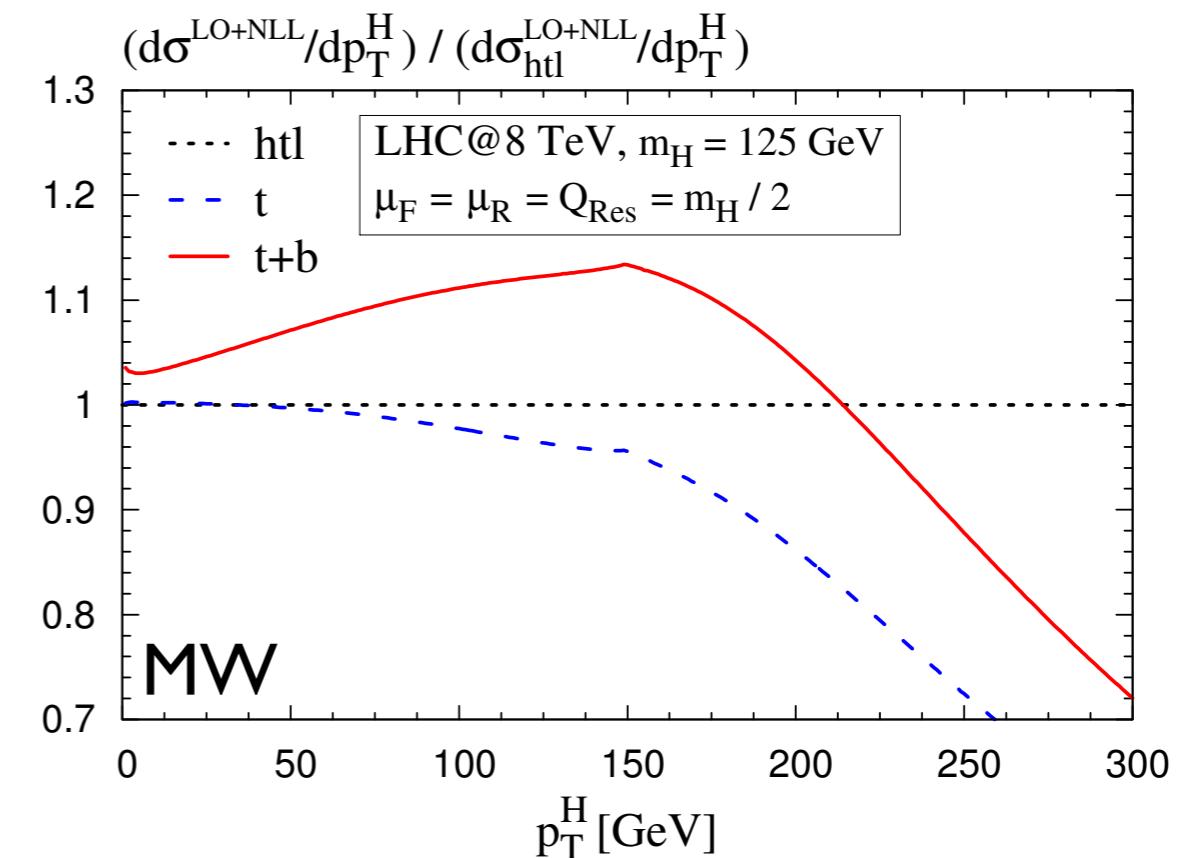
the scale h divides low from large ptH values

at low ptH, R tends to its collinear approximation
at large ptH the damping factor suppresses R in the Sudakov

- the two approaches exactly agree at NLO-QCD, they differ by higher order corrections

Comparison with analytical resummation

H. Mantler, M. Wiesemann, arXiv:1210.8263



$$\left(\frac{d\sigma^{res}}{dp_T^2} \right)^{f.o.+l.a.} = \left[\frac{d\sigma^{res}}{dp_T^2} \right]_{l.a.} + \left(\frac{d\sigma^{f.o.}}{dp_T^2} - \frac{d\sigma^{logs}}{dp_T^2} \right)$$

resummation of $\log(p_T^H)$
applied to the LO process $gg \rightarrow H$ (only triangles)

analogous to the shower term in MC@NLO

exact fixed order NLO calculation
subtracted of its $\log(p_T^H)$

analogous to R_f in MC@NLO

Comments (beginning 2013)

Comments (beginning 2013)

- the Higgs transverse momentum distribution is a **multiscale observable in LO** (mb, mt, MH) and raises the question of the matching with multiple gluon radiation
- the range of validity of the resummation is different for top and bottom

Comments (beginning 2013)

- the Higgs transverse momentum distribution is a **multiscale observable in LO** (mb, mt, MH) and raises the question of the matching with multiple gluon radiation
- the range of validity of the resummation is different for top and bottom
- MC@NLO and MW use a similar reorganization of the perturbative expansion and obtain a similar description of the small p_{TH} region

both approaches assume the validity of the resummation up to a large scale where the bottom contribution is already resolved
top and bottom in this region behave differently

- POWHEG includes higher orders differently;
the **differences** appear in higher orders and **are beyond the accuracy of the calculation**;
the size of the differences provides an estimate of missing higher orders
- the quark mass effects in POWHEG are, with good approximation, **independent of h_{fact}**

Quark mass effects (2013)

Recent developments in the treatment of the quark mass effects

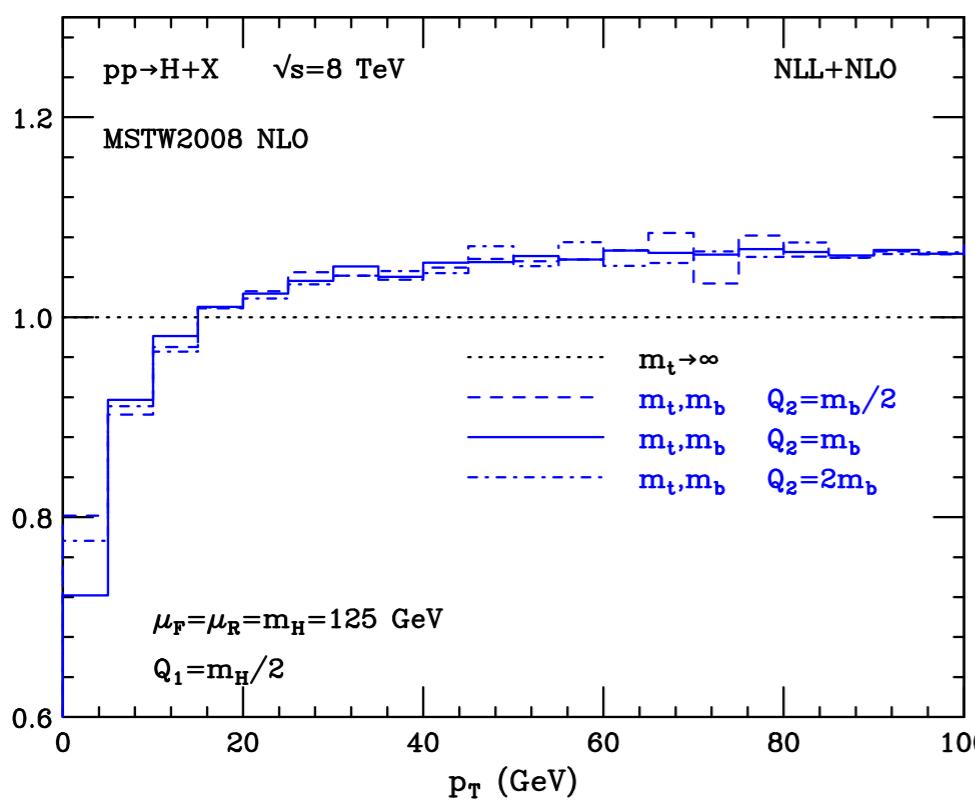
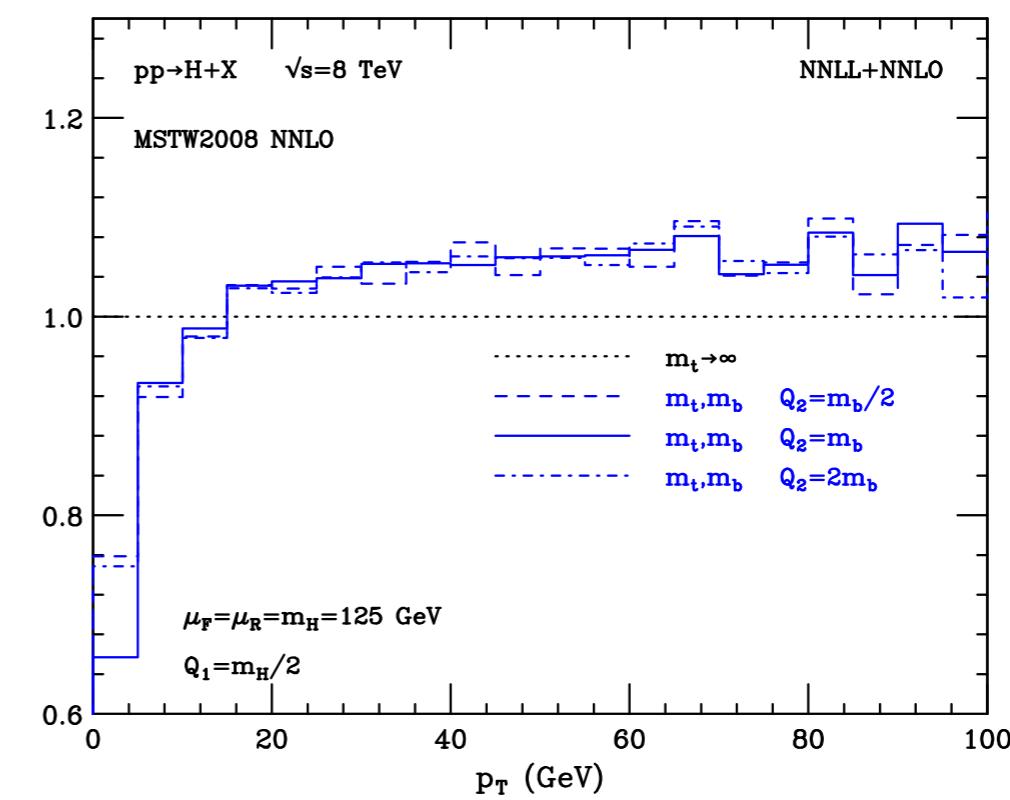
- H. Mantler, M. Wiesemann, [arXiv:1210.8263](https://arxiv.org/abs/1210.8263)
S. Frixione, talk at Higgs Cross Section Working Group meeting, December 7th 2012
M. Grazzini, H. Sargsyan, [arXiv:1306.4581](https://arxiv.org/abs/1306.4581)
A. Vicini, talk at the HXSWG meeting, July 23rd 2013

- In the resummation formalism, separate the pure top-quark contributions, from the bottom-quark ones

$$\mathcal{W}^{(N_1, N_2)} \longrightarrow \mathcal{W}_{\text{top}}^{(N_1, N_2)} + \mathcal{W}_{\text{bot}}^{(N_1, N_2)}$$

where

$$\begin{aligned} \mathcal{W}_{\text{top}}^{(N_1, N_2)}(b) &= \sigma_{LO}(m_t) \mathcal{H}^{(N_1, N_2)}(m_H^2/Q_1^2; m_t) \exp\{\mathcal{G}^{(N_1, N_2)}(\tilde{L}_{Q_1}; m_H^2/Q_1^2)\} \\ \mathcal{W}_{\text{bot}}^{(N_1, N_2)}(b) &= \left[\sigma_{LO}(m_t, m_b) \mathcal{H}^{(N_1, N_2)}(m_H^2/Q_2^2; m_t, m_b) - \sigma_{LO}(m_t) \mathcal{H}^{(N_1, N_2)}(m_H^2/Q_2^2; m_t) \right] \\ &\quad \times \exp\{\mathcal{G}^{(N_1, N_2)}(\tilde{L}_{Q_2}; m_H^2/Q_2^2)\}, \end{aligned}$$



A proposal to treat quark-mass effects with POWHEG

- In the following identity the square bracket is a correction to the first, only-top, term because of the yukawa suppression of the bottom coupling

$$|\mathcal{M}(t+b)|^2 = |\mathcal{M}(t)|^2 + [| \mathcal{M}(t+b) |^2 - |\mathcal{M}(t)|^2]$$

- The first term contains the full top-quark squared amplitude;
the square bracket contains the top-bottom interference and the bottom squared amplitude

A proposal to treat quark-mass effects with POWHEG

- In the following identity the square bracket is a correction to the first, only-top, term because of the yukawa suppression of the bottom coupling

$$|\mathcal{M}(t + b)|^2 = |\mathcal{M}(t)|^2 + [|\mathcal{M}(t + b)|^2 - |\mathcal{M}(t)|^2]$$

- The first term contains the full top-quark squared amplitude;
the square bracket contains the top-bottom interference and the bottom squared amplitude
- The total cross section is independent of the choice of h
→ the total cross section, including quark-mass effects, can be written as

$$\sigma(t + b) = \sigma(t, h = m_H/1.2) + [\sigma(t + b, h = m_b) - \sigma(t, h = m_b)]$$

A proposal to treat quark-mass effects with POWHEG

- In the following identity the square bracket is a correction to the first, only-top, term because of the yukawa suppression of the bottom coupling

$$|\mathcal{M}(t + b)|^2 = |\mathcal{M}(t)|^2 + [|\mathcal{M}(t + b)|^2 - |\mathcal{M}(t)|^2]$$

- The first term contains the full top-quark squared amplitude; the square bracket contains the top-bottom interference and the bottom squared amplitude

- The total cross section is independent of the choice of h
→ the total cross section, including quark-mass effects, can be written as

$$\sigma(t + b) = \sigma(t, h = m_H/1.2) + [\sigma(t + b, h = m_b) - \sigma(t, h = m_b)]$$

- Since the first term depends only on the top quark, a sensible choice is $h = M_H/1.2$
- Since the square bracket contains the top-bottom interference and the bottom squared amplitude, but no pure top-quark contribution, a sensible choice is $h = m_b$
- We propose to use the above formula also for the differential distributions

Quark mass effects after the resummation of multiple gluon emissions (end 2013)

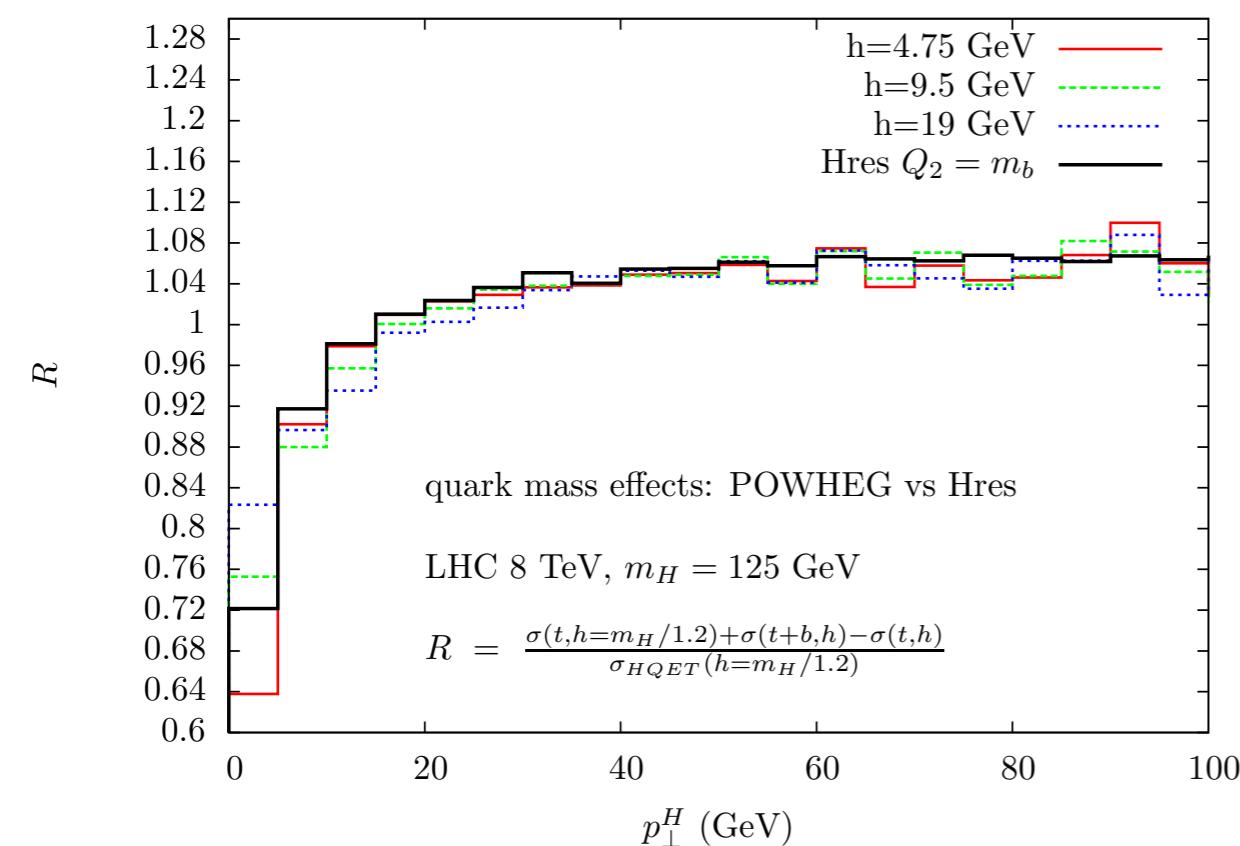
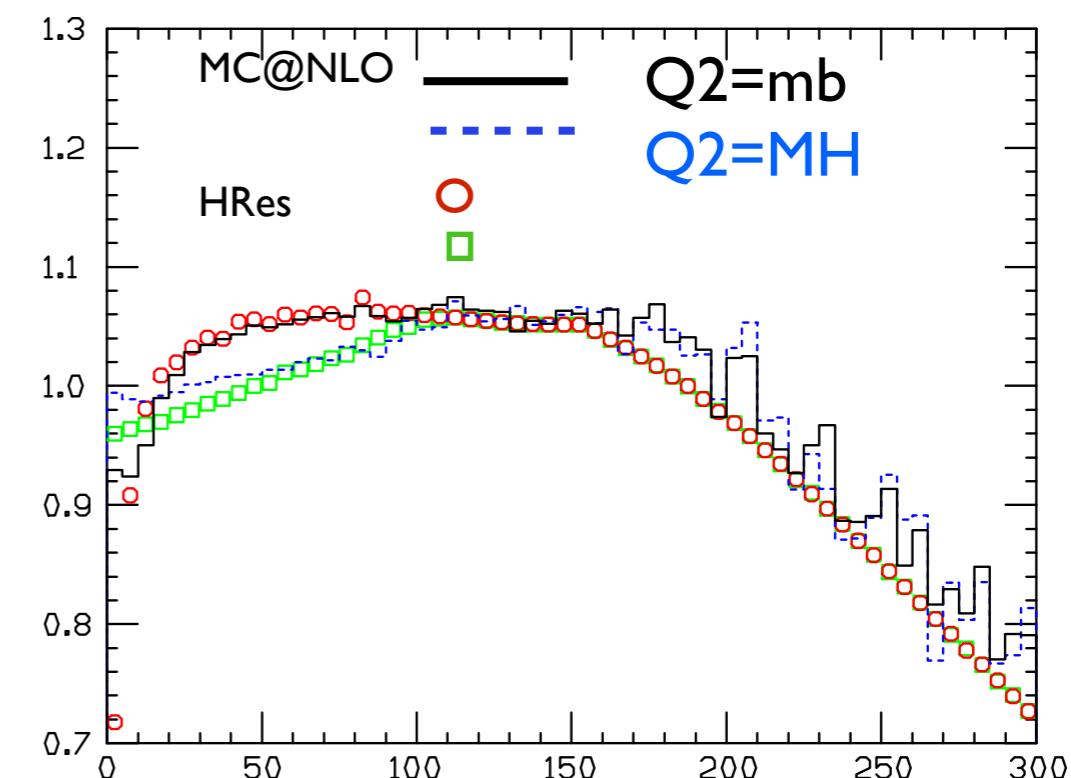
- the Higgs pTH spectrum, with quark masses, is a 3 scales problem (mb, MH, mt), the first “threshold” of the hard scattering process is at $pTH \sim mb$

$$|\mathcal{M}(t+b)|^2 = |\mathcal{M}(t)|^2 + [2Re\mathcal{M}(t)\mathcal{M}^\dagger(b) + |\mathcal{M}(b)|^2]$$

high scale
low scale

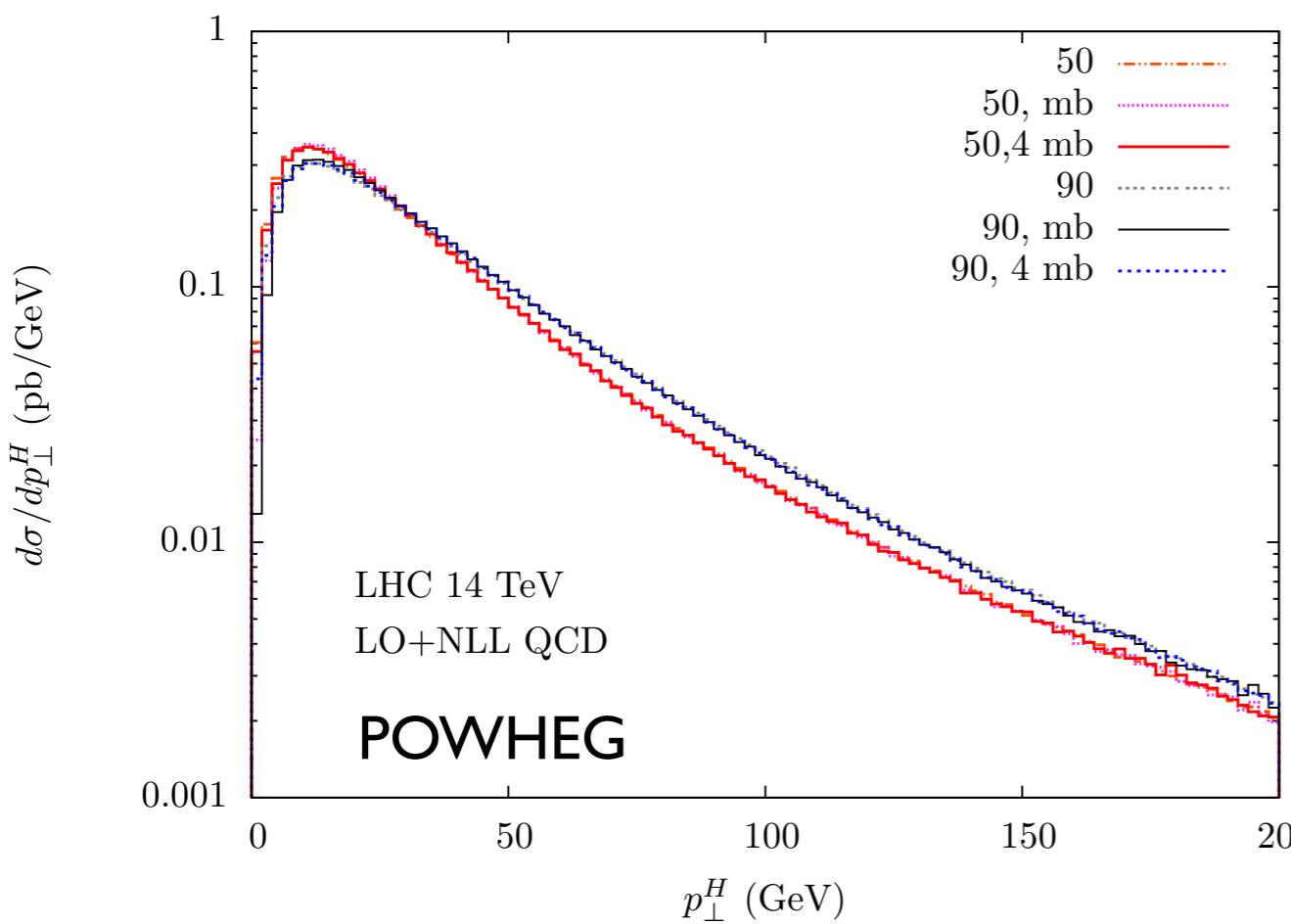
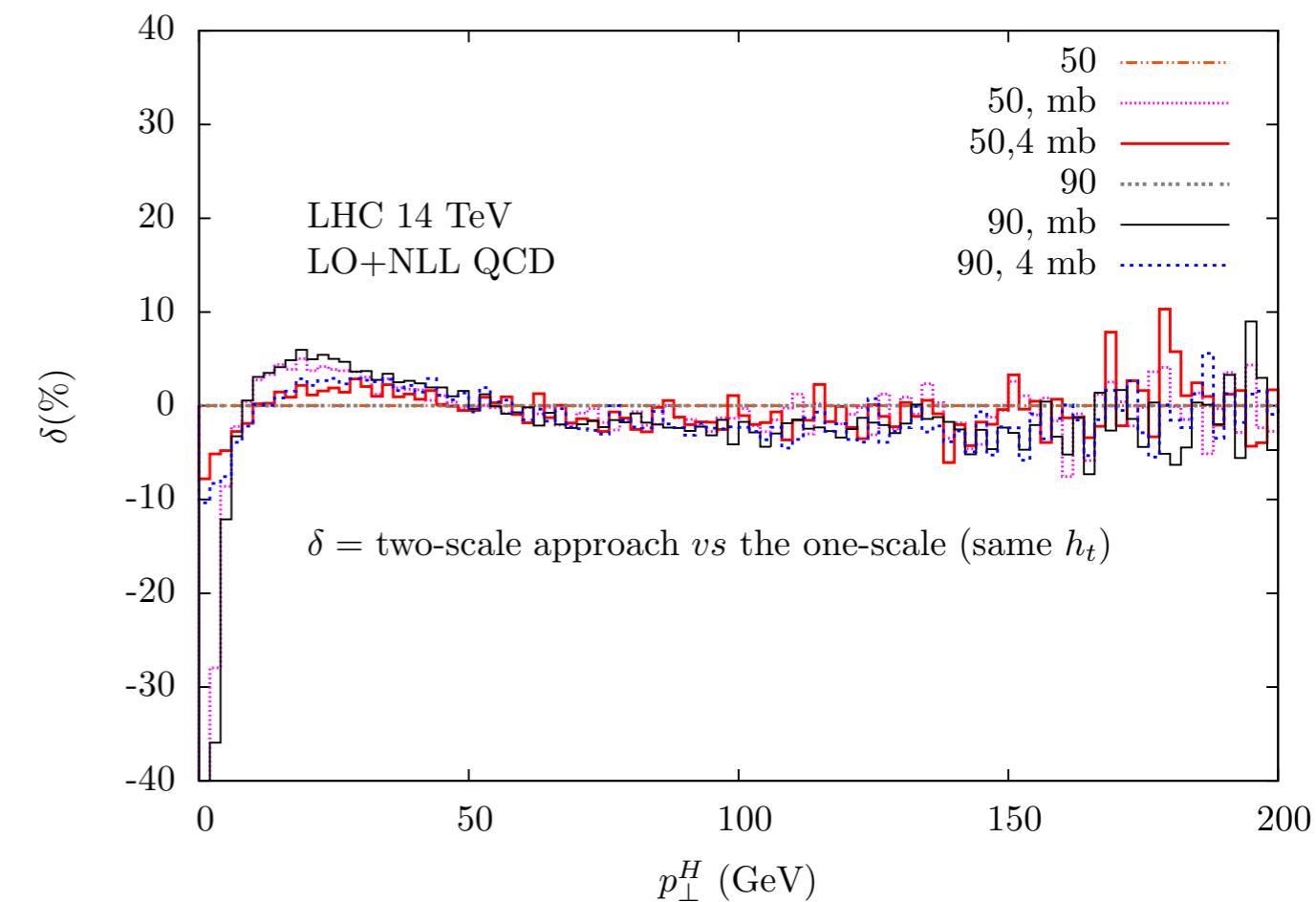
M. Grazzini, H. Sargsyan, arXiv:1306.4581

- HRes: two different resummation scales (Q1 and Q2)
POWHEG: two different values of the parameter h (ht and hb)
MC@NLO: two different scales at which the shower is switched off



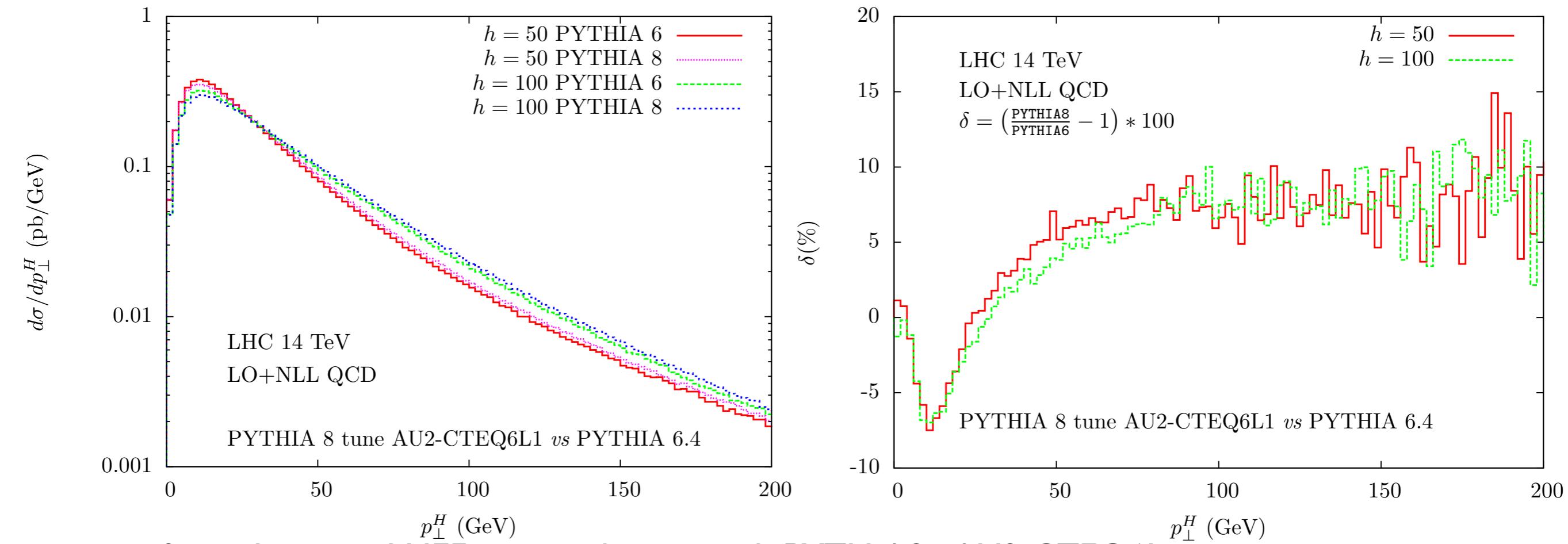
- good agreement in the comparison of (MC@NLO, POWHEG) vs HRes
- the “old” differences between MC@NLO and POWHEG apparently stem from the region of intermediate ptH , together with the unitarity constraint

POWHEG comparison of two-scales vs one-scale approaches



- ht : 50 GeV (from helicity analysis) and 90 (from tuning with HRes)
- hb : 4 mb (from helicity analysis) and mb (as in HRes)
- in the SM the top-quark amplitude is dominant and thus the choice of ht is crucial for the shape
- differences appear in the low ($ptH < 10$ GeV) and in the intermediate ($20 < ptH < 50$ GeV) regions
- setting $hb=4$ mb obviously reduces the difference between the two approaches
- in the intermediate ptH region, the differences do not exceed the 5% level

POWHEG comparison of PYTHIA 6 vs PYTHIA 8 effects



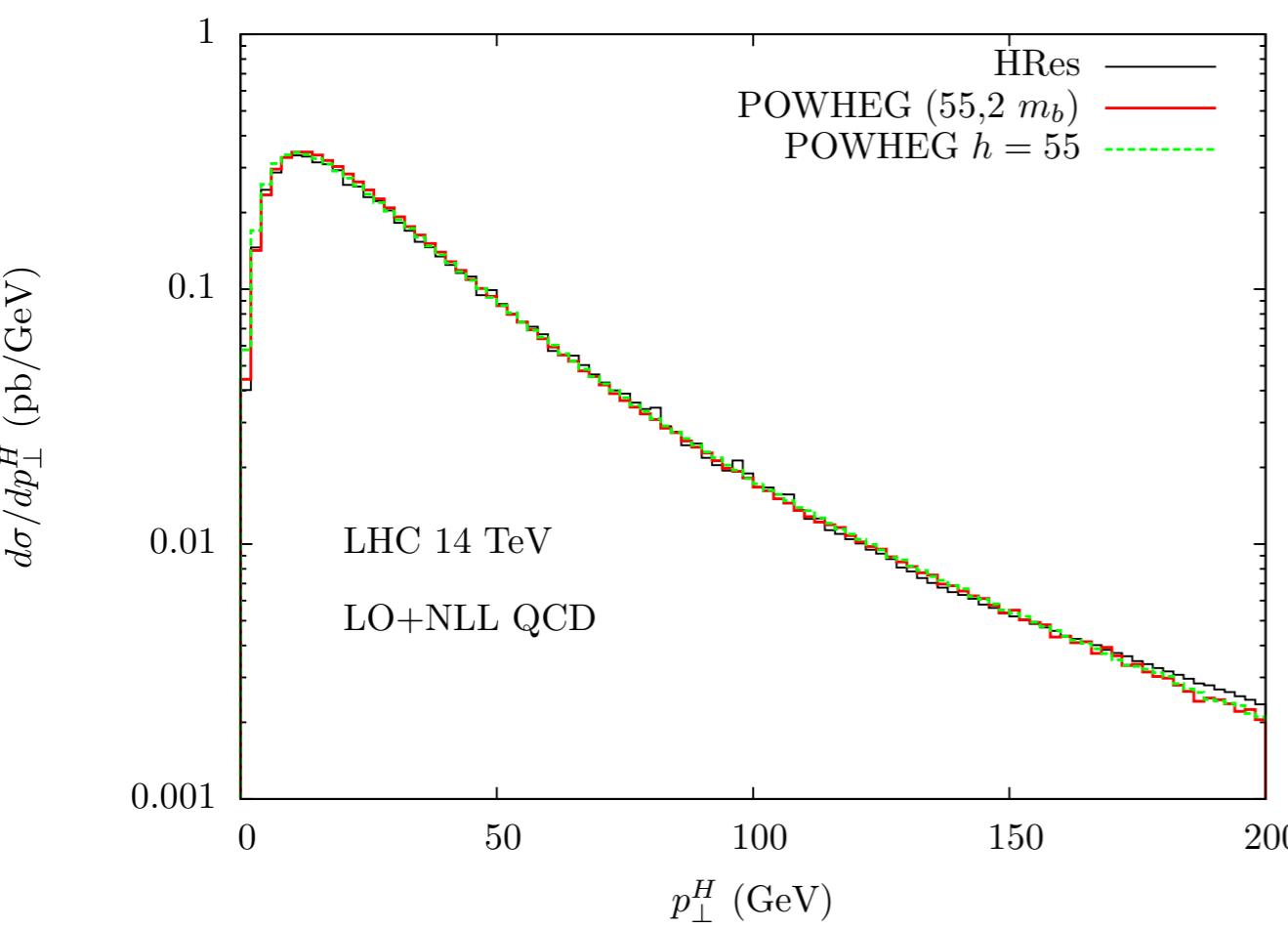
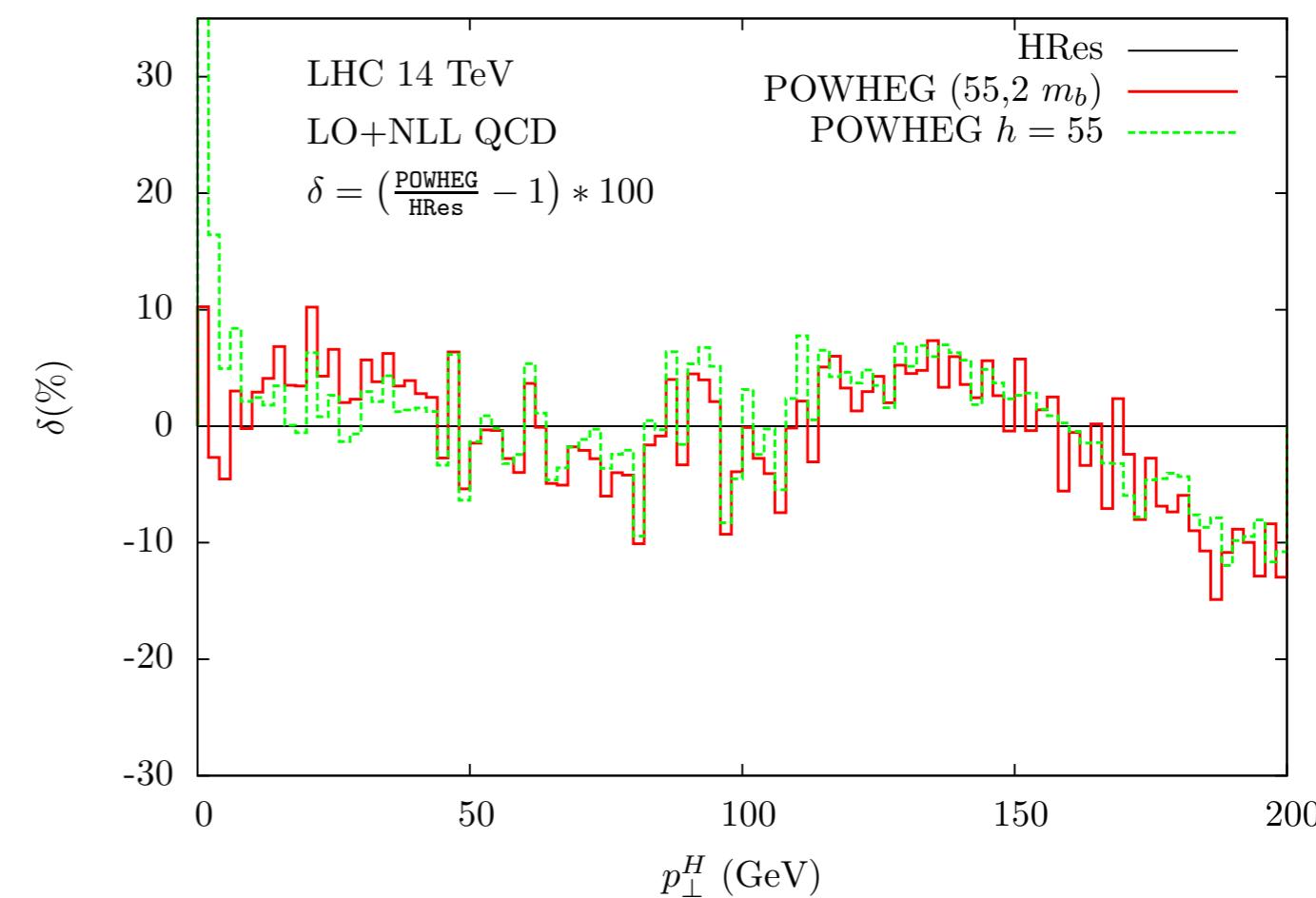
- starting from the same LHEF events, shower with PYTHIA8 AU2 CTEQ6L
PYTHIA6.4
- important change (-7%) of the height of the peak of the distribution (from PY6 to PY8)
- unitarity forces the high-ptH tail of the distribution to increase, by +7%, for $ptH > 70$ GeV
- the effect is almost independent of the chosen value of h
- the tuning of h is affected by the change of the shower (PYTHIA6 $h = MH/1.2 \sim 105$ GeV,
PYTHIA8 $h = \sim 90$ GeV)

Tuning POWHEG to mimic the HRes shape

$$\chi^2 = \sum_{i \in bins} w(i) \left[\frac{1}{\sigma_{tot}^{HRes}} \frac{d\sigma_i^{HRes}}{dp_{\perp}^H} - \frac{1}{\sigma_{tot}^{POWHEG}} \frac{d\sigma_i^{POWHEG}}{dp_{\perp}^H} \right]^2$$

- HRes scales **fixed** at: $Q1 = M_H/2$, $Q2 = mb$
POWHEG scales **scanned** over: $50 < ht < 150$ GeV (5 GeV steps), $mb/2 < hb < 2 mb$ (1 GeV steps)
- for each scale choice in POWHEG, compute χ^2 ; look for the global minimum
- two χ^2 definitions: $w(i)$ constant, $w(i)$ proportional to the xsec
(prop. to xsec \rightarrow more importance to the peak,
constant \rightarrow more importance to the tail)
- the comparison of the shapes allows to apply a global rescaling factor
 $K_{NNLO} = \sigma_{NNLO} / \sigma_{NLO} = 1.254$

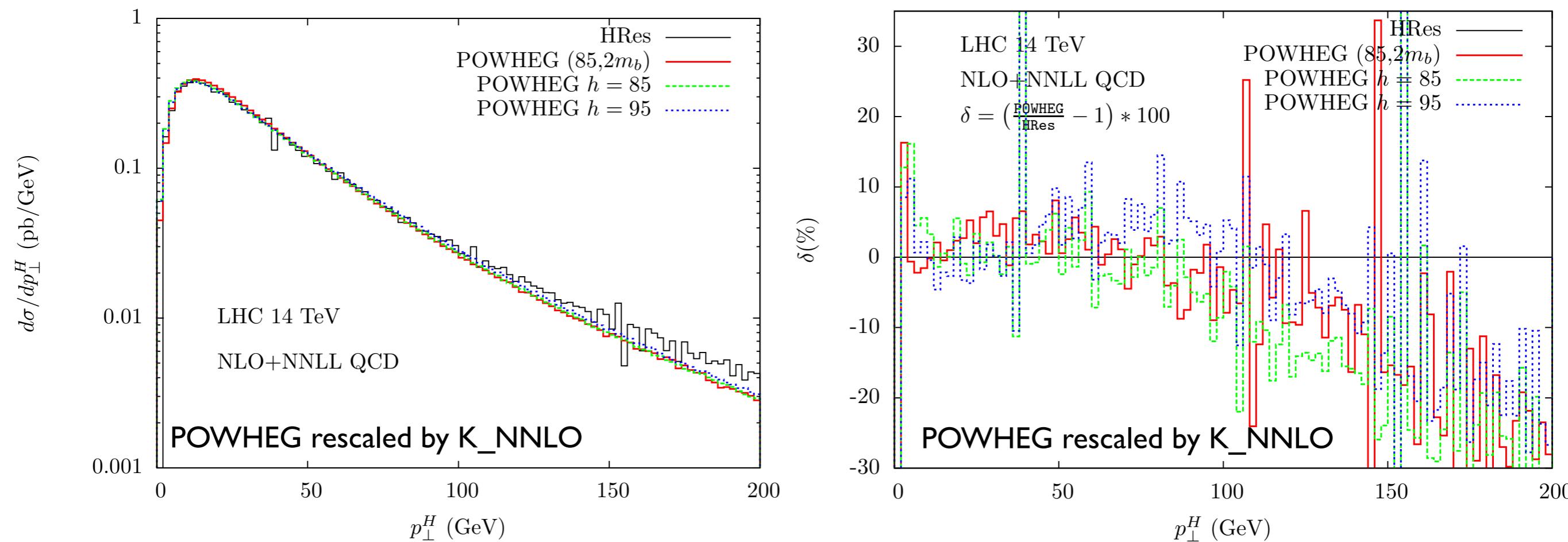
Tuning POWHEG to mimic the HRes shape at LO+NLL



- at LO+NLL the result does not depend on $w(i)$
the preferred $ht \sim QI$, a variation of hb modifies χ^2 at the percent level
- the preferred h is close the $QI = MH/2$

one scale fit $h=55$ GeV
two scales fit $ht=55$ GeV, $hb=2$ mb

Tuning POWHEG to mimic the HRes shape at NLO+NNLL

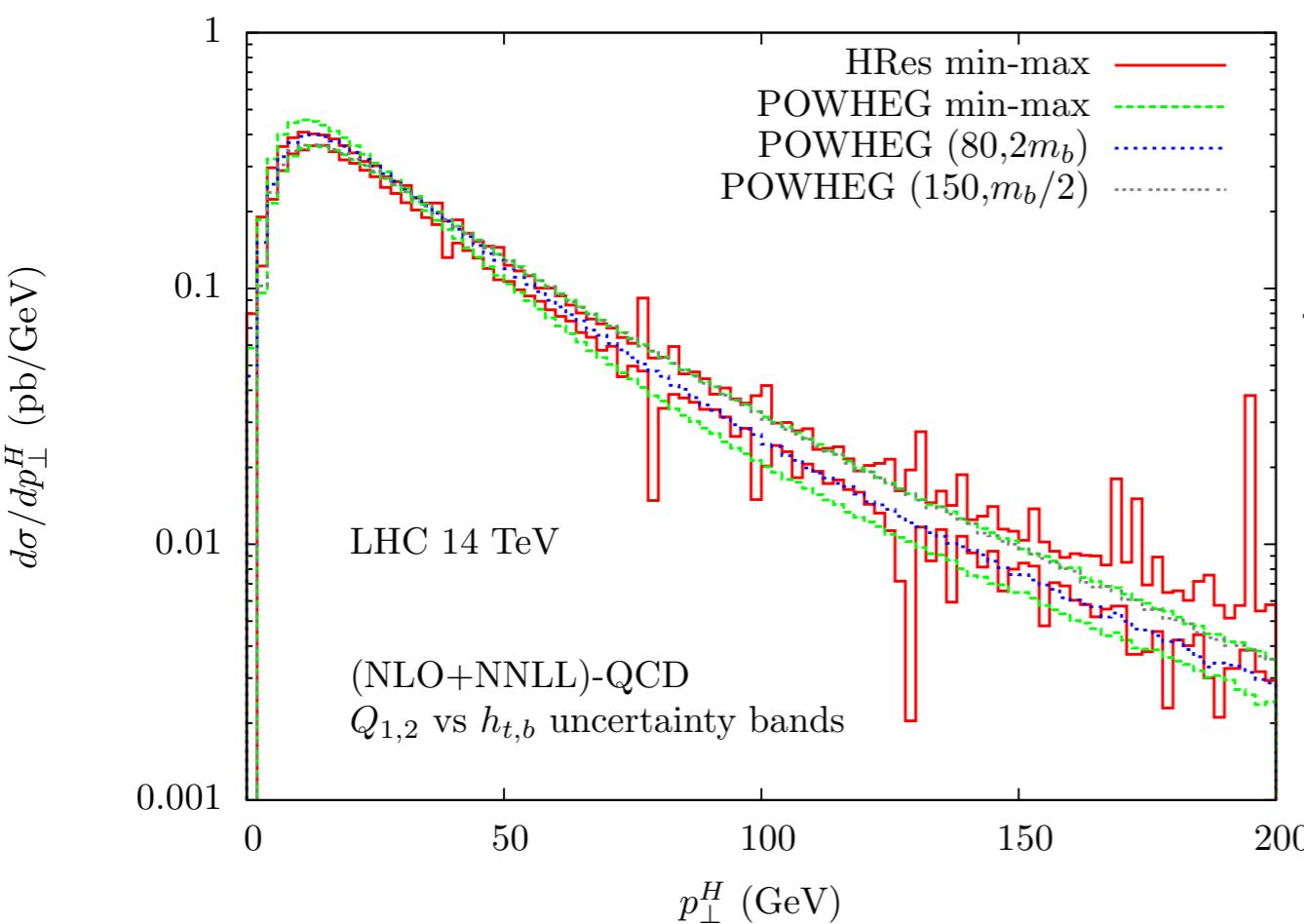


- HRes predictions computed with $Q1=MH/2$ and $Q2=mb$
- a large value of h forces POWHEG to mimic the large ptH tail of the HRes NLO+NNLL
- the best fit mimics the shape at the $\pm 5\%$ level for $ptH < 100$ GeV
- the fit results depends on the importance ($w(i)$) that we give to the tail of the distribution
- the use of PYTHIA8 forces the tuning towards smaller values of ht (w.r.t. PYTHIA6)

one scale fit $h=85$ GeV $w(i)$ prop.to xsec
 $h=95$ GeV $w(i)$ constant

two scales fit $ht=85$ GeV, $hb=2$ mb

POWHEG resummation uncertainty band compared to HRes



scale variation

HRes at NLO+NNLL: $MH/4 < Q_1 < MH$, $mb/2 < Q_2 < 2 mb$
 POWHEG: $50 < ht < 150$ GeV, $mb/2 < hb < 2 mb$

for fixed renormalization and factorization scales $\mu_R = \mu_F = MH$

min-max envelope:

in each bin consider the minimum and the maximum values

- the lower (upper) edge of the (rescaled) POWHEG envelope has an integrated xsec compatible with the corresponding HRes lower (upper) edge integrated xsec at the 6% (-2%) level

- the POWHEG predictions, rescaled by a global factor K_{NNLO} , are **compatible** with the HRes results
- the POWHEG uncertainty band, varying ht and hb , is **comparable in width** with the one by HRes

SM Conclusions

- The use of h_{fact} to control the range where multiple parton emissions plays a role allows to treat in a different way top and bottom parts of the amplitude
- A simple combination of 3 POWHEG runs reproduces quite accurately the LO+NLL Hres calculation the reweighting factors to match the new HRes should be mostly due to NNLO-QCD corrections rather than to quark-mass effects
- The 2-scales recipe is conservative (resummation is applied only where we know it is valid)

The agreement between POWHEG, HRes and MC@NLO suggests that previous discrepancies were due to the bottom contribution enhanced by resummation effects i.e. different Sudakov factors + unitarity constraint
(it is not yet clarified if those effects were properly treated, it deserves further investigation)

- The effects of the bottom treatment in the SM are small but not negligible they can be further enhanced in the MSSM by $\tan\beta$

The gluon fusion process in the MSSM in POWHEG

- the code is an event generator which describes the MSSM processes $pp \rightarrow h_0 + X$, $pp \rightarrow H_0 + X$, $pp \rightarrow A + X$ with NLO-QCD accuracy matched with QCD parton shower



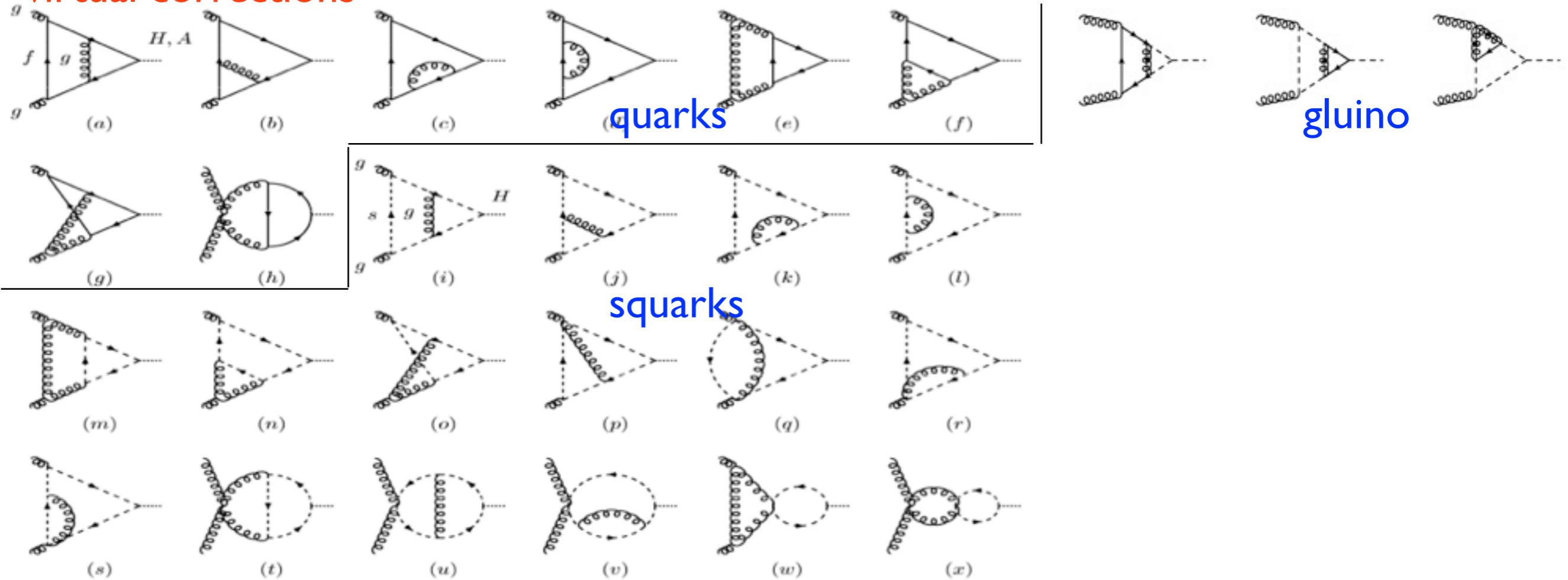
- at LO, the exact contribution of quarks and squarks is included
at NLO, the quark contribution is included exactly
NLO-QCD corrections to the squark diagrams and SUSY-QCD corrections are included via expansions
- NLO-EW corrections due to light-quark loops (Aglietti et al, 2004), with MSSM couplings, are factorized w.r.t. the MSSM NLO-QCD cross section

Checks

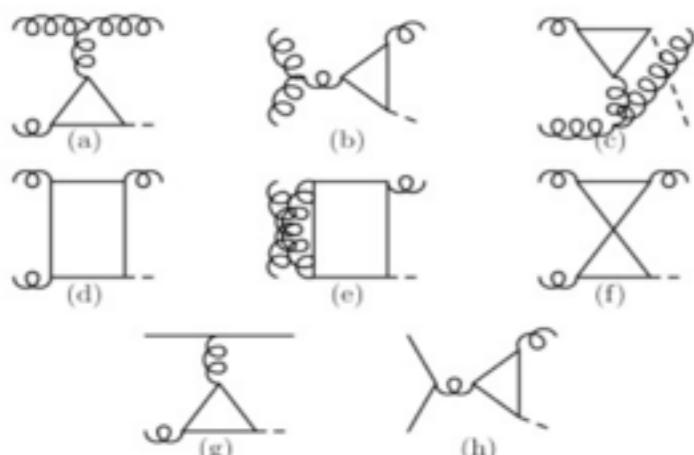
- the total and differential cross section has been carefully checked in close collaboration with the authors of SusHi (Harlander, Liebler, Mantler)

MSSM: Feynman diagrams

virtual corrections



real corrections



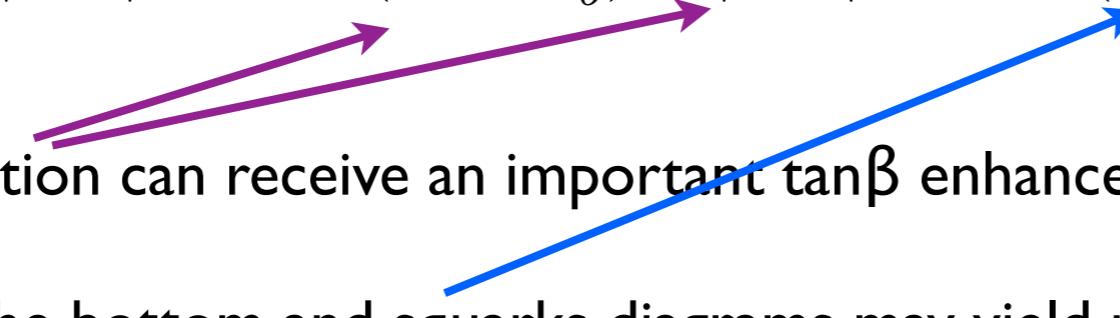
only
quarks and squarks

The MSSM code: input file

- the MSSM parameters can be computed in two renormalization schemes: DRbar (e.g. with SoftSusy) or On-Shell (e.g. with FeynHiggs)
- depending on the scheme chosen, the parameters (Higgs mass, squark masses, mixing angles) necessary to POWHEG to compute the cross section, must be determined as follows:
 - DRbar: a SLHA-compliant file must be computed e.g. by SoftSusy
 - OS: POWHEG uses the FeynHiggs library (it must be installed, version ≥ 2.9) to compute masses and couplings
- once the MSSM parameters are computed, the simulation proceeds exactly as in the SM case: a scan in the MSSM parameter space is as simple as the generation of the input files
- the POWHEG run (before showering) yields in output a SLHA-compliant file with the values of all the parameters used in the computation; this file can be read by PYTHIA, if necessary, for a consistent evaluation of the decay processes

The MSSM code: basic analytical structure

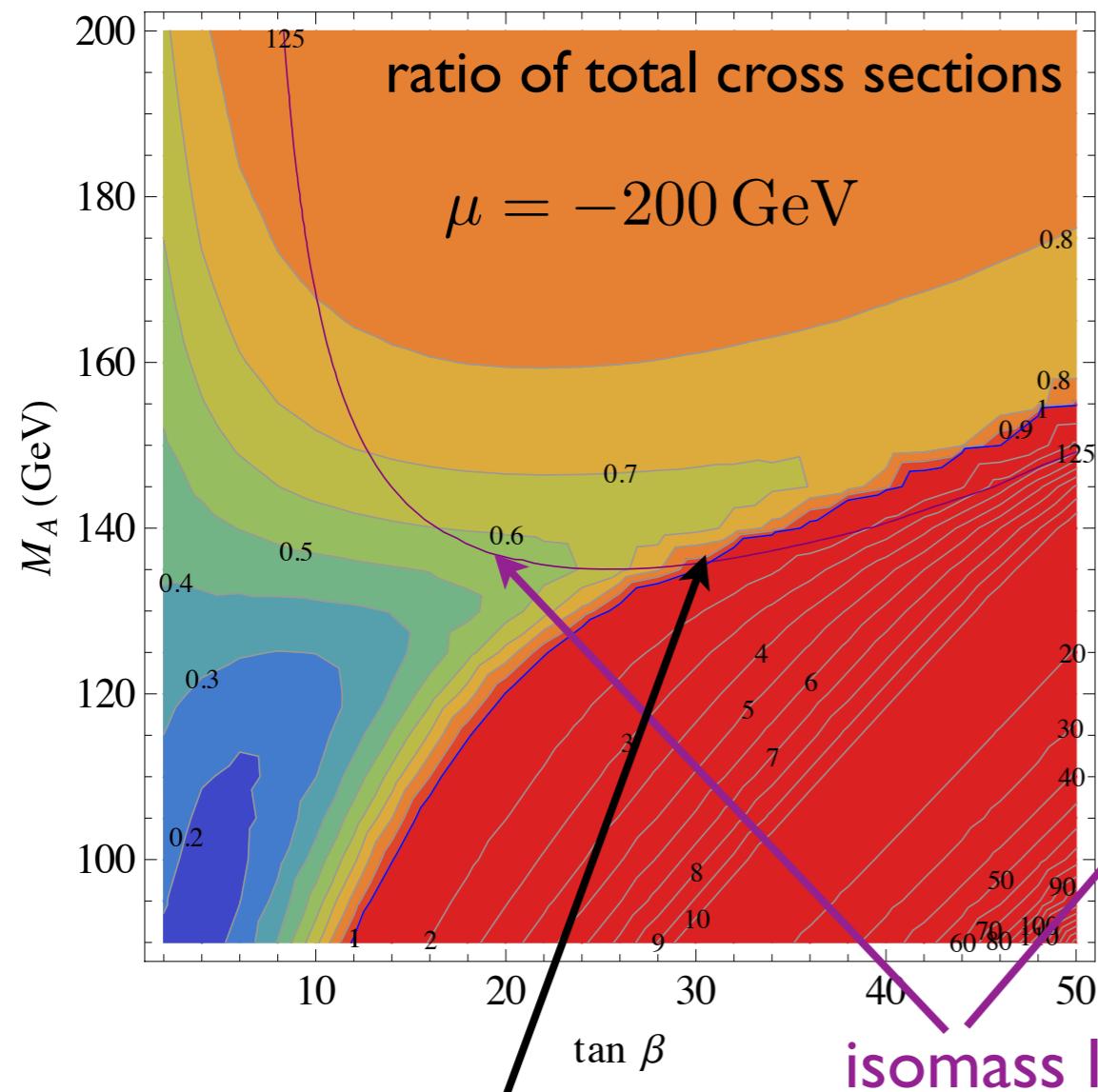
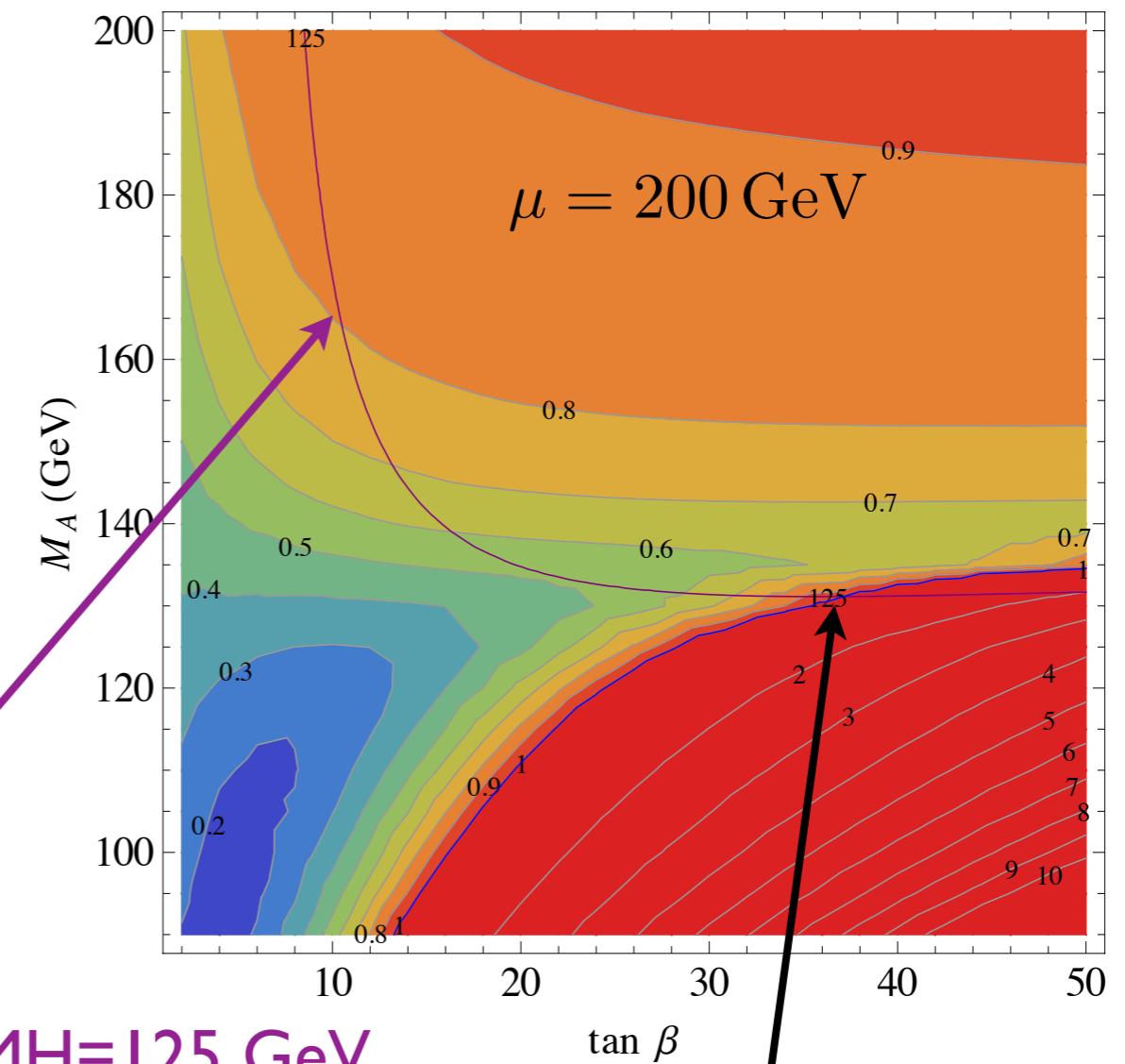
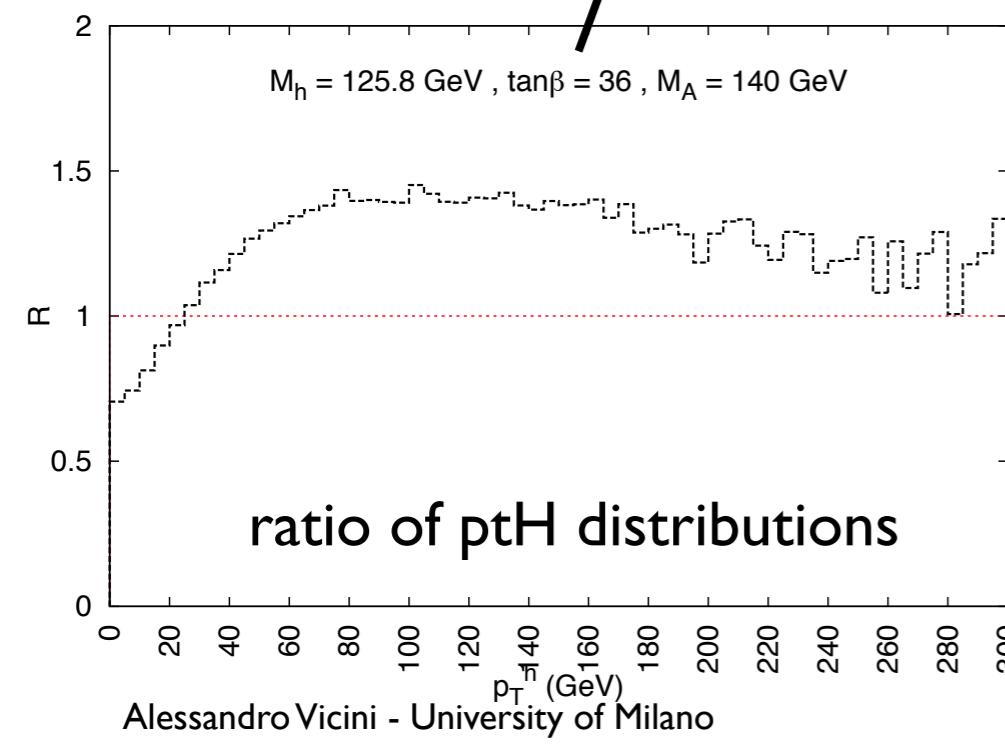
$$|\mathcal{M}(gg \rightarrow gH)|^2 = |\mathcal{M}_t + \mathcal{M}_{\tilde{q}} + \mathcal{M}_b|^2$$
$$= |\mathcal{M}_t|^2 + 2\text{Re}(\mathcal{M}_t \mathcal{M}_b^\dagger) + |\mathcal{M}_b|^2 + 2\text{Re}(\mathcal{M}_{\tilde{q}} \mathcal{M}_b^\dagger) + 2\text{Re}(\mathcal{M}_{\tilde{q}} \mathcal{M}_t^\dagger) + |\mathcal{M}_{\tilde{q}}|^2$$



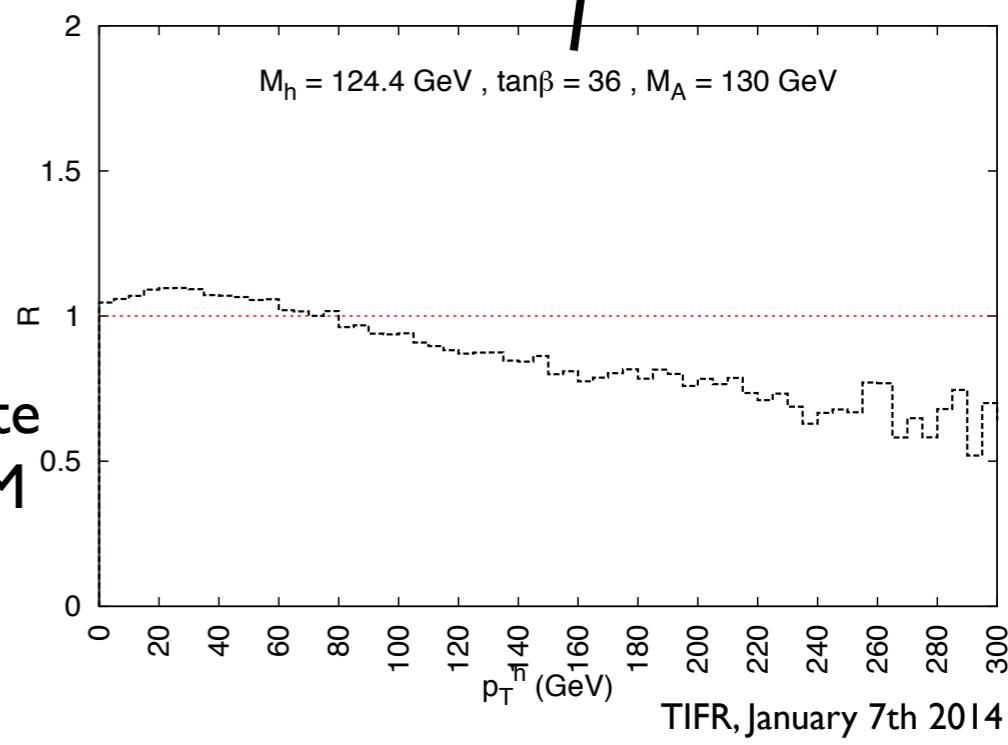
- the bottom contribution can receive an important $\tan\beta$ enhancement
- the interference of the bottom and squarks diagrams may yield non negligible effects
- the $p_{\text{t}} H$ distribution can be significantly distorted by MSSM corrections
 - relevance of an exact treatment of the mass effects (absent in the HQET SM analysis)
 - ▶ it has an impact on the estimate of the acceptance
 - ▶ it is an observable *per se*

Ratios full MSSM/SM, h_0 production

$mQ=mU=mD=1000$ GeV, $X^t=2500$ GeV, $M_3=800$ GeV, $M_2=2$ $M_1=200$ GeV

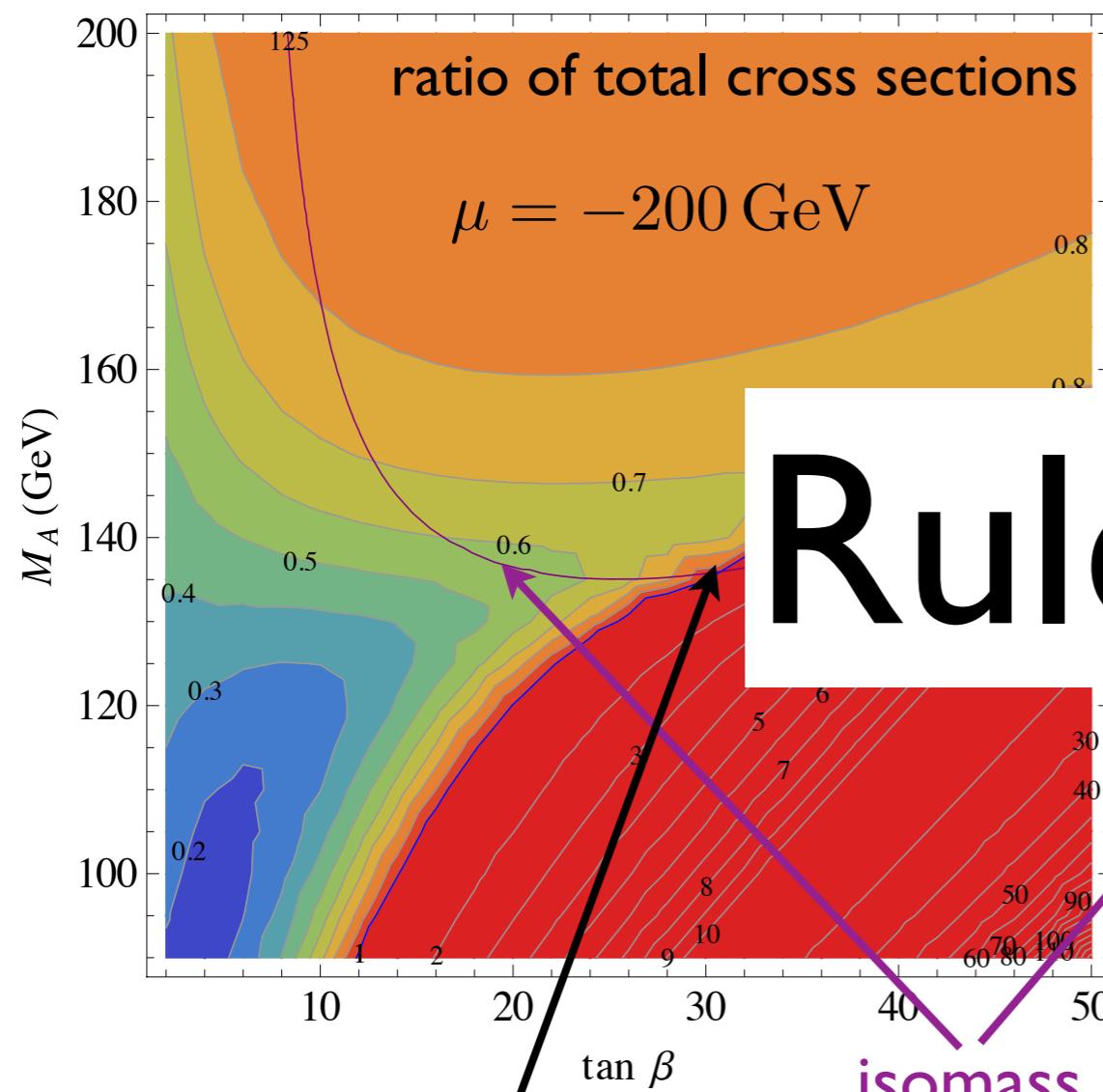
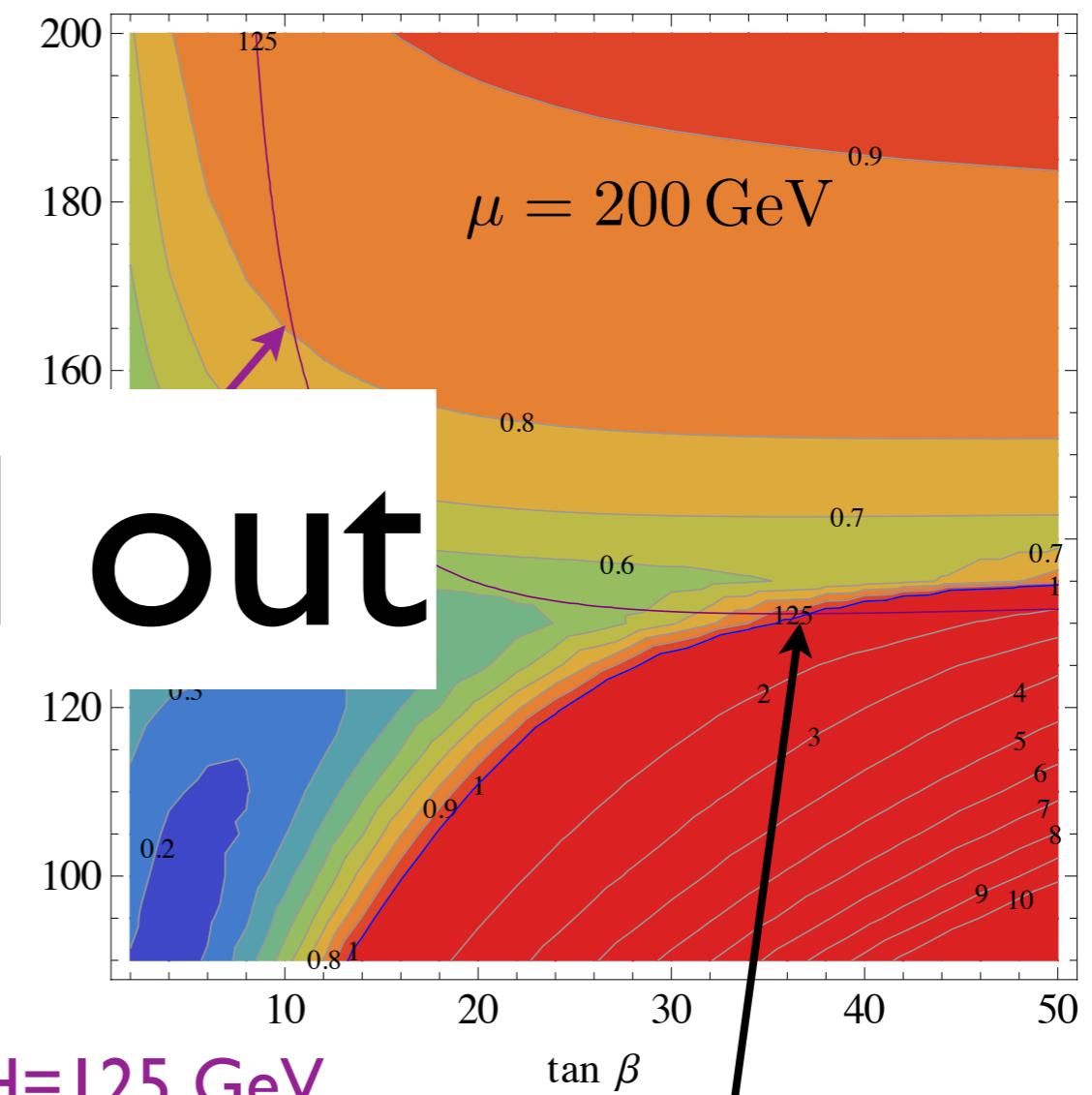
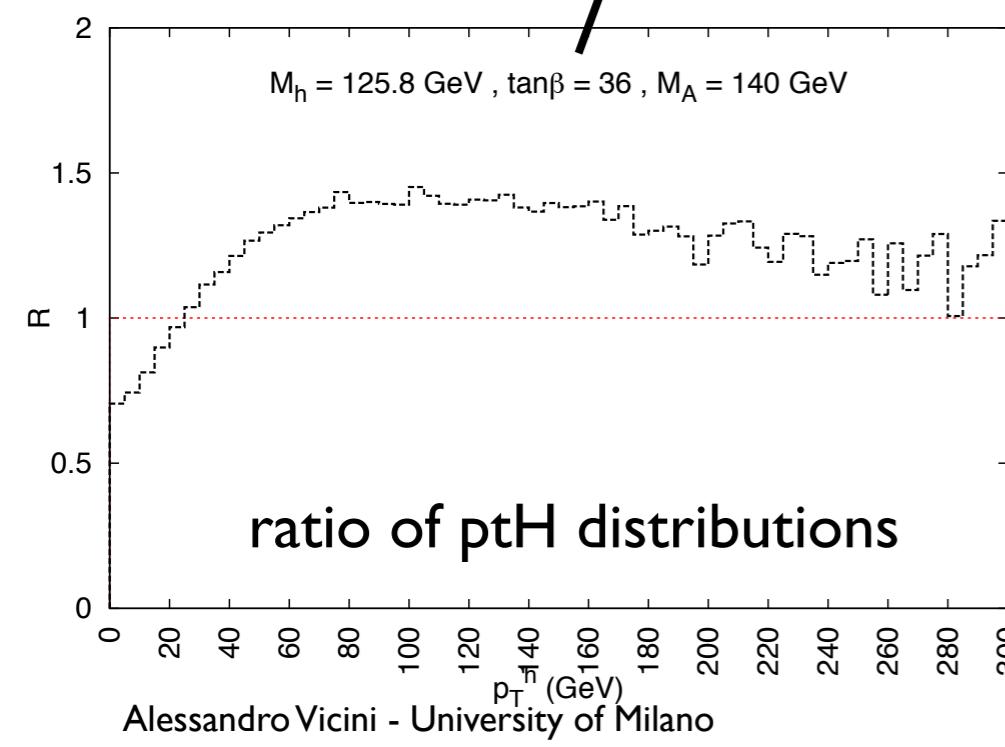


not only the BR
but also the ptH distr
can help to discriminate
between SM and MSSM

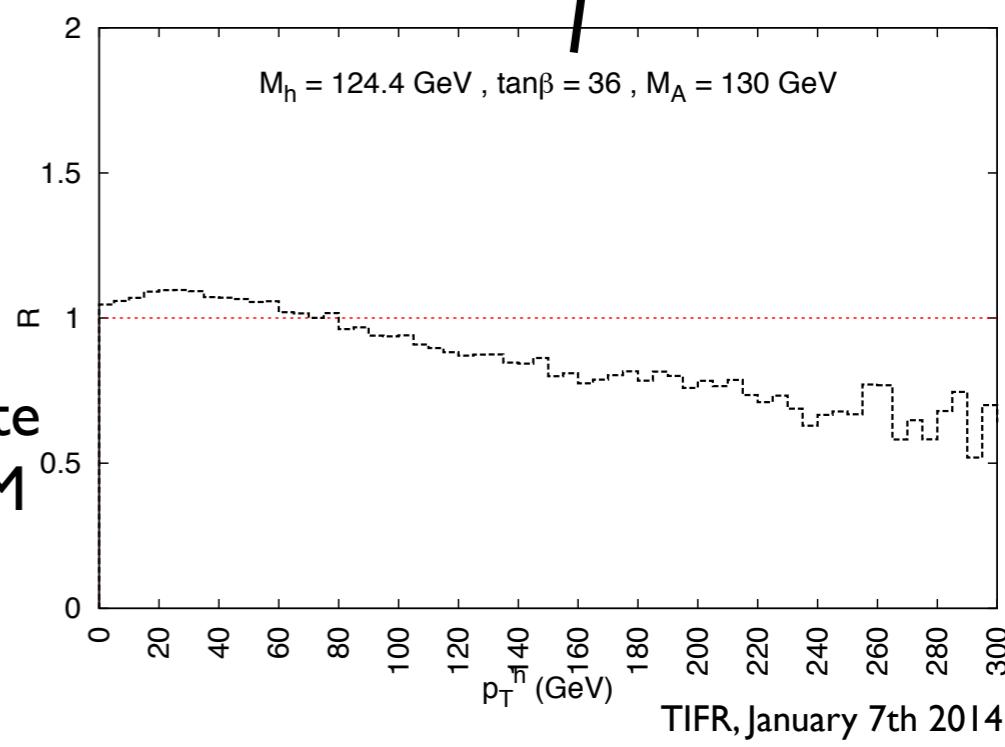


Ratios full MSSM/SM, h_0 production

$mQ=mU=mD=1000$ GeV, $X^t=2500$ GeV, $M_3=800$ GeV, $M_2=2$ $M_1=200$ GeV



not only the BR
but also the ptH distr
can help to discriminate
between SM and MSSM

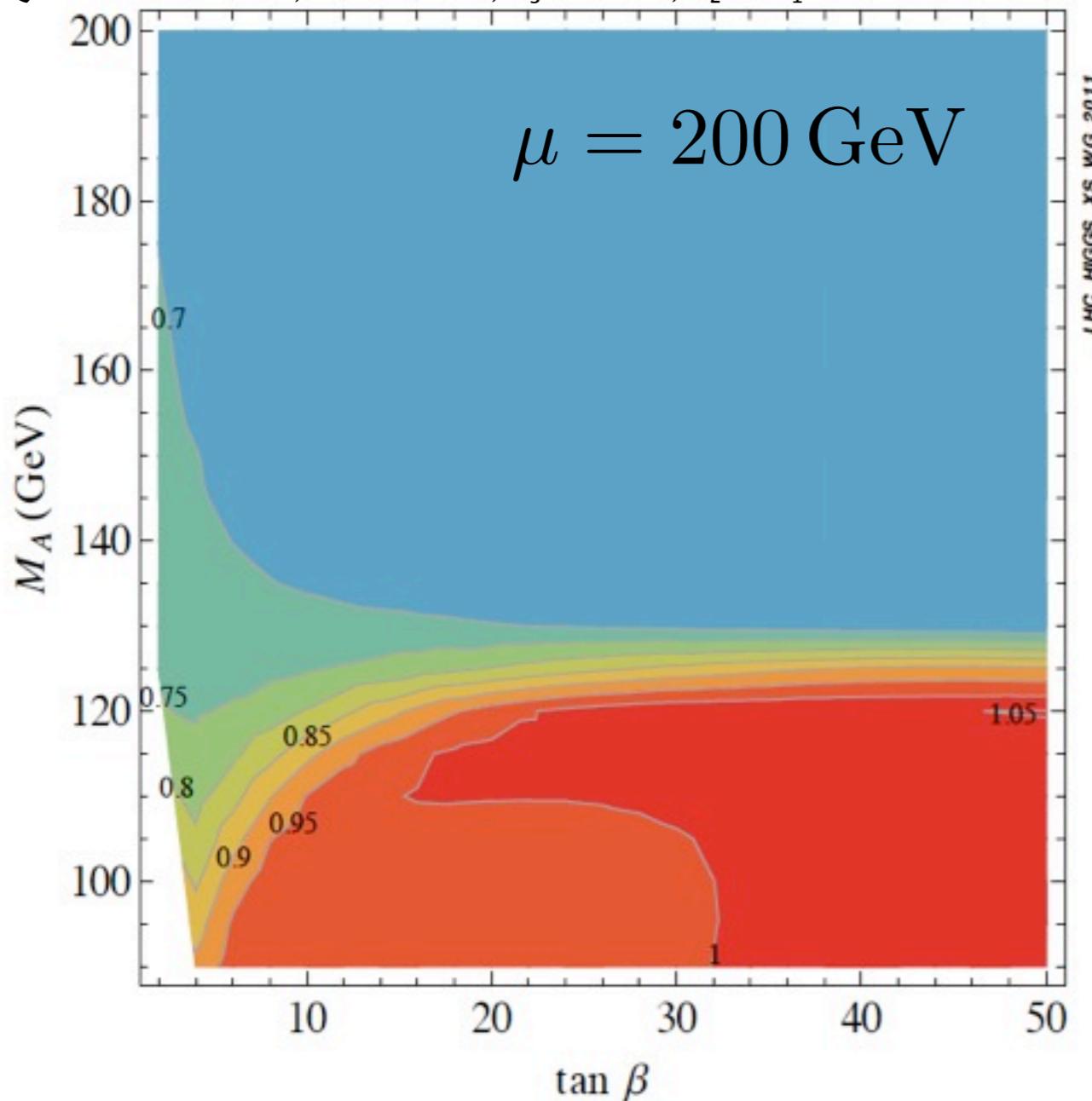
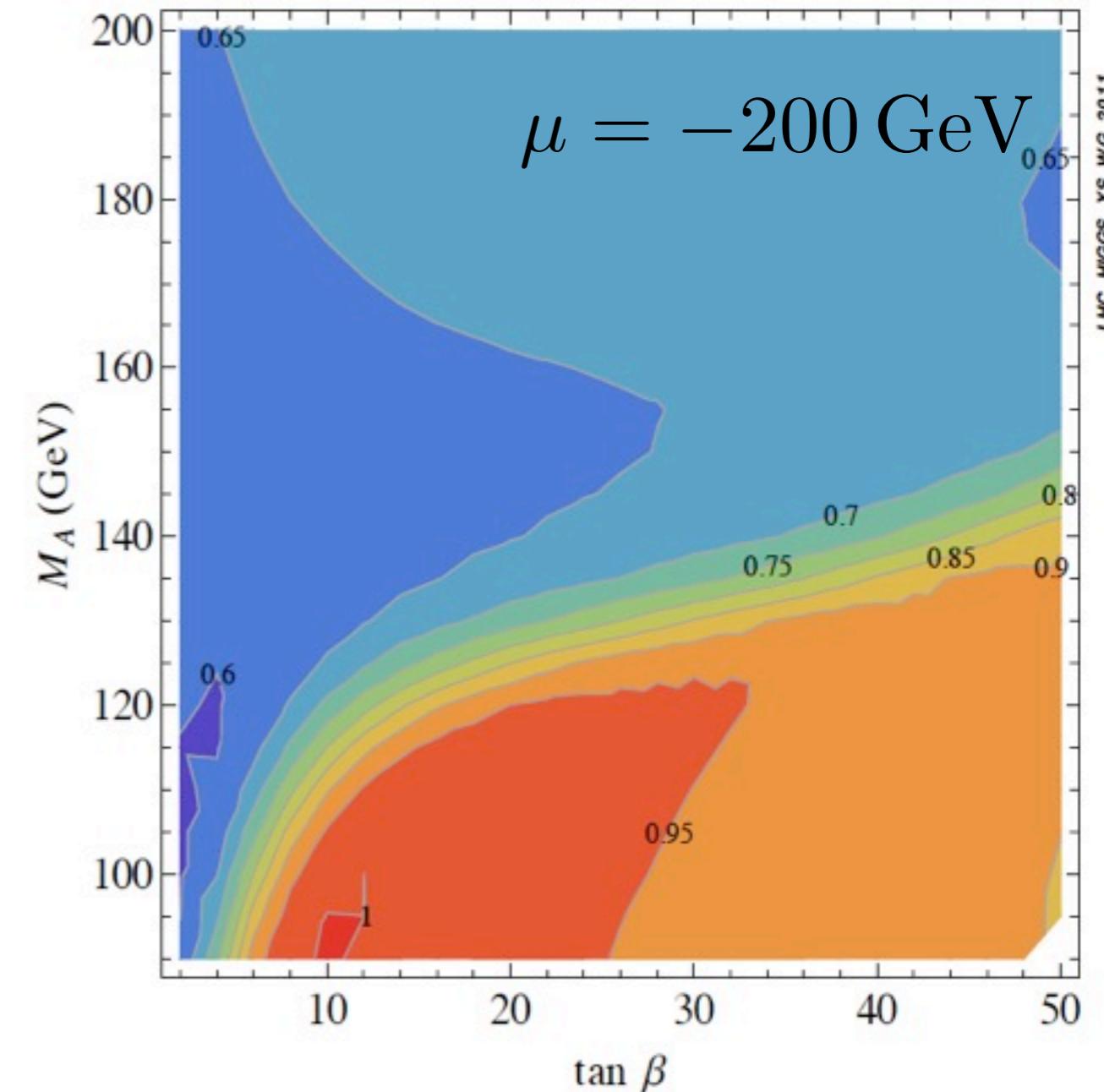


MSSM: role of the squarks, light higgs,

ratio full MSSM vs MSSM only quarks

- the squarks induce always a negative correction: moderate when $\sigma(\text{MSSM}) \gg \sigma(\text{SM})$
more sizeable when $\sigma(\text{MSSM}) < \sigma(\text{SM})$

$m_Q = m_U = m_D = 500 \text{ GeV}$, $X^t = 1250 \text{ GeV}$, $M_3 = 400 \text{ GeV}$, $M_2 = 2$, $M_1 = 200 \text{ GeV}$



- In the Yellow Report arXiv:1101.0593 the cross section for neutral Higgs production have been computed including **only the quark contributions**.

The 2HDM in a nutshell

- 2 complex scalar doublets Φ_1 and Φ_2 with VEVs v_1 and v_2
 3 d.o.f. are the longitudinal polarization of Ws and Z
 5 d.o.f. are in the physical spectrum: 2 charged scalars, 2 neutrals CP-even, 1 neutral CP-odd
- input parameters are: α , $\tan\beta = v_2/v_1$, M_h , M_H , M_A , M_{\pm} , M_{12}
- the presence of additional discrete symmetries forbids the appearance of tree-level FCNC leading to different types of models;
 the couplings of the Higgs scalars to fermions are:

	Type I	Type II	Lepton-specific	Flipped
ξ_h^u	$\cos\alpha/\sin\beta$	$\cos\alpha/\sin\beta$	$\cos\alpha/\sin\beta$	$\cos\alpha/\sin\beta$
ξ_h^d	$\cos\alpha/\sin\beta$	$-\sin\alpha/\cos\beta$	$\cos\alpha/\sin\beta$	$-\sin\alpha/\cos\beta$
ξ_h^ℓ	$\cos\alpha/\sin\beta$	$-\sin\alpha/\cos\beta$	$-\sin\alpha/\cos\beta$	$\cos\alpha/\sin\beta$
ξ_H^u	$\sin\alpha/\sin\beta$	$\sin\alpha/\sin\beta$	$\sin\alpha/\sin\beta$	$\sin\alpha/\sin\beta$
ξ_H^d	$\sin\alpha/\sin\beta$	$\cos\alpha/\cos\beta$	$\sin\alpha/\sin\beta$	$\cos\alpha/\cos\beta$
ξ_H^ℓ	$\sin\alpha/\sin\beta$	$\cos\alpha/\cos\beta$	$\cos\alpha/\cos\beta$	$\sin\alpha/\sin\beta$
ξ_A^u	$\cot\beta$	$\cot\beta$	$\cot\beta$	$\cot\beta$
ξ_A^d	$-\cot\beta$	$\tan\beta$	$-\cot\beta$	$\tan\beta$
ξ_A^ℓ	$-\cot\beta$	$\tan\beta$	$\tan\beta$	$-\cot\beta$

a 2HDM run in POWHEG

- model input parameters

the user chooses -the values of the input parameters α , $\tan\beta$ and the Higgs mass (M_h , M_H , M_A)
-the type of 2HDM model (I and II implemented, same conventions as in SusHi)
and writes them in `powheg.input`

the same values should be written in the HDECAY input file `hdecay.in` together with a choice
for M_{\pm} , M_{12}

HDECAY must be started first to compute the Higgs decay widths in that parameter space point;
the total widths are written in `br.l3_2HDM`, `br.h3_2HDM`, `br.a3_2HDM`
→ these files must be present in the POWHEG run directory

- QCD and generation parameters are defined as usual in `powheg.input`
the complex pole scheme, relevant for the heavy Higgs studies, is not yet available

Differences with respect to the SM analysis

- in the type II, the coupling to down-type fermions is enhanced by $\tan\beta$
the role of the bottom-quark amplitude, in the interference with the top, but also squared, can be radically different than in the SM
- some trivial cases are excluded by the experimental available constraints on a light scalar; other scenarios (e.g. heavy Higgs searches in the decoupling limit) can be delicate
- the inclusion of resummation effects is more problematic than in the SM:
it is a 3 scales problem ($O(mb)$, $O(m_\phi)$, $O(m_t)$), like in the SM, but
the bottom amplitude is NOT a small correction, it can be the leading contribution
- following a two-scales approach,
up to which scale can we safely apply the resummation formalism to the top (bottom) contributions ?
are these scales dependent on M_H ?
- is a one-scale approach viable?
if yes, up to which scale can we safely apply the resummation formalism ?

Exact matrix elements and collinear limit

$$|\mathcal{M}(m)|^2 = \sum_{\lambda_1, \lambda_2, \lambda_3 = \pm 1} |\mathcal{M}^{\lambda_1, \lambda_2, \lambda_3}(m)|^2 = \sum_{\lambda_1, \lambda_2, \lambda_3 = \pm 1} |\mathcal{M}_{div}^{\lambda_1, \lambda_2, \lambda_3}(m)/p_\perp^H + \mathcal{M}_{reg}^{\lambda_1, \lambda_2, \lambda_3}(m)|^2$$

- we discuss the validity of the collinear approximation of the amplitude, to find the value of p_{tH} where the non-factorizable terms become important; a 10% deviation is considered relevant

$$C(p_\perp^H) = \frac{|\mathcal{M}_{exact}(p_\perp^H)|^2}{|\mathcal{M}_{div}(p_\perp^H)/p_\perp^H|^2}$$

- the breaking of the collinear approximation signals that the $\log(p_{\text{tH}})$ resummation formalism, which is based on the collinear factorization hypothesis can not be applied in a fully justified way

Exact matrix elements and collinear limit

$$|\mathcal{M}(m)|^2 = \sum_{\lambda_1, \lambda_2, \lambda_3 = \pm 1} |\mathcal{M}^{\lambda_1, \lambda_2, \lambda_3}(m)|^2 = \sum_{\lambda_1, \lambda_2, \lambda_3 = \pm 1} |\mathcal{M}_{div}^{\lambda_1, \lambda_2, \lambda_3}(m)/p_\perp^H + \mathcal{M}_{reg}^{\lambda_1, \lambda_2, \lambda_3}(m)|^2$$

- we discuss the validity of the collinear approximation of the amplitude, to find the value of ptH where the non-factorizable terms become important; a 10% deviation is considered relevant

$$C(p_\perp^H) = \frac{|\mathcal{M}_{exact}(p_\perp^H)|^2}{|\mathcal{M}_{div}(p_\perp^H)/p_\perp^H|^2}$$

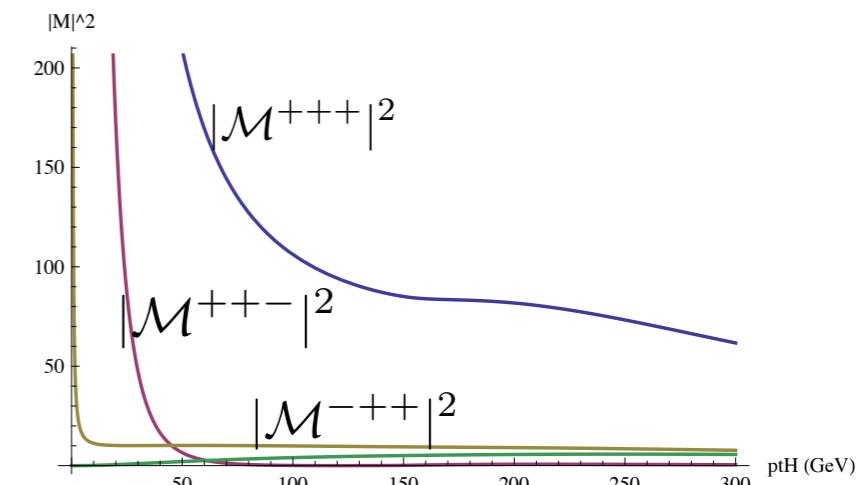
- the breaking of the collinear approximation signals that the log(ptH) resummation formalism, which is based on the collinear factorization hypothesis can not be applied in a fully justified way

- 8 helicity amplitudes: related by parity (4+4) and by the symmetry of the process

- we discuss, at fixed partonic s , the 3 amplitudes with a soft+collinear or only collinear divergence for $u \rightarrow 0$

- dominance of the amplitudes with soft+collinear divergence

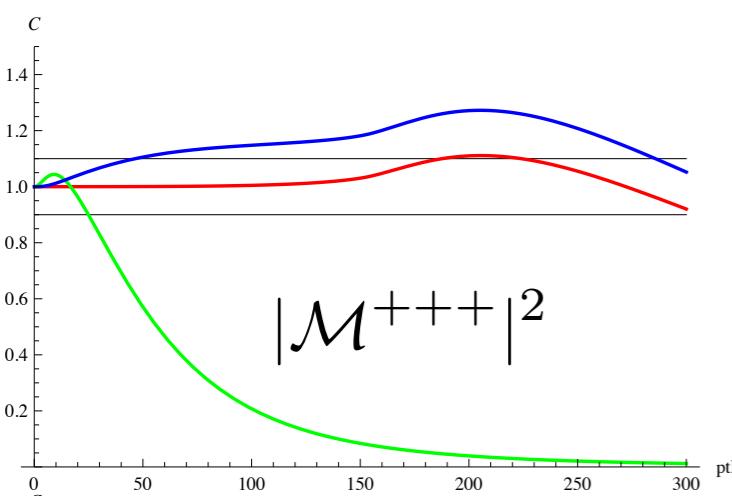
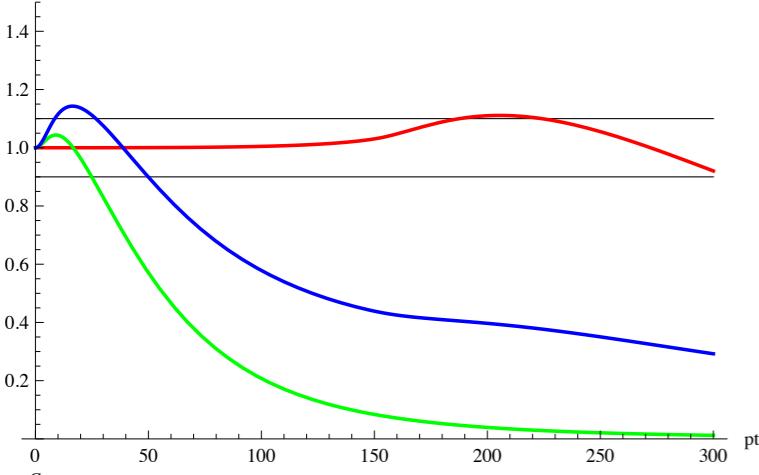
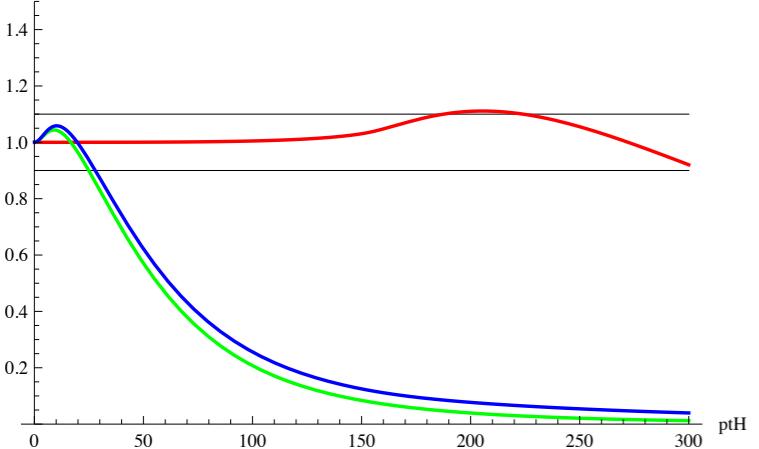
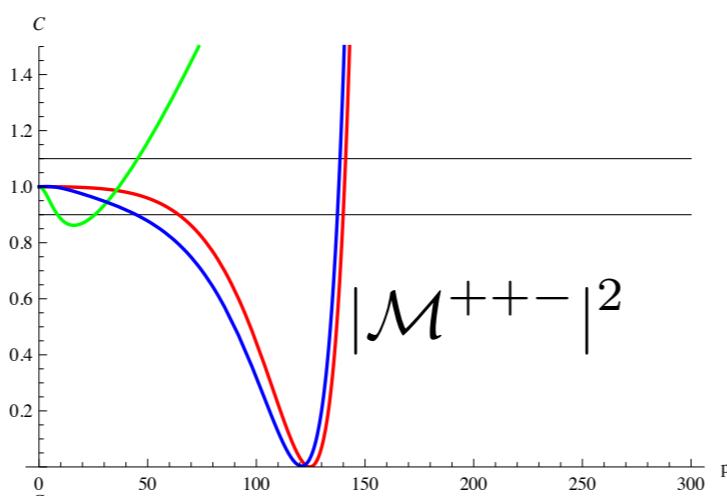
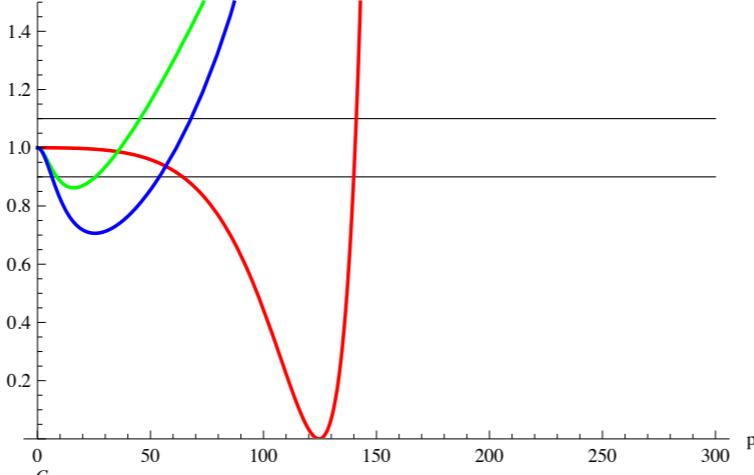
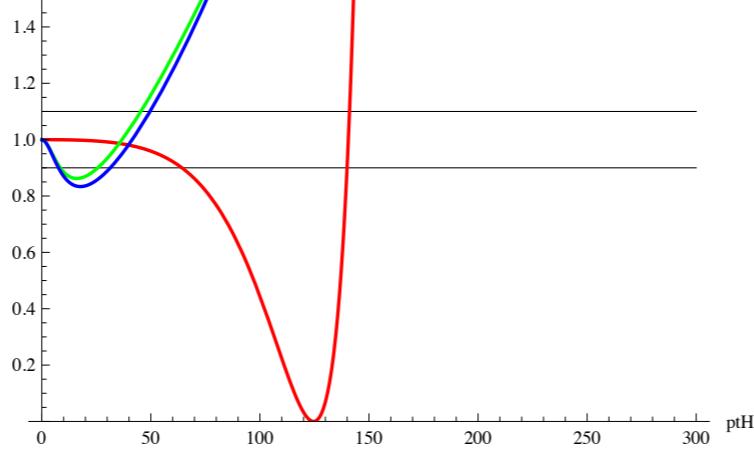
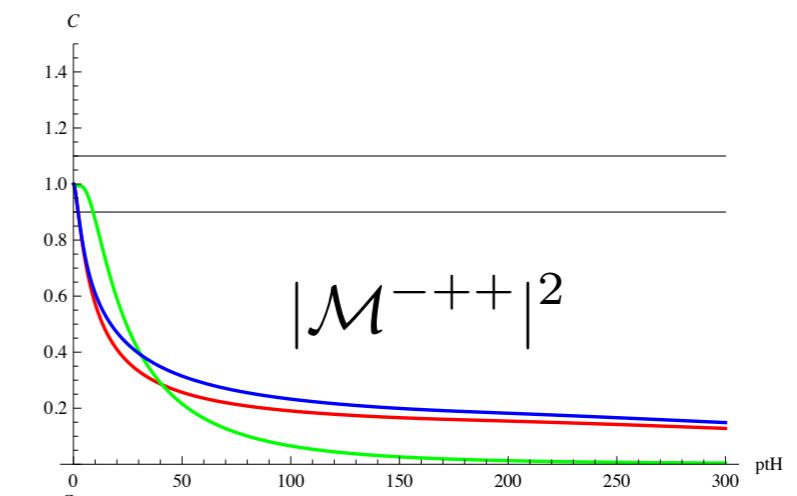
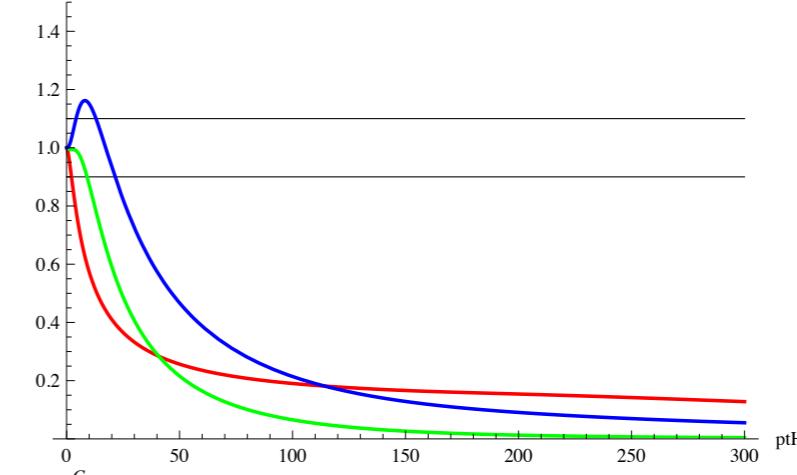
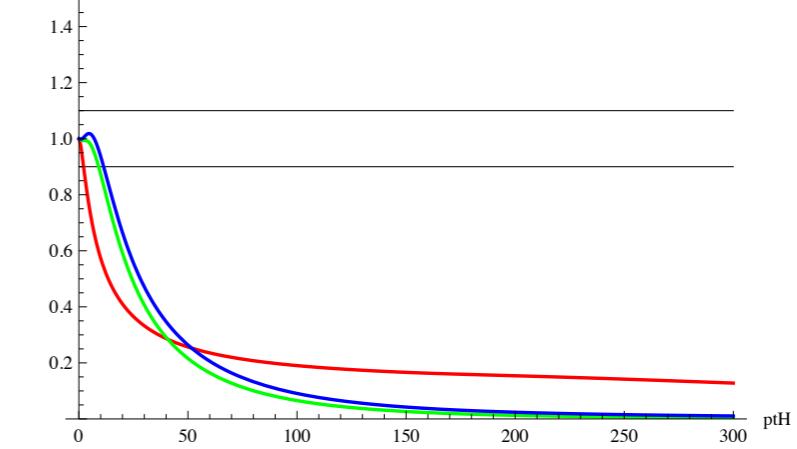
- the results depend on partonic s ; the choice of the smallest possible s allowed value guarantees that the contribution under study has the largest PDF weight at hadron level (small changes when using other choices of s)



Toy example to illustrate the role of $\tan\beta$: light Higgs with $m_h=125$ GeV

$$\mathcal{M} = \frac{1}{\tan\beta} \mathcal{M}^t + \tan\beta \mathcal{M}^b$$

amplitudes evaluated with: **only top**, **only bottom**, **top+bottom**



$\tan\beta=1$

$\tan\beta=5$

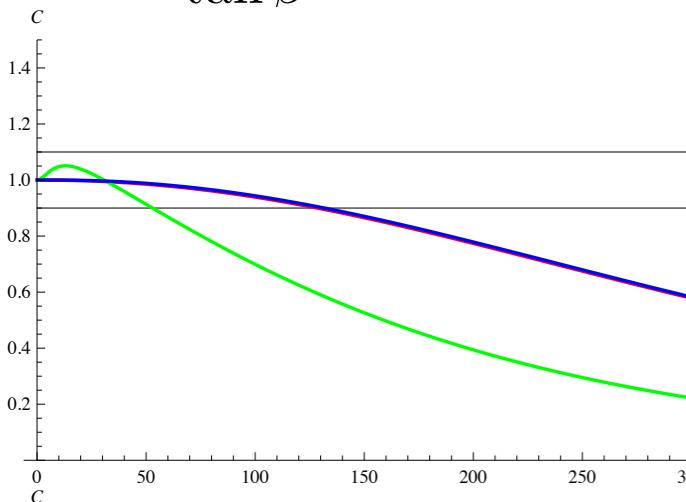
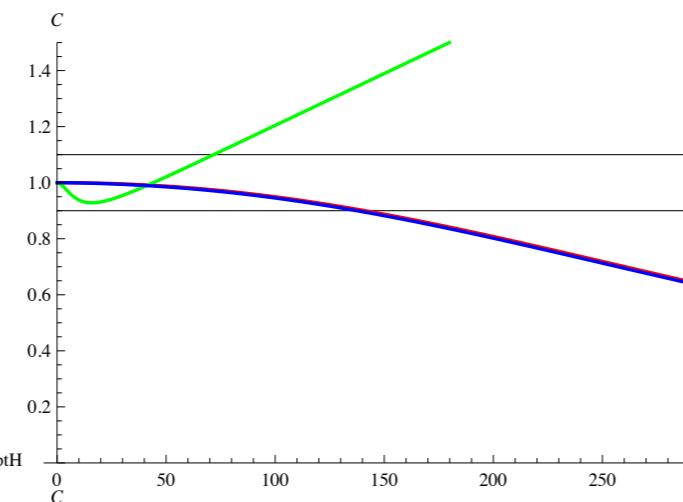
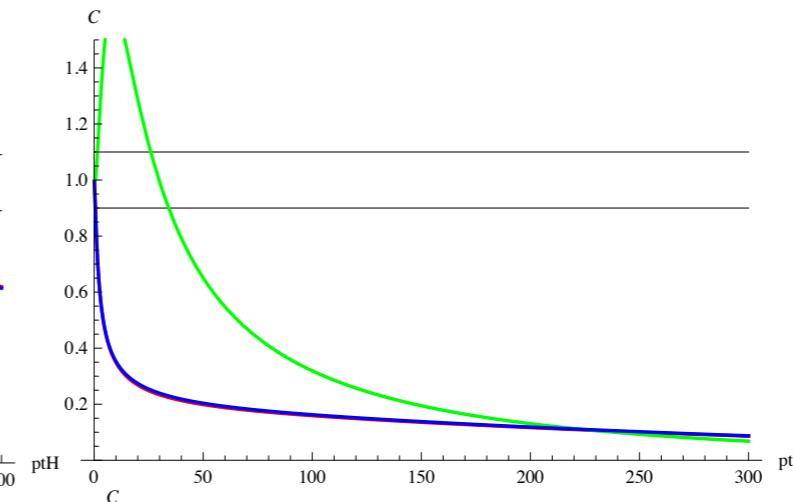
$\tan\beta=10$

- the single-quark ratios are independent of $\tan\beta$
- for the full amplitude, the scale choice at which the collinear approximation fails is dominated by the bottom at large $\tan\beta$

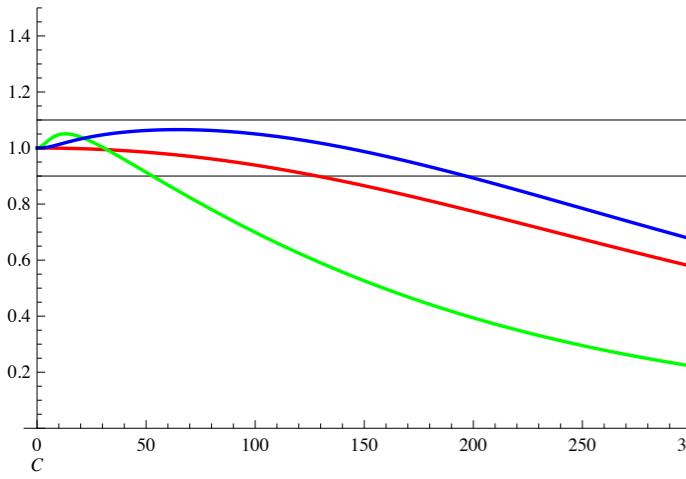
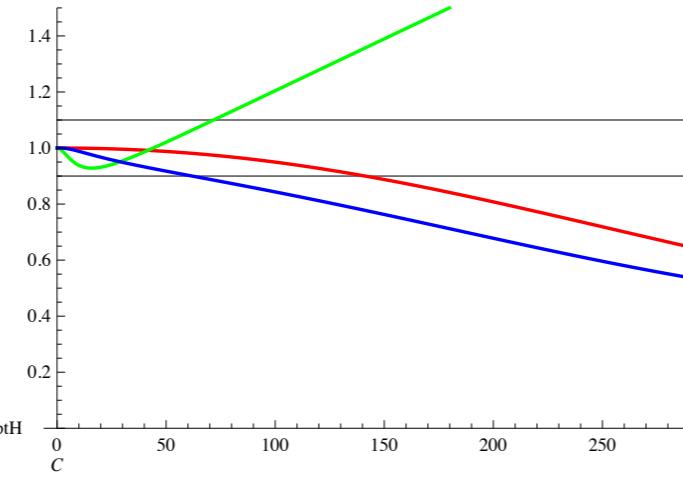
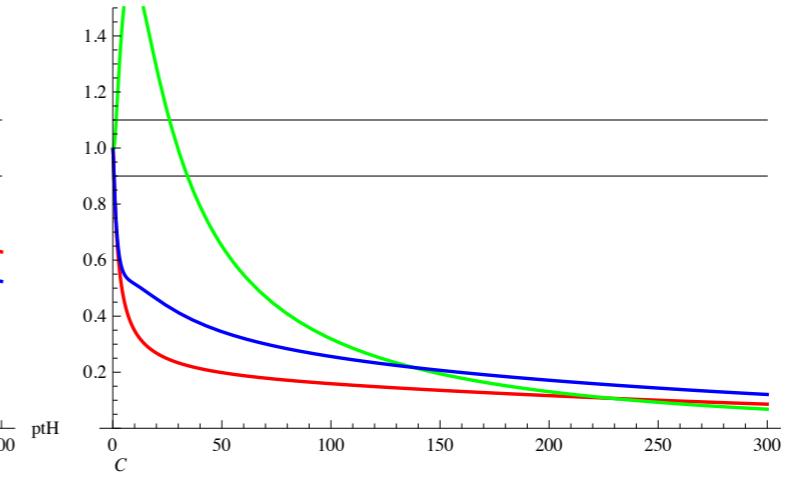
Toy example to illustrate the role of $\tan\beta$: heavy Higgs with $M_H=500$ GeV

$$\mathcal{M} = \frac{1}{\tan\beta} \mathcal{M}^t + \tan\beta \mathcal{M}^b$$

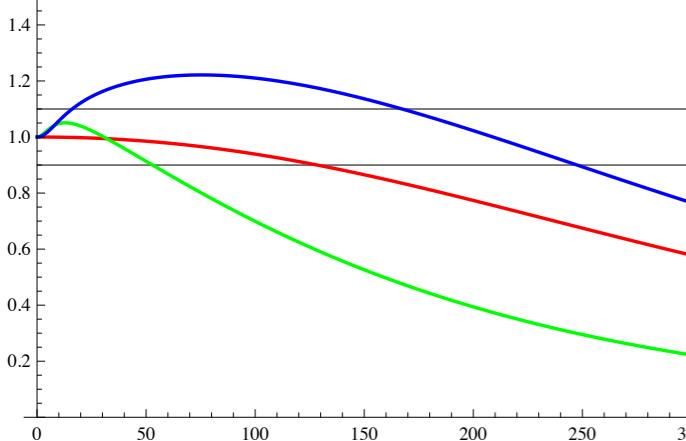
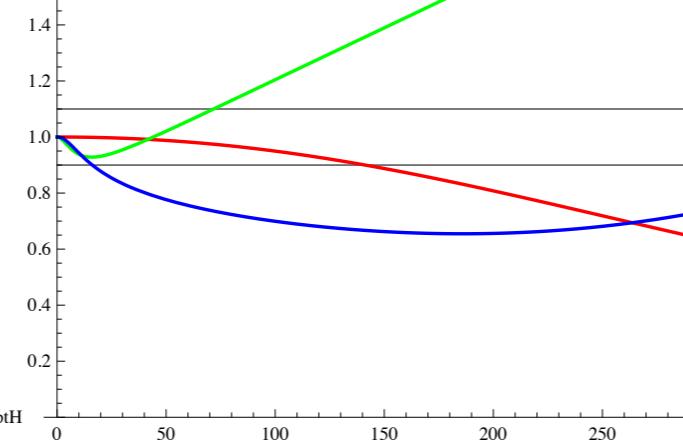
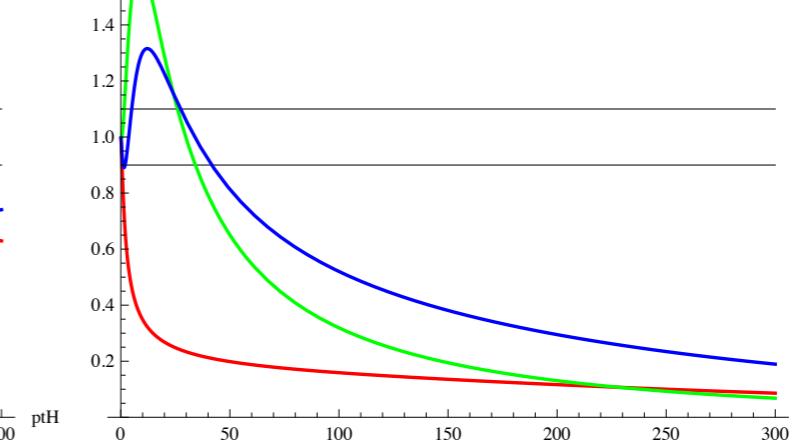
amplitudes evaluated with: **only top**, **only bottom**, **top+bottom**



$\tan\beta=1$



$\tan\beta=5$



$\tan\beta=10$

- the large M_H value pushes the scale at which the collinear approximation fails for the only-bottom case, towards $hb \sim 50$ GeV

Comments

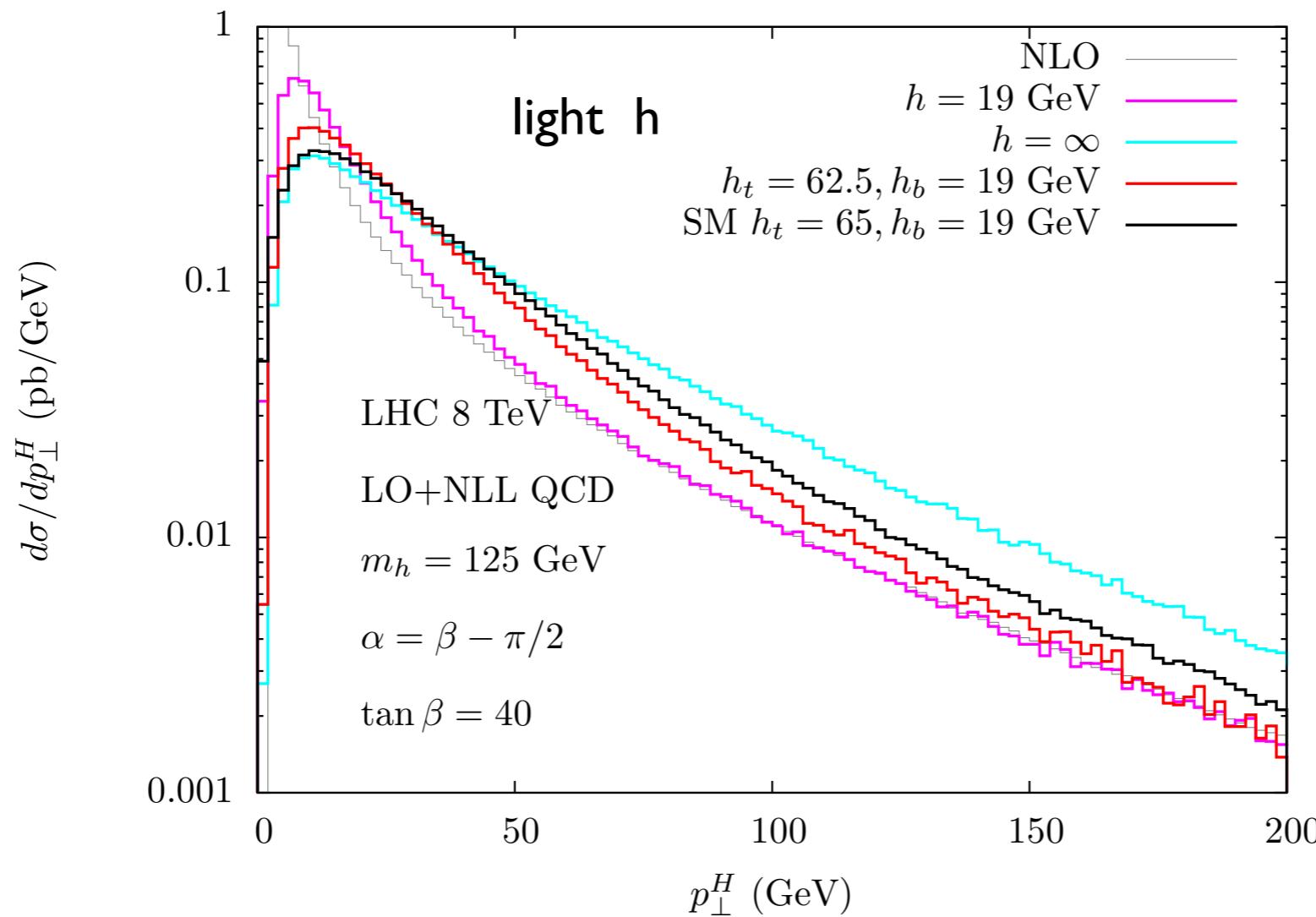
- in the two-scales approach,
the scale at which the factorization breaks, for the only-top and for the only-bottom amplitudes,
is independent of $\tan\beta$, but depends on MH :

for the top, $ht \sim \mathcal{O}(60 \text{ GeV})$ with $MH=125 \text{ GeV}$ and $ht \sim \mathcal{O}(125 \text{ GeV})$ for $MH=500 \text{ GeV}$
for the bottom, $hb \sim \mathcal{O}(20 \text{ GeV})$ with $MH=125 \text{ GeV}$ and $hb \sim \mathcal{O}(60 \text{ GeV})$ for $MH=500 \text{ GeV}$

it is possible to prepare a table of ht and hb as a function of MH
- in the two-scales approach,
we use ht for the only-top squared amplitude
 hb for the interference terms and bottom squared amplitude
we potentially miss the resummation of terms proportional to the top-bottom interference
 (only keep the first term from the fixed-order calculation)
- a one-scale approach is possible,
 but the value of the scale h from the amplitude analysis strongly depends on $\tan\beta$
there are regimes where a one-scale approach offers a good approximation of the two-scales results
 but it requires an *ad hoc* tuning
- the usage of $h=MH/1.2$ for a heavy Higgs is not justified! (e.g. for $MH=500 \text{ GeV}$ we get $h=416 \text{ GeV}$)

Light and Heavy CP-even Higgs and in a decoupling limit

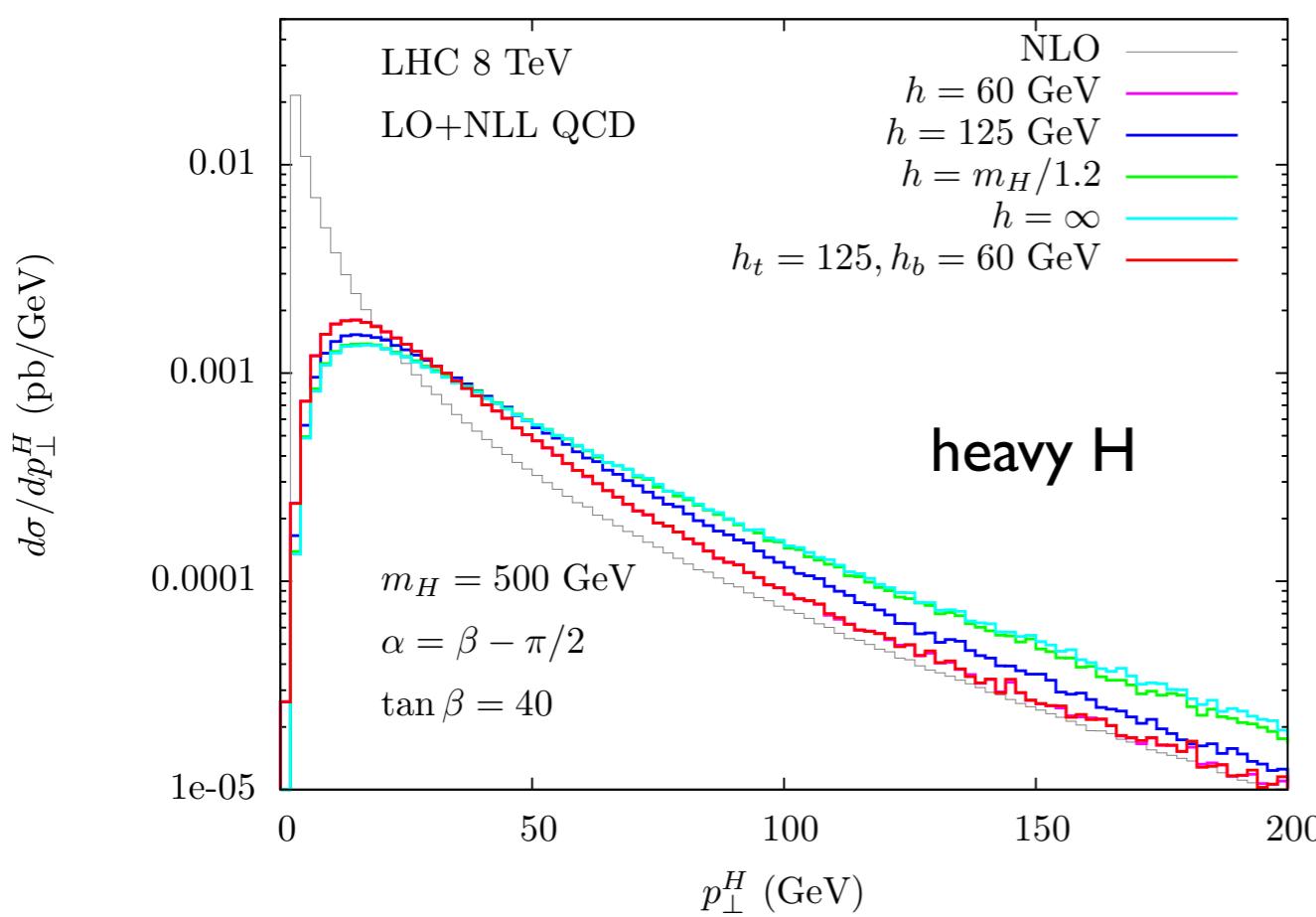
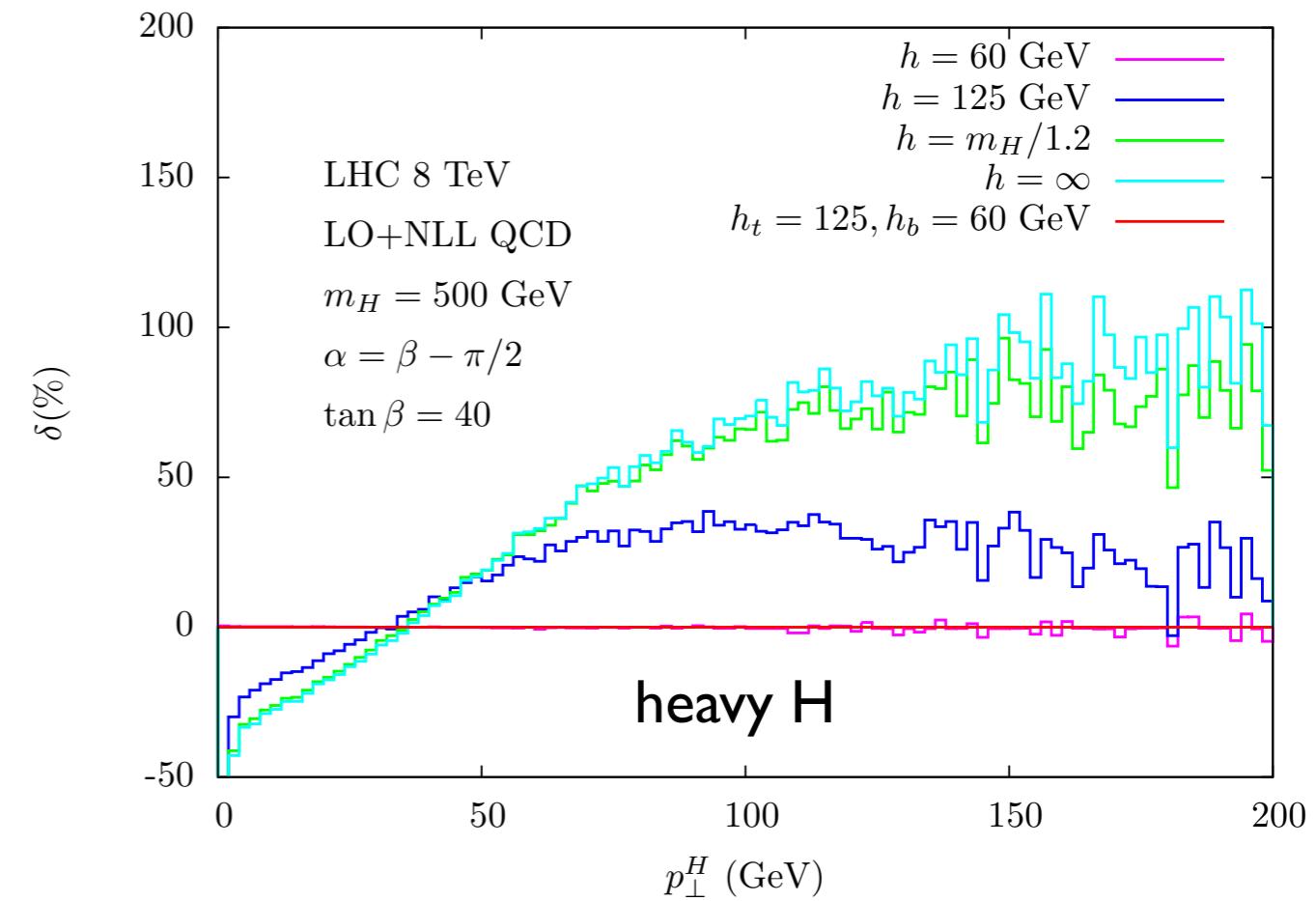
- in a type II 2HDM, the choice $\alpha=\beta-\pi/2$ is called a decoupling limit because it makes the light CP-even scalar h SM-like, i.e. the couplings to the fermions are like in the SM
- the couplings of the heavy CP-even scalar H to the fermions instead are $\tan\beta$ enhanced (down type) or suppressed (up type) w.r.t. the SM ones



- in this decoupling limit the light CP-even scalar is SM-like (cfr red vs black)

Light and Heavy CP-even Higgs and in a decoupling limit

- the prediction for the heavy CP-even scalar is dominated by the bottom-quark amplitude
- the use of $ht = MH/1.2$ as single scale (light green line) is not justified
- the use of ht as single scale (blue line) differs from the two-scales treatment at the $\pm 30\%$ level
- given the bottom dominance, the two-scales result is perfectly approximated by $h = hb = 60$ GeV



Conclusions

- Higgs production via gluon fusion in the 2HDM available in the POWHEG-BOX directory `gg_H_2HDM`
- it requires HDECAY to consistently compute the total decay width in the 2HDM
- the enhanced role of the bottom-quark amplitude requires a two-scale approach to set the resummation scales
- a one-scale approach may provide a good approximation of the two-scales results, but the precise single scale strongly depends on $\tan\beta$
- the precise measurement of the Higgs $pT H$ distribution can help to recognize a BSM signal, even with a total rate for the light scalar compatible with the present data

Back-up

Basic references for the Higgs pTH spectrum, including multiple parton emissions

- Analytical resummation of the Higgs pTH spectrum in HQET

Balazs, Yuan, arXiv:hep-ph/0001103

Bozzi, Catani, De Florian, Grazzini, arXiv:hep-ph/0508068

De Florian, Ferrera, Grazzini, Tommasini, arXiv:1109.2109

- Shower Montecarlo description of the Higgs pTH spectrum in HQET

Frixione, Webber, arXiv:hep-ph/0309186

Alioli, Nason, Oleari, Re, arXiv:0812.0578

Hamilton, Nason, Re, Zanderighi, arXiv:1309.0017

- quark mass effects

Bagnaschi, Degrassi, Slavich, Vicini, arXiv:1111.2854

Mantler, Wiesemann, arXiv:1210.8263

S. Frixione, talk at Higgs Cross Section Working Group meeting, December 7th 2012

Grazzini, Sargsyan, arXiv:1306.4581

S. Frixione, talk at the HXSWG meeting, July 23rd 2013

A. Vicini, talk at the HXSWG meeting, July 23rd 2013

Banfi, Monni, Zanderighi, arXiv:1308.4634

Multiple parton emissions via Parton Shower

- the Parton Shower “dresses” the hard event with QCD radiation
- QCD emissions are enhanced in the collinear limit
- The cross section factorizes in the collinear limit,
so that multiple emissions can be described iterating a basic factorization formula

$$|\mathcal{M}_{n+1}|^2 d\Phi_{n+1} \rightarrow |\mathcal{M}_n|^2 d\Phi_n \frac{\alpha_s}{2\pi} \frac{dt}{t} P_{q,qg}(z) dz \frac{d\Phi}{2\pi}$$

- The showering process stops when the virtuality of the last emission is below the Λ_{QCD} scale where QCD becomes non perturbative (hadronization regime i.e. hadrons formation)

Multiple parton emissions via Parton Shower

- the Parton Shower “dresses” the hard event with QCD radiation

- QCD emissions are enhanced in the collinear limit

- The cross section factorizes in the collinear limit,
so that multiple emissions can be described iterating a basic factorization formula

$$|\mathcal{M}_{n+1}|^2 d\Phi_{n+1} \rightarrow |\mathcal{M}_n|^2 d\Phi_n \frac{\alpha_s}{2\pi} \frac{dt}{t} P_{q,qg}(z) dz \frac{d\Phi}{2\pi}$$

- The showering process stops when the virtuality of the last emission is below the Λ_{QCD} scale where QCD becomes non perturbative (hadronization regime i.e. hadrons formation)

- The multiple gluon emission via Parton Shower algorithmically implements the resummation of the divergent $\log(p\text{tH})$ terms,
yielding a regular limit for $p\text{tH} \rightarrow 0$

- The Parton Shower has LL-QCD accuracy
is unitary, i.e. it preserves the LO cross section of the hard scattering process

Multiple parton emissions via Parton Shower

- the Parton Shower “dresses” the hard event with QCD radiation

- QCD emissions are enhanced in the collinear limit

- The cross section factorizes in the collinear limit,
so that multiple emissions can be described iterating a basic factorization formula

$$|\mathcal{M}_{n+1}|^2 d\Phi_{n+1} \rightarrow |\mathcal{M}_n|^2 d\Phi_n \frac{\alpha_s}{2\pi} \frac{dt}{t} P_{q,qg}(z) dz \frac{d\Phi}{2\pi}$$

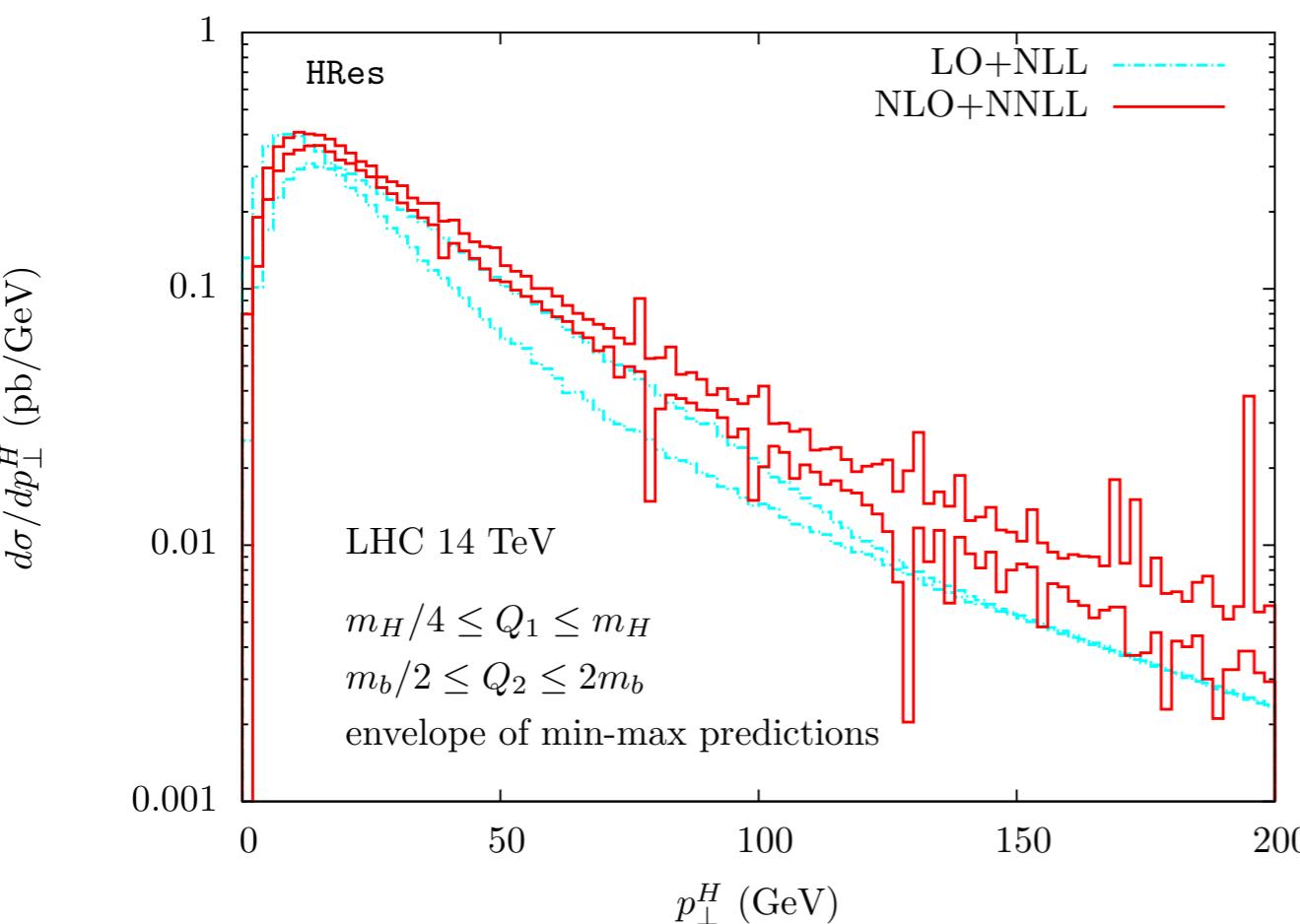
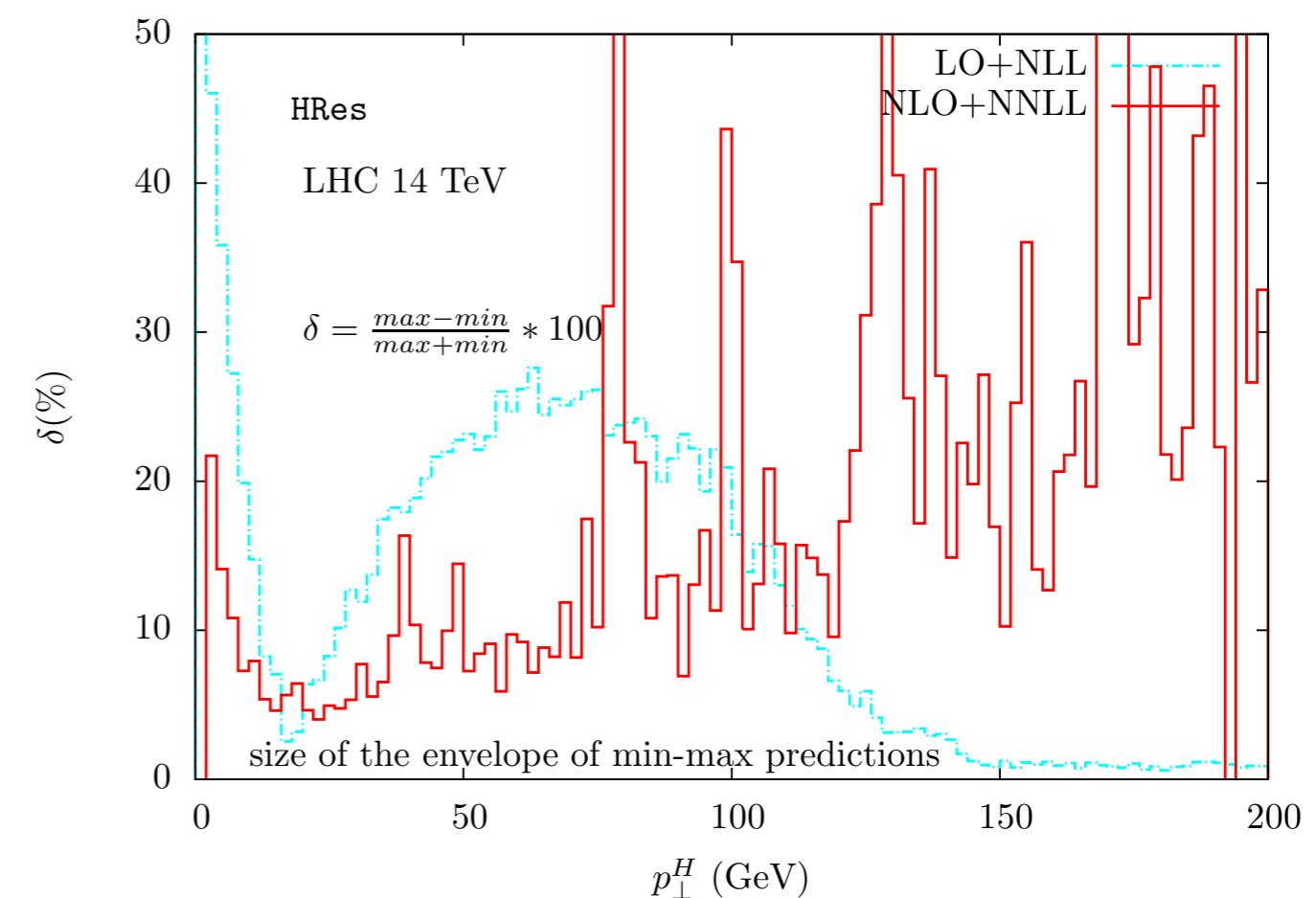
- The showering process stops when the virtuality of the last emission is below the Λ_{QCD} scale where QCD becomes non perturbative (hadronization regime i.e. hadrons formation)

- The multiple gluon emission via Parton Shower algorithmically implements the resummation of the divergent $\log(pTH)$ terms,
yielding a regular limit for $pTH \rightarrow 0$

- The Parton Shower has LL-QCD accuracy
is unitary, i.e. it preserves the LO cross section of the hard scattering process

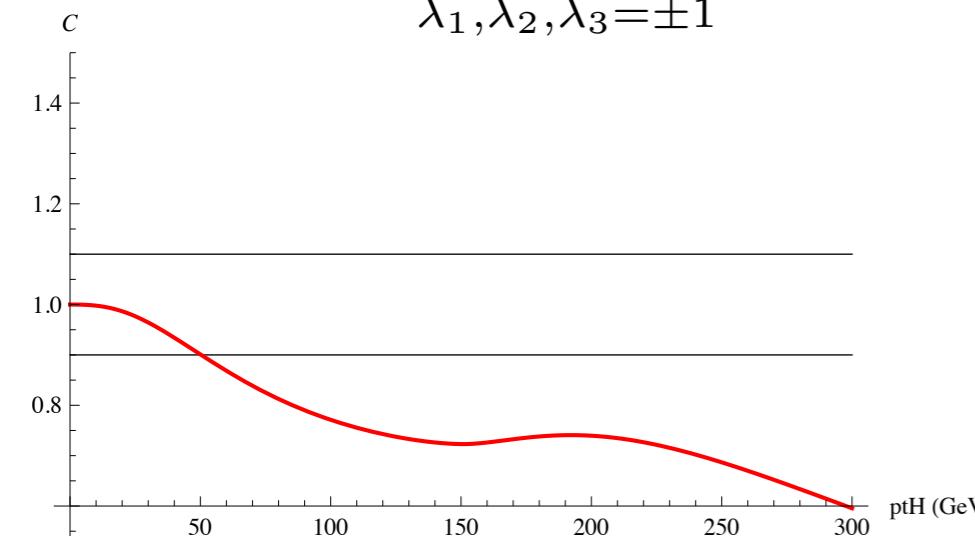
- We wish to merge the properties of the Parton Shower
with the NLO-QCD accuracy for the total cross section from fixed order results
without making double countings

HRes uncertainty bands at LO+NLL and at NLO+NNLL



Collinear approximation of the full amplitude summed over helicities

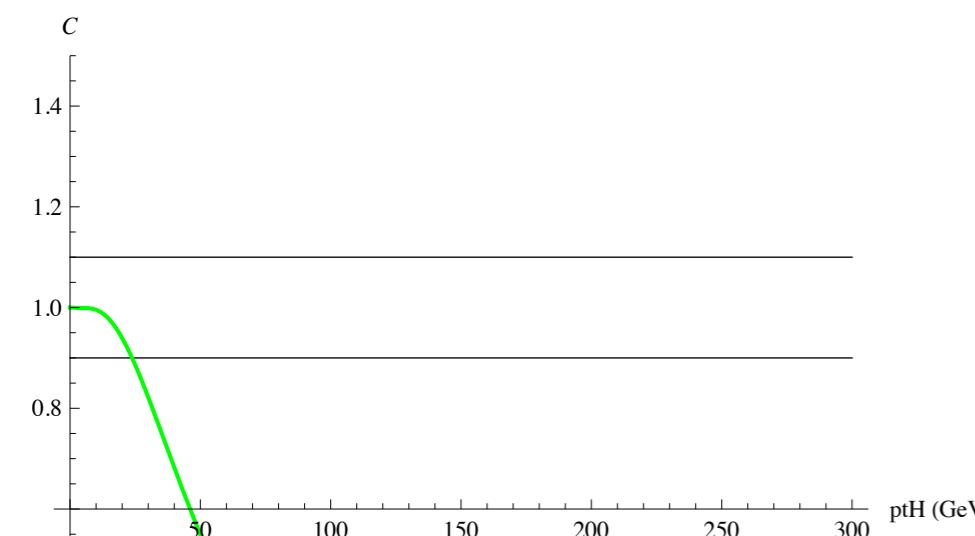
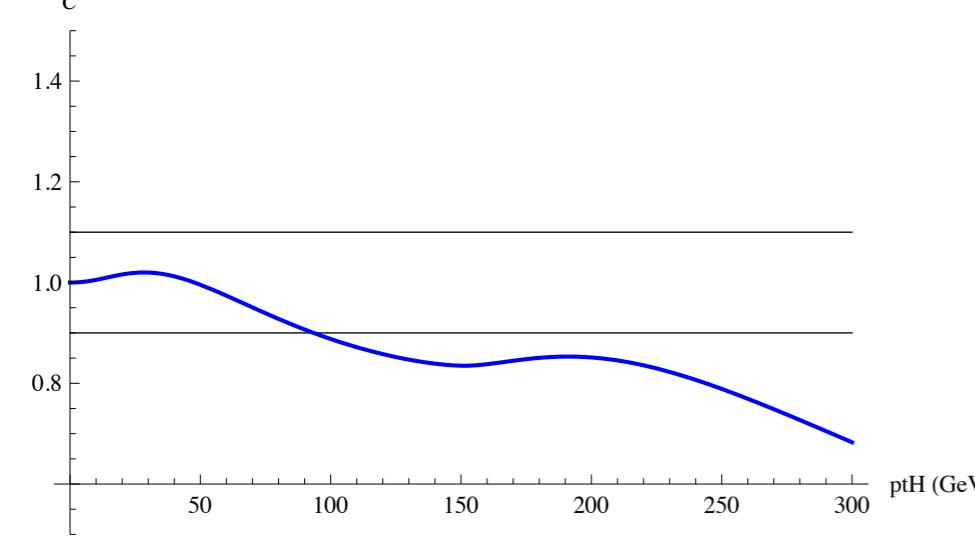
$$|\mathcal{M}(m)|^2 = \sum_{\lambda_1, \lambda_2, \lambda_3 = \pm 1} |\mathcal{M}^{\lambda_1, \lambda_2, \lambda_3}(m)|^2 = \sum_{\lambda_1, \lambda_2, \lambda_3 = \pm 1} |\mathcal{M}_{div}^{\lambda_1, \lambda_2, \lambda_3}(m)/p_\perp^H + \mathcal{M}_{reg}^{\lambda_1, \lambda_2, \lambda_3}(m)|^2$$



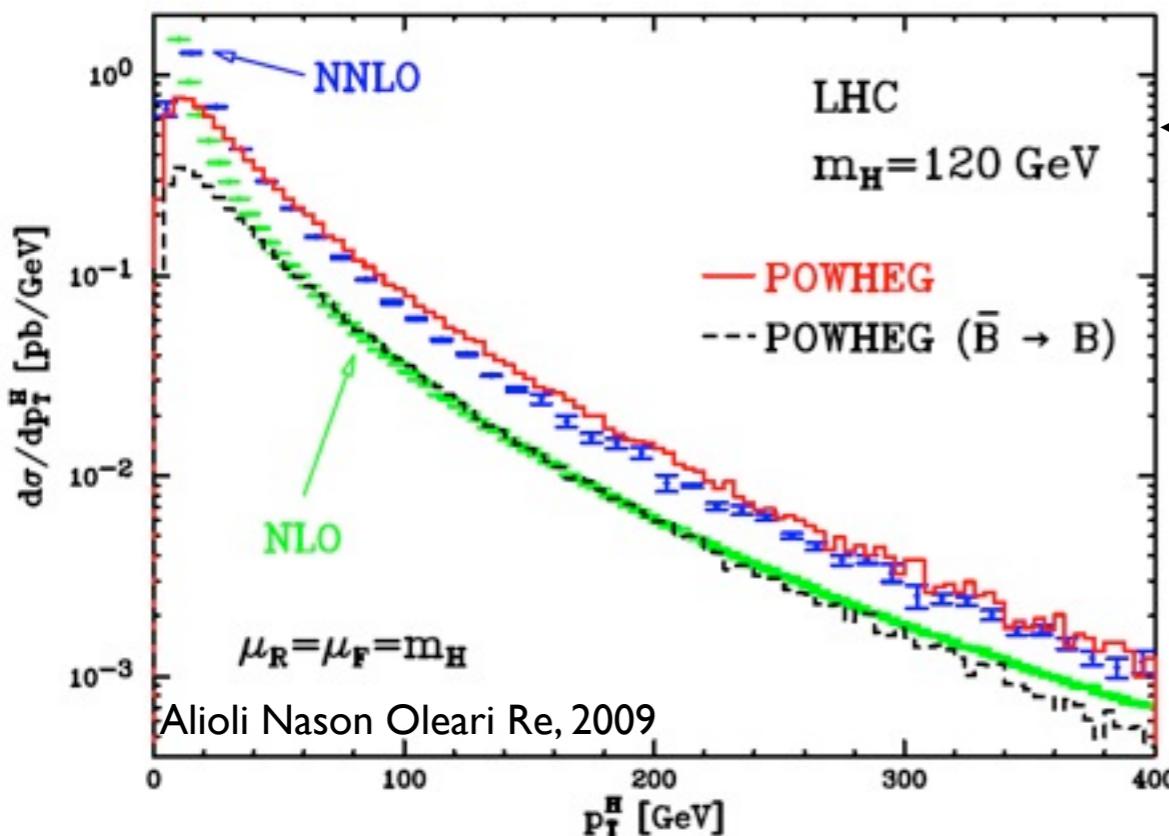
$$C(p_\perp^H) = \frac{|\mathcal{M}_{exact}(p_\perp^H)|^2}{|\mathcal{M}_{div}(p_\perp^H)/p_\perp^H|^2}$$

sum over helicities of the amplitudes evaluated with:

only top, only bottom, top+bottom

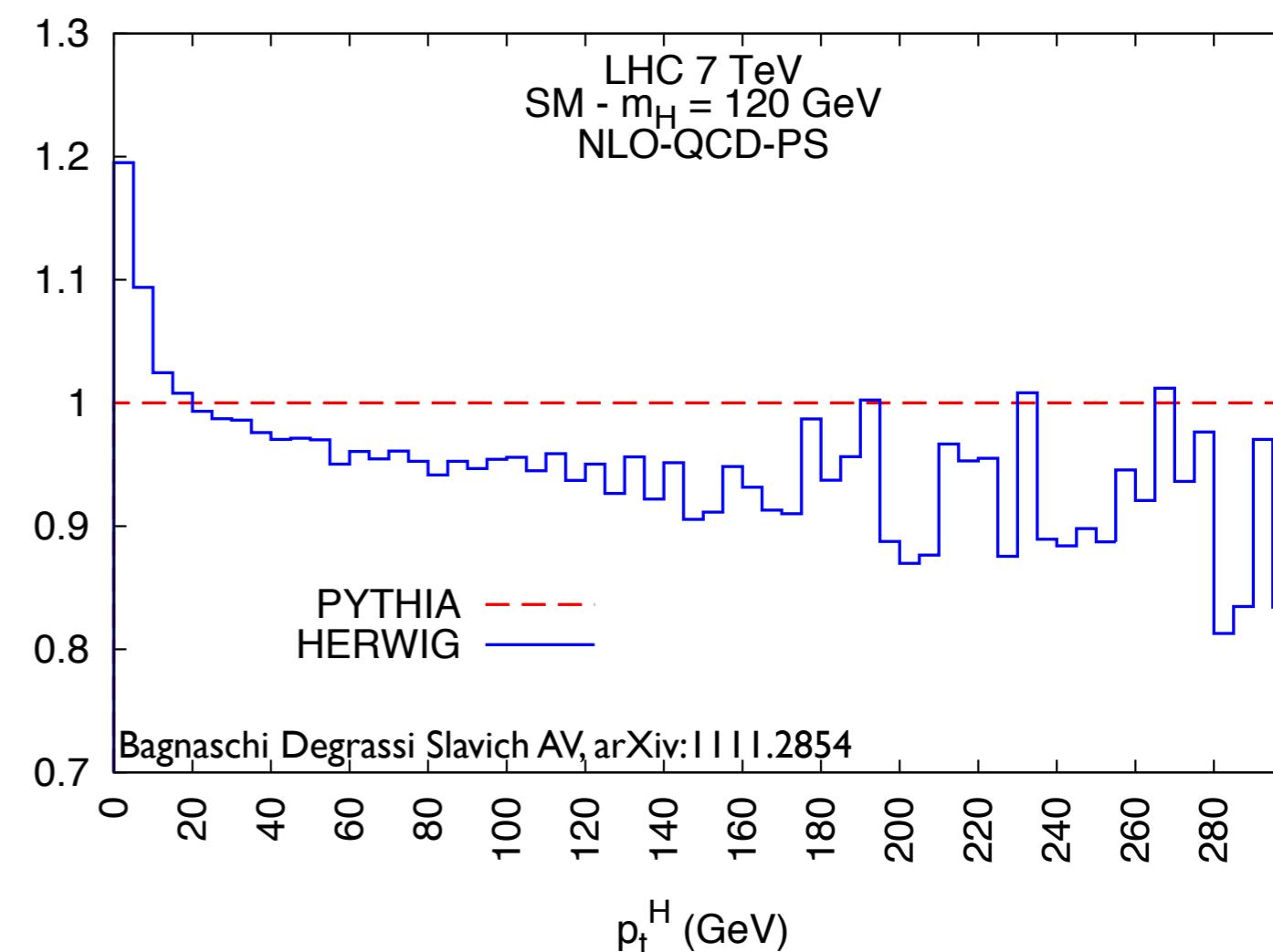


SM: open questions about the Higgs transverse momentum distribution



comparison PYTHIA 6.4.21 vs HERWIG 6.510
non perturbative parameter have a strong impact
on the low p_{tH} tail of the distribution

need to perform a tuning of the
non-perturbative parameters
using the NLO-SMC to compare with the data



MSSM: perturbative content

$$\begin{aligned} \sigma(h_1 + h_2 \rightarrow H + X) &= \sum_{a,b} \int_0^1 dx_1 dx_2 \ f_{a,h_1}(x_1, \mu_F^2) f_{b,h_2}(x_2, \mu_F^2) \times \\ &\quad \times \int_0^1 dz \ \delta\left(z - \frac{\tau_H}{x_1 x_2}\right) \hat{\sigma}_{ab}(z), \quad \hat{\sigma}_{ab}(z) = \sigma^{(0)} z G_{ab}(z) \end{aligned}$$

$$\sigma^{(0)} = \frac{G_\mu \alpha_s^2(\mu_R^2)}{128 \sqrt{2} \pi} \left| \sum_{i=0,1/2} \boxed{\lambda_i \left(\frac{A^2}{m_0^2} \right)^{1-2i} T(R_i) \mathcal{G}_i^{(1l)}} \right|^2 \quad G_{ab}(z) = G_{ab}^{(0)}(z) + \frac{\alpha_s(\mu_R^2)}{\pi} G_{a,b}^{(1)}(z)$$

$$\begin{aligned} G_{ab}^{(0)}(z) &= \delta(1-z) \delta_{ag} \delta_{bg}, \\ G_{gg}^{(1)}(z) &= \delta(1-z) \left[C_A \frac{\pi^2}{3} + \beta_0 \ln \left(\frac{\mu_R^2}{\mu_F^2} \right) + \sum_{i=0,1/2} \mathcal{G}_i^{(2l)} \right] + \dots \end{aligned}$$

$$\begin{aligned} \mathcal{G}_i^{(2l)} &= \boxed{\lambda_i \left(\frac{A^2}{m_0^2} \right)^{1-2i} T(R_i) \left(C(R_i) \mathcal{G}_i^{(2l,C_R)}(x_i) + C_A \mathcal{G}_i^{(2l,C_A)}(x_i) \right)} \\ &\quad \times \left(\sum_{j=0,1/2} \lambda_j \left(\frac{A^2}{m_0^2} \right)^{1-2j} T(R_j) \mathcal{G}_j^{(1l)} \right)^{-1} + h.c. \end{aligned}$$

$$\begin{aligned} \mathcal{F}_{1/2}^{(1l)} &= -4y_{1/2} \left[2 - (1 - 4y_{1/2}) H(0, 0, x_{1/2}) \right] \\ \mathcal{F}_0^{(1l)} &= 4y_0 [1 + 2 y_0 H(0, 0, x_0)] . \end{aligned}$$

MSSM: perturbative content

$$\boxed{\lambda_t} = \frac{\cos \alpha}{\sin \beta} , \quad \boxed{\lambda_b} = -\frac{\sin \alpha}{\cos \beta}$$

$$\begin{aligned} \boxed{\lambda_{\tilde{t}_1}} &= -\frac{\sin \alpha}{\sin \beta} \left\{ -\frac{1}{2} \sin 2\theta_t \mu m_t + \frac{1}{8} m_Z^2 \sin 2\beta \left[1 + \cos 2\theta_t \left(1 - \frac{8}{3} \sin^2 \theta_W \right) \right] \right\} \\ &\quad + \frac{\cos \alpha}{\sin \beta} \left\{ m_t^2 + \frac{1}{2} \sin 2\theta_t A_t m_t - \frac{1}{4} m_Z^2 \sin^2 \beta \left[1 + \cos 2\theta_t \left(1 - \frac{8}{3} \sin^2 \theta_W \right) \right] \right\} \\ \boxed{\lambda_{\tilde{b}_1}} &= -\frac{\sin \alpha}{\cos \beta} \left\{ m_b^2 + \frac{1}{2} \sin 2\theta_b A_b m_b - \frac{1}{4} m_Z^2 \cos^2 \beta \left[1 + \cos 2\theta_b \left(1 - \frac{4}{3} \sin^2 \theta_W \right) \right] \right\} \\ &\quad + \frac{\cos \alpha}{\cos \beta} \left\{ -\frac{1}{2} \sin 2\theta_b \mu m_b + \frac{1}{8} m_Z^2 \sin 2\beta \left[1 + \cos 2\theta_b \left(1 - \frac{4}{3} \sin^2 \theta_W \right) \right] \right\} . \end{aligned}$$

Parametrization of the inclusion of higher order contributions

very preliminary!!

$$d\sigma^{\text{NLO+PS}} = d\Phi_B \bar{B}^s(\Phi_B) \left[\Delta^s(p_\perp^{\min}) + d\Phi_{R|B} \frac{R^s(\Phi_R)}{B(\Phi_B)} \Delta^s(p_T(\Phi)) \right] + d\Phi_R R^f(\Phi_R)$$

$$R^s = \bar{R} + b(R - \bar{R})$$

$$R^f = (1 - b)(R - \bar{R}) + R_{q\bar{q}}$$

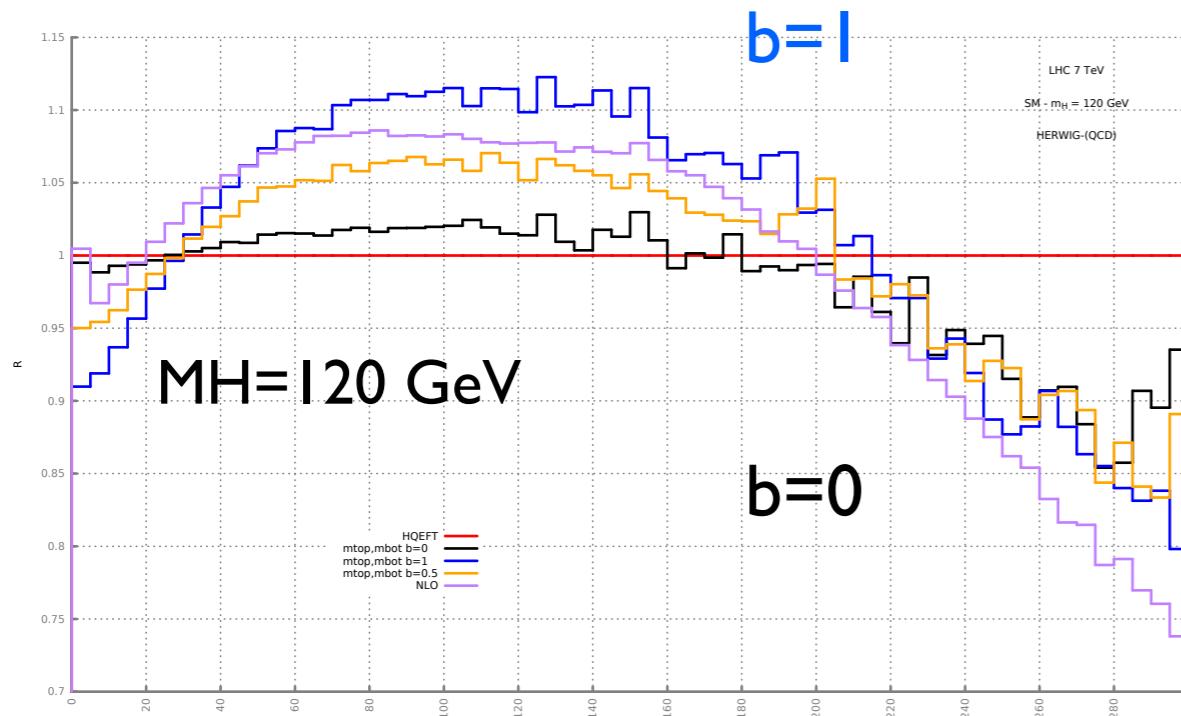
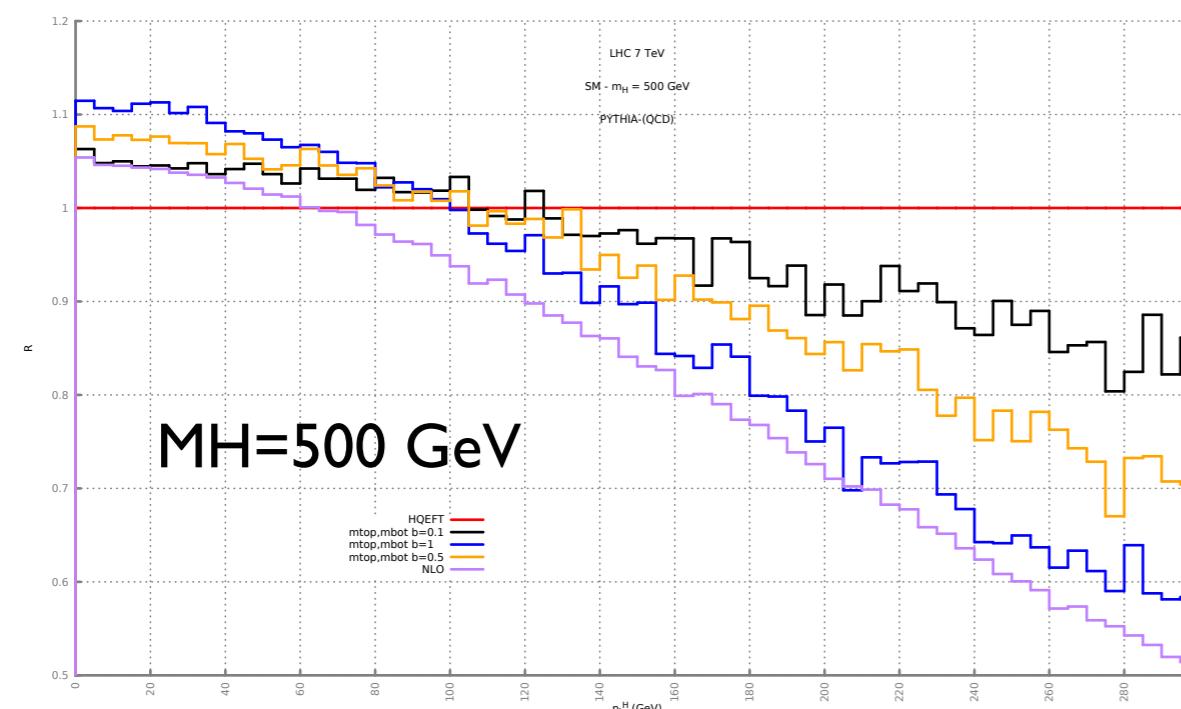
$$\bar{R} = R_{HQET} \frac{\sigma_{LO}(t + b)}{\sigma_{LO}^{HQET}}$$

we can set the b parameter ($0 \leq b \leq 1$) from the input file

$b = 0$	the Sudakov does not contain quark mass effects, present only in the regular terms (similar to the MC@NLO approach, but the Sudakov is still non universal)
$b = 1$	the Sudakov contains the exact real matrix element; there are no extra regular terms, beyond the $q\bar{q}$ initiated process (identical by construction to the POWHEG approach)

the b parameter can help to parametrize the uncertainty band associated to the quark mass effects

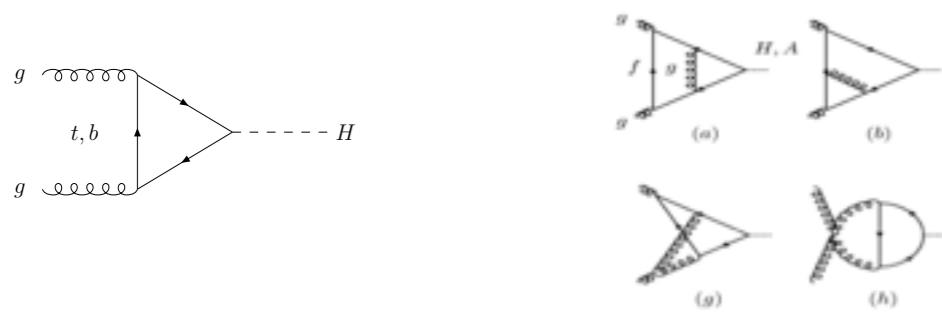
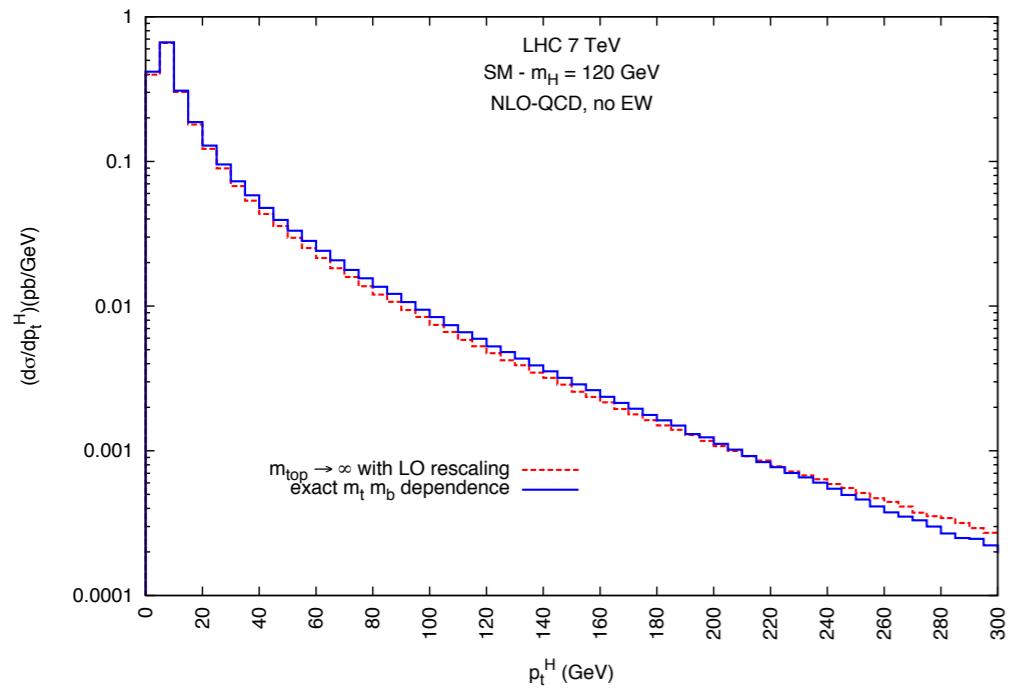
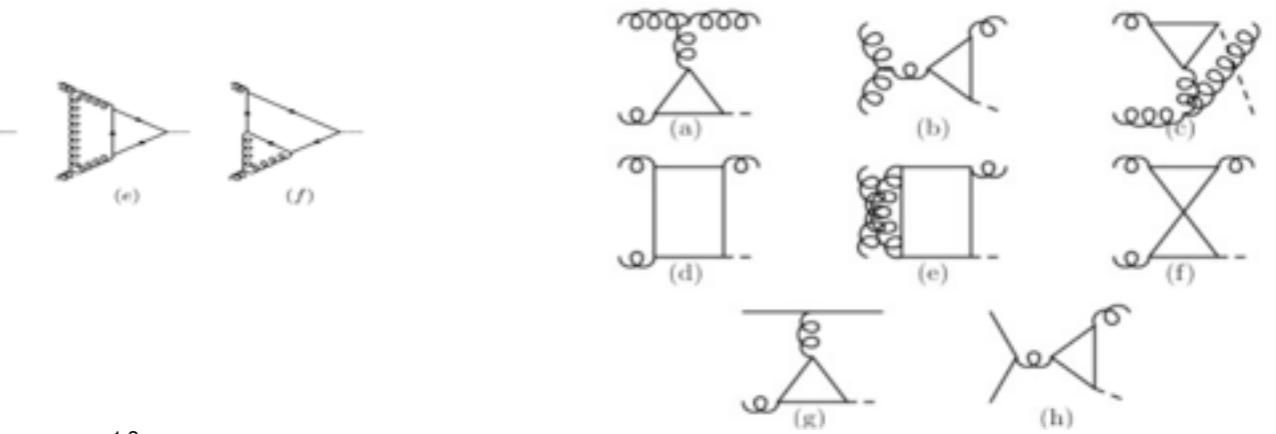
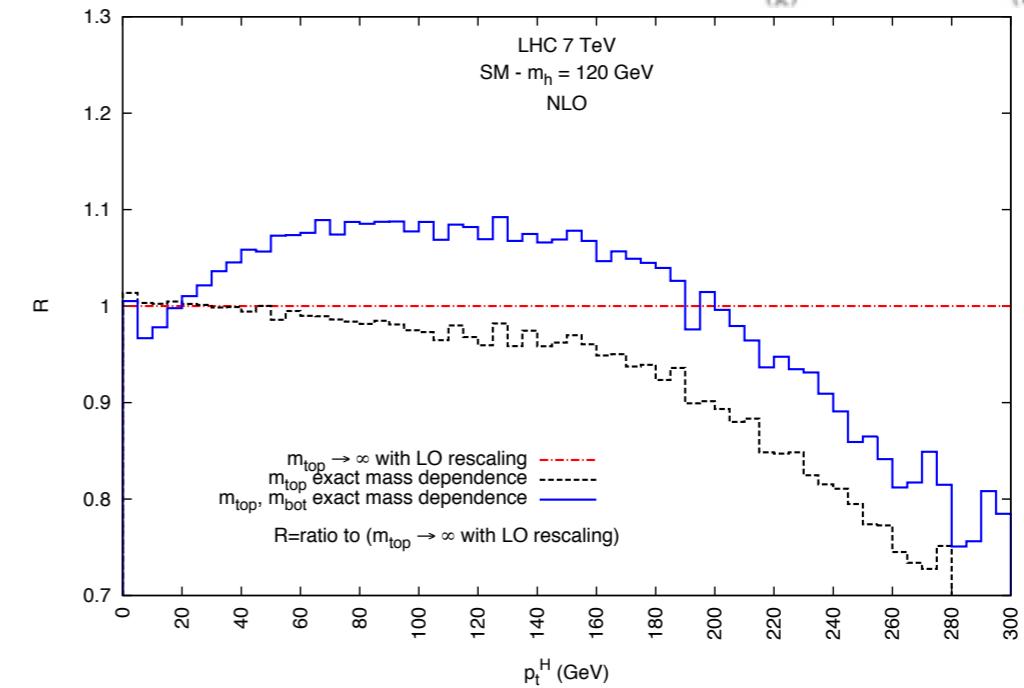
The Higgs p_t^H distribution: estimate of the quark mass uncertainty



very preliminary!!

- the use of the b parameter allows to span a whole range of intermediate cases between the prescriptions *à la MC@NLO* and the POWHEG one
- in all the cases the total cross-section is exactly preserved
- the band of the blu/black curves provides an estimate of the size of the uncertainty in the evaluation of quark mass effects
- in purple: NLO results
- for $MH=500 \text{ GeV}$, top mass effects are important already at low p_t^H

Quark mass effects at fixed order (no resummation, no Parton Shower)



- very good agreement between independent codes

$$|\mathcal{M}(gg \rightarrow gH)|^2 = |\mathcal{M}_t + \mathcal{M}_b|^2 = |\mathcal{M}_t|^2 + 2\text{Re}(\mathcal{M}_t \mathcal{M}_b^\dagger) + |\mathcal{M}_b|^2$$

- every diagram is proportional to the corresponding Higgs-fermion Yukawa coupling
 - the bottom diagrams have a suppression factor $m_b/m_t \sim 1/36$ w.r.t. the corresponding top diagrams
 - the squared bottom diagrams are negligible (in the SM)
 - the bottom effects are due to the top-bottom interference terms (genuine quantum effects)

Exact matrix elements and collinear limit

$$|\mathcal{M}(m)|^2 = \sum_{\lambda_1, \lambda_2, \lambda_3 = \pm 1} |\mathcal{M}^{\lambda_1, \lambda_2, \lambda_3}(m)|^2 = \sum_{\lambda_1, \lambda_2, \lambda_3 = \pm 1} |\mathcal{M}_{div}^{\lambda_1, \lambda_2, \lambda_3}(m)/p_\perp^H + \mathcal{M}_{reg}^{\lambda_1, \lambda_2, \lambda_3}(m)|^2$$

- we discuss the validity of the collinear approximation of the amplitude, to find the value of $p_{\perp}H$ where the non-factorizable terms become important; a 10% deviation is considered relevant

$$C(p_\perp^H) = \frac{|\mathcal{M}_{exact}(p_\perp^H)|^2}{|\mathcal{M}_{div}(p_\perp^H)/p_\perp^H|^2}$$

- the breaking of the collinear approximation signals that the $\log(p_{\perp}H)$ resummation formalism, which is based on the collinear factorization hypothesis can not be applied in a fully justified way

Exact matrix elements and collinear limit

$$|\mathcal{M}(m)|^2 = \sum_{\lambda_1, \lambda_2, \lambda_3 = \pm 1} |\mathcal{M}^{\lambda_1, \lambda_2, \lambda_3}(m)|^2 = \sum_{\lambda_1, \lambda_2, \lambda_3 = \pm 1} |\mathcal{M}_{div}^{\lambda_1, \lambda_2, \lambda_3}(m)/p_\perp^H + \mathcal{M}_{reg}^{\lambda_1, \lambda_2, \lambda_3}(m)|^2$$

- we discuss the validity of the collinear approximation of the amplitude, to find the value of ptH where the non-factorizable terms become important; a 10% deviation is considered relevant

$$C(p_\perp^H) = \frac{|\mathcal{M}_{exact}(p_\perp^H)|^2}{|\mathcal{M}_{div}(p_\perp^H)/p_\perp^H|^2}$$

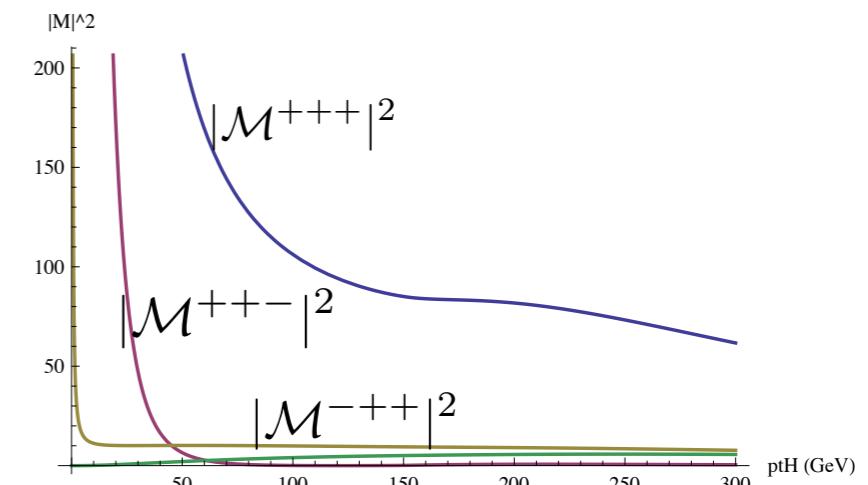
- the breaking of the collinear approximation signals that the log(ptH) resummation formalism, which is based on the collinear factorization hypothesis can not be applied in a fully justified way

- 8 helicity amplitudes: related by parity (4+4) and by the symmetry of the process

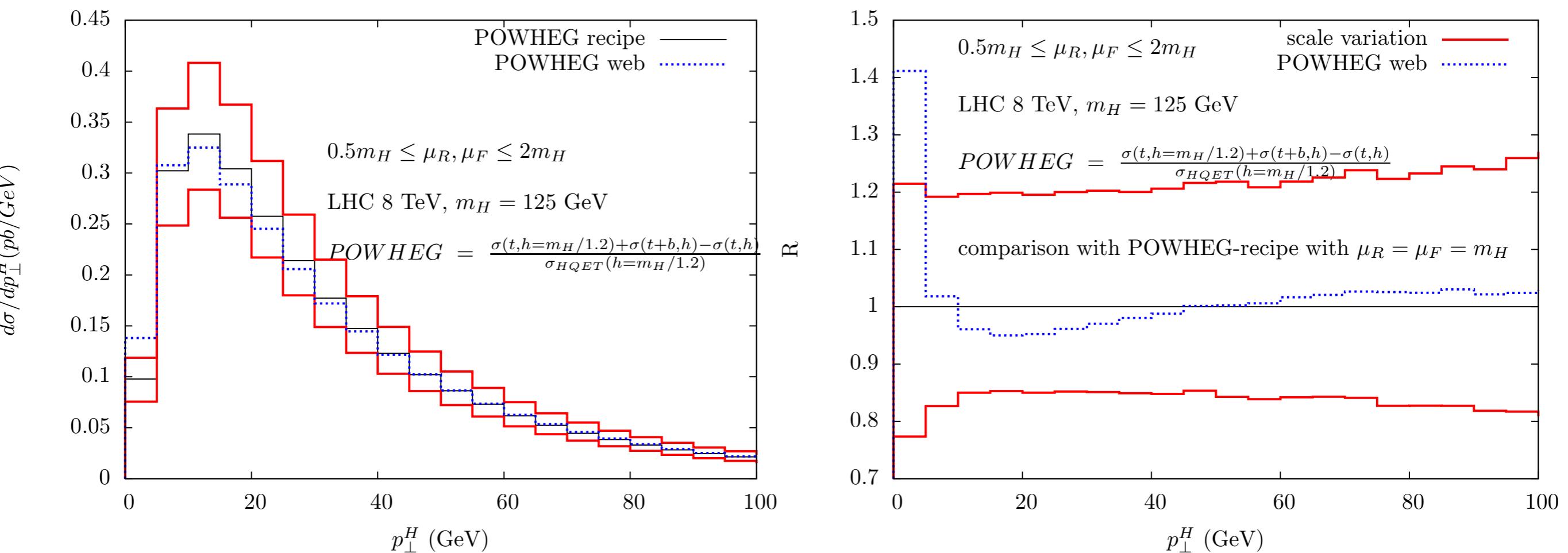
- we discuss, at fixed partonic s , the 3 amplitudes with a soft+collinear or only collinear divergence for $u \rightarrow 0$

- dominance of the amplitudes with soft+collinear divergence

- the results depend on partonic s ; the choice of the smallest possible s allowed value guarantees that the contribution under study has the largest PDF weight at hadron level (small changes when using other choices of s)



Scale variation (preliminary)



- Canonical renormalization and factorization scale variation (red) computed with the new recipe
- Comparison with the present quark-mass-effect POWHEG version in the POWHEG-box (blue)