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e The SU(2)r X U(1)y invariant Yukawa interaction Lagrangian is given by
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The ¢; () fields can be gauged away by the unitary gauge transformations

U _ 0 v+ h(x) _ (0
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® (;(x) are called Goldstone bosons (massless,spinless)
® h(x) is called the Higgs boson.
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® The Landau pole gives the scale A p given by (choose Q = Ap, Qo = v)

A ( 272 ) 4202
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o If Ap = 1019 GeV, the higgs has to be light m;, < 145 GeV.
o If Ap = 103 GeV, the higgs has to be heavy m;,, < 750 GeV.
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e Precision measurements can give bounds on Higgs boson mass.

e Bounds are sensitive to top quark mass my
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e m dependence:
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20 variation of the top quark mass allows the upper bound mj; > 125.6 GeV.
e Top quark production measurements at Tevatron and NNLO (approx) results give (Alekhin et
al):

mMS(m;) = 163.3 + 2.7 GeV — mP°'® = 173.3 + 2.8 GeV,
The upper bound for vacuum stability can be realized
mp > 129.4 + 5.6 GeV,

consistent with the recent measurements by ATLAS and CMS thanks to larger error.
e Global average has small error

my P =173.2 4+ 0.9 GeV.

which can give stringiant condition on vacuum stability with small error on the higgs mass.
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e To exclude something we need to understand the signal well
e To discover something we need to understand the background well
R.Harlander
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LHC parton kinematics
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e Choice of PDF set can bring in significant uncertainty of the order 10 to 20%
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Partonic Cross section

dx cab (T
2S dof1P2 (T, mi) = Z/ ?(I)ab (z, nF) 28 dé6 o (;am}zp IJ'F)

ab v T

e d52Y is perturbatively computable as a power series in as (e r), where pg is the

renormalisation scale.

d6°® (up) = a2(ur) ) al(pr)de*®® (up, ur)
1=0
e Renormalisation group equation:

uRdd as(pr) = B (as(rr))

e Fixed order results are often sensitive to ur. ® Many new production channels open up

beyond LO.
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Gluon fusion to Higgs at Leading Order(LO)

Hinchcliff, many others

1 dz o xr
2S do PP (x,mp) = / —<I>§%) (z, mp, ur) 28 daé?,) (—,m;z,,,H«R) + e
x 2 o(pp — H+X) fob] Vs=14TeV
“0000000)
S S
0000000 10

— LO Harlander
589 (3, ur) ~ a2(1r) F(GF,mt,mh)], 1100 120 140 160 180 200 220 240 260 280 300
M, [GeV]

e | eading order is uncontrolable due to pr scale and can not be used for any study in the
present form.

e Only higher order corrections can provide sensible result thanks to RG equation
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NNLO QCD corrected Higgs Cross section at /S = 14 TeV
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myg/2 < pr = pr < 2mpg

—— LO
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Harlander
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A.Djouadi,D. Grandenz,M.Spira, P. Zerwas

o(pp — H+X) [pb] Vs=14TeV
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R.Harlander;S. Catant, M, [GeV]
D.DeFlorian, M. Grazzini;
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e N3LL resummation exponents are available now.

e N3LL resummation does not change the picture much. Fixed order N3LO,sv is very
close to the N3 L L resummed result.

e Since QCD corrections can reduce the scale uncertainties only to 10% — 20%,
contributions from electroweak sector is also important.
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2-loop Electroweak, Mixed QCD and Electroweak, b quark con-
tributions:

U.Agliettr et al;G.Degrasst, F. Maltoni; G. Passarino et al; Anastasiou et
al; W.Keung, F. Petriello, O. Brein

g

bt 7 H "interferece" with "t" loop + NLO QCD

Pure QCD processes interference with Electroweak Processes:
g

W,z
H

_— —p— — —

W,z W, 7
H H
\ — — — — \ — — — —
g g

Electroweak: 5% (m g = 120 Gev) and —2% (m g = 300GeV); b quark loops contribute
5 —6%atmpyg = 120 GeV at LHC
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= D contributions,
Bt e NNLO in the large top quark mass
b | limit,
10 + e EW corrections given by Passarino et
3 al
5 _ MSTW2008NLO ® use exact solutions to the RG
[ equations of soft,collinear and
N MSTW2008LO hard pieces of the cross section.
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Good perturbative stability from LO onwards.
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ur, pr and PDF dependence in Higgs production ( 8 T'eV)
MSTW PDF set (o in pb and errors(=) in %): VR, J. Smith
mgyg | NNLO LR UR,3 [7y o 7} NNLO# PDF N3LOg, LR
+10.82 +16.70 —0.43 +10.44 +2.50 +0.10
e e e e LTIy h
124 18.68 ;1032 ;16:01 —|—O:51 ;992 20.62 ;3:12 19.46 ;2:28
10. 16.63 —0.39 10.43 2.51 0.08
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Uncertainty in NNLO result:

® up variation (mp /2 < pr < 2my) gives 11%
® up variation (my /3 < pr < 3my) gives 17%

® up variation (mp /2 < pr < 2my) gives 0.5%

® up = pur = 1/2my resummes soft gluons

e MSTW PDF gives 3%

e N3LOs, gives around 3%
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ur, pr and PDF dependence in Higgs production ( 8 T'eV)
ABM PDF set:(o in pb and errors(+) in %): VR, J. Smith
mprg | NNLO LR HUR,3 13 1} NNLO4 PDF N3LO g4 LR
F10.13 F15.59 —0.18 J9.91 JF0.10
123 | 17.58 “oso | 152z | voss | o 19.33 | +4.40 | 19.97 —2.25
. . —0. . 0.09
124 | 17.29 Zoss | 1523 | oy | o 19.00 | +4.43 | 19.63 —22)
10.08 15.52 —0.12 9.91 0.12
125 | 16.99 “oss | Tis20 | Goas | o 18.67 | +4.75 | 19.28 21
. 5. —0. . 0.13
126 | 16.71 “osi | Cisar | vozs | o 18.36 | +4.54 | 18.96 —211
. . —0. . 0.14
127 | 1643 | To0% | Tiols | To2r | o3 18.07 | +4.26 | 1864 | 7o o¢




ur, pr and PDF dependence in Higgs production ( 8 T'eV)
ABM PDF set:(o in pb and errors(+) in %): VR, J. Smith
mprg | NNLO LR HUR,3 13 1} NNLO4 PDF N3LO g4 LR
F10.13 F15.59 —0.18 J9.91 JF0.10
123 | 17.58 “oso | 152z | voss | o 19.33 | +4.40 | 19.97 —2.25
124 | 17.29 ;g.ég, ;15;23 fo31 19;64 19.00 | +4.43 | 19.63 12;21
10.08 15.52 —0.12 9.91 0.12
125 | 16.99 “oss | Tis20 | Goas | o 18.67 | +4.75 | 19.28 21
. 5. —0. . .
126 | 16.71 “osi | Cisar | vozs | o 18.36 | +4.54 | 18.96 “2u1
127 | 1643 | To0% | Tiols | To2r | o3 18.07 | +4.26 | 1864 | 7o o¢

Uncertainty in NNLO result:

® up variation (my /2 < pr < 2my) gives 10%
® up variation (my /3 < pr < 3my) gives 17%
® up variation (mp /2 < pr < 2my) gives 0.5%
® up = pur = 1/2my resummes soft gluons

e ABM PDF gives 5%
® N3LOgs, gives around 2% due to ur
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PDF dependence in Higgs production ( 8 T'eV)

Differnet PDF sets (m, in GeV and cross sections in pb): VR, J. Smith
mp NNLO N3LO sy

MSTW | ABM CT NNPDF | MSTW | ABM CT NNPDF

120 19.98 | 18.51 | 19.86 21.00 20.83 | 21.04 | 20.26 20.91
121 19.64 | 18.18 | 19.52 20.65 20.47 | 20.62 | 19.91 20.56
122 19.31 | 17.89 | 19.20 20.30 20.13 | 20.32 | 19.57 20.21
123 1899 | 17.58 | 18.88 19.96 19.79 | 19.97 | 19.24 19.87
124 18.68 | 17.29 | 18.57 19.63 19.46 | 19.63 | 18.92 19.54
125 18.37 | 16.99 | 18.27 19.31 19.13 | 19.28 | 18.61 19.21
126 18.07 | 16.71 | 17.97 18.99 18.82 | 18.96 | 18.31 18.89
127 17.78 | 16.43 | 17.68 18.66 18.51 | 18.64 | 18.01 18.53
128 17.49 | 16.16 | 17.39 18.52 18.21 | 18.32 | 17.72 18.61
129 17.21 | 1591 | 17.12 18.09 1791 | 18.04 | 17.43 17.99




PDF dependence in Higgs production ( 8 T'eV)

Differnet PDF sets (m, in GeV and cross sections in pb): VR, J. Smith
mp NNLO N3LO sy

MSTW | ABM CT NNPDF | MSTW | ABM CT NNPDF

120 19.98 | 18.51 | 19.86 21.00 20.83 | 21.04 | 20.26 20.91
121 19.64 | 18.18 | 19.52 20.65 20.47 | 20.62 | 19.91 20.56
122 19.31 | 17.89 | 19.20 20.30 20.13 | 20.32 | 19.57 20.21
123 1899 | 17.58 | 18.88 19.96 19.79 | 19.97 | 19.24 19.87
124 18.68 | 17.29 | 18.57 19.63 19.46 | 19.63 | 18.92 19.54
125 18.37 | 16.99 | 18.27 19.31 19.13 | 19.28 | 18.61 19.21
126 18.07 | 16.71 | 17.97 18.99 18.82 | 18.96 | 18.31 18.89
127 17.78 | 16.43 | 17.68 18.66 18.51 | 18.64 | 18.01 18.53
128 17.49 | 16.16 | 17.39 18.52 18.21 | 18.32 | 17.72 18.61
129 17.21 | 1591 | 17.12 18.09 1791 | 18.04 | 17.43 17.99

ABM is 7.4% smaller than MSTW

CT is just 0.5% smaller than MSTW

NNPDF is 5% larger than MSTW
All PDFs give almost same results for N3 LOg,, corrected cross section.
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VR, J. Smith
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Soft gluons at N3 LO,sv for Higgs production ( 8 TeV)
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Soft gluons at N3 LO,sv for Higgs production ( 8 TeV)

VR, J. Smith
rR=2 niro(#)
oniro(Ho)
30 I T T TS
: L H_C(8_—]I—Je2v) ——— IIZIEO — 2 - 5 I T T T I T T T T I T T T T I IL O| T T |
L VST M ——  NNLO - LHC(8 TeV) ____  NLO ]
L — N~ LO(SpV) —y =
Hg=H=H _ NNLO i
25 - 7 mF;=1F25 GeVv N° LO(SpV)
o (pb) L ] 2 MSTW _
20 F . o (P ]
\ 1-5 ]
15 — — :
10 __  N 1 _
° 1|15 — 1|20 T, 1|25 T 130 0.5 : : ' |
H

e NLO increases the cross section by 80%,

e NNLO to 30%,
e resummation to 10% and electoweak effects by 5%
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Update-1:. Anastasiou-Boughezal-Petriello-Stoeckli:

e Exact NLO cross section with full dependence on the top- and bottom-quark masses
® NNLO cross section-Effective Field Theory, i.e., in the large-m limit
e EW contributions evaluated in the complete factorization scheme
oo . )
o= Z a;agéD ® (1 + dew)
1=0

e Mixed QCD-EWCcontributions are also accounted for, together with some effects from EW
corrections at finite transverse momentum.

e The effect of soft-gluon resummation is mimicked by choosing the central value of the
renormalization and factorization scales as pugp = pr = Mg /2.
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Update-2: de Florian-Grazzini:

e Exact NLO cross section with full dependence on the top- and bottom-quark masses,
computed with the program HIGLU,

e the NLL resummation of soft-gluons,

e the NNLL+NNLO corrections are consistently added in the large-mt limit

e corrected for EW contributions in the complete factorization scheme.

® The central value of factorization and renormalization scales is chosen to be
BEF = pRr = Mg
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Fixed vs Resummed at 7 TeV

T 1T T 1T T 1T ‘ T 1T ‘ T 1T 8 T 1T T 1T T 1T ‘ T 1T ‘ T 1T 8
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o 1 o |

= Fixed Order (+EW) NNLO with MSTW | % = Resummed (+EW) NNLL with MSTW | %

L 8 L 8

T T

110 0 ) 0

o} - o} -
o o
N—r N—r
o} o}

| W=2My

100 200 300 400 500 600 100 200 300 400 500 600
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e Comparison of NNLO and NNLL bands with different choice of the central scale.
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Final numbers for gluon fusion for  m; = 125 GeV

Production cross section at /s = 7 TeV with scale(ur = pr) and PDF(+as)
unctertainties:

o= 15.311_17’?8?%)(scale)t:g;‘:(PDF + as)pb

Production cross section at /s = 8 TeV:

e de Florian et al:

o= 19.521‘32% (scale)téZZé(PDF + as)pb

® Anastasiou et al:

o= 20.698_'3?;:% (Scale)i_;f;;';(PDF + as)pb
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Towards IN3LO corrected Higgs cross section

Anastasiou et.al
e Square of one-loop virtuals to N3LO

g(p1) +g(p2) — g(p3)+ H(pa)
q(p1) +g9(p2) — q(p3) + H(pa)
q(p1) + d(p2) — g(p3) + H(pa)



Towards IN3LO corrected Higgs cross section

Anastasiou et.al
e Square of one-loop virtuals to N3LO

g(p1) +g(p2) — g(p3)+ H(pa)
q(p1) +g9(p2) — q(p3) + H(pa)
q(p1) + d(p2) — g(p3) + H(pa)

e Performing a loop-expansion of the amplitudes

Ax = > AP

§=0

in the effective theory with 5 being the number of loops, we have:

Ax[? = [AQ[" + 21 (AP AP") + [\Aﬁ?\z + 2R (AE?)AE?)*)} ...



Towards IN3LO corrected Higgs cross section

Anastasiou et.al
e Square of one-loop virtuals to N3LO

g(p1) +g(p2) — g(p3)+ H(pa)
q(p1) +g9(p2) — q(p3) + H(pa)
q(p1) + d(p2) — g(p3) + H(pa)

e Performing a loop-expansion of the amplitudes

Ax = > AP

§=0

in the effective theory with 5 being the number of loops, we have:

Ax[? = [AQ[" + 21 (AP AP") + [\Agyf + 2R (Aggug?*)} +..

101 —1—¢ Nx (4m)€ 1—2e /1 o —c (1)]2
O = 5 ot o) RENNCESY) Z|AX ‘ .



Towards IN3LO corrected Higgs cross section

Anastasiou et.al
e Square of one-loop virtuals to N3LO

g(p1) +g(p2) — g(p3)+ H(pa)
q(p1) +g9(p2) — q(p3) + H(pa)
q(p1) + d(p2) — g(p3) + H(pa)

e Performing a loop-expansion of the amplitudes

Ax = > AP

§=0

in the effective theory with 5 being the number of loops, we have:

Ax[? = [AQ[" + 21 (AP AP") + UA@\Z + 2R (Aggug?*)} +..

101 —1—¢ Nx (4m)€ 1—2e /1 o —c (1)]2
O = 5 ot o) RENNCESY) Z|AX ‘ .

e Reverse Unitarity and Integration parts lead to 19 master integrals
e Differential equation method is used to solve the master integrals
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Alternate approach towards NS3LO

Kilgore
e Threshold expansion

e Square of the one-loop contribution to the cross section as an extended threshold
expansion.

e Obtain enough terms to invert the series and determine the closed functional form through
order e.

e The method has been applied to get earlier results at NLO and NNLO level for inclusive
cross sections in closed form, in terms of G-functions and the hypergeometric functions 2 F4
and 3 Fx.

® These functions can be readily expanded to all ordersin



Alternate approach towards NS3LO

Kilgore
e Threshold expansion

e Square of the one-loop contribution to the cross section as an extended threshold
expansion.

e Obtain enough terms to invert the series and determine the closed functional form through
order e.

e The method has been applied to get earlier results at NLO and NNLO level for inclusive
cross sections in closed form, in terms of G-functions and the hypergeometric functions 2 F4
and 3 Fx.

® These functions can be readily expanded to all ordersin

o0 _— n—1
_ x (—e) _ _ m!
2F1(1,—&31 — & —my/P) = » | ——— | 2F1(1,—&,1 —&,—y/Y) —F > y™ i=o
n—0 Tn. Tn. m—0 E)m
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Higgs with 0,1, 2 jets

Petriello et al
® oot - INClusive cross section

® oo (pSHt) - the O-jet cross section: no jets with p Jet > pSht NNLO in QCD

o o> (pSPt)- the inclusive 1-jet cross section, with at least 1 jet with ple® > pgut
in QCD

® o1([PTasPTb]; pcut) the exclusive 1-jet cross section, with pry > PTJ > PTAQ

® o>, (pF') - the inclusive 2-jet cross section, with at least 2 jets with pJ;t > pSht

Consistency conditions:

Otot = UO(pCUt) +0>1(pCUt)7

0’>1(PCUlt = oi1([p CUtaOO],PCUt)‘|‘0’>2(PCUt .

e This leads to correlated errors

NLO

NLO

LO
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Theory Uncertainties

Petriello et al

rate [pb] ATLAS (pS¥* = 25GeV, R = 0.4) CMS (pS** = 30GeV, R = 0.5)
o NNLO 19.27 + 1.50 19.27 + 1.50

oo 7.85 + 1.41 6.47 £+ 1.27

o0, 2.42 +1.80 1.73+1.31

o INTo 11.69 £ 2.06 12.80 & 1.97

oo 5.16 & 2.29 4.75 4 1.82

e Fixed order cross sections and their uncertainties for ATLAS and CMS parameters. The
central scale is u = mpgr /2.



Theory Uncertainties

Petriello et al

rate [pb] ATLAS (pS¥* = 25GeV, R = 0.4) CMS (pS** = 30GeV, R = 0.5)
o NNLO 19.27 + 1.50 19.27 + 1.50

oo 7.85 + 1.41 6.47 £+ 1.27

o0, 2.42 +1.80 1.73+1.31

o INTo 11.69 £ 2.06 12.80 & 1.97

oo 5.16 & 2.29 4.75 4 1.82

e Fixed order cross sections and their uncertainties for ATLAS and CMS parameters. The
central scale is u = mpgr /2.

rate [pb] ATLAS (pS¥t = 25GeV, R = 0.4) CMS (p$¥** = 30GeV, R = 0.5)
Otot 21.69 + 1.49 21.69 £ 1.49
oo 12.67 £ 0.87,, & 0.867es (£ 1.22¢01) 13.86 &+ 0.70,, & 0.52,.¢5 (£ 0.87+0t)
o1 5.68 &= 0.30,, & 0.89,es (£ 0.94¢0¢) 4.97 £ 0.43,, & 0.61res (£ 0.74¢01)
T >2 3.34 £ 0.32,, & 0.477es (£ 0.5T01) 2.86 £+ 0.36,, &= 0.44,.¢5 (£ 0.5T01)

e The total, O-jet, 1-jet, and inclusive 2-jet cross sections and their uncertainties.
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Higgs + 2 jets at NLO

H. van Deurzen et al.
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Higgs + 2 jets at NLO

H. van Deurzen et al.
H + 2 jets: Higgs pseudorapidity
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Transverse momentum pr and Pseudorapidity np of the Higgs boson are plotted.
The jets are clustered by using the anti-k+ algorithm provided by the FastJet package:

pt,; > 20GeV, |nj| <4.0, R=0.5.

The factorization and the renormalization scale are set to be

Hy = \/MZ +p2y+> pij-
J
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Higgs + 2 jets at NLO
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H. van Deurzen et al.

H + 2 jets: leading jet transverse momentum
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H + 2 jets: second jet transverse momentum
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Higgs + 2 jets at NLO
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H + 2 jets: leading jet transverse momentum
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e Transverse momentum pr of the first and the second jet.
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GOSAM framework

G. Hewnrich et al.
e GoSam performs one-loop virtual contributions to physical processes automatically.

e Amplitudes are generated via Feynman diagrams, using QGRAF, FORM, SPINNEY and
HAGGIES.

e The input required:
o the process, such as a list of initial and final state particles, the order in the coupling
constants, and the model;
o the scheme employed, such as the regularization and renormalization schemes;

o the system , such as paths to libraries or compiler options;

o optional information to control the code generation.

® the virtual corrections are evaluated using the d-dimensional integrand-level reduction
method, as implemented in SAMURAI library, which allows for the combined determination
of both cut-constructible and rational terms at once.

e Embedding the virtual corrections within a Monte Carlo framework (MC), such as SHERPA,
POWHEG, MADGRAPH,HERWIG, or aMC@NLO, that can take care of the phase-space
integration and showering.
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Higgs + 3-jets in gluon-gluon fusion

G. Cullen et al.

3 T T T T T T T I

o [pb]
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—NLO
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e Jets are clustered using the anti-k¢-algorithm implemented in FastJet with radius R = 0.5
and a minimum transverse momentum of pr_je¢ > 20 GeV and pseudorapidity |n| < 4.0.

® The renormalization and factorization scales are set to

Hr 1
HF = KPR = o — > <\/m2H+p%,H+Z|PT,i|> ’
1

® The strong coupling is therefore evaluated at different scales according to
al — a?(myg)ad(Hr/2).



Higgs + 3-jets in gluon-gluon fusion

G. Cullen et al.



Higgs + 3-jets in gluon-gluon fusion
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e Transverse momentum (pr) distributions for the first, second, and third leading jet and the
Higgs boson

® The theoretical uncertainties are estimated by varying the scales by factors of 0.5 and 2.0.
® |n the effective coupling the scale is kept at m g .

+0.01

0.51
oLo|[pb] = 0.9621_0.31 , ONLO[pPb] = 1.18_ ;55 -

® The scale dependence of the total cross section is strongly reduced by the inclusion of the
NLO contributions.
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e Higgs production via Vector Boson Fusion (VFB) can disentangle the Higgs boson’s coupling
to fermionns and gauge bosons.

H

e Taging two jets with Higgs and vetoing soft jets in the central region can significantly reduce
the QCD background as well as Higgs plus two jets from gluon-gluon fusion.

e Ratio of Higgs+3 jets to Higgs+2 jets need to known accurately.

Method:

e Spin helicity package MATCHBOX provides real emission amplitudes, spin summation,
subtraction terms for IR singularities

e ColorFull and ColurMath packages to do color algebra

e Passarino-Veltman reduction and Denner-Dittmaier scheme to do one-loop reduction and
evaluation.
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e Cluster jets with the anti-k+ algorithm using FastJet with D = 0.4, E-scheme
recombination and require at least three jets with transverse momentum pr ; > 20 GeV and
rapidity |y;| < 4.5. Jets are ordered in decreasing transverse momenta.

e The bands correspond to varying ur = g by factors 1/2 and 2 around the central value
Hry /2.

e Differential cross section and K factor for the p of the Higgs. The bands correspond to
varying ur = p g by factors 1/2 and 2 around the central value Hr /2.
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Transverse momentum of the third jet Relative position of the third jet
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e Differential cross section and K factor for the p7 of the third hardest jet.

e Differential cross section and K factor for the normalized centralized rapidity distribution of the
third jet w.r.t. the tagging jets.

e The bands correspond to varying ur = g by factors 1/2 and 2 around the central value
Hry /2.
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e The Born and the real emission matrix elements are computed using SHERPA and the
library AMEGIC which implements the Catani-Seymour dipole formalism. SHERPA also
performs the integration over the phase space and the analysis.

e The virtual corrections are generated with the GOSAM which combines automated diagram
generation and algebraic manipulation with d-dimensional integrand-level reduction.

e The virtual amplitudes of tt Hj have been decomposed in terms of MlIs using for the first
time the integrand reduction via Laurent expansion, implemented in the C + + library
NINJA.
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Ht T+ jet: tf-invariant mass
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e To cluster the jets the anti-k¢-algorithm is implemented in FASTJET with radius R = 0.5, a
minimum transverse momentum of pr_jex > 15 GeV and pseudorapidity |n| < 4.0.

e |n order to study the scale dependence of the total cross section, two different choices of the
renormalization and factorizationt scales pr = ur = po, namely po = H7 and
pto = 2 X GAr with

Hr = Z |pT,f| s GAT = {”/mT,H mr,t M + Z |pT,;

final jets 7

states f
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e [Effective Field Theory (EFT) approach to study the nature of interaction of Higgs with the
other SM particles.

e Not only useful for SM electroweak precision physics, but also pin down BSM effects.

e EFT contains only SM particles and the symmetries at the EW scale.
Lyc,g =Lsvm—-H+ Ly,
o reduces significantly the possible interaction terms in the Lagrangian

o Higgs boson with various spin-partiy assignment

e EFT has been implemented in FeynRules and passed to the Madgraph5 and aMC@NLO
framework by means of UFO model file.

o improvable with new operators,
o higher order QCD effects can be incorporated systematically.
o multi-parton tree-level computation with parton shower,

o next to leading order calculations matched with parton sowers.
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dimension-6 operators with pair of fermions

££ = - Z Yr(carkurrgurs + isakarsgass vs)¥sXo,
f=t,b,T

dimension-6 operators with pair of vector bosons
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Minimal coupling to spin-2 Higgs with fermions:

1
f=q,t

Minimal coupling to spin-2 Higgs with fermions:
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The transverse momentum of the Z boson with the highest and lowest reconstructed mass,
pgl and pgz, inX(— ZZ*) > ptu-ete .
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The transverse momentum pi’f of a spin-2 state with non universal couplings to quarks and
gluons kg # K4 as obtained from AMCQNLO. e It violates unitarity.
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e Fixed order QCD corrections to gluon fusion contribute bulk of the cross section

e Two loop EW corrections, mixed QCD-electroweak and b quark contributions account for 5%
to gluon fusion

e NN L L resummation effects can be included through suitable central scale choice.

e At V'S = 8% TeV, the scale uncertainty varies between +9% at mz = 125 GeV.
e the PDF +a s uncertainty varies between +£7% at mgyg = 125 GeV.

e Higgs with 1,2 and 3 jets; Higgs with top +one jet are known upto NLO level e Higgs

Characterisation with MADGRAF frame work is a new tool in the market to analyse Higgs
boson’s spin-partity and its coupling to SM particles in a model independent way.
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