sed & awk

Santosh Kyadari (santoshk@tifr.res.in)
--CCCF

Date: 14-10 -2014

mailto:santoshk@tifr.res.in

sed

* What is sed
I

m Stream editor
m Originally derived from “ed line editor”
m Used primarily for non interactive operations

m Ooperates on data streams, hence 1ts name

" Why use sed

= Eliminate the routine editing tasks! (find,
replace, delete, append, insert)

Sed 1s designed to be especially useful in three
cases:

m To edit large files in bulk where manual
editing 1is difficult.
m Non interactive editing as part of a process.

m To edit any size file when the sequence of
editing commands is too complicated.

* Sed usage

m Usage:
sed [options] 'address action/command' filename (s)

Example:

sed '’ test sed.txt
sed —n ‘4,9 p’ foo

Sed: options

-n suppress of pattern space

-e add the script to the commands to be executed
-f Use a script file having actions

-1 edit files in place

--help help

man sed will give more options
Examples

Sed —-n ‘4,9 p’ filename prints only lines 4 through 9

Sed -n -e ‘/example/,/tutorial/ !p’ -e ‘s/sed/abcd/p ' test sed.txt
Sed -n -e ‘/example/,/tutorial/ 'p; s/sed/abcd/p ' test sed.txt
Sed -f sedl test sed.txt

sed -i 's/example/tutorial/g' test sed.txt

* Addresses and patterns in sed and awk

Addrésses
2 second line
S last line
i,] from i-th to j-th line, inclusive. j can be $
1,5 lines from 1 to 5
7,$ lines from 7 to last line
Patterns

A beginning of the 1line

$ end of the line
Normally patterns are enclosed between forward slashes / /
/Microsoft/ selects the lines with Microsoft in the text

/*From/ selects the lines with From as starting of the Line
/From$/ selects the lines with From as end of the Line
/*S/ selects the empty lines

Range of pattern
/Microsoft/,/IBM/ selects the lines between the
pattern range Microsoft and IBM

-* Sed: address

Each line read is counted, and one can use this information
to absolutely select which lines commands should be applied
to.

first line

second line

$ last line
i, from i-th to j-th line, inclusive. j can be $
Examples

sed -n '3,5 p' test sed.txt prints only lines 3 to 5

sed -n '3,5 !'p' test sed.txt prints lines except 3 to 5

sed -n ‘1l,S p' test sed.txt display all the lines as address 1, S
sed '' test sed.txt display all the lines as address 1,5
sed '3 d’' test sed.txt deletes line 3 and prints remaining lin
sed ‘/*$/d’ test sed.txt will delete all empty lines

-* Sed: commands/actions
I

print lines

delete lines

quit after adress match

change lines

append

insert

substitute

Append text read from a filename
Write to a file

Inversion operation of the command

s KR 0 P Q0 QO QAT

Sed: commands/actions

|
Examples :

sed -n '3,5 p' test sed.txt prints only lines 3 to 5

sed '3 g' test sed.txt quits after reading 1 to 3 lines

sed '3 d’ test sed.txt deletes line 3 and prints remaining lines
sed '3 c\ Linux and Unix’ test sed.txt replaces line 3 with the text

sed 's/example/tutorial/g' test sed.txt substitutes example with
tutorial

sed '3 r sedl' test sed.txt append after line 3 with sedl file
sed '2,5 w san' test sed.txt write to the file san
sed -n '3,5 !p' test sed.txt prints lines except 3 to 5

.

sed: Line Addressing

using line numbers (like 1,3p)
sed ‘3,4p’" foo.txt

= For each line, if that line is the third through
fourth line, print the line”

sed ‘4qg’ foo.txt
= For each ling, if that line is the fourth line, stop”
sed —n 3,4p’ foo.txt

= Since sed prints each line anyway, if we only
want lines 3&4 (instead of all lines with lines 3&4
duplicated) we use the -n

* sed: Line addressing (...continued)

m sed —n ‘Sp’ foo.txt
= For each line, if that line is the last line, print”
= $ represent the last line

= Reversing line criteria (!)

m sed —n ‘3,$!p’ foo.txt

= For each line, if that line is the third through
last line, do not print it, else print”

-{ sed: Context/Pattern Addressing

|
= Use patterns/regular expressions rather than
explicitly specifying line numbers
» sed -n ‘'/* From: /p’ /hOme/ksri/mbox
= retrieve all the sender lines from the mailbox file

= For each line, if that line starts with ‘From’, print it.”
Note that the / / mark the beginning and end of the
pattern to match

= sed -n '/tutorial/ 'p' test sed.txt
mls -1 | sed -n ‘/*..... w/p’
= For each line, if the sixth character is a W, print”

-{ sed: Substitution

g Sltrongest feature of sed
= Syntax is

[address] S/pattern/replace str/flag

Substitutes “example” with %“tutorial

sed example/tutorialﬂ:z\i%st_sed.txt

substitute global

sed ‘3,55 s/example/tutorial/g' test sed.txt

* sed: Substitution - flags

Il — A number (1 to 512) indicating that a

replacement should be made for only the nth
occurrence of the pattern.

Q} — Make changes globally on all occurrences

1n the pattern space.

ED — Print the contents of the pattern space.

W flle — Write the contents of the

pattern space to file.

{ sed: Substitution example

sed
sed
sed

sed

‘3,55
‘3,55
‘3,55
‘3,55

s/example/tutorial/4' test sed.txt
s/example/tutorial/g' test sed.txt
s/example/tutorial/p' test sed.txt
s/example/tutorial/w 1.txt' test sed.t:

awK

-* Cutting the fields in a text file

s Cut out selected fields of each line of a file
cut [options] filename

= Options
s -d Delimiter default is space ™
s -f Column/ field list
s -C Character position list
Example

cut-f2-d"," filename # displays second column
cut—f 1,5 —-d ™:" passwd # displays user Id and

Full name of user in passwd file
cut —c5,15 abcd.txt # displays characters from 1-15

" awk

= Powerful pattern scanning and processing
language

= Names after its creators Aho, Weinberger and
Kernighan

= Most commands operate on entire line
= awk operates on fields within each line

- What is awk

= awk reads from a file or from standard input, and outputs to its
standard output.

= awk has concepts of "file", "record" and "field".

= A file consists of records, which by default are the lines of the file. One
line becomes one record and each record will have fields.

= awk operates on one record at a time.

= A record consists of fields, which by default are separated by any
number of spaces or tabs or customized delimiter (eg %,” or ™:").

= Field number 1 is accessed with $1, field 2 with $2, and so on. $0 refers
to the whole record.

- Why use awk

= awk is a programming language designed to search
for, match patterns, and perform actions on files.

Useful for:
s transform data files
= produce formatted reports

Programming constructs:
= format output lines

= arithmetic and string operations
= conditionals and loops

* Awk : Usage

I
m awk [options] ‘script’ file(s)

m awk [options] —f scriptfile file(s)

Options:
-F to change input field separator
-f to name script file

m Basic AWK Syntax

I
= consists of patterns & actions:
awk [options] '‘pattern {action}’ filename (s

=« if pattern is missing, action is applied to all lines
= if action is missing, the matched line is printed
= must have either pattern or action

Example:
awk '/for/' testfile
= prints all lines containing string “for” in testfile

-{ awk: Processing model

awlk [options]

‘BEGIN { command executed before any input is read}
Pattern { Main input loop for each line of input }
END {commands executed after all input is read}’

filename(s)

awk [options] '‘BEGIN { commands} Pattern { Main } END {commands}’ filename(s)

l* SOME SYSTEM VARIABLES

|
FS
RS

NF
NR

OFS
ORS

FILENAME

Field separator (default=whitespace)
Record separator (default=\n)

Number of fields in current record
Number of the current record

Output field separator (default=space)
Output record separator (default=\n)

Current filename

-{ awk: First example

|
Begin Processing

BEGIN {FS="" ;print "Print Totals"}

Body Processing
{total = $1 + $2 + $3}
{print$1 " +" $2 " +" $3 " = "total}

End Processing
END {print "End Totals"}

* Input and output files

awk

= Input (cat totals)

22 78
oo 31
52 30
88 31

44
70
44
60

-f totals.awk totals

Output
Print Totals

22 +78 +44 =144
66 +31 +70 =167
52 +30 +44 =126
88 +31 +66 =185
End Totals

* awk:command line processing

Input = Output
clothing 3141 1 computers 9161

computers 916l 5 ~omputers 2321
textbooks 21312

clothing 3252
computers 12321
supplies 2242
textbooks 15462

NN\ ORI \C RN\ R el

awk ‘{ 1f ($2 =="computers”) print}'sales.dat

{ awk: Arithmetic Operators

Operator Meaning Example

+ Add X+Yy

- Subtract X—Y

* Multiply X *y

/ Divide X/Yy

% Modulus X%y

N Exponential XNy
Example:

$ awk '$3 * $4 > 500 {print $0}' file

{ awk: Relational Operators

Operator Meaning Example
< Less than X<y
< = Less than or equal X< =Y
== Equal to X==Y
E Not equal to X1=y
> Greater than X >y
> = Greater thanorequalto x> =y
~ Matched by reg exp X ~ [y/

Not matched by req exp

X I~ fy/

{ awk: Logical Operators

Operator Meaning Example
&& Logical AND a&&b
|| Logical OR allb
! NOT I a

Examples:

awk '($2 > 5) && ($2 <= 15) {print $0}' file
awk '$3 == 100 || $4 > 50' file

-{ awk: Range Patterns

I
o Matches ranges of consecutive input lines

Syntax:
/patternl/, /pattern2/ {action}

o pattern can be any simple pattern
o patternl turns action on

o pattern2 turns action off

i

awk: assignment operators

assign result of right-hand-side expression to
left-hand-side variable

++ Add 1 to variable

-- Subtract 1 from variable

+= Assign result of addition
-= Assign result of subtraction
*= Assign result of multiplication

= Assign result of division
%= Assign result of modulo
A= Assign result of exponentiation

* awk: control structures

|
= Conditional

« if-else

= Repetition
= for
= While

awk: if Statement

i

Syntax:

if (conditional expression)
statement-1
else

statement-2

Example:

if (NR < 3)
print $2
else

print $3

-{ awk:for Loop

Syntax:
for (initialization; limit-test;
update)

statement
Example:
for (1 = 1; i <= NR; i++)
{

total += §i

count++

{ awk: while Loop

|
Syntax:
while (logical expression)

statement

Example:
i=1
while (i <= NF)
{
print i, $i
it++

References

= Unix Concepts and Applications —by Sumitabha Das
= http://www.grymoire.com/Unix/Sed.html

s http://www.grymoire.com/Unix/Awk.html

= http://www.grymoire.com/Unix/Quote.html

= http://www.grymoire.com/Unix/Find.html

= http://www.scribd.com/doc/60807668/SED-and-AWK-
101-Hacks

http://www.grymoire.com/Unix/Sed.html
http://www.grymoire.com/Unix/Awk.html
http://www.grymoire.com/Unix/Quote.html
http://www.grymoire.com/Unix/Find.html

Thanks

