

sed & awk

Santosh Kyadari (santoshk@tifr.res.in)

 --CCCF

 Date: 14-10 -2014

mailto:santoshk@tifr.res.in

 sed

What is sed

 Stream editor

 Originally derived from “ed line editor”

 Used primarily for non interactive operations

 operates on data streams, hence its name

Why use sed

 Eliminate the routine editing tasks! (find,

replace, delete, append, insert)

Sed is designed to be especially useful in three

cases:

 To edit large files in bulk where manual

editing is difficult.

 Non interactive editing as part of a process.

 To edit any size file when the sequence of

editing commands is too complicated.

Sed usage

 Usage:

sed [options] 'address action/command' filename(s)

Example:

sed ‘’ test_sed.txt

sed –n ‘4,9 p’ foo

Sed: options

-n suppress of pattern space

-e add the script to the commands to be executed

-f Use a script file having actions

-i edit files in place

--help help

man sed will give more options

Examples :

Sed –n ‘4,9 p’ filename prints only lines 4 through 9

Sed –n –e ‘/example/,/tutorial/ !p’ –e ‘s/sed/abcd/p ‘ test_sed.txt

Sed –n –e ‘/example/,/tutorial/ !p; s/sed/abcd/p ‘ test_sed.txt

Sed -f sed1 test_sed.txt

sed -i 's/example/tutorial/g' test_sed.txt

Addresses and patterns in sed and awk

Addresses

 2 second line

 $ last line

 i,j from i-th to j-th line, inclusive. j can be $

 1,5 lines from 1 to 5

 7,$ lines from 7 to last line

Patterns

 ^ beginning of the line

 $ end of the line

Normally patterns are enclosed between forward slashes / /

/Microsoft/ selects the lines with Microsoft in the text

/^From/ selects the lines with From as starting of the Line

/From$/ selects the lines with From as end of the Line

/^$/ selects the empty lines

Range of pattern

/Microsoft/,/IBM/ selects the lines between the

 pattern range Microsoft and IBM

Sed: address

Each line read is counted, and one can use this information

to absolutely select which lines commands should be applied

to.

 1 first line

 2 second line

 ...

 $ last line

 i,j from i-th to j-th line, inclusive. j can be $

Examples :

sed -n '3,5 p' test_sed.txt prints only lines 3 to 5

sed -n '3,5 !p' test_sed.txt prints lines except 3 to 5

sed –n ‘1,$ p‘ test_sed.txt display all the lines as address 1,$

sed '' test_sed.txt display all the lines as address 1,$

sed ‘3 d’ test_sed.txt deletes line 3 and prints remaining lines

sed ‘/^$/d’ test_sed.txt will delete all empty lines

Sed: commands/actions

 p print lines

 d delete lines

 q quit after adress match

 c change lines

 a append

 i insert

 s substitute

 r Append text read from a filename

 w Write to a file

 ! Inversion operation of the command

Sed: commands/actions

Examples :
sed -n '3,5 p' test_sed.txt prints only lines 3 to 5

sed '3 q' test_sed.txt quits after reading 1 to 3 lines

sed ‘3 d’ test_sed.txt deletes line 3 and prints remaining lines

sed ‘3 c\ Linux and Unix’ test_sed.txt replaces line 3 with the text

sed 's/example/tutorial/g' test_sed.txt substitutes example with

tutorial

sed '3 r sed1' test_sed.txt append after line 3 with sed1 file

sed '2,5 w san' test_sed.txt write to the file san

sed -n '3,5 !p' test_sed.txt prints lines except 3 to 5

sed: Line Addressing

 using line numbers (like 1,3p)

 sed ‘3,4p’ foo.txt

 “For each line, if that line is the third through
fourth line, print the line”

 sed ‘4q’ foo.txt

 “For each line, if that line is the fourth line, stop”

 sed –n `3,4p’ foo.txt

 Since sed prints each line anyway, if we only
want lines 3&4 (instead of all lines with lines 3&4
duplicated) we use the -n

sed: Line addressing (...continued)

 sed –n ‘$p’ foo.txt

 “For each line, if that line is the last line, print”

 $ represent the last line

 Reversing line criteria (!)

 sed –n ‘3,$!p’ foo.txt

 “For each line, if that line is the third through
last line, do not print it, else print”

sed: Context/Pattern Addressing

 Use patterns/regular expressions rather than
explicitly specifying line numbers

 sed –n ‘/^ From: /p’ /hOme/ksri/mbox

 retrieve all the sender lines from the mailbox file

 “For each line, if that line starts with ‘From’, print it.”
Note that the / / mark the beginning and end of the
pattern to match

 sed -n '/tutorial/ !p' test_sed.txt

 ls –l | sed –n ‘/^.....w/p’

 “For each line, if the sixth character is a W, print”

sed: Substitution

 Strongest feature of sed

 Syntax is

[address] s/pattern/replace_str/flag

Substitutes “example” with “tutorial

sed 's/example/tutorial/g' test_sed.txt

sed ‘3,55 s/example/tutorial/g' test_sed.txt

substitute global

sed: Substitution - flags

n - A number (1 to 512) indicating that a

replacement should be made for only the nth

occurrence of the pattern.

g - Make changes globally on all occurrences

in the pattern space.

p - Print the contents of the pattern space.

w file - Write the contents of the

pattern space to file.

sed: Substitution example

sed ‘3,55 s/example/tutorial/4' test_sed.txt

sed ‘3,55 s/example/tutorial/g' test_sed.txt

sed ‘3,55 s/example/tutorial/p' test_sed.txt

sed ‘3,55 s/example/tutorial/w 1.txt' test_sed.txt

 awk

Cutting the fields in a text file

 Cut out selected fields of each line of a file

 cut [options] filename

 Options

 -d Delimiter default is space “ “

 -f Column/ field list

 -c Character position list

Example

cut -f 2 -d ",“ filename # displays second column

cut –f 1,5 –d “:“ passwd # displays user Id and

 Full name of user in passwd file

cut –c5,15 abcd.txt # displays characters from 1-15

awk

 Powerful pattern scanning and processing
language

 Names after its creators Aho, Weinberger and
Kernighan

 Most commands operate on entire line

 awk operates on fields within each line

What is awk

 awk reads from a file or from standard input, and outputs to its
standard output.

 awk has concepts of "file", "record" and "field".

 A file consists of records, which by default are the lines of the file. One
line becomes one record and each record will have fields.

 awk operates on one record at a time.

 A record consists of fields, which by default are separated by any
number of spaces or tabs or customized delimiter (eg “,” or “:”).

 Field number 1 is accessed with $1, field 2 with $2, and so on. $0 refers
to the whole record.

Why use awk

 awk is a programming language designed to search
for, match patterns, and perform actions on files.

Useful for:

 transform data files

 produce formatted reports

Programming constructs:

 format output lines

 arithmetic and string operations

 conditionals and loops

Awk : Usage

 awk [options] ‘script’ file(s)

 awk [options] –f scriptfile file(s)

Options:

 -F to change input field separator

 -f to name script file

Basic AWK Syntax

 consists of patterns & actions:
 awk [options] ‘pattern {action}’filename(s)

 if pattern is missing, action is applied to all lines
 if action is missing, the matched line is printed
 must have either pattern or action

Example:

awk '/for/' testfile

 prints all lines containing string “for” in testfile

awk: Processing model

awk [options]

‘BEGIN { command executed before any input is read}

Pattern { Main input loop for each line of input }

END {commands executed after all input is read}’

filename(s)

awk [options] ‘BEGIN { commands} Pattern { Main } END {commands}’ filename(s)

SOME SYSTEM VARIABLES

FS Field separator (default=whitespace)

RS Record separator (default=\n)

NF Number of fields in current record

NR Number of the current record

OFS Output field separator (default=space)

ORS Output record separator (default=\n)

FILENAME Current filename

awk: First example

Begin Processing

BEGIN {FS=“ ” ;print "Print Totals"}

Body Processing

{total = $1 + $2 + $3}

{print $1 " + " $2 " + " $3 " = "total}

End Processing

END {print "End Totals"}

Input and output files

 Input (cat totals) Output

22 78 44 Print Totals

66 31 70 22 +78 +44 =144

52 30 44 66 +31 +70 =167

88 31 66 52 +30 +44 =126

 88 +31 +66 =185

 End Totals

awk -f totals.awk totals

awk:command line processing

 İnput

1 clothing 3141

1 computers 9161

1 textbooks 21312

2 clothing 3252

2 computers 12321

2 supplies 2242

2 textbooks 15462

 Output

1 computers 9161

2 computers 2321

awk ‘{ if ($2 =="computers”) print}'sales.dat

awk: Arithmetic Operators

Operator Meaning Example

 + Add x + y

 - Subtract x – y

 * Multiply x * y

 / Divide x / y

 % Modulus x % y

 ^ Exponential x ^ y

Example:

% awk '$3 * $4 > 500 {print $0}' file

awk: Relational Operators

Operator Meaning Example

 < Less than x < y

 < = Less than or equal x < = y

 == Equal to x == y

 != Not equal to x != y

 > Greater than x > y

 > = Greater than or equal to x > = y

 ~ Matched by reg exp x ~ /y/

 !~ Not matched by req exp x !~ /y/

awk: Logical Operators

Operator Meaning Example

 && Logical AND a && b

 || Logical OR a || b

 ! NOT ! a

Examples:

awk '($2 > 5) && ($2 <= 15) {print $0}' file

awk '$3 == 100 || $4 > 50' file

awk: Range Patterns

 Matches ranges of consecutive input lines

Syntax:

 /pattern1/,/pattern2/ {action}

 pattern can be any simple pattern

 pattern1 turns action on

 pattern2 turns action off

awk: assignment operators

= assign result of right-hand-side expression to

 left-hand-side variable

++ Add 1 to variable

-- Subtract 1 from variable

+= Assign result of addition

-= Assign result of subtraction

*= Assign result of multiplication

/= Assign result of division

%= Assign result of modulo

^= Assign result of exponentiation

awk: control structures

 Conditional

 if-else

 Repetition

 for

 while

awk: if Statement

Syntax:
if (conditional expression)

 statement-1

else

 statement-2

Example:
if (NR < 3)

 print $2

else

 print $3

awk:for Loop

Syntax:
for (initialization; limit-test;

update)

 statement

Example:
for (i = 1; i <= NR; i++)

{

 total += $i

 count++

}

awk: while Loop

Syntax:
while (logical expression)

 statement

Example:
i = 1

while (i <= NF)

{

 print i, $i

 i++

}

References

 Unix Concepts and Applications –by Sumitabha Das

 http://www.grymoire.com/Unix/Sed.html

 http://www.grymoire.com/Unix/Awk.html

 http://www.grymoire.com/Unix/Quote.html

 http://www.grymoire.com/Unix/Find.html

 http://www.scribd.com/doc/60807668/SED-and-AWK-
101-Hacks

http://www.grymoire.com/Unix/Sed.html
http://www.grymoire.com/Unix/Awk.html
http://www.grymoire.com/Unix/Quote.html
http://www.grymoire.com/Unix/Find.html

