

Thermal Quarkonia in heavy ion collisions

Rishi Sharma

January 30, 2015

Timescales

- ▶ As we increase the temperature of the thermal medium, quarkonia in thermal equilibrium with the medium will be less bound due to screening effects and dissociation processes
- ▶ At high enough temperatures they will “melt”. In lattice calculations shows up as a broadening of spectral functions
- ▶ In the heavy ion environment multiple time scales relevant
- ▶ Interplay between formation rates, dissociation rates and the expansion rate of the medium

Dissociation rates

- ▶ Weak coupling thermal field theory calculations using a hierarchy of scales $m_Q \gg T \gg \Lambda_{QCD}$ expected to be valid at high temperature give widths $\Gamma \sim g^2 T$
- ▶ The widths are related to the imaginary part of the potential as well as the screening of charge
- ▶ (*Petreczky et. al., Laine et. al., Brambilla et. al., Rothkopf et. al.*)

Usual procedure

- ▶ The $Q\bar{Q}$ formed on time scales $\sim 1/m_Q$
- ▶ Quarkonia formed on time scales $t_f \sim 1/E_b$
- ▶ Write down the rate equation for the yields of quarkonia by using the width from dissociation rates or from the complex eigen-energies
- ▶ (Hees et. al., Strickland et. al.)

Formation rates

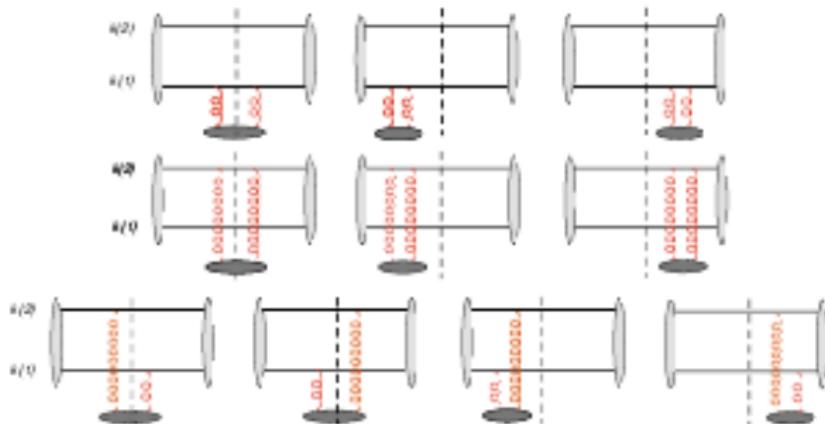
- ▶ No firm theory
- ▶ A rough estimate gives $1/E_b \sim 1/(mv^2) \sim 1/(m\alpha)$ for vacuum binding energies
- ▶ Should one use “thermal” binding energies or vacuum binding energies? The formation times for the “thermal” binding states is much longer
- ▶ For a boosted (high p_T) quarkonium, even larger in the lab frame

A model for high p_T quarkonium propagation

- ▶ Following is a model for $p_T \gtrsim 3\text{MeV}$ quarkonia (*Vitev, Sharma*)
- ▶ Partonic process create color-octet and color-singlet “pre-quarkonia” on a short time scale of $1/m_Q$
- ▶ The production cross-section in pp collisions is

$$\begin{aligned} d\sigma(J/\psi) = & d\sigma(Q\bar{Q}([{}^3S_1]_1))\langle\mathcal{O}(Q\bar{Q}([{}^3S_1]_1) \rightarrow J/\psi)\rangle + d\sigma(Q\bar{Q}([{}^1S_0]_8))\langle\mathcal{O}(Q\bar{Q}([{}^1S_0]_8) \rightarrow J/\psi)\rangle \\ & + d\sigma(Q\bar{Q}([{}^3S_1]_8))\langle\mathcal{O}(Q\bar{Q}([{}^3S_1]_8) \rightarrow J/\psi)\rangle + d\sigma(Q\bar{Q}([{}^3P_0]_8))\langle\mathcal{O}(Q\bar{Q}([{}^3P_0]_8) \rightarrow J/\psi)\rangle \\ & + d\sigma(Q\bar{Q}([{}^3P_1]_8))\langle\mathcal{O}(Q\bar{Q}([{}^3P_1]_8) \rightarrow J/\psi)\rangle + d\sigma(Q\bar{Q}([{}^3P_2]_8))\langle\mathcal{O}(Q\bar{Q}([{}^3P_2]_8) \rightarrow J/\psi)\rangle + \dots \end{aligned}$$

- ▶ $d\sigma(Q\bar{Q}([{}^3S_1]_1))\dots$ are short distance cross-sections that can be calculated in perturbative QCD
- ▶ $\langle\mathcal{O}(Q\bar{Q}([{}^3S_1]_1) \rightarrow J/\psi)\rangle\dots$ are non-perturbative matrix elements that have to be fitted to experiments (*Braaten, LePage, Cho, Leibovich....*)


Basic model

- ▶ For pp collisions in NRQCD the details of hadronization from the short distance state do not matter
- ▶ For the AA collisions, the dynamics are important. We assume that for $t_f \sim 1/E_b$, a meson is formed. This is a simplification
- ▶ The color-octet component undergoes energy loss during this time
- ▶ Collisions with the thermal gluons dissociate this meson on a time scale t_{diss}
- ▶ Rate equations give the evolution of the quarkonium yields

Dissociation rate

- ▶ The dissociation rate given most easily in light cone coordinates with z chosen to be in the direction of the motion of the quarkonium
- ▶ The collision with thermal gluons affects the wavefunction perpendicular to the motion
- ▶ The heavy quarks get a transverse momentum kick $\sim \mu = gT$ after travelling the mean free path λ

Dissociation rate

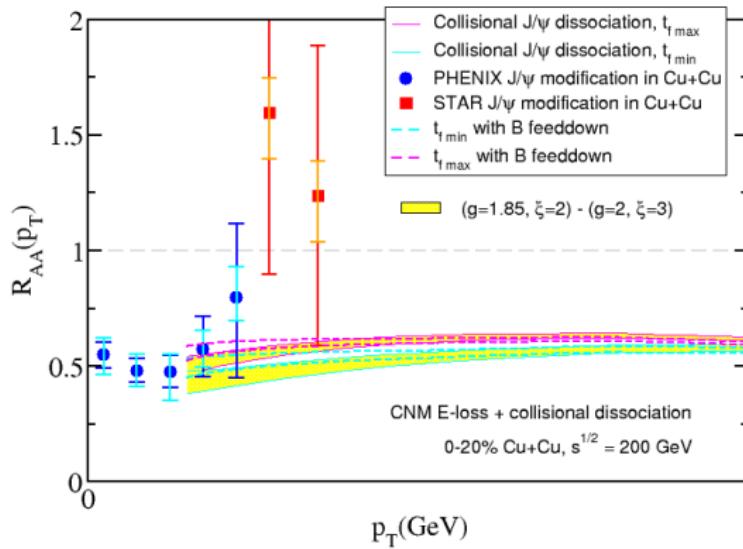
Dissociation rate

$$P_{\text{surv.}}(\chi\mu^2\xi) = \left| \frac{1}{2(2\pi)^3} \int d^2\mathbf{k} dx \psi_f^*(\Delta\mathbf{k}, x) \psi_i(\Delta\mathbf{k}, x) \right|^2 = \left| \frac{1}{2(2\pi)^3} \int dx \mathcal{N}^2 \right. \\ \left. \pi x(1-x)\Lambda^2 e^{-\frac{m_Q^2}{x(1-x)\Lambda^2}} \left[\frac{2\sqrt{x(1-x)\Lambda^2} \sqrt{\chi\mu^2\xi + x(1-x)\Lambda^2}}{\sqrt{x(1-x)\Lambda^2}^2 + \sqrt{\chi\mu^2\xi + x(1-x)\Lambda^2}^2} \right] \right|^2$$

$$\blacktriangleright t_{\text{diss.}}(p_T, \alpha) = \frac{dP_{\text{diss.}}}{dt} = -\frac{dP_{\text{surv.}}}{dt}$$

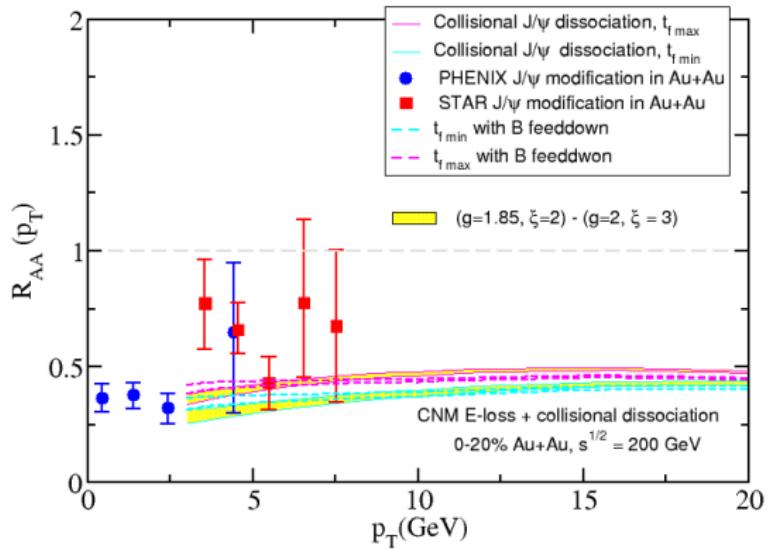
Formation time tables

- ▶ $\delta r \sim \frac{1}{m_Q v}$, thus $t_{\text{form}} \sim (1, 2) \gamma \frac{1}{m_Q v^2}$
- ▶ The formation and decay rates for $p_T = 10 \text{ GeV}$ for $0 - 20\%$ central collisions

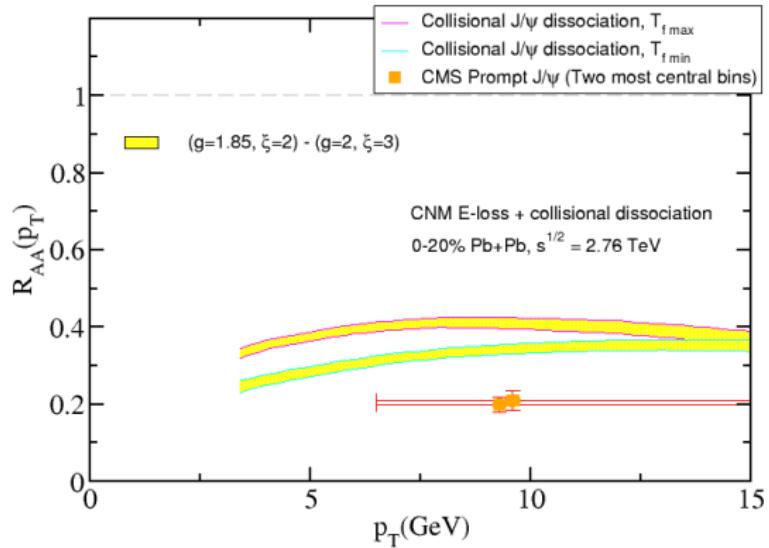

Charmonium state	J/ψ	$\chi_{c0,1,2}$
Formation time _{max} [fm/c]	3.3	4.4
Dissociation time [fm/c]	1.7	1.6

Bottomonium state	$\Upsilon(1)$	$\Upsilon(2)$	$\Upsilon(3)$	$\chi_{b0,1,2}(1)$	$\chi_{b0,1,2}(2)$
Formation time _{max} [fm/c]	1.4	2.9	4.2	2.4	3.5
Dissociation time [fm/c]	3.3	2.2	1.9	1.9	2.0

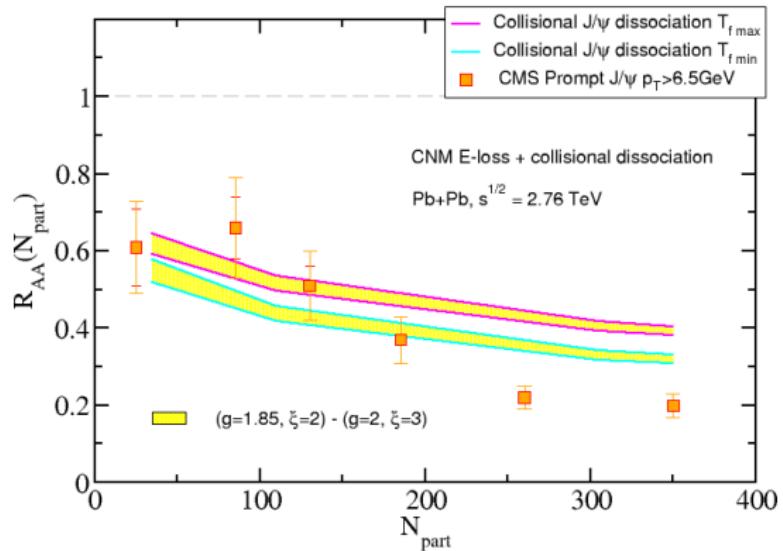
Implications for R_{AA}


- ▶ Dissociation processes will reduce the yield of quarkonia in AA collisions over the (scaled) yield in pp collisions; some of the quarkonia form open heavy flavor mesons. $R_{AA} < 1$
- ▶ Seen for Υ as well as J/Ψ (*RHIC, LHC*)
- ▶ Complications due to cold nuclear matter effects
- ▶ The most relevant cold nuclear matter effect taken into account is cold nuclear matter energy loss

Results for Cu+Cu at RHIC


RS and Ivan Vitev Phys. Rev. C

Results for Au+Au at RHIC


R_{AA} at the LHC

(d)

R_{AA} versus N_{part} at the LHC

(b)

Summary

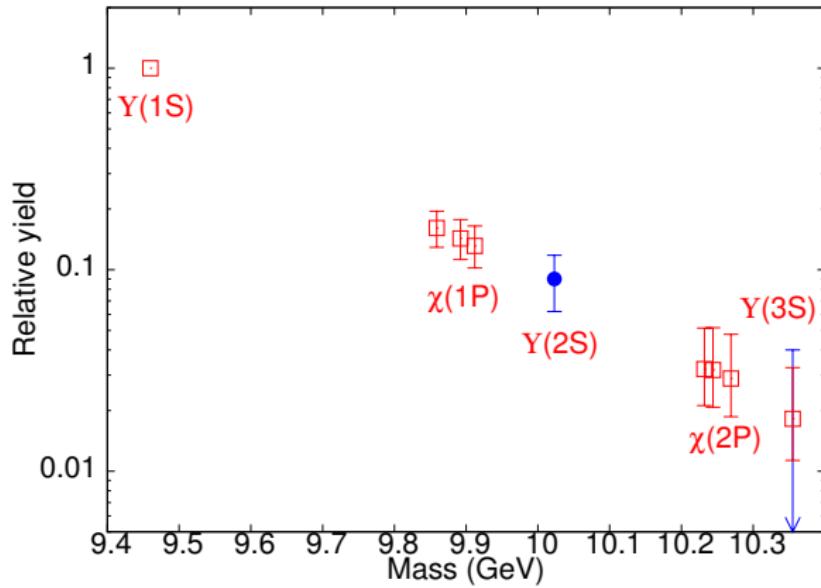
- ▶ The biggest uncertainty comes from the formation time
- ▶ Cold nuclear matter effects also give some suppression
- ▶ For small p_T , consequences of thermal equilibrium

Implications for relative yields

- ▶ If the formation and dissociation processes are rapid enough for the ground state as well as the excited states, the ratios of their yields should thermalize
- ▶ A simple model: the quarkonium bound states thermalize between each other till a freezeout point
- ▶ For this purpose more useful to compare the relative yields (*CMS JHEP04(2014)103, 2.76TeV, mid-rapidity*)

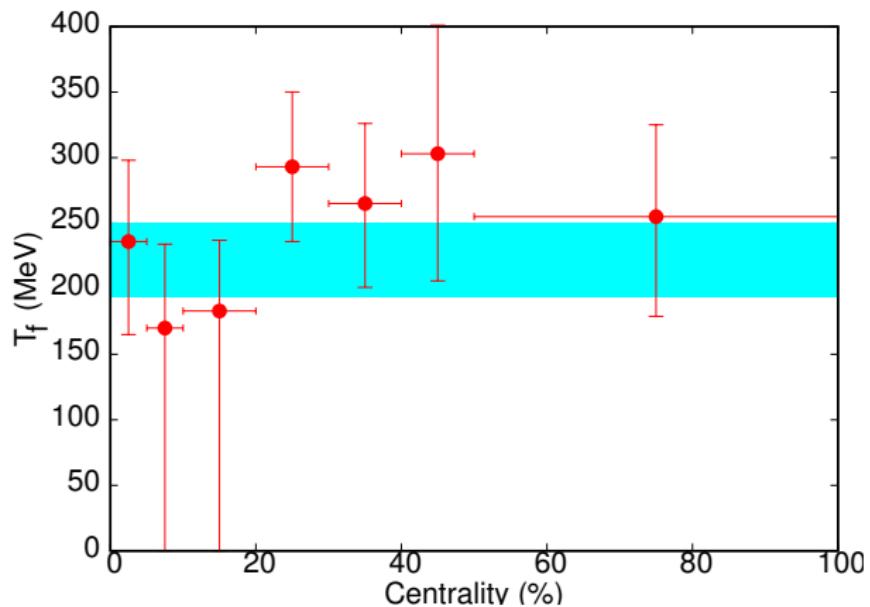
$$\begin{aligned} r[\Upsilon(2S)] &= \frac{N_{\text{PbPb}}[\Upsilon(2S)]}{N_{\text{PbPb}}[\Upsilon(1S)]} = 0.09 \pm 0.02 \pm 0.02 \pm 0.01 \\ r[\Upsilon(3S)] &= \frac{N_{\text{PbPb}}[\Upsilon(3S)]}{N_{\text{PbPb}}[\Upsilon(1S)]} < 0.04 \text{ (95% confidence limit)} \end{aligned} \tag{1}$$

- ▶ $\frac{N(\psi(1))}{N(\psi(2))} = \left(\frac{m_1}{m_2}\right)^{3/2} e^{(E_2 - E_1)/T}$
- ▶ Assuming freezeout occurs relatively late


$$T_f = 222_{-29}^{+28} \text{ MeV} \tag{2}$$

from $\Upsilon(2S)/\Upsilon(1S)$ and $T_f < 282 \text{ MeV}$ the corresponding

Implications for relative yields


- ▶ Cold nuclear matter effects should not play a role
- ▶ Valid only for small p_T yields
- ▶ So far described a one parameter (T) model which is fitted to one data point. But observations of other states can give more information

Thermal model for bottomonia

Sourendu Gupta and RS Phys. Rev. C 89, 057901 (2014)

T_f versus centrality

(Sourendu Gupta and RS)

Remarks

- ▶ Comparing to pp , pPb
 - ▶ The yield ratios for pp and pPb not very different
 - ▶ Both are inconsistent with a thermal interpretation
($T_{12} \approx 400\text{MeV}$, $T_{13} \approx 200\text{MeV}$)
- ▶ Mean p_T not given, but using peak p_T as proxy, $p_T \sim 3.5$ giving $p_T/m_{Q\bar{Q}} \sim 0.35$

T_f versus rapidity

- ▶ We expect the freezeout to be independent of rapidity as well (caveats)
- ▶ Data for $\Upsilon(1S)$ shows $R_{AA} = 0.22 \pm 0.05 \pm 0.02 \pm 0.03$ in the central bin (*ALICE Physics Letters B 738 (2014) 361372*) for $2.5 < y < 4$
- ▶ Pushing the thermal interpretation further, we expect $\Upsilon(2S) = 0.11 \pm 0.08$ (Preliminary)

What about J/ψ ?

- ▶ (CMS 2012)

$$\begin{aligned} r[\psi(2S)] &= \frac{N_{\text{PbPb}}[\psi(2S)]}{N_{\text{PbPb}}[J/\psi]} \\ &= \begin{cases} 0.024 \pm 0.008 & (|y| \leq 1.6, 6.5 \leq p_T \leq 30) \\ 0.105 \pm 0.02 & (1.5 \leq |y| \leq 2.4, 3 \leq p_T \leq 30). \end{cases} \end{aligned} \quad (3)$$

- ▶ Naive thermal model gives $T_f = 159 \pm 31$ MeV at central rapidity (larger p_T) but 265 ± 59 MeV at larger rapidity (smaller p_T)
- ▶ Systematics with N_{part} not satisfactory either as T drops from 277MeV to 200MeV as N_{part} decreases from 310 to 35
- ▶ Attribute this to larger $p_T/m_{Q\bar{Q}}$ of the sample

What about J/ψ ?

- ▶ ALICE has data for the double ratio (*arXiv:1211.2578v1*) $R_{AA}(\psi(2S))/R_{AA}(\psi(1S))$ for and p_T all the way to 0. If the pp baseline is given, one can analyze the systematics in a regime where we intuitively expect the simple model to work better
- ▶ Also see ALICE document (*CERN-PH-EP-2014-092*)

Summary

- ▶ A dissociation model used to describe simultaneously RHIC and LHC data on quarkonium yields at high p_T . Not thermalized enough at high T
- ▶ Formation dynamics of quarkonia in a heavy ion collision subtle and give large systematic uncertainties in model calculation of yields
- ▶ There is an interesting pattern in the low p_T yields of excited states of bottomonia at the LHC: the relative yields seem thermal with $T_f \approx 222\text{MeV}$. Seems worth checking further by looking at different y 's and species
- ▶ Does it show up also in the small p_T bins for J/ψ ? Experimentally challenging