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QCD Phase Diagram

. A g,

o o ([ ]
([ J ([ ([
SPPTTT LT ® Y ® ° ® o
.“"' "~.“ ([ J ° ° o
{ RHIC . . o % o
T @ o \_QGP (qu‘a'r.’f-gluo.n olasma)
([ J CP .t. | . : o ° L °
160-190 MeV - —____ (critical point) .
crossover ° ° . o . ®
([
@ 1st order ° °
order ? .
Hadron Phase
- chiral symmetry breaking @
. confinement CSC (color superconductivity)
5-10Pg LB

M. Asakawa (Osaka University)



Fluctuations, or Cumulants (6N").

Observables in equilibrium are fluctuating.
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Variance, Skewness, and Kurtosis
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Why Conserved Charge Fluctuations ?

@ Their values do not change during the phase transition A

- Their values in QGP and Hadron Phase are different

% They change in Hadron Phase only by diffusion )

D measure for electromagnetic charge fluctuation
Heinz, Muller, M.A., Jeon, Koch, 2000

- Charge Fluctuation and Baryon Number Fluctuations are
well-defined quantities, and can be measured on the lattice

- Lattice results and Effective Model results (equilibrium thermodynamics)
are often compared with experimental results

Does this make sense?



Conserved and Non-Conserved Charge Fluc.

Necessary to consider dynamical evolution of fluctuation!
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Three Myths for Fluctuations

- Proton number is a proxy of baryon number

- Freeze-out parameters: lattice meets experiment

- Global Charge Conservation is important even at LHC



Proton Number Cumulants

- Proton Number Fluctuation has been attracting a lot of interest
because it can be observed experimentally

- Proton Number Fluctuation diverges at CP Hatta and Stephanov, 2003

- Comparisons of experimental results and lattice predictions
have been made (e.g. Gupta et al., Science 2011)
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Experiment: Net Proton
Theory: Net Baryon Is this harmless?




Protons and Baryons

The question here is how these are related to each other:
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Freezeouts

- Net proton number may be considered as
a proxy of net baryon number

chemical

AGS
11 AGeV Deconfinement ) )
Chiral Restoration « Chemical freezeout is close to the
crossover, and (anti)proton number

IS expected to be fixed early (?)
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Heavy lon Physics 101
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- Electromagnetic probes (y’s, dileptons) leave QGP without interaction
no exceptions

- On the other hand, hadrons keep on interacting with each other until
freezeouts

- There are two freeze-outs, chemical and thermal

These are (phenomenological) results of dynamics

Some exceptions may exist # need to understand physics



Exception

If there are low mass resonances with large cross sections,
this exception happens

In our case at hand, A resonances
p,n - > Db, N I=3/2

Cross section




ratio of cross sections
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ratio of cross sections
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How long is the mean free time?

ratio of cross sections
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Meantime to create A* or A°

-1 = &a VN
= [ o (Bauan(E,)

r<afewfm

7[fm]

BW for o & thermal pion

x"‘\-\.
—

T[MeV]

130

140 150 160 170




Time Scales
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z-hadron

T| : time scale to realize isospin randomization

Thadron : time scale of hadron phase duration

Thadron <:| result of state-of-art hydro + cascade calculation




Result of Hydro+Cascade Calculation

Freezeout time distribution

eolamanallty, :
S ey, <::| with after-burner
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FIG. 22. (Color cnline) Freeze-out time distribution of baryons

for hydro+decay (open symbols, above) and hydro+UrQMD (solid
symbols, below) at midrapidity.

providing us with an estimate on the lifetime of the hadronic

phase around 10-20 fin /e, Note that this estimate is subject to I:> ’C ha d ron 10 ~ 20 fm

the same systematic uncertainties discussed previously in the
context of the overall lifetime of the system.
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Nucleon Isospin Randomization in Pion Gas
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Probability Distribution

P'(NP’N NP’N_) — Pf(Np’Nn’Np1Nﬁ)




Production of Additional Fluctuation

1. Original
((ONN)?)

Ny N,

((6Np)?)
2. Additional (from tN—A—nN)

m In, general, fluctuations of Ny and N, are different

m Additional N, fluctuations are created by (thermal) pions




Proton and Nucleon Moments

1. Original
((0NN)?)

((ON,)7)

2. Additional (from tN—A—nN)

T
<(§|\|(et))> 4<(5N(e‘))> 2<N§°‘)>

for isospin symmetric matter

- For free nucleon gas

(long=))= 3 (one))




Proton and Nucleon Moments
Similarly,

M= Ny
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Conclusion 1

« Proton number 1s NOT a proxy of baryon number

> This statement is true at least at RHIC and LHC

> At BES energies,
where pion density is small and 1, IS NOt large,
proton number could be a proxy of baryon number
approximately



An Dependence @ ALICE
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- Freeze-out parameters: lattice meets experiment

In this argument, no rapidity window dependence is taken into account



Schematic Evolution of C.C. Fluctuation
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Time Evolution of Conserved Charge

t
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Variation of a conserved charge in An is
achieved only through diffusion

e

[ The larger An, the slower diffusion ]




Time Evolution of C.C. fluctuation

Quark-Gluon Plasma
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In the An dependence of C.C. Fluctuation, history of system is encoded




Conservation Charge Transport in Hadron Phase

Naively,

Diffusion Equation,

2
o-n = D@nn
Plus Fluctuation

Orn = D@%n + 0,&(n, T)

But it is known stochastic forces for
“Markov process for continuum variable(s)” are Gaussian

We will use a discrete formulation



Diffusion Master Equation (DME)

Divide spatial coordinate into discrete cells
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Solve the DME exactly, and take a=>0 limit

—Pm)=7) [(n.+1){P(n+e; —er1) + P(n+e, —e, 1)}

No approximation is needed Ono, Kitazawa, M.A.. PLB 2014



Net Charge Number

Prepare 2 species of (non-interacting) particles
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Net and Total Charge Numbers

In the following, it is important to distinguish
“net” and “total” charges

fz(net) (c.An) = Qe ) ="
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Evolution of C.C. Fluctuation in Hadron Phase

Hadronization (initial condition)
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Why Hadronization Mechanism Matters

For example, even within the recombination model,
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In other scenarios, N4 may differ, but N\ does not



An Dependence at Kinetic Freezeout
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An Dependence at Kinetic Freezeout

[Initial fluctuations:
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Conclusion 2

- Freeze-out parameters: lattice meets experiment

> Diffusion effect in the hadron phase is important
(observed fluctuations do not reflect their values
at chemical freezeout)

> Necessary to measure An dependence of cumulants

> 4th order cumulant includes information of hadronization
mechanism



Charge Fluctuation @LHC

ALICE, PRL110,152301(2013)

[ ® ALICEPb-PbAn=1.6

* 35 D-measure )
. SN2
5 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!%IIIIIIIIIIIIIIIIIIIIIIIIIIII 3 D _ 4 < Q>
_ mnmn Ic-l,}?adgon Gas % <Nc‘5 1 N65>
- : iIfoHEAPquL'Ib A =1.0 { * D ~ 3-4 Hadronic
\_L* D~1 Quark /

t suppression

7 gignifican
(S (GeV) tfrom hadronic value

. at LHC energy!

[ (5N32> IS not equilibrated at freeze-out at LHC energy! ]




Closer Look: An dependence
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Finite Size Effect (Global Charge Conservation)?

An

»
L

Nhotal

C. C. Fluctuation: 0 if the whole system is observed
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77 total

if the whole system is thermalized (Bleicher, Jeon, Koch)



Time Evolution of C.C. fluctuation

Quark-Gluon Plasma |
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DME with Reflecting Boundaries

Sakaida, Kitazawa, M.A., PRC 2014
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reflecting boundaries

Diffusion Master + Boundary Condition(GCC Effect)

Equation Particles do NOT flow in/out.

* Diffusion from Hadronization to Thermal Freeze-out
X [nitial Condition : No Fluctuations

I or Fluctuations in Thermal QGP
Rapidity Window Dependence of Charge Fluctuations




Diffusion + Global Charge Conservation

————————————————————————— —————

If one looks at the Total System, B

Global Charge Time Higher“

Conservation Evolution Fluctuations
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Boundary Effect
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Boundary Effect
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Physical Interpretation

T — T0
5 An d(7) : Average Diffusion Distance
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- n = 0 Neot /2 "l Ttot : Total Length of Matter
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Effects of the GCC appear
only near the boundaries.




Another View: Time Evolution
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Another View: Time Evolution
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Kurtosis
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Conclusion 3
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Time Evolution of C.C. fluctuation

Quark-Gluon Plasma |
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In Summary

« Proton number is a proxy of baryon number

- Freeze-out parameters: lattice meets experiment

- Global Charge Conservation is important even at LHC

mm) Fach of these needs to be reconsidered again

At low energies (e.g., BES energies)

Larger effect of global charge conservation
(smaller system size)

Violation of Bjorken scaling

(lost correspondence
between spacetime rapidity and rapidity)
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