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Introduction

Analysis of anisotropic flow vn

Methods currently in use (event-plane, cumulants, ..):

devised before the importance of flow fluctuations was
recognized

New method: extraction of flow fluct. directly from
data on 2-particle correls; uses all the information

Based on Principal Component Analysis (PCA) —
applied to the 2-particle correlation matrix, 〈cos n∆φ〉
Leading eigenmode ←→ usual v2, v3
Subleading modes of v2, v3 revealed for the 1st time
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Principal Component Analysis (PCA)

Statistical procedure to elucidate the underlying
covariance structure in the multi-dimensional data

To identify the directions (PC) where there is the most

variance, and possibly reduce the dimension of data

Diagonalize the covariance matrix: Eigenvector with

the largest eigenvalue is the direction of greatest
variance; that with the 2nd largest eigenvalue ...

PCA can be thought of as fitting a hyper-ellipsoid to

the cloud of data points — each of its axes
representing a PC
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Flow Picture

Single-particle distribution in an event:
dN
dp

=
∑∞

n=−∞Vn(p) exp(inφ)

Pair distribution averaged over events:
〈

dNpairs

dp1dp2

〉

=
〈

dN
dp1

dN
dp2

〉

+O(N) ← nonflow correl.

=
∑∞

n=−∞ Vn∆(p1, p2) exp(in(φ1 − φ2))

Two-particle correlation matrix:
Vn∆(p1, p2) = 〈Vn(p1)V

∗
n (p2)〉,

neglecting non-flow correlations
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Covariance Matrix

Vn∆(p1, p2) = 〈Vn(p1)V
∗
n (p2)〉 is a covariance matrix.

Covariance matrix is positive semidefinite, and its
eigenvalues are non-negative.

PCA yields Vn∆(p1, p2) ≃
∑k

α=1 V
(α)
n (p1)V

(α)∗
n (p2)

= sum over modes of flow fluct. Here (k ≤ Ndim).

If no flow fluctuations, then factorization occurs:
Vn∆(p1, p2) ≃ V

(1)
n (p1)V

(1)∗
n (p2)
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Method

Divide the detector acceptance into several bins in
pT and/or η. Let p: bin index.

Flow vector in an event: Qn(p) ≡
∑M(p)

j=1 exp(inφj)

Covariance matrix Vn∆(p1, p2)

≡ 〈Qn(p1)Q
∗
n(p2)〉− 〈M(p1)〉 δp1p2−〈Qn(p1)〉 〈Q∗n(p2)〉

RHS2: subtracts self-correl. RHS3: singles out fluct.

PC are obtained by diagonalizing Vn∆(p1, p2):

Eigenvalues: λ(1) > λ(2) > λ(3) · · ·
Eigenvectors: ψ(α)(p) = V

(α)
n (p)/

√
λ(α)
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Method (contd.)

Flow in a given event is a sum over eigenmodes:

Vn(p) =
∑k

α=1 ξ
(α)V

(α)
n (p), where

ξ(α): complex, random variables with zero mean

and unit variance, i.e.,
〈

ξ(α)
〉

= 0,
〈

ξ(α)ξ(β)∗
〉

= δα,β
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Method (contd.)

We define

v
(α)
n (p) ≡ V

(α)
n (p)
〈M(p)〉

n = 0: rel. multiplicity; n 6= 0: anisotropic flow

Thus v
(α)
0 (p): relative multiplicity fluctuations,

v
(α)
n (p) for n 6= 0: anisotropic flow fluctuations
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AMPT simulations (Lin, Ko, Li, Zhang, Pal 2005)

Initial conditions from HIJING 2.0
(Deng, Wang, Xu 2011)

These contain nontrivial e-by-e fluctuations

Flow generated mainly as a result of partonic cascade

Resonance formations & decays −→ nonflow effects

In agreement with v2 to v6 versus pT for all centralities
at 2.76 TeV. (Except perhaps, ultra-central)

0-10% centrality, ∼ 104 events
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Relative Multiplicity Fluctuations vs Pseudorapidity
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Orthogonality of Principal Components

∑

p V
(α)
n (p)V

(β)∗
n (p) = 0, if α 6= β
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Relative Multiplicity Fluctuations vs Pseudorapidity
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Elliptic flow fluctuations vs Pseudorapidity
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Triangular flow fluctuations vs Pseudorapidity
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Relative Multiplicity Fluctuations vs Transverse Momentum

0 1 2 3 4
p

T
 (GeV/c)

0

0.1

0.2

v
0(α

)
α = 1 
α = 2

Pb+Pb@√s = 2.76 TeV;  0-10%

} AMPT
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Subleading modes ≪ Leading modes; Eigenvalue λ(2) ≪ λ(1)

No experimental data available for any result shown so far
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PCA – Eigenvalues for v2(pT )
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ALICE, Pb+Pb, 2.76 TeV

v2, 0−10% centrality

Band: PCA applied to purely statistical fluctuations

Negative eigenvalues of Vn∆(p1, p2) are compatible with those of
large random matrices. Can be attributed to stat. fluct.

Note the few leading eigenmodes which clearly stand out
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PCA – Eigenvalues for v3(pT )
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ALICE, Pb+Pb, 2.76 TeV

v3, 0−10% centrality

Band: PCA applied to purely statistical fluctuations

Negative eigenvalues of Vn∆(p1, p2) are compatible with those of
large random matrices. Can be attributed to stat. fluct.

Note the few leading eigenmodes which clearly stand out
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Elliptic Flow Fluctuations vs Transverse Momentum
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PCA results for the leading and subleading modes

Subleading modes ≪ Leading modes; Eigenvalue λ(2) ≪ λ(1)
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Triangular flow fluctuations vs Transverse Momentum
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Subleading modes ≪ Leading modes; Eigenvalue λ(2) ≪ λ(1)
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Discussion

2-particle azimuthal correlations depend on momenta
of both particles. Traditional methods: one of the

momenta integrated over. New method: Makes use of
both the momenta, i.e., all the info in correl matrix.

PCA has revealed previously unknown substructure in
multiplicity, elliptic flow, and triangular flow

fluctuations.

We anticipate a rich experimental and theoretical
program studying the dynamics of subleading flow

vectors, which can be used to further constrain the
plasma response to the initial geometry.
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