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Motivation

Motivation

o Recently it has been proposed that P and CP violation should manifest in heavy
ion collisions through the electric charge separation with respect to reaction plane
in non-central collisions.
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o Magpnetic field created in off central Au-Au collisions (at 100GeV per nucleon) at
RHIC (eB(7 = 0.2fm) = 103 — 10* MeV? ~ 1017 Gauss).

D. Kharzeev, Phys. Lett. B 633, 260 (2006),

D. Kharzeev, L.D. Mclerran and H.J. Warringa, Nucl. Phys. A 803, 227 (2008),
D. Kharzeev, A. Zhitnitsky, Nucl. Phys. A 797, 67 (2007),
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Motivation

o QCD contains field configuration which are characterized by a topological
2 ~
invariant, the winding number Q,, = 357 fd4xFﬁVFa‘“’ =0,£1,42,.....

o Configuration with nonzero Q,, leads to the non-conservation of axial currents
even in chiral limit.
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o Let at t = —oo we have N; = Ng then it follows from above equation,

(N = NR)|t=co — (NL = NR)|t=—co = 2NrQw

@ Thus non-zero Q,, leads to chiral imbalance or finite us.

Kharzeev, L.D. Mclerran and H.J. Warringa, Nucl. Phys. A 803, 227 (2008),
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Figure: Illustrate a mechanism by which configuration with non zero Q,, can separate
charge in presence of a background magnetic field leading to CME (Chiral Magnetic
effect).

@ In presence of magnetic field spins of quarks align parallel or anti-parallel to
magnetic field (depending upon the sign of electric charge).

o Quw = —1 will convert left handed up/down quark into right handed up/down
quark by reversing direction of momentum.

o Right handed up quarks will move upward and right down quarks will move
downward. A charge difference Q@ = 2e will be created.

D. Kharzeev, L.D. Mclerran and H.J. Warringa, Nucl. Phys. A 803, 227 (2008),
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o First preliminary result of such a study has been presented recently by STAR
Collaboration at RHIC by measuring three particle azimuthal correlator
(cos(da + ¢35 — 2tpgp)) with respect to collision centrality.
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o From the fig (c) it is clear that correlations of same charge and opposite charge
particles separates out on opposite sides.
o Correlations increases in more peripheral case.

I. V. Selyuzhenkov[STAR Collaboration], Rom. Rep. Phys. B 58, 49 (2006), 6
B. I. Abelev et. al.[STAR Collaboration], Phys. Rev. C. 81, 054908 (2010),
B. I. Abelev et. al.[STAR Collaboration], Phys. Rev. Lett. 103, 251601 (2009),



Motivation

Motivation

@ Recently, based on Berry curvature corrections, a modified kinetic theory has
been developed which allows one to study the CP violating or chiral effects in
non-equilibrium conditions.

o It has been found that for modified kinetic theory the presence of CP-violating
effects can lead to the instabilities in the transverse branch of dispersion relation
in the quasi-stationary limit.

Typical time scale of such instability is 7 = 1/(a?p).

However in many realistic situations in plasma physics it is important to consider
initial distribution function to be anisotropic in momentum space. It is well
known that momentum anisotropy can lead to so called Weibel instability.
Therefore it is important to consider effect of anisotropy in modified kinetic
theory and to see how the two instabilities compete with each other.

D. T. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013) [arxiv:1210.815],
Y. Akamatsu and N. Yamamoto, Phys. Rev. Lett. 111, 052002 (2013),
E.S. Weibel, Phys. Rev. Lett. 2, 83, (1959).
Berry Curvature: When Hamiltonian depends on some external time dependent parameter which changes slowly then by adiabatic theorem
wave function picks up an additional dynamical phase factor apart from the usual one. That additional dynamical phase is called Berry
phase and can expressed as the surface integral of a curl of a vector (called Berry connection), if parameter describe a closed loop. The curl
of Berry connection is called Berry curvature. Which can be easily calculated for the case of chiral fermion.



Motivation

Intuitive understanding of these two instabilities

Chiral Instability:
@ The number and energy densities of the particles with chiral chemical potentials
w respectively given by uT? and p?T2.
o Number density n ~ akA2, A is the gauge field.

@ When number density associated with the gauge field and particles are same we

2
nT
have k ~ 52
T2
aZAZ

@ The typical energy for the gauge field e4 ~ k?A% = 2 T2

2 . . .
@ Thus for % < A? there exists a state where the gauge field for this particular k
can lower its energy density (in comparison with the energy density of the matter)
by increasing A. This leads to the chiral-imbalance instability.

Y. Akamatsu and N. Yamamoto, Phys. Rev. Lett. 111, 052002 (2013),
M. Joyce and M. Shaposhnikov, Phys. Rev. Lett. 79, 1193 (1997).
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Intuitive understanding of these two instabilities

Weibel Instability:
1
Lye— (VPEHHOR P2/ T

@ Let us consider the distribution function ng =

o If in this situation a disturbance with a magnetic field spontaneously arises from
noise, one can write the Lorentz force term in the kinetic equation as,

—(y/pP2+(1+£)p2+p2)/ T
e(v x B) - 0pnS = e[£(vzBx — vXBz)pTY] <e 2 )

Lo~ (VRHO+ER D)/ T

This would be zero for isotropic plasma i.e. for £ = 0.

This Lorentz force will produce current-sheets which will generate magnetic field
that enhances the original magnetic field thus perturbation grows.

E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959),
B. D. Fried, Phys. Fluids 2, 337 (1959).
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Chiral kinetic theory

@ In this description we have considered the weak gauge field limit, where there is
no essential difference between Abelian and non-Abelian gauge fields up to color
and flavor degrees of freedom.

1 - . 0 = onp
+71+eB-Q [(eE+ev><B+e(E-B)Qp).aip
+(v+eE><ﬂp+e(v Qp) B) 8""}:0,

o where i = & 8 E—eE—— ep = p(1 — eB- Q) and Qp = +p/2p3. Here £

sign corresponds to right and Iefted handed fermions respectively.

o If Q, =0, above equation reduces to Vlasov equation.

@ From above equation it is easy to get,
d3p on
o v-'zz/ (9-—")53,
IV ] 2 U o

p)p;

where,

d°p
(2m)3

D. T. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013) [arxiv:1210.815].,
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Chiral kinetic theory

) d*p on on on,
J:—e/(27r)3 [epa—;+e<ﬂp-8—;>ep3+epﬂpxa—; +EXxo.

d3p
g:/i(2ﬂ)39pnp.

@ We follow the power counting scheme A, = O(e) and Ox = O(J) where € and §
are small parameters.

0 0 Oep\ Onp
g .2 E A s |
<8t v 8x) "ot (e tevx 8x) op

o Where v = %.

D. T. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013) [arxiv:1210.815].,

1 ~ - onp ~
cB+ei x B+ (E B)2p) - —o + (V4B x Dp + i 2p)B) -
op

i Ompy _
np+1+es»ﬂp[( ax}7



Linear response analysis of anisotropic chiral plasma

Linear response analysis of anisotropic chiral plasma

@ We consider the distribution function of the form
= 1/[e /T 4 1]

ng = np(o) + enp(eé),

0(0) _ 1 0(ed) _ [ Bv e(P—1)/T
@ where, np = =T and Ny = (25 ) m

o p=+/p?2+£&(p-0)2
@ Anomalous Hall current depends on electric field, it can be of order O(ed) or
higher. We are interested in finding deviations in current and distribution function
up to order O(ed), only ng(o) will contribute to the Hall current term.
1 v 1
== [ dQdp -
772 / PILTe(v-)12 (1 + eG—m)/T)

=0.

@ Anomalous Hall current vanishes.

The distribution function can be decomposed into separate scales as follows,

np = n + e(np (65))

P. Romatschke and M. Strickland, Phys. Rev. D 68, 036004 (2003).
C. Manuel and J. M. Torres-Rincon, arXiv:1312.1158[hep-ph] (2014).
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Linear response analysis of anisotropic chiral plasma

oy 2 [dVI(VHE(v-R)A) [ VK
n*(K)*mD/mr trew-ape O Tvkse )

imyn dQ [ id™K'Iivi(w + E(v - d)(k.A)) Ve AW\
n7(K) = CE/E { (v.k+ i)l + (v - h)2)3/2 ((1 T E(v- ﬁ)2)3/2) i€™k'v!

it 1 (smn VK" v+ E(v - AR
—ie” k' (6 + v.k+ie) <(1+£(v,ﬁ)z)z/z>}

where,
0(0) 0(0) /=
Y T @ (p—p) o (p+ p)
mp = —— dpp — + —
272 Jo op op
c 1 o on®(p—pn) OB+ p)
£ 42 J, op p
2
@ After performing above integrations one can get mé = 2‘;—2 + TTZ and Cg = 4:2. It can be

noticed that the terms with anisotropy parameter £ are contributing in both parity-even and
odd part of the self-energy or polarization tensor.

Jl =Y ()AL (K),
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Linear response analysis of anisotropic chiral plasma

o Maxwell equation,
OF"H = b+ b
Jina = M (K)AL(K),

M#¥(K) is the retarded self energy in Fourier space. Here we denote the Fourier
transform as F(K) = [ d*xe («@t=kX)F(x t).

Choosing temporal gauge Ap = 0
(K — w2)87 — KK 4+ NI(K)IET = iwojLe(K)-

@ From this one can define,
[ATHK)T = (k2 = w?)6T — KK + NI (K).

The poles of [A(K)]¥ will give us the dispersion relation.



Linear response analysis of anisotropic chiral plasma

Finding the Poles of [A(K)]¥ or Dispersion relation

o We decompose first M¥(K) in following six tensorial basis,

N = aPi 4 gPY + P 4+ 6PI + AP 4+ xPI .

@ Where,
Pi =57 — KK /K
Pl =KK /K
S
PI — KW 4+ K7
PY = ie k¥

i ik =k
Pa, = i€ A .

e «,B,7, 6 )\ and X are some sgalar functionsf'of k _:_and w which can l_)_e determined
by a = (P{ — PI)NY, g = P/Ni, v = (2P) — PL)NT, § = 3P} N

L LoD
A=—3PiNY and x = — 55 P NY.
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Finding the Poles of [A(K)]¥ or Dispersion relation

@ We shall do the analysis in the small £ limit (Very weak anisotropy),

2

z 2 1 2 1 2
« = nNr+ 5[E(3+5c0529,,)m,3 = (Ut cos20p)mp + N7 ((1 +3c0s26,) — 2 (3+5cos29n)) ];
2 1 2 2
z B = I'IL+§[E(1+3<:0520,7)mD+I'IL(c0520,77 ?(1+360529n))}§
¢ 2y, 2 L2
vy = 5(3[17— — mp)(z° — 1)sin” Op;
S = i(4zzm2D+3l'lT(1 —422))c059,,;
k n k n
A = ,L[(lfzz)i] 7§L[(1722)—L((3c0520,,71)
42 m% 82 mZD
22%(1 + 3 cos 26 ))+222(1 3c0s20,) — = + 22 (1 4 cos20 )]
- z cos — (1 —3cos - — 4+ = cos ;
" 3 Y10 5
x = &lf(w k),

o Expressions for M+, M are given as,

w
Nr = sz—




Linear response analysis of anisotropic chiral plasma

Finding the Poles of [A(K)]¥ or Dispersion relation

o Similarly we can write [A~1(k)]¥ as

[A"YK)Y = C7PY + CPY + CoPl + CinPL + CAPY + CanPl, .

o Coefficients C's and a's have the following relationship.

CT:k27w2+a
C=-"+8
C=7

Cin=19

Ca= X
Can = X-

@ So once we know «,f3, v, § A and x we can determine coefficient C's.

@ But In order to get dispersion relation we have to find poles of [A(K)]Y not of
[A~1(K)]¥. We can use the following formula,

A K)AKY =6
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Finding the Poles of [A(K)]¥ or Dispersion relation

@ we can obtain following formula for [A(K)]¥.

[A(K))Y = aP! + bPY + cPY + dP} + ePY + fPY

n

@ where,

ae C2 — Cr (G, + Cr)
T 2k2CACanCin + C3CL + 2C3 (Co + C7) — Cr(—K2R2C2, + C.(C + C1))
b K2R CE — Cu(Co + Cr)
- 2ki2CaCapCrn + Cch —+ ﬁ2C§n(Cn + CT) — CT(kaEQCE" + CL(C,, + CT))
o (CaCan + kCin C1) /K
2k? CaCanCin + CaCp + 2 C3 (Co + Cr) — Cr(—k2#2C2 + CL(Cy + C1))
de kii® CanCin + CaCL
"~ 2k CaCanCin + C2CL + W C5,(Co + Cr) — Cr(—Kk2A2C2 + CL(Ch + C1))
. (G, — K+ GG,
2ki? CaCanCin + CaCp + 2 C3 (Co + Cr) — Cr(—k2#2C2 + CL(Cy + C1))
P kCaCyn + Can(Cn + C7)
- 2kn2CaCapCrn + Cch —+ ﬁ2C§n(Cn =+ CT) — CT(—kZEQCEH + CL(Cn =+ CT))
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Finding the Poles of [A(K)]¥ or Dispersion relation

o Therefore the dispersion relation is,

2ki CaCanCun + CaCL + 7 Cap(Co + Cr) — Cr(—K*R* Coy + CL(Co + Cr)) = 0.

@ In the weak anisotropy limit, one can write the dispersion relation as,
C2C, — C7CL(Cn+ CT)) =0,

@ Which give following two branches of Dispersion relation,

C3—C2 - CyCr=0.
¢ =0.

@ When C4 = 0, above equations reduces to exactly the same dispersion relation
discussed in Ref. given below for an anisotropic plasma where there is no parity
violating effect.

o Equation for transverse modes give the following solution,
—(2 +2X
(K — w?) = %,

14
14p_Romatschke, M. Strickland, Phys. Rev. D 68 036004 (2003)
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Poles of [A(K)]¥ or Dispersion relation

o In the quasi stationary limit |w| << k one can get the final form of dispersion
relation as w = ip(k), where p(k) is given by.

40313 2.2
p(k) = < o > K2 [lkN+(1+5cos29 )+—(1+3cos29 ) T; ':D

Tt mp ky
o Where ky = k ,and a = % is the electromagnetic coupling.

@ In the limit £ — 0 we will get,

40‘31“3
P(k):< iz | ki (L — k]
s mD

o From here it is easy to determine that the two instabilities have comparable
2/3 12;1,2042 1

{71'2sz 3

growth at a critical angle 8. = %cos_1 |:(%)

Y. Akamatsu and N. Yamamoto, Phys. Rev. Lett. 111, 052002 (2013).
20
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Results and discussion
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Figure: Shows plots of real and imaginary part of the dispersion relation. Here 6, is the angle between the wave vector k and the
anisotropy vector. Real part of dispersion relation is zero. Fig. (1a-1b) show plots for three cases: (i) Pure chiral (no anisotropy), {ii) Pure

Weibel (chiral chemical potential=0) and (iii) When both chiral and Weibel instabilities are present.
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Figure: Shows plots of real and imaginary part of the dispersion relation. Here 6, is the angle between the wave vector k and the
anisotropy vector. Real part of dispersion relation is zero. Fig. (2a-2b) represent the case when both the instabilities are present but the
anisotropy parameter varies at different values of 6,. Fig. (2c) represents the case when for a particular value of 6, ~ 6¢ two
4033

72 and wave-number k by
mtmy

instabilities have equal growth at different £ values. Here frequency is normalized in unit of w /

22



Summary

Summary

We have studied collective modes in anisotropic chiral plasmas. We have
considered two cases of the instabilities together namely chiral imbalance
instability and Weibel instability.

We found that even for small value of anisotropy parameter (§ << 1), Weibel
instability dominates over chiral imbalance instability.

For £ > 0, the growth rate and range increases significantly when the wave vector
k is in the direction parallel to anisotropy vector n.

Instability gets suppressed when k is in the direction perpendicular to n.
Growth for the two instabilities become comparable at a critical angle

1 -1 212/3 12p2a? 1
c = 3 cos (%) —

§7T2m2D 3

THANK YOU

23



Summary

Berry's Phase

Consider the Hamiltonian of the system with an external time dependent
parameter R(t) denoting it as H(R(t)).

The ket |n(R(t))) of the n'" energy eigenstate corresponding to R(t) satisfies the
eigenvalue equation at time t.

H(R(1))In(R(t))) = En(R(1))In(R(1)))
(n(R(£))In"(R(1))) = b5,

Let R evolve in time from R(0) = Rp.
o Let at time t the state ket is |n(Ry), to; t)

o Time dependent Schrodinger equation that the state ket obeys is.

H(R(t))|n(Ro), to; t) = ih%|n(Ro),to;t> (1)

o where tg = 0.

o

. J. Sakurai, Modern Quantum Mechanics: (Pearson Education, 1994),

24



Summary
Berry's Phase

@ When R(t) is slow enough, we expect from the adiabatic theorem that
[n(Ro), to; t) would be proportional to the n" energy eigenket |n(R(t))) of
H(R(t)) at time t.

n(Ro).tit) = An(ep { — © [ EREDa Hin(RED). ()

Using Eq.(2) in Eq.(1), one can get;

dA;ff) - —An(t)<n(R(r>)|i|n(R(r))>
Anlt) = An(@) o { = [ dt (n(RU)I-Z; In(R) }

"”rn(t)
o Let us call it phase factor y,(t)

=i [ a (R n(R()

[n(Ro). to; £) = A(O)exp{ —i(t) ~ ¢ /0 En(R(t))dt' Hn(R(1))).

Berry Phase

25



Summary
Berry's Phase

@ 7,(t) can also be represented by a path-integral in parameter R(t) space as,

Re
Yn(t) = *i/R dR(n(R(t'))|VrIn(R(t")))

0

@ If R describes a closed loop in parameter space i.e. Rf = Ry

W) = i § dR(RE)|Trln(R())
= // dS - Vg x Q(R)
S(c)
o Where, Q(R) = —i(n(R(t"))|VRr|n(R(t"))). = Berry connection

o While Vg X Q(R) = Q(R) = Berry Curvature.

26
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Berry Curvature for Chiral Fermions

o Consider a chiral fermion expressed by the two-component spinor up satisfying
the Weyl equation.

(o p)up = =£|plup

@ Two component spinor described above has a nonzero Berry connection

Qp = —iu;VpuP

o Nonzero Berry curvature,

Q(p) =

Il
<
©
X
o
©
\

o where p = ‘% is a unit vector.

17

7D, T. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013) [arxiv:1210.815].,

27



Chiral Kinetic Theory

Summary

o Considering a charged fermion in electromagnetic fields and Berry curvature, the
action.

Stxip) = [ dtl(p + A ()57 = Qp)S — eplp) — A°()]
S(e) = / [T ()€2 — H(E)]
o Where, T,(£) = (p/ + eAi(x), ~Qi(p)) and £ = (', p')

@ Equations of motion of the action read.

OH(§)
ae

zabgb = -

o Where ¥, = Bgz(bﬁ) _ 5)(;2(35)_

18 19 20 21

18G. Sundaram and Q. Niu, Phys. Rev. B9, 14915 (1999)
19D, T. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013) [arxiv:1210.815].,

20D Xiao, J. Shi, and Q. Niu. Sundaram and Q. Niu, Phys. Rev. Lett.95, 137204 (2005)
21¢. Duval and Z. Horvath, P. A Horvathy, L. Martina and P. Stichel, Mod. Phys. lett. B20, 373 (2006)
28
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Chiral Kinetic Theory

Further we rewrite above equation as,
OH(¢)

2 —1\ab

Hamilton's equation of motion is,

€ = {2, H()} = —{e, e} 210

aeb

= {2 =1

@ Explicit form of poision brackets with berry curvature,
) €k T 5;i+eQ;B; oo e€;ik By
o (X', ¥} = ega X\ P} = —Gr@a PP = —Hepa -

. .. k
o Where B = ¢k 24°
Ox)

29



Summary

Kinetic Equation

o Invariant Phase space gets modified, dI' = \/detX ,,d€ = (1 + eB - Q)%.
@ Equivalent Liouville's theorem,

o — (5)2 1OH(¢ )8np:

deb oga

o Taking H = ¢p + Ao, One can explicitly write down the kinetic equation as,

30



Summary
Linear responce analysis of anisotrpic chiral plasma

Therefore,
. d3p Onp Onp onp
== [ G o e (20 G ) e e 2.

The distribution function can be decomposed into separate scales as follows,

mp = i+ e(n?) + n™).

0(0)
0 9\ (o onp
v 2 — (E+vxB)-
(at Y Bx)np (E+v>xB) op

0 0 0(e6) (e6)y _  1Oe ang(o)
<8t+v 8x>(np e ) = e Ox ap

HAG d
J;<):62/( f)’3 Vi )

3 0(0) i 9,6
i) = ez/ d°p Vin'()eé) v/ Onp B ,eijk‘i%
(2m)3 2p Op 2p Oxk

a a dep Anp
— +tv-— |np+ |(eE+tevxB—- — | — =0
ot Ix Ox ap

22
22
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