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Motivation

Recently it has been proposed that P and CP violation should manifest in heavy
ion collisions through the electric charge separation with respect to reaction plane
in non-central collisions.

Magnetic field created in off central Au-Au collisions (at 100GeV per nucleon) at
RHIC (eB(τ = 0.2fm) = 103 − 104 MeV 2 ∼ 1017 Gauss).

D. Kharzeev, Phys. Lett. B 633, 260 (2006),
D. Kharzeev, L.D. Mclerran and H.J. Warringa, Nucl. Phys. A 803, 227 (2008),
D. Kharzeev, A. Zhitnitsky, Nucl. Phys. A 797, 67 (2007),
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Motivation

QCD contains field configuration which are characterized by a topological

invariant, the winding number Qw = g2

32π2

∫
d4xF a

µν F̃
µν
a = 0,±1,±2, .....

Configuration with nonzero Qw leads to the non-conservation of axial currents
even in chiral limit.

∂µj
µ5 = −

Nf g
2

16π2
F a
µν F̃

µν
a .

Let at t = −∞ we have NL = NR then it follows from above equation,

.(NL − NR)|t=∞ − (NL − NR)|t=−∞ = 2Nf Qw

Thus non-zero Qw leads to chiral imbalance or finite µ5.

D. Kharzeev, L.D. Mclerran and H.J. Warringa, Nucl. Phys. A 803, 227 (2008),
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Motivation

(a)

Figure: Illustrate a mechanism by which configuration with non zero Qw can separate
charge in presence of a background magnetic field leading to CME (Chiral Magnetic
effect).

In presence of magnetic field spins of quarks align parallel or anti-parallel to
magnetic field (depending upon the sign of electric charge).
Qw = −1 will convert left handed up/down quark into right handed up/down
quark by reversing direction of momentum.
Right handed up quarks will move upward and right down quarks will move
downward. A charge difference Q = 2e will be created.

D. Kharzeev, L.D. Mclerran and H.J. Warringa, Nucl. Phys. A 803, 227 (2008), 5
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Motivation

First preliminary result of such a study has been presented recently by STAR
Collaboration at RHIC by measuring three particle azimuthal correlator
〈cos(φα + φβ − 2ψRP)〉 with respect to collision centrality.

(a) (b)

From the fig (c) it is clear that correlations of same charge and opposite charge
particles separates out on opposite sides.
Correlations increases in more peripheral case.

I. V. Selyuzhenkov[STAR Collaboration], Rom. Rep. Phys. B 58, 49 (2006),
B. I. Abelev et. al.[STAR Collaboration], Phys. Rev. C. 81, 054908 (2010),
B. I. Abelev et. al.[STAR Collaboration], Phys. Rev. Lett. 103, 251601 (2009),
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Motivation

Recently, based on Berry curvature corrections, a modified kinetic theory has
been developed which allows one to study the CP violating or chiral effects in
non-equilibrium conditions.

It has been found that for modified kinetic theory the presence of CP-violating
effects can lead to the instabilities in the transverse branch of dispersion relation
in the quasi-stationary limit.

Typical time scale of such instability is τ = 1/(α2µ).

However in many realistic situations in plasma physics it is important to consider
initial distribution function to be anisotropic in momentum space. It is well
known that momentum anisotropy can lead to so called Weibel instability.
Therefore it is important to consider effect of anisotropy in modified kinetic
theory and to see how the two instabilities compete with each other.

D. T. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013) [arxiv:1210.815],
Y. Akamatsu and N. Yamamoto, Phys. Rev. Lett. 111, 052002 (2013),
E.S. Weibel, Phys. Rev. Lett. 2, 83, (1959).
Berry Curvature: When Hamiltonian depends on some external time dependent parameter which changes slowly then by adiabatic theorem
wave function picks up an additional dynamical phase factor apart from the usual one. That additional dynamical phase is called Berry
phase and can expressed as the surface integral of a curl of a vector (called Berry connection), if parameter describe a closed loop. The curl
of Berry connection is called Berry curvature. Which can be easily calculated for the case of chiral fermion.
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Intuitive understanding of these two instabilities

Chiral Instability:

The number and energy densities of the particles with chiral chemical potentials
µ respectively given by µT 2 and µ2T 2.

Number density n ∼ αkA2, A is the gauge field.

When number density associated with the gauge field and particles are same we

have k ∼ µT 2

αA2 .

The typical energy for the gauge field εA ∼ k2A2 = µ2T 2 T 2

α2A2 .

Thus for T 2

α2 < A2 there exists a state where the gauge field for this particular k

can lower its energy density (in comparison with the energy density of the matter)
by increasing A. This leads to the chiral-imbalance instability.

Y. Akamatsu and N. Yamamoto, Phys. Rev. Lett. 111, 052002 (2013),
M. Joyce and M. Shaposhnikov, Phys. Rev. Lett. 79, 1193 (1997).
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Intuitive understanding of these two instabilities

Weibel Instability:

Let us consider the distribution function n0
p = 1

1+e
−(
√

p2
x +(1+ξ)p2

y +p2
z )/T

.

If in this situation a disturbance with a magnetic field spontaneously arises from
noise, one can write the Lorentz force term in the kinetic equation as,

e(v × B) · ∂pn0
p = e[ξ(vzBx − vxBz )

py
T

]

(
−e
−(
√

p2
x +(1+ξ)p2

y +p2
z )/T

1+e
−(
√

p2
x +(1+ξ)p2

y +p2
z )/T

)
.

This would be zero for isotropic plasma i.e. for ξ = 0.

This Lorentz force will produce current-sheets which will generate magnetic field
that enhances the original magnetic field thus perturbation grows.

E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959),
B. D. Fried, Phys. Fluids 2, 337 (1959).
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Chiral kinetic theory

In this description we have considered the weak gauge field limit, where there is
no essential difference between Abelian and non-Abelian gauge fields up to color
and flavor degrees of freedom.

ṅp +
1

1 + eB · Ωp

[ (
eẼ + eṽ × B + e2(Ẽ · B)Ωp

)
·
∂np

∂p

+
(

ṽ + eẼ × Ωp + e(ṽ · Ωp)B
)
·
∂np

∂x

]
= 0,

where ṽ =
∂εp

∂p
, eẼ = eE− ∂εp

∂x
, εp = p(1− eB ·Ωp) and Ωp = ±p/2p3. Here ±

sign corresponds to right and lefted handed fermions respectively.

If Ωp = 0, above equation reduces to Vlasov equation.

From above equation it is easy to get,

∂tn +∇ · j = e2
∫

d3p

(2π)3

(
Ωp ·

∂np

∂p

)
E · B,

where,

n =

∫
d3p

(2π)3
(1 + eB ·Ωp)np,

D. T. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013) [arxiv:1210.815].,
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Chiral kinetic theory

j = −e

∫
d3p

(2π)3

[
εp
∂np

∂p
+ e

(
Ωp ·

∂np

∂p

)
εpB + εpΩp ×

∂np

∂x

]
+ E × σ.

σ =

∫
d3p

(2π)3
Ωpnp.

We follow the power counting scheme Aµ = O(ε) and ∂x = O(δ) where ε and δ
are small parameters.(

∂

∂t
+ v ·

∂

∂x

)
np +

(
eE + ev × B−

∂εp

∂x

)
·
∂np

∂p
= 0

Where v = p
p

.

D. T. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013) [arxiv:1210.815].,

ṅp +
1

1 + eB · Ωp

[ (
eẼ + eṽ × B + e2(Ẽ · B)Ωp

)
·
∂np

∂p
+
(

ṽ + eẼ × Ωp + e(ṽ · Ωp)B
)
·
∂np

∂x

]
= 0,

,
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Linear response analysis of anisotropic chiral plasma

We consider the distribution function of the form

n0
p = 1/[e(εp−µ)/T + 1]

n0
p = n

0(0)
p + en

0(εδ)
p ,

where, n
0(0)
p = 1

[e(p̃−µ)/T +1]
and n

0(εδ)
p =

(
B·v
2p̃T

)
e(p̃−µ)/T

[e(p̃−µ)/T +1]2
.

p̃ =
√

p2 + ξ(p · n̂)2.

Anomalous Hall current depends on electric field, it can be of order O(εδ) or
higher. We are interested in finding deviations in current and distribution function

up to order O(εδ), only n
0(0)
p will contribute to the Hall current term.

σ =
1

2

∫
dΩdp̃

v

[1 + ξ(v · n̂)]1/2

1

(1 + e(p̃−µ)/T )
= 0.

Anomalous Hall current vanishes.

The distribution function can be decomposed into separate scales as follows,

np = n0
p + e(n

(ε)
p + n

(εδ)
p ).

P. Romatschke and M. Strickland, Phys. Rev. D 68, 036004 (2003).

C. Manuel and J. M. Torres-Rincon, arXiv:1312.1158[hep-ph] (2014).
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Linear response analysis of anisotropic chiral plasma

Πij
+(K) = m2

D

∫
dΩ

4π

v i (v l + ξ(v · n̂)n̂l )

(1 + ξ(v · n̂)2)2

(
δ
jl +

v jk l

v .k + iε

)
,

Πim
−(K) = CE

∫
dΩ

4π

[
iεjlmk lv jv i (ω + ξ(v · n̂)(k.n̂))

(v .k + iε)(1 + ξ(v · n̂)2)3/2
+

(
v j + ξ(v · n̂)n̂j

(1 + ξ(v · n̂)2)3/2

)
iεimlk lv j

−iεijlk lv j
(
δ
mn +

vmkn

v .k + iε

)(
vn + ξ(v · n̂)n̂n

(1 + ξ(v · n̂)2)3/2

)]
where,

m2
D = −

1

2π2

∫ ∞
0

dp̃p̃2

∂n0(0)
p̃ (p̃ − µ)

∂p̃
+
∂n

0(0)
p̃ (p̃ + µ)

∂p̃


CE = −

1

4π2

∫ ∞
0

dp̃p̃

∂n0(0)
p̃ (p̃ − µ)

∂p̃
−
∂n

0(0)
p̃ (p̃ + µ)

∂p̃


After performing above integrations one can get m2

D = µ2

2π2 + T2

6 and CE = µ

4π2 . It can be

noticed that the terms with anisotropy parameter ξ are contributing in both parity-even and
odd part of the self-energy or polarization tensor.

j
µ
ind

= Πµν (K)Aν (K),

.
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Linear response analysis of anisotropic chiral plasma

Maxwell equation,

∂νF
νµ = jµind + jµext .

jµind = Πµν(K)Aν(K),

Πµν(K) is the retarded self energy in Fourier space. Here we denote the Fourier
transform as F (K) =

∫
d4xe−i(ωt−k·x)F (x , t).

Choosing temporal gauge A0 = 0

[(k2 − ω2)δij − k ik j + Πij (K)]E j = iωj iext(k).

From this one can define,

[∆−1(K)]ij = (k2 − ω2)δij − k ik j + Πij (K).

The poles of [∆(K)]ij will give us the dispersion relation.

14
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Finding the Poles of [∆(K )]ij or Dispersion relation

We decompose first Πij (K) in following six tensorial basis,

Πij = αP ij
T + βP ij

L + γP ij
n + δP ij

kn + λP ij
A + χP ij

An.

Where,

P ij
T = δ

ij − k ik j
/k2

P ij
L = k ik j

/k2

P ij
n = ñi ñj/ñ2

P ij
kn = k i ñj + k j ñi

P ij
A = iεijk k̂k

P ij
An = iεijk ñk .

α,β, γ, δ λ and χ are some scalar functions of k and ω which can be determined

by α = (P ij
T − P ij

n )Πij , β = P ij
L Πij , γ = (2P ij

n − P ij
T )Πij , δ = 1

2k2 ñ2 P
ij
knΠij

λ = − 1
2
P ij
AΠij and χ = − 1

2ñ2 P
ij
AnΠij .

15
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Finding the Poles of [∆(K )]ij or Dispersion relation

We shall do the analysis in the small ξ limit (Very weak anisotropy),

α = ΠT + ξ
[ z2

12
(3 + 5 cos 2θn)m2

D −
1

6
(1 + cos 2θn)m2

D +
1

4
ΠT

(
(1 + 3 cos 2θn)− z2(3 + 5 cos 2θn)

) ]
;

z−2
β = ΠL + ξ

[ 1

6
(1 + 3 cos 2θn)m2

D + ΠL

(
cos 2θn −

z2

2
(1 + 3 cos 2θn)

)]
;

γ =
ξ

3
(3ΠT − m2

D )(z2 − 1) sin2
θn ;

δ =
ξ

3k
(4z2m2

D + 3ΠT (1− 4z2)) cos θn ;

λ = −
µk

4π2

[
(1− z2)

ΠL

m2
D

]
− ξ

µk

8π2

[
(1− z2)

ΠL

m2
D

(
(3 cos 2θn − 1)

− 2z2(1 + 3 cos 2θn)
)

+
2z2

3
(1− 3 cos 2θn)−

43

15
+

22

10
(1 + cos 2θn)

]
;

χ = ξ [f (ω, k)] ,

Expressions for ΠT , ΠL are given as,

ΠT = m2
D

ω2

2k2

[
1 +

k2 − ω2

2ωk
ln
ω + k

ω − k

]
,

ΠL = m2
D

[
ω

2k
ln
ω + k

ω − k
− 1

]
,

.

16
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Finding the Poles of [∆(K )]ij or Dispersion relation

Similarly we can write [∆−1(k)]ij as

[∆−1(K)]ij = CTP
ij
T + CLP

ij
L + CnP

ij
n + CknP

ij
kn + CAP

ij
A + CAnP

ij
An.

Coefficients C’s and α’s have the following relationship.

CT = k2 − ω
2 + α

CL = −ω2 + β

Cn = γ

Ckn = δ

CA = λ

CAn = χ.

So once we know α,β, γ, δ λ and χ we can determine coefficient C’s.

But In order to get dispersion relation we have to find poles of [∆(K)]ij not of
[∆−1(K)]ij . We can use the following formula,

[∆−1(K)]ij [∆(K)]jl = δil

17
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Finding the Poles of [∆(K )]ij or Dispersion relation

we can obtain following formula for [∆(K)]ij .

[∆(K)]ij = aP ij
L + bP ij

T + cP ij
n + dP ij

kn + eP ij
A + fP ij

An

where,

a =
C 2
A − CT (Cn + CT )

2kñ2CACAnCkn + C 2
ACL + ñ2C 2

An(Cn + CT ) − CT (−k2ñ2C 2
kn + CL(Cn + CT ))

b =
k2ñ2C 2

kn − CL(Cn + CT )

2kñ2CACAnCkn + C 2
ACL + ñ2C 2

An(Cn + CT ) − CT (−k2ñ2C 2
kn + CL(Cn + CT ))

c =
(CACAn + kCknCT )/k

2kñ2CACAnCkn + C 2
ACL + ñ2C 2

An(Cn + CT ) − CT (−k2ñ2C 2
kn + CL(Cn + CT ))

d =
kñ2CAnCkn + CACL

2kñ2CACAnCkn + C 2
ACL + ñ2C 2

An(Cn + CT ) − CT (−k2ñ2C 2
kn + CL(Cn + CT ))

e =
ñ2(C 2

An − k2C 2
kn) + CLCn

2kñ2CACAnCkn + C 2
ACL + ñ2C 2

An(Cn + CT ) − CT (−k2ñ2C 2
kn + CL(Cn + CT ))

f =
kCACkn + CAn(Cn + CT )

2kñ2CACAnCkn + C 2
ACL + ñ2C 2

An(Cn + CT ) − CT (−k2ñ2C 2
kn + CL(Cn + CT ))

18
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Finding the Poles of [∆(K )]ij or Dispersion relation

Therefore the dispersion relation is,

2kñ2CACAnCkn + C 2
ACL + ñ2C 2

An(Cn + CT ) − CT (−k2ñ2C 2
kn + CL(Cn + CT )) = 0.

In the weak anisotropy limit, one can write the dispersion relation as,

C2
ACL − CTCL(Cn + CT )) = 0,

Which give following two branches of Dispersion relation,

C2
A − C2

T − CnCT = 0.

CL = 0.

When CA = 0, above equations reduces to exactly the same dispersion relation
discussed in Ref. given below for an anisotropic plasma where there is no parity
violating effect.

Equation for transverse modes give the following solution,

(k2 − ω2) =
−(2α+ γ)± 2λ

2
.

14
14P. Romatschke, M. Strickland, Phys. Rev. D 68 036004 (2003)

19



Outline Motivation Chiral Kinetic theory Linear response analysis of anisotropic chiral plasma Results and discussion Summary

Poles of [∆(K )]ij or Dispersion relation

In the quasi stationary limit |ω| << k one can get the final form of dispersion
relation as ω = iρ(k), where ρ(k) is given by.

ρ(k) =

(
4α3µ3

π4m2
D

)
k2
N

[
1− kN +

ξ

12
(1 + 5 cos 2θn) +

ξ

12
(1 + 3 cos 2θn)

π2m2
D

µ2α2kN

]
.

Where kN = πk
µα

, and α = e2

4π
is the electromagnetic coupling.

In the limit ξ → 0 we will get,

ρ(k) =

(
4α3µ3

π4m2
D

)
k2
N [1− kN ]

From here it is easy to determine that the two instabilities have comparable

growth at a critical angle θc = 1
2

cos−1

[(
2

27

)2/3 12µ2α2

ξπ2m2
D

− 1
3

]
.

Y. Akamatsu and N. Yamamoto, Phys. Rev. Lett. 111, 052002 (2013).
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Results and discussion
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Figure: Shows plots of real and imaginary part of the dispersion relation. Here θn is the angle between the wave vector k and the

anisotropy vector. Real part of dispersion relation is zero. Fig. (1a-1b) show plots for three cases: (i) Pure chiral (no anisotropy), (ii) Pure

Weibel (chiral chemical potential=0) and (iii) When both chiral and Weibel instabilities are present.
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Results and discussion
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Figure: Shows plots of real and imaginary part of the dispersion relation. Here θn is the angle between the wave vector k and the

anisotropy vector. Real part of dispersion relation is zero. Fig. (2a-2b) represent the case when both the instabilities are present but the

anisotropy parameter varies at different values of θn . Fig. (2c) represents the case when for a particular value of θn ∼ θc two

instabilities have equal growth at different ξ values. Here frequency is normalized in unit of ω/

(
4α3µ3

π4m2
D

)
and wave-number k by

kN = π
µα

k. 22
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Summary

We have studied collective modes in anisotropic chiral plasmas. We have
considered two cases of the instabilities together namely chiral imbalance
instability and Weibel instability.

We found that even for small value of anisotropy parameter (ξ << 1), Weibel
instability dominates over chiral imbalance instability.

For ξ > 0, the growth rate and range increases significantly when the wave vector
k is in the direction parallel to anisotropy vector n.

Instability gets suppressed when k is in the direction perpendicular to n.

Growth for the two instabilities become comparable at a critical angle

θc = 1
2

cos−1

[(
2

27

)2/3 12µ2α2

ξπ2m2
D

− 1
3

]
.

THANK YOU
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Berry’s Phase

Consider the Hamiltonian of the system with an external time dependent
parameter R(t) denoting it as H(R(t)).

The ket |n(R(t))〉 of the nth energy eigenstate corresponding to R(t) satisfies the
eigenvalue equation at time t.

H(R(t))|n(R(t))〉 = En(R(t))|n(R(t))〉

〈n(R(t))|n′(R(t))〉 = δn,n′

Let R evolve in time from R(0) = R0.

Let at time t the state ket is |n(R0), t0; t〉

Time dependent Schrödinger equation that the state ket obeys is.

H(R(t))|n(R0), t0; t〉 = i~
∂

∂t
|n(R0), t0; t〉 (1)

where t0 = 0.

J. J. Sakurai, Modern Quantum Mechanics: (Pearson Education, 1994),
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Berry’s Phase

When R(t) is slow enough, we expect from the adiabatic theorem that
|n(R0), t0; t〉 would be proportional to the nth energy eigenket |n(R(t))〉 of
H(R(t)) at time t.

|n(R0), t0; t〉 = An(t)exp
{
−

i

~

∫ t

0
En(R(t′))dt′

}
|n(R(t))〉. (2)

Using Eq.(2) in Eq.(1), one can get;

dAn(t)

dt
= −An(t)〈n(R(t))|

d

dt
|n(R(t))〉

An(t) = An(0) exp
{
−
∫ t

0
dt′〈n(R(t′))|

d

dt′
|n(R(t′))〉︸ ︷︷ ︸

iγn(t)

}

Let us call it phase factor γn(t)

γn(t) = −i
∫ t

0
dt′〈n(R(t′))|

d

dt′
|n(R(t′))〉

|n(R0), t0; t〉 = An(0)exp
{
−iγn(t)︸ ︷︷ ︸

Berry Phase

−
i

~

∫ t

0
En(R(t′))dt′

}
|n(R(t))〉.
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Berry’s Phase

γn(t) can also be represented by a path-integral in parameter R(t) space as,

γn(t) = −i
∫ Rf

R0

dR〈n(R(t′))|∇R|n(R(t′))〉

If R describes a closed loop in parameter space i.e. Rf = R0

γn(t) = −i
∮
c
dR〈n(R(t′))|∇R|n(R(t′))〉

=

∫ ∫
S(c)

dS · ∇R × Q(R)

Where, Q(R) = −i〈n(R(t′))|∇R|n(R(t′))〉. ⇒ Berry connection

While ∇R ×Q(R) = Ω(R) ⇒ Berry Curvature.
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Berry Curvature for Chiral Fermions

Consider a chiral fermion expressed by the two-component spinor uP satisfying
the Weyl equation.

(σ · p)up = ±|p|up

Two component spinor described above has a nonzero Berry connection

Qp ≡ −iu†p∇puP

Nonzero Berry curvature,

Ω(p) ≡ ∇p ×Qp = ±
p̂

2|p|2

where p̂ = p̂
|p| is a unit vector.

17

17D. T. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013) [arxiv:1210.815].,
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Chiral Kinetic Theory

Considering a charged fermion in electromagnetic fields and Berry curvature, the
action.

S(x , p) =

∫
dt[(pi + eAi (x))ẋ i −Qi(p)ṗi − εp(p)− A0(x)]

S(ξ) =

∫
dt[Σa(ξ)ξ̇a − H(ξ)]

Where, Σa(ξ) = (pi + eAi (x),−Qi(p)) and ξa = (x i , pi )

Equations of motion of the action read.

Σab ξ̇b = −
∂H(ξ)

∂ξa

Where Σab = ∂Σa(ξ)

∂ξb
− ∂Σb(ξ)

∂ξa
.

18 19 20 21

18G. Sundaram and Q. Niu, Phys. Rev. B59, 14915 (1999)
19D. T. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013) [arxiv:1210.815].,

20D. Xiao, J. Shi, and Q. Niu. Sundaram and Q. Niu, Phys. Rev. Lett.95, 137204 (2005)
21C. Duval and Z. Horvath, P. A Horvathy, L. Martina and P. Stichel, Mod. Phys. lett. B20, 373 (2006)
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Chiral Kinetic Theory

Further we rewrite above equation as,

ξ̇a = −(Σ−1)ab
∂H(ξ)

∂ξb

Hamilton’s equation of motion is,

ξ̇a = −{ξa,H(ξ)} = −{ξa, ξb}
∂H(ξ)

∂ξb

⇒ {ξa, ξb} = (Σ−1)ab

Explicit form of poision brackets with berry curvature,

{ẋ i , ẋ j} =
εijkΩk

1+eB·Ω , {ẋ i , ṗj} = − δij+eΩiBj

1+eB·Ω , {ṗi , ṗj} = − eεijkBk

1+eB·Ω , .

Where B i = εijk ∂A
k

∂x j
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Kinetic Equation

Invariant Phase space gets modified, dΓ =
√
detΣabdξ = (1 + eB ·Ω) dpdx

2π3 .

Equivalent Liouville’s theorem,

ṅp − (Σ)−1
ab

∂H(ξ)

∂ξb
∂np

∂ξa
= 0

Taking H = εp + A0, One can explicitly write down the kinetic equation as,
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Linear responce analysis of anisotrpic chiral plasma

Therefore,

j = −
∫

d3p

(2π)3

[
εp
∂np

∂p
+ e

(
Ωp ·

∂np

∂p

)
εpB + εpΩp ×

∂np

∂x

]
.

The distribution function can be decomposed into separate scales as follows,

np = n0
p + e(n

(ε)
p + n

(εδ)
p ).(

∂

∂t
+ v ·

∂

∂x

)
n

(ε)
p = −(E + v × B) ·

∂n
0(0)
p

∂p(
∂

∂t
+ v ·

∂

∂x

)
(n

0(εδ)
p + n

(εδ)
p ) = −

1

e

∂εp

∂x
·
∂n

0(0)
p

∂p

jµ(ε) = e2
∫

d3p

(2π)3
vµn

(ε)
p

ji(εδ) = e2
∫

d3p

(2π)3

[
v in

(εδ)
p −

(
v j

2p

∂n
0(0)
p

∂pj

)
B i − εijk

v j

2p

∂n
(ε)
p

∂xk

]
22

22 (
∂

∂t
+ v ·

∂

∂x

)
np +

(
eE + ev × B −

∂εp

∂x

)
·
∂np

∂p
= 0

,
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