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1. Sign problem in lattice QCD

2. complex Langevin equation and gauge cooling
3. phase diagram of HDQCD

4. kappa and kappa_s expansion

5. full QCD



Motivations

Phase diagram of QCD matter
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QCD sign problem

Euclidean SU(3) gauge theory with fermions:
Z=[ DAZDPDWexp(-S.[Al]-PD.(A?)W)

Integrate out fermionic variables, perform lattice discretisation

Ai(x,t) » U,(x,T)eSU(3) link variables
D,(A) » M(U) fermion matrix

Z=[ DUexp(-S.[U])det(M(U))

det(M (U ))>0 = Importance sampling is possible

Non-zero chemical potential

For nonzero chemical potential, the fermion determinant is complex

det(M(U,—u"))=(det(M(U),u))"

Sign problem —» Naive Monte-Carlo breaks down



QCD sign problem

det(M (U ,u))€C for u>0
Z=[ DUexp(-S.[U])det(M(U))

Path integral with complex weight
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Only the zero density axis is directly accessible
to lattice calculations using importance sampling



Reweighting

_s, det M (u)
- _fDUeSEdetM(u)F_fDUe R—p—F
" [ DUe " det M (n) fDUe_sERdetM(u)
R
_\Fdet M(w)/ R, R=det M (n=0), |det M (1), etc.

- |det M(w)IR),

=exp

”
—— T
AT ))
A f(u,T) =free energy difference

Exponentially small as the volume increases <F>M - 0/0

Reweighting works for large temperatures and small volumes

Sign problem gets hard at w/T~1



Evading the QCD sign problem

Most methods going around the problem work only for p=pz/3<T

(Multi parameter) reweighting Barbour et. al. '97; Fodor, Katz '02

Analytic continuation of results obtained at imaginary u 'a‘;rggfcrfaondoop‘hmpsen i

D'Elia Sanfilippo '09; Cea et. al. '0¢

Taylor expansion in (u/T )’
de Forcrand et al. (QCD-TARQO) '99; Hart, Laine, Philipsen '00;
Allton et al. '05; Gavai and Gupta '08; de Forcrand, Philipsen '08,...

Canonical Ensemble, denstity of states, curvature of critical surface,
subsets, fugacity expansion, SU(2) QCD, G2 QCD, dual variables, worldlines, ....

A Direct Method: Complex Langevin

Use analiticity, expand integrals to the complex plane

Stochastic quantisation

Recent revival; Aarts and Stamatescu '08

Bose Gas, Spin model, etc. Aarts '08, Aarts, James '10 Aarts, James '11
Proof of convergence: Aarts, Seiler, Stamatescu '11

QCD with heavy quarks: Seiler, Sexty, Stamatescu '12

Kappa Expansion: Aarts, Seiler, Sexty, Stamatescu 1408.3770

Full QCD with light quarks: Sexty '14



Stochastic Quantization Parisi, Wu (1981)
Given an action  S(x)

dx_ 05

Stochastic process for x: dv 0 X
Gaussian noise (n(t))=0

((t)n(r)=d(t—7’)

+n(T)

Averages are calculated along the trajectories:

| 1 T J‘e—S(x)O(x)dX
0)=I =] 0 dt=
< > My, T{ (X(‘E)) T J"e—S(x)dX

Fokker-Planck equation for the probability distribution of P(x):

oP o ,0P ,0S

ot 0OX ( O X +P5_X)Z_HFPP Real action—  positive eigenvalues

for real action the
Langevin method is convergent



Langevin method with complex action

Klauder '83, Parisi '83, Hueffel, Rumpf '83,
Okano, Schuelke, Zeng '91, ...
applied to nonequilibrium: Berges, Stamatescu '05, ...

The field is complexified

dt 5 x real scalar —» complex scalar

link variables: SU(N) ——» SL(N,C)

compact non-compact
det(U)=1, U*# U™
Analytically continued observables

|

1 .
Ef Pcomp(x)0<)(:)dx:§f P, (x,y)O(x+iy)dxdy

< x2 >real 2 < x2 _ y2 >complexiﬁed

“troubled past”: Lack of theoretical understanding
Convergence to wrong results
Runaway trajectories



Proof of convergence

If there is fast decay  P(x,y)20 as y>w

and a holomorphic action  S(x)

then CLE converges to the correct result

[Aarts, Seiler, Stamatescu (2009)
Aarts, James, Seiler, Stamatescu (2011)]

Non-holomorphic action for nonzero density

S=S [U l+InDet M measure has zeros (Det M=0)
W[ “] <M> complex logarithm has a branch cut

———» meromorphic drift
Is it a problem for QCD?

[see also: Mollgaard, Splittorff (2013), Greensite(2014)]

[QCD and poles: Aarts, Seiler, Sexty, Stamatescu 2014]



Non-real action problems and CLE (besides nonzero density)

[Berges, Stamatescu (2005)]
[Berges, Borsanyi, Sexty, Stamatescu (2007)]

[Berges, Sexty (2008)]

1. Real-time physics
“Hardest” sign problem e

Studies on Oscillator, pure gauge theory

iS

2. Theta-Term  S=F,  F"+i@""""F  F,,

[Bongiovanni, Aarts, Seiler, Sexty, Stamatescu (2013)+in prep.]

© real » complex action, (Q) imaginary
© imaginary = real action, (Q) real

4 O Langevin

On the lattice - ' O HMC g
0.605 mE =

Q:e’”epFerp%ZX g(x)

Not topological

Cooling is needed

©, bare parameter needs
renormalisation

n
-
()

N

]
-
et

u

= .
g
=9
W

O imaginary - use real Langevin or HMC
O real - use complex Langevin




Measure

Gaussian Example on real axis
S[x]=o x*+ikx CLE I

\FH

i(x+iy):—20(x+iy)—ik+n

d'ci

P (X y) :e—a(x—xo)z—b(y—yoi)z—c(x—xo)(y—yo)

Gaussian distribution 55(2) —0 — stable thimble

around critical point oz |,

Thimble ,—_5 S(z) Straight lines
‘ starting from z,

| — unstable thimble

| —— CLE dist. contours

Measure
on thimble

1 1 1 1 1 1 1 i = |




Stochastic quantisation on the group manifold

Updating must respect the group structure: (M;,)=0
U'i:exp(i}“a(_eDi,aS[U]"'\/?ni,a))Ui <n/an/b> 26/] ab
}\‘ .
Left derivative: D f(U) ; f( 'MU) . Gellmann matrices
X x=0

complexified link variables

SU(N) —» SL(N,C) det(U)=1, U*# U

compact —» non-compact

Distance from SU(N) > |(UU t
ij

Unitarity Norms: Tr(UU " )=N
Tr(UU " )+Tr(U (U ') )=2N
ForSUR2): (Im TrU)’



Gauge theories and CLE

link variables: SU(N) ———» SL(N,C)

compact non-compact
det(U)=1, U*# U

Gauge degrees of freedom also complexify

\

Infinite volume of irrelevant, unphysical configurations

Process leaves the SU(N) manifold exponentially fast
already at u<l1

Unitarity norm: ZZ_ Tr(U.UY)
Distance from SU(N) X
Zij |(UU _l)ij

Tr(UU* )+Tr(U (U ') )=2N

2




Gauge transformation at x changes 2d link variables

Uu(x)éexp(—ocekaGa(x))Uu(x)
Uu(x—au)éUu(x—au)exp(ocekaGa(x))

Dynamical steps are interspersed with several gauge cooling steps

The strength of the cooling is determined by
cooling steps
gauge cooling parameter o

Empirical observation: B>PBmin but remember, 3= oo

Cooling is effective for a<a in cont. limit

max



Heavy Quark QCD at nonzero chemical potential (HDQCD)

Hopping parameter expansion of the fermion determinant
Spatial hoppings are dropped

Det M (w)=]] det(1+C P, det(1+C"P}')

P.=I1 U (x+7a,)  C=[2xexp(u)]* C'=[2xexp(-u)"

S=S,[U, J+InDet M (u)

Studied with reweighting De Pietri, Feo, Seiler, Stamatescu '07

2. CTrP +C TP

R=e

CLE study using gaugecooling

[Seiler, Sexty, Stamatescu (2012)]
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Te-16 Frmam—r e :
0 5 10 15 20

Langevin time

Gauge cooling stabilizes the distribution
SU(3) manifold instable even at y=0



Fermion density:

1 dlnZ
n =
N, Ou
nf’nsat —t—
average phase: average phase
836 lattice
Det M _
lexp(2iq))= DetMEﬁ) ) . e

' 12 g.c. steps
det(1+CP):1+C3+CT1~P+C2 TrP™! Sign problem is absent at

small or large W

Reweigthing is impossible at 6<u/T <12, CLE works all the way to saturation



Comparison to reweighting

spatial plaquette ——x—
temporal plaquette
reweighting s. plaq. P CLE+g.c ~ +
reweighting t. plag. & i % : P’ CLE+g.c. -
* | P reweighting -+ -

R R P’ reweighting ---&-—-

e

Polyakov loop

Polyakov loop . .
Polyakov loop inverse + iy ' ‘ %
reweighting P. loop - : ' N
reweighting P. loop inv, &

CLE+g.c ——
reweighting :——-o--

Spatial Plaguette

6* lattice, p=5.9

6" lattice , u=0.85

Discrepancy of plaquettes at P=<5.6
a skirted distribution develops

a(f=5.6)=0.2fm



Polyakov loops
o
o
(0]

Pol. reweighting
inv. Pol. reweighting

Pol. CLE &
inv. Pol. CLE - =

HQCD

16°*8 lattice
u=0.85
k=0.12

Large lattice:

phase transition clearly visible

for p>p

min

plaguettes

6.8

0.68

066

0.64

0.62

06

0.58

spatiral pl. reu:aeighting';
temporal pl. reweighting

spatial pl. CLE :

temporal pl. CLE

A
_.

HQCD
1§'B lattice
k=0.12




Mapping the phase diagram

[Aarts, Attanasio, Jager, Seiler, Sexty, Stamatescu, in prep.]
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Exploring the phase diagram of HDQCD

400 ke 400
T |MeV| M T IMeV|

200

Onset in fermionic density Polyakov loop
Silver blaze phenomenon Transition to deconfined state

B=58 k=0.12 N,=2 N,=2..24



Polyakov loop susceptibility

Polyakov_Suscept

Hint of first order deconfinement and first order onset transition




K Expansion using the loop expansion
M=1-xQ=1-R—x,S Wilson fermions

S=) 2T, U(x)5, .. +2T7 U;'(y)d, Spatial hoppings

R=2xe"T, U4(X>5 +2xe T, UZI()’)E)y,x—zt Temporal hoppings

y,x+4

Det M =exp(Trin M )=exp

—Trz %Q”

:Hc det(1-«'L,)

Static limit
K=>0, u>oo, T=2ke"=const

Only Polyakov loops contribute

Wilson fermions
r‘r-=0 ™ hobacktracking




Caculation of the first few orders
Is possible using loop expansion

Determinant contributions

with full gauge action for

K—=0,p—=>m [=x eH= fixed

[Bender et al. (1992)]
[Aarts et al. (2002)] . )
[De Pietri, Feo, Seiler, Stamatescu (2007)] K~ corrections

with strong coupling expansion

[Fromm, Langelage, Lottini, Philipsen (2012)]
[Greensite, Myers, Splittorff (2013)] . .
[Langelage, Neuman, Philipsen (2014)] K corrections



expansions with complex Langevin
[Aarts, Seiler, Sexty, Stamatescu 1408.3770]
K expansion

M=1-xQ=1-R—x,S

Det M=exp(Trln M )=exp|—Tr ) KFHQ"

Contribution to Drift term: Ku’x’a:Tr(Z K" Q"_lDM,X,aQ)

noise vector 1 K,..=m" D, ,,Qs with s=—) «"Q"'n

K, expansion
Det M =Det(1—R)Det

—Trz ];S S’

(1-R)"
/

using noise vector

| K =Det(1—R)
T_RI™ e exp

Contribution to Drift term:

analitically (same as LO HDQCD)



K expansion

Det M =exp(TrIn M )=exp No poles!

—Trz KF“Q"

Numerical cost: N multiplications with Q

Q=R+xS with R"«ce" —»  pad convergence at high U

K, expansion

K.S K. "
Det M =Det(1—R)Det|1———|=Det(1—R)exp|—Tr -
(1= R)Der 1= 25 = Dar(1-Rjenp T3 S S
Numerical cost: N multiplications with S and (1—R)™"

Temporal part analytically ———» better convergence properties

Calculation of high orders of corrections is easy
Explicit check of the convergence to full QCD

Convergence to full QCD with no poles non-holomorphicity of the QCD action

is not a problem

4>



K exp. instable at u=1.1 .

full QCD p=1.1

k expansion u=1.1 -=

B=5.9 Ks expansion p=1.1

k=0.12 N=2 full QCD u=0.7
o F Kk expansion p=0.7 <
K, expansion u=0.7 - - |

PN S % %
S X

X X | | . |

0 10 20 30 40
n, order of the expansion (up to k" terms included)




chiral condensate
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density

0.06

0.02

B u=0.7 -- full QCD .
A K_expansion
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(large lattices) - |
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Extension to full QCD with light quarks[sexty (2014)]

QCD with staggered fermions sz DU e >“det M

M(x, p)=md (e, y ) X (U ()8 (x+ay, y) = U7 (x-ay, )b (x-a,. )

Still doubling present N F=4
Z=| DU e *(det M )"""* Sef:SG—%lndetM
Langevin equation
U'=exp(ika(—eDaS[U]+J€na))U Driftterm: —D S[U|=K°+K"
Kow==D 4, S6[U]

axv

N, N
K, = TD In detM:TFTr(M_lM ' (x,y.2))

M, (x,y,z)=D,.,M(x.y)



Extension to full QCD with light quarks[Sexty (2014)]

QCD with fermions sz DU e *det M

Additional drift term from determinant

N N
KZW:TFDmln detM:TFTr(M_IM ' (x,y,2))

Noisy estimator with one noise vector
Main cost of the simulation: CG inversion

Inversion cost highly dependent on chemical potential
Eigenvalues not bounded from below by the mass
(similarly to isospin chemical potential theory)

Unimproved staggered and Wilson fermions

Heavy quarks: compare to HDQCD
Light quarks: compare to reweighting



Zero chemical potential

Drift is built from random numbers real only on average

Cooling is essential already for small (or zero) mu

£
-
o
c
>,
=
-
@
=
c
=

E=0002 —

no cooling

: no cooling
ma=0.05, Nj=4 €=0.00005 ===

10 cooling steps, a=1 N0 c00ling

Langevin time



CLE and full QCD with light quarks [Sexty (2014)]

Physically reasonable results

NNggy —F—

chiral condensate <

Polyakov loop %
Polyakov loop inverse &t

Non-holomorphic action So far, it isnt: .
poles in the fermionic drift Comparison with reweighting

: Study of the spectrum
Is it a problem for full QCD? Hopping parameter expansion
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Comparison with reweighting Polyakov loop CLE -+ 3
0.36 I inverse Polyakov CLE = XS
for fU” QCD Polyakov reweighting = x---§ :
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hting f bl sl I -0 v
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[Fodor, Katz, Sexty (in prep.)]




Sign problem

Sign problem gets hard around w/T~1-1.5

scatter plot of Det M(u)/Det M(-n) -

8%*4 |attice .

B=5.4 -0. 8°*4 lattice

mass=0.05 B=5.4

Ng=4 i mass=0.05
) NF=4




Spectrum of the Dirac Operator N =4 staggered

Massless staggered operator at w=0 is antihermitian

.. Lhermal p/T=0.0
tfree fermions
ﬁ*ﬂ%—.kf #

-2.5
0.0494 0.0496 0.0498 0.05 0.0502 0.0504




Spectrum of the Dirac Operator N ,=4 staggered
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Conclusions

Direct simulations of QCD at nonzero density using complexified fields
Complex Langevin Equations

Recent progress for CLE simulations
Better theoretical understanding (poles?)
Gauge cooling

Kappa expansion
Two novel implementations with CLE: kappa and kappa_s
Calculations at very high orders are feasible
Convergence checked explicitly
Shows that poles give no problem in QCD

Phase diagram of HDQCD mapped out

First results for full QCD with light quarks
No sign or overlap problem
CLE works all the way into saturation region
Comparison with reweighting for small chem. pot.
Low temperatures are more demanding



Backup slides



HQCD ma=1 ———

" rstaggered ma=1 -

» HQCD ma=4 :-x---
staggered ma=4 '

83+6 lattice
N

=
B=5.8

Polyakov loop

Conclusion
QCD = HQCD for quark mass > 4/a
(For large mass) HQCD is qualitatively similar to QCD




Phasequenched vs full

V4 :f dU e det M| Polyakov loop CLE ~———
0.36inverse Polyakov CLE -

Polyakov PQ -

inv. Pol. PQ +a

spatial plaquettes CLE ———— 3% :
temporal plaquettes CLE - 8_54 Alfattlce
PQ spat. plag. - B=5.
PQtemp.plag. = mass=0.05
_ X x K g N =4
x %X X 5 F
w B & Boo c

F % 3
* igiii

834 lattice
B=5.4
mass=0.05
Np=4

in phasequenched P=P""

in full theory, inv. Polyakov loop rises first

Reweighting form PQ theory better than Reweighting from wu=0 ?



Polyakov loop

Polyakov loop inverse =-—----
Nonzero value when: o strong coupling P ———
colorless bound states ' ; " strong coupling P’
formed with P or P!
> | 83*565I}artice
1 quark: b X E-;oﬁz

meson with P : i1 x a=1
x+ |/ bl 12 g.c. steps

2 quark:
Baryon with P

i

P' has a peak before P

Large chemical potential: all quark states are filled
No colorless state can be formed

P and P' decays again



Spectrum of the Dirac Operator

Large chemical potential, towards saturation

Fermions become “heavy”

Thermal W T=52 . Thermal WT=8.0

fermmnq




