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Chiral critical point and QCD critical endpoint

LHC: may 2nd order, O(4)

establish contact
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transiton .2}
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Cumulant ratios of conserved net-charge fluctuations
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Chiral Transition at small pg/T

@ close to the chiral limit thermodynamics in the vicinity of the
QCD transition(s) is controlled by a| universal O(4) scaling function
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Chiral Transition at small pp/T

@ close to the chiral limit thermodynamics in the vicinity of the
QCD transition(s) is controlled by a | universal O(4) scaling function

singular /

O(4)
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d Ve 3 | 0.380
— N |
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Chiral Transition at small pp/T

@ close to the chiral limit thermodynamics in the vicinity of the
QCD transition(s) is controlled by a | universal O(4) scaling function

singular / O(4)
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Critical and pseudo-critical temperature

How close is the pseudo-critical (crossover) temperature to the true chiral
PHASE transition temperature?

In the scaling regime this is controlled by a single non-universal parameter

P —1/8 _
—i = —ho O Y fi(2) — £ (V, T, @) , H =mg/m,
H derivatives 0-40 'f |
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~ A HY3=1 £ (2) M s % v o i £ s 4 s
q X
with Ay = < Lo >2 po1/0 zp = 1.33(5)
q m, 0
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Critical and pseudo-critical temperature

How close is the pseudo-critical (crossover) temperature to the
true chiral PHASE transition temperature?

In the scaling regime this is controlled by a single non-universal parameter

[chiral Xmq _ O°P/T" |\ pajsg (2)
susceptibilit T2 d(my/T)? d X
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Chiral Transition Temperature
I
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Combined continuum extrapolation |

HISQ/tree: quadratic in Nf
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— locate pseudo-critical temperature from
chiral susceptibility
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Xl,disc Xl,con
— T2 + T2

— peak location defines pseudo-critical
temperature on N2 N, lattice, T = 1/N-a

continuum extrapolation of pseudo-critical
temperatures at physical light and strange quark
masses for two different lattice discretization schemes

[Tpe = (154 £ 9) MeV |

A. Bazavov et al. [hotQCD Collaboration]
Phys. Rev. D 85, 054503 (2012)
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consistent with: JHEP 0906, 088 (2009)
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Chiral limit: O(4) scaling
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Chiral limit: O(4) scaling
T
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O(4) Scaling in QCD: Curvature of the critical line
I
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p4-action: N, = 4
< "thermal” fluctuations of the order parameter

1 T Hq ° 1
t=—|(——1 -4 , z =t/hY/P°
to <<Tc >+Rq<T>> © /

—
Mb — s<f¢> — h1/5fG(z) | |
T scaling function of order parameter
_ 0.07 ' . ' ™

Xma _ 0% (dy)/T? L () i v
p— 2 - oms m. T2 N =4: ml/ms=128 I 1
T 8(“‘1/T) 0.05 | 1/40 —©— -

4 1/80 ——

26T (3_1)/58 41 |
R(B—1)/ BfG(Z)

0.03 F
tomg

o

m—) [mB = Kq/9 = 0.0066(7)] Ozj +




O(4) Scaling in QCD
I

summary of current values
for the curvature term:
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G.Endrodi et al. O. Kaczmarek et al

— C.Bonati et al.
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Current knowledge of the
non-universal parameters
controlling singular behavior
In QCD at small values of
the chemical potential:

(T, ~ 145 MeV)
he!® ~ 0.057

2022

\Klq ~ 0.1 /
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Critical behavior of conserved charge fluctuations
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Critical behavior of conserved charge fluctuations
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_Xgl I % N 'Nr='g*l* 1 —the dip reflects behavior of —f](c3)(z)
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Conserved charge fluctuations in QCD and HIC up > 0

4" order cumulant: A dip in the kurtosis ?

pp > 0: x4, = —2hg % (3(26q20) 2 H™/A £ (2)
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/ N\
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0.1 f ‘ chiral limit Z = Zp

0

all singular contributions are
01 - negative for T < Tpc
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B.Friman, FK, K.Redlich,V.Skokov,
Eur. Phys. J. C71, 1694 (2011)
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4™ order cumulant (kurtosis) and the critical point
T

In the vicinity of the critical point the kurtosis will be negative in a certain

T, muB region kp <0 - ' M. Stephanov, PRL 107, 052301 (2011)
g 0.2
t
T A kp >0 = T
- —— mapping of the Ising
crossover e variables t, h on the
T.F-rRp<O kB >0 T, pB plane is non-trivial
2nd order
kp >0

1st order

=Y
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4™ order cumulant (kurtosis) and the critical point
T

In the vicinity of the critical point the kurtosis will be negative in a certain

T, muB region kB <0 - ' M. Stephanov, PRL 107, 052301 (2011)
. t
T A kp >0 T
ol mapping of the Ising
crossover e variables t, h on the
T.F-rp<0 k >0 T, pp plane is non-trivial
2nd order generically, expect:
kp >0 k>0 forT < Tcp

1st order

(expect all cumulants to

be positive on the line
of fixed T' = Tcp

> J

u

prerequisite for well-behaved estimates of the location of the critical
point based on the radius of convergence of the Taylor series for X B,
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Kurtosis on the freeze-out curve

A
T4 Ko’
crossover
Tc -N\*t\
T b 2nd order pB(To)
cp 0 >
freeze-out line ‘ !’L
1st order
pe(Tcp)
o
)

(to determine the importance\ (a dip in the kurtosis seems to be generic: )
of regular terms and the non- whether or not it becomes negative depends
universal scales requires on the magnitude of regular terms in the

\ lattice QCD ) \QCD partition function (pressure) y
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Taylor expansion of the pressure
I

P 1
— VT3 an(Va Ta By IS HJQ)

= Y L Bes (“_BMM_Q) (&)’“
— 11k T T

1,7,k

eneralized susceptibilities: XB-QS = 0" p/T”

pu=0

— can be evaluated using standard MC simulation algorithms;

- valid up to radius of convergence: ¢ (critical point?)

— radius of convergence corresponds to a critical point only, iff
Xn > 0 for all n > ng

forces P/T* and X5
to be monotonically growing with s /T
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Chiral Transition at small ©g/7T in the chiral limit
I

141/6
P = —ho_l/6 (Zq> ff(z) — f+(V, T, i)

In the chiral limit M4 — 0O below T. the behavior of the scaling
function forz — —oo controls the critical behavior for small g /T

fr(z) = (=2)*7 (g + O((—2)"1/ "))
_ T — 1T,
- \/ Kqle
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6" order light and strange quark number cumulants
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6" order light and strange quark number cumulants
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of charge fluctuations that are
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Estimates of the radius of convergence
e

a challenging prediction pnp\x
from susceptibility series: \ "

n(n — 1)x5
XE+2

— X —
_'T'n—

crit,n \

suggests large deviations from
HRG in the hadronic phase

3.0 huge deviations
from HRG in
o5l _ 6" order cumulants!
S. Datta et al.,
PoS Lattice2013 (2014) 202
2.0}
tz } at present, we
150 HRG | cannot rule it out!
— BNL-Bielefeld
Xz /x5 =1
1.0}
0.5

Di&d 2/6 2/8 /6 4/8 6/8
Methods
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Conclusions
I

» only small deviations from HRG model calculations
at freeze-out and sensitivity to O(4) criticality in the
Crossover region are not inconsistent with each other

» 6™ order cumulants are sensitive to O(4) scaling but will
pick up only a small singular contribution below Tc.

» Any large increase of cumulants above HRG values below
Tc thus are not due to O(4) critical behavior but may be
Indicative for a critical end point

» a decreasing kurtosis*variance is likely to show up as a
consequence of O(4) criticality. A possible critical end point
needs to be in a region with kpop > 1
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Chiral transition and freeze-out
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¢+ ALICE prelim: arXiv:121(§.772£2 pB/T2 /
@ Becattini: arXiv:1212.2431 M];a [MeV]
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