

Thermal Conductivity in superfluid neutron star core

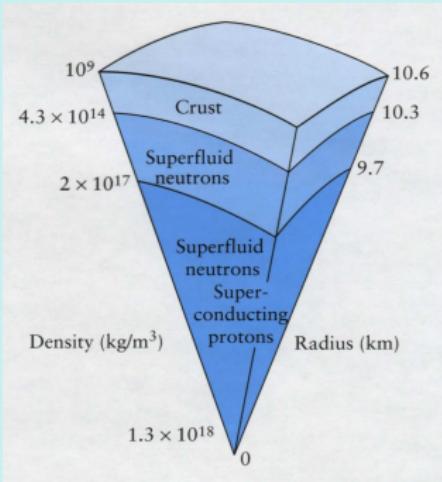
Sreemoyee Sarkar

In collaboration with: Prof. C. Manuel and L. Tolos

QCD workshop (2015): Tata Institute of Fundamental Research

January 27, 2015

Plan of the discussion



Outline

- Motivation
- Superfluid phonon in the core of neutron star
- Thermal conductivity (κ)
 - Boltzmann equation
 - Superfluid phonon dispersion law: beyond leading order
 - Temperature dependence of κ
- Results
- Summary & Conclusions

Motivation

- Neutron stars are compact stars of mass $\sim 1.4 M_{\odot}$ and radius ~ 10 km
- A neutron star is thought to consist of a thin crust ($\sim 1\%$ by mass) and a bulky core
- The core extends from the layer of the density $\rho \approx 0.5 \rho_0$ to the stellar center [$\rho \sim 10 \rho_0$], where ρ_0 is the nuclear matter density.
- Neutron star cores \Rightarrow neutrons, with an admixture of protons, electrons and muons. This makes neutron stars unique natural laboratories of dense matter.

continued . . .

κ is important for cooling of isolated neutron stars

Cooling processes

Cooling of **young** neutron star

The cooling is realized via two channels \Rightarrow by neutrino emission from the neutron star core and by transport of heat from the internal layers to the surface resulting in the thermal emission of photons.

- Powerful neutrino emission
- Thermal conduction

The equation controlling the time evolution of the neutron star temperature

$$C_v \frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial r^2} + \frac{1}{r^2} \frac{\partial(r^2 \kappa)}{\partial r} \frac{\partial T}{\partial r} - Q_\nu$$

Superfluid phonon

- Migdal's observation \Rightarrow at low temperatures superfluidity of neutron matter may occur in the core of compact stars.
- Due to the onset of superfluidity \Rightarrow a collective mode appears \Rightarrow superfluid phonon.

Superfluid phonon \Rightarrow Goldstone mode associated to the spontaneous symmetry breaking of a $U(1)$ symmetry, which corresponds to particle number conservation.

Effective Lagrangian for superfluid phonon \Rightarrow expansion in derivatives of the Goldstone field

$$\begin{aligned}\mathcal{L} = & \frac{1}{2} \left((\partial_t \phi)^2 - v_{\text{ph}}^2 (\nabla \phi)^2 \right) - g \left((\partial_t \phi)^3 - 3\eta_g \partial_t \phi (\nabla \phi)^2 \right) \\ & + \lambda \left((\partial_t \phi)^4 - \eta_{\lambda,1} (\partial_t \phi)^2 (\nabla \phi)^2 + \eta_{\lambda,2} (\nabla \phi)^4 \right) + \dots\end{aligned}$$

- $\phi \Rightarrow$ scalar phonon field
- Phonon selfcouplings can be expressed in terms of the speed of sound at $T = 0$ and derivatives with respect to density

Thermal Conductivity

- In a system \Rightarrow temperature distribution is not uniform, Thermal Conductivity relates heat flow to the negative gradient in the temperature.
- In hydrodynamics heat flow $\Rightarrow \mathbf{q} = -\kappa \nabla T$
- In kinetic theory heat flow $\Rightarrow \mathbf{q} = \int \frac{d^3 p}{(2\pi)^3} \mathbf{v}_p E_p \delta f_p$
 - Particle velocity $\mathbf{v}_p = \partial E_p / \partial \mathbf{p}$, $\delta f_p = f_p - f_p^0$
 - local thermal equilibrium $f_p^0 = 1/(e^{\rho_\mu u^\mu / T} - 1)$
- Non-equilibrium distribution function \Rightarrow thermal gradient in the medium
$$\delta f_p = -\frac{f_p^0(1+f_p^0)}{T^3} g(p) p \cdot \nabla T$$

$$\kappa = \frac{1}{3T^3} \int \frac{d^3 p}{(2\pi)^3} f_p(1+f_p) g(p) \mathbf{v}_p E_p p.$$

T. Schafer et. al Phys. Rev. C 81, 045205 (2010)

continued . . .

- $g(p)$ is dimensionless variable.
- $g(p)$ obtained solving Boltzmann equation

- Boltzmann equation

$$\frac{df_p}{dt} = \frac{\partial f_p}{\partial t} + \frac{\partial E_p}{\partial \mathbf{p}} \cdot \nabla f_p = C[f_p]$$

- Collision integral

$$C[f_p] = \frac{1}{2E_p} \int_{p',k,k'} (2\pi)^4 \delta^{(4)}(P + K - P' - K') \frac{1}{2} |\mathcal{M}|^2 D$$

- Phase-space factor

$$D = f_{p'} f_{k'} (1 + f_p)(1 + f_k) - f_p f_k (1 + f_{p'})(1 + f_{k'})$$

- $\mathcal{M} \leftrightarrow$ scattering matrix

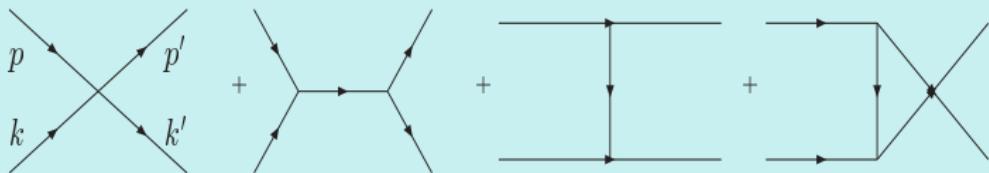
T. Schafer et. al Phys. Rev. C 81, 045205 (2010)

Superfluid phonon dispersion law: beyond leading order

Solution to the Boltzmann equation obeys the constraints of both energy and momentum conservation

$$\int \frac{d^3 p}{(2\pi)^3} E_p \delta f_p = \int \frac{d^3 p}{(2\pi)^3} p \delta f_p = \frac{\nabla T}{3 T^3} \int \frac{d^3 p}{(2\pi)^3} f_p (1 + f_p) g(p) p^2 = 0$$

- Phonons \Rightarrow exactly linear dispersion relation do not contribute to the thermal conductivity
- Beyond leading order $\Rightarrow E_p = c_s p (1 + \gamma p^2)$ where, $\gamma = -\frac{c_s^2}{15\Delta^2}$,
- Phonon dispersion law curves downward beyond linear order \Rightarrow collisional processes of $1 \rightarrow 2$ kinematically forbidden
- Relevant binary collisions of phonons for the thermal conductivity are
 - contact
 - s-channel
 - t-channel
 - u-channel



Kinematically forbidden processes

Sign of γ plays a crucial role in determining which processes are allowed

For $1 \rightarrow 2$ processes energy and momentum conservation impose

$$\begin{aligned} E_a &= E_b + E_c \\ \vec{p}_a &= \vec{p}_b + \vec{p}_c \end{aligned}$$

- Beyond leading order $\Rightarrow E_p = c_s p (1 + \gamma p^2)$
- First order in γ \Rightarrow the NLO correction \Rightarrow

$$\theta_{bc} = \sqrt{6\gamma} (p_b + p_c)$$

- For the one to two processes to be kinematically allowed, it is necessary that $\gamma > 0$.

Variational solution to the Boltzmann equation

- $g(p)$ in a basis of orthogonal polynomials $\Rightarrow g(p) = \sum_s b_s B_s(p^2)$
- The polynomials are orthogonal with regard to the inner product

$$\int d\Gamma f_p (1 + f_p) p^2 B_s(p^2) B_t(p^2) \equiv A_s \delta_{st}$$

$$\kappa = \left(\frac{4a_1^2}{3T^2} \right) A_1^2 M_{11}^{-1}$$

- $M_{11}^{-1} \Rightarrow (1,1)$ element of inverse of the truncated $N \times N$ matrix. The bound is saturated as $N \rightarrow \infty$.

$$\begin{aligned} M_{st} &= \int d\Gamma_{p,k,k',p'} \mathbf{Q}_s \cdot \mathbf{Q}_t \\ \mathbf{Q}_s &= B_s(p^2) \mathbf{p} + B_s(k^2) \mathbf{k} - B_s(k'^2) \mathbf{k}' - B_s(p'^2) \mathbf{p}' \end{aligned}$$

- Phonons with non-linear dispersion relation

$$a_1 = \frac{4c_s^4}{15\Delta^2} \quad A_1 = \frac{256\pi^6}{245c_s^9} T^9$$

Scattering matrices

Contact amplitude

$$\begin{aligned} i\mathcal{M}_{c.t.} = & -i\lambda \left\{ 24E_p E_k E_{p'} E_{k'} - 4\eta_{\lambda,1} (E_p E_k \mathbf{p}' \cdot \mathbf{k}' + E_p E_{p'} \mathbf{k} \cdot \mathbf{k}' \right. \\ & + E_p E_{k'} \mathbf{p}' \cdot \mathbf{k} + E_{p'} E_k \mathbf{p} \cdot \mathbf{k}' + E_{p'} E_{k'} \mathbf{p} \cdot \mathbf{k} + E_k E_{k'} \mathbf{p} \cdot \mathbf{p}') \\ & \left. + 8\eta_{\lambda,2} (\mathbf{p} \cdot \mathbf{k} \mathbf{p}' \cdot \mathbf{k}' + \mathbf{p} \cdot \mathbf{p}' \mathbf{k} \cdot \mathbf{k}' + \mathbf{p} \cdot \mathbf{k}' \mathbf{p}' \cdot \mathbf{k}) \right\} \end{aligned}$$

s-channel amplitude

$$\begin{aligned} i\mathcal{M}_s = & -4ig^2 G(P + K) \{ E_p K^2 + E_k P^2 + 2(E_p + E_k) P \cdot K \} \\ & \{ E_{p'} K'^2 + E_{k'} P'^2 + 2(E_{k'} + E_{p'}) P' \cdot K' \} \end{aligned}$$

- $G \Rightarrow$ phonon propagator.
- The t - and u -channel amplitudes can be obtained from the s -channel one by using the crossing symmetry $i\mathcal{M}_t = i\mathcal{M}_s(K \leftrightarrow -P')$ and $i\mathcal{M}_u = i\mathcal{M}_s(K \leftrightarrow -K')$.

Phonon propagator

- Leading order phonon propagator

$$\mathcal{G}_{\text{ph}} \left(p_i^0 + p_j^0, \vec{p}_i + \vec{p}_j \right) = \frac{1}{(p_i^0 + p_j^0)^2 - E_{p_i + p_j}^2}$$

- Next to leading order phonon propagator

$$\begin{aligned} \mathcal{G}_{\text{ph}} \left(p_i^0 + p_j^0, \vec{p}_i + \vec{p}_j \right) &= i \left[c_s^2 (p_i + p_j)^2 \left[1 + 2\gamma \left(\frac{p_i^3 + p_j^3}{p_i + p_j} \right) \right] \right. \\ &\quad \left. - c_s^2 (\vec{p}_i + \vec{p}_j)^2 \left[1 + 2\gamma (\vec{p}_i + \vec{p}_j)^2 \right] \right]^{-1} \end{aligned}$$

- In the collinear region $\Rightarrow \theta_{ij} \approx 0$ the propagator behaves as $\sim 1/p^4$.
- Region of large angle scattering the propagator behaves as $\sim 1/p^2$.

Temperature dependence of the thermal conductivity

$$\text{Temperature dependence} \Rightarrow |\mathcal{M}|^2 \propto T^{12} \times \frac{1}{G^2}$$

- For large angle collisions $\Rightarrow G^2 \propto T^{-4} \rightarrow |\mathcal{M}|^2 \propto T^8$,

$$\kappa \propto \frac{T^{16}}{\Delta^4} \frac{1}{T^{18}} \propto \frac{1}{T^2 \Delta^4} \quad \text{for large angle collisions.}$$

- In collinear region $\Rightarrow G^2 \propto \Delta^4 T^{-8} \rightarrow |\mathcal{M}|^2 \propto T^4 \Delta^4$,

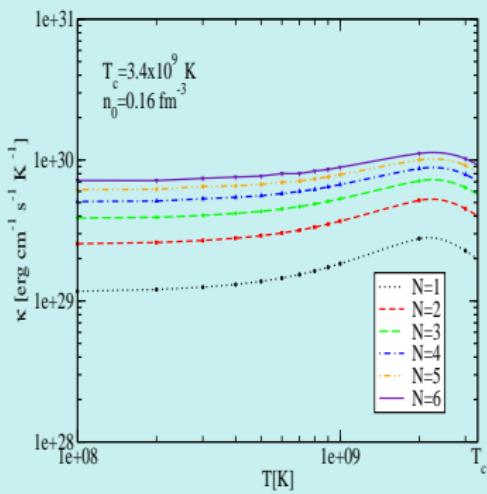
$$\kappa \propto \frac{T^{16}}{\Delta^4} \frac{1}{T^{14} \Delta^4} \propto \frac{T^2}{\Delta^8} \quad \text{for small angle collisions.}$$

- In combined large-small angle collisions $\Rightarrow G^2 \propto \Delta^2 T^{-6} \rightarrow |\mathcal{M}|^2 \propto T^6 \Delta^2$,

$$\kappa \propto \frac{T^{16}}{\Delta^4} \frac{1}{T^{16} \Delta^2} \propto \frac{1}{\Delta^6} \quad \text{for combined large - small angle collisions}$$

Results

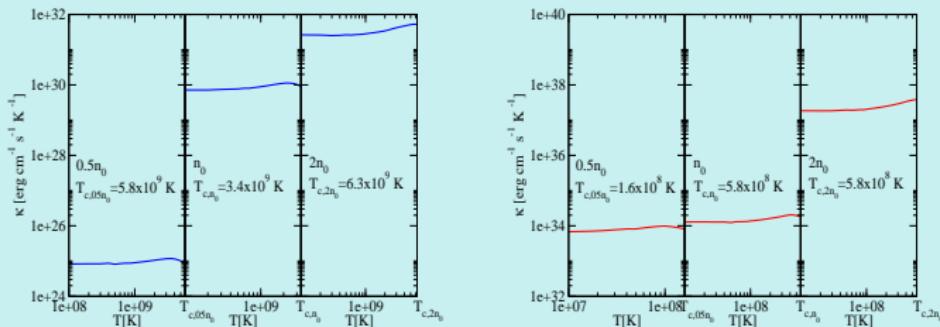
Variational solution of κ



- Speed of sound at $T = 0$ and the different phonon selfcouplings \Rightarrow the EoS for neutron matter in neutron stars.
- Nucleonic EoS \Rightarrow APR98 Akmal, Pandharipande and Ravenhall Phys. Rev. C 58, 1804 (1998)
- The final value of the number $N \Rightarrow$ imposed the deviation with respect to the previous order should be $\lesssim 10\%$.
- For $T \lesssim 10^9 \text{ K}$, below T_c , $\kappa \Rightarrow$ almost independent of T , with subleading corrections $\sim T$ and T^2 .

S. Sarkar et. al Phys. Rev. C 90, 055803 (2014)

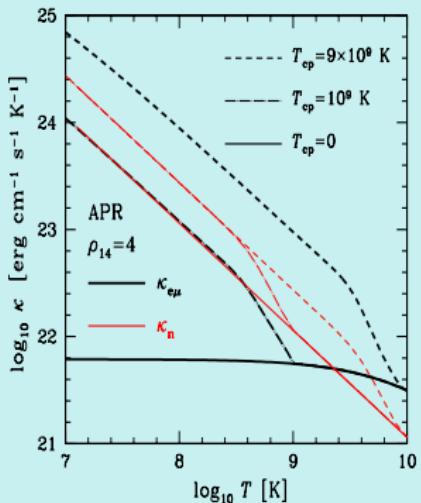
Phonon contribution to κ



- For $N = 6 \Rightarrow$ a fit to our numerical results $\Rightarrow \kappa \sim (7.02 \times 10^{29} + 9.28 \times 10^{19} T + 9.08 \times 10^{10} T^2) \text{ erg cm}^{-1} \text{s}^{-1} \text{K}^{-1}$.
- For both the gaps \Rightarrow the dominant processes to the phonon contribution to the thermal conductivity corresponds to the combined small and large angle collisions $\Rightarrow T$ independent behaviour of κ .
- The thermal conductivity grows with increasing density, with a non-linear dependence.

S. Sarkar et. al Phys. Rev. C 90, 055803 (2014)

Electromagnetic contributions to κ



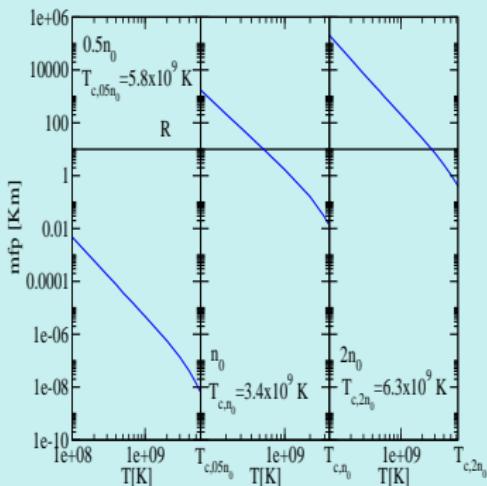
- In normal matter ($T_{cp} = 0$) κ_n dominates over $\kappa_{e\mu}$ at $T \leq 2 \times 10^9$ K.
- $T < T_{cp}$ proton superconductivity sets in $\Rightarrow \kappa_{e\mu}$ starts to grow up much quicker than κ_n ($\kappa_{e\mu} \propto \Delta \propto T_{cp}$) and becomes comparable to or larger than κ_n .
- For a stronger superconductivity with $T_{cp} \gg 9 \times 10^9$ K $\Rightarrow \kappa_{e\mu}$ dominates over κ_n at any T .
- $10^{25} \lesssim \kappa_{ph} \lesssim 10^{32}$ erg cm $^{-1}$ s $^{-1}$ K $^{-1}$ from $0.5 n_0$ to $2 n_0$ \Rightarrow Thermal conductivity in the neutron star core is dominated by phonon-phonon collisions.

P. S. Shternin et. al Phys. Rev. D 75, 103004 (2007)

Thermal conductivity mean free path of the phonons

$$\text{Thermal conductivity mean free path of the phonons} \Rightarrow l = \frac{\kappa}{\frac{1}{3} c_v c_s}$$

$$\text{heat capacity for phonons} \Rightarrow c_v = \frac{2\pi^2}{15c_s^3} T^3$$



- κ_{phn} is temperature independent, $c_v \propto T^3$. Temperature dependence of mfp $\Rightarrow l \propto 1/T^3$.
- Superfluid phonon mfp stays below the radius of the star
 - $n = 0.5n_0$
 - $n = n_0, T \geq 6 \times 10^8 K$
 - $n = 2n_0, T \geq 3 \times 10^9 K$

Summary

- The cooling of a neutron star depends on the rate of neutrino emission and the thermal conductivity.
- Thermal conductivity \Rightarrow solving the Boltzmann equation.
- κ vanishes \Rightarrow linear phonon dispersion law. We calculate first correction in dispersion relation which depends on the gap of neutron matter.
- Phonon dispersion law curves downward beyond linear order \Rightarrow collisional processes of $1 \rightarrow 2$ kinematically forbidden.
- $\kappa \Rightarrow$ phonon scattering rates \Rightarrow effective field theory techniques in terms of the APR EoS of the system.
- $\kappa \propto 1/\Delta^6$ the factor of proportionality depends on the density and EoS of the superfluid.
- Thermal conductivity in the neutron star core is dominated by phonon-phonon collisions when phonons are in a pure hydrodynamical regime.

THANK YOU

continued . . .

- Phonon velocity \Rightarrow

$$v_{\text{ph}} = \sqrt{\frac{\partial P}{\partial \tilde{\rho}}} \equiv c_s$$

- $\tilde{\rho} \Rightarrow$ mass density, related to the particle density (ρ) $\Rightarrow \tilde{\rho} = m\rho$.
- Three phonon self-coupling constants \Rightarrow

$$g = \frac{1}{6\sqrt{m\rho} c_s} \left(1 - 2 \frac{\rho}{c_s} \frac{\partial c_s}{\partial \rho} \right) , \quad \eta_g = \frac{c_s}{6\sqrt{m\rho} g}$$

- Four phonon coupling constants

$$\lambda = \frac{1}{24 m\rho c_s^2} \left(1 - 8 \frac{\rho}{c_s} \frac{\partial c_s}{\partial \rho} + 10 \frac{\rho^2}{c_s^2} \left(\frac{\partial c_s}{\partial \rho} \right)^2 - 2 \frac{\rho^2}{c_s} \frac{\partial^2 c_s}{\partial \rho^2} \right) ,$$

$$\eta_{\lambda,2} = \frac{c_s^2}{8 m\rho \lambda} , \quad \eta_{\lambda,1} = 2 \frac{\eta_{\lambda,2}}{\eta_g}$$

EoS for superfluid neutron star matter

- Speed of sound at $T = 0$ and the different phonon selfcouplings \Rightarrow the EoS for neutron matter in neutron stars.
- A common benchmark for nucleonic EoS is APR98
Akmal, Pandharipande and Ravenhall Phys. Rev. C 58, 1804 (1998)
- Later parametrized \Rightarrow H. Heiselberg, M. Hjorth-Jensen, Phys. Rep. 328, 237-327 (2000)

$$\begin{aligned} E/A &= \mathcal{E}_0 u \frac{u - 2 - \delta}{1 + \delta u} + S_0 u^\gamma (1 - 2x_p)^2 \\ u &= \rho/\rho_0 \quad \mathcal{E}_0 = 15.8 \text{ MeV} \\ x_p &= \rho_p/\rho_0 \quad S_0 = 32 \text{ MeV} \\ \delta &= 0.2 \quad \gamma = 0.6 \\ \rho_0 &= 0.16 \text{ fm}^{-3} \end{aligned}$$

- For stable matter made up of neutrons, protons and electrons c_s at $T = 0$ is

$$c_s(\rho, x_p) \approx \sqrt{\frac{1}{m} \frac{\partial P_N(\rho, x_p)}{\partial \rho_n}}$$

Gap parameter

- 1S_0 and averaged 3P_2 neutron gaps
- Energy gap (Fermi surface) by the phenomenological formula

$$\Delta(k_F) = \Delta_0 \frac{(k_F - k_1)^2}{(k_F - k_1)^2 + k_2} \frac{(k_F - k_3)^2}{(k_F - k_3)^2 + k_4}$$
$$\underline{^1S_0(A) + ^3P_2(i), \ ^1S_0(c) + ^3P_2(k)}$$

model	Δ_0 (Mev)	k_1 (fm^{-1})	k_2 (fm^{-1})	k_3 (fm^{-1})	k_4 (fm^{-1})
<i>A</i>	9.3	0.02	0.6	1.55	0.32
<i>c</i>	22	0.3	0.09	1.05	4
<i>i</i>	10.2	1.09	3	3.45	2.5
<i>k</i>	0.425	1.1	0.5	2.7	0.5

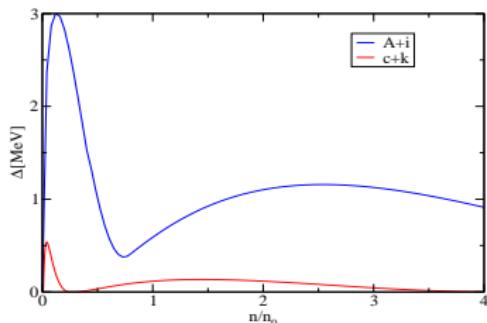
Table: N. Andersson *et. al*, Nucl. Phys. A763, 212-229 (2005).

Model *A* is for the bare interaction and is relevant in a pure neutron (proton) medium

c is for the 1S_0 neutron pairing, *i, k* are for the 3P_2 neutron channel

continued . . .

$^1S_0(A) + ^3P_2(i)$, $^1S_0(c) + ^3P_2(k)$



- $^1S_0(A) \Rightarrow$ maximum gap of about 3 MeV at $p_F \approx 0.85 \text{ fm}^{-1}$
- $^3P_2(i)$ neutron angular averaged \Rightarrow maximum value for the gap of approximately 1 MeV.
- $^1S_0(c) \Rightarrow$ corrections to the bare nucleon-nucleon potential.
- $^3P_2(k)$ parametrization assuming weak neutron superfluidity in the core with maximum value for the gap of the order of 0.1 MeV.

Validity of result

- Close to T_c higher order corrections in the energy and momentum expansion should be taken into account in both the phonon dispersion law and self-interactions.
- Density of superfluid phonons becomes very dilute at very low $T \Rightarrow$ difficult to maintain a hydrodynamical description of their behavior.
- Phonons would behave in the low- T regime ballistically.
- Thermal conductivity due to phonons would be then dominated by the collisions of the phonons with the boundary $\Rightarrow \kappa = \frac{1}{3} c_v c_s R$

S. Sarkar et. al Phys. Rev. C 90, 055803 (2014)