

The Equation of State from Lattice QCD

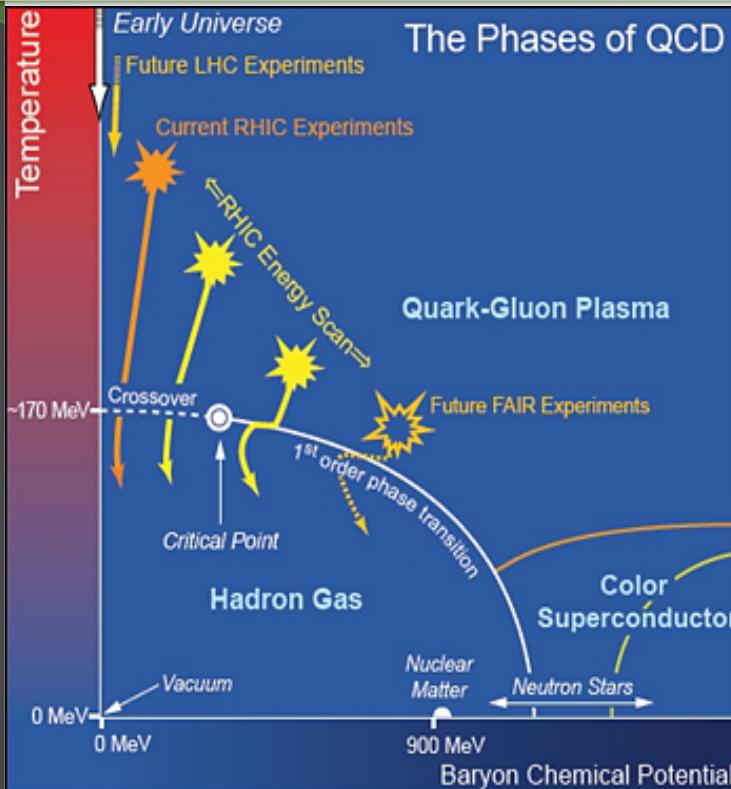
Prasad Hegde
[Bi-BNL-CCNU collaboration]

Central China Normal University
Wuhan, China.

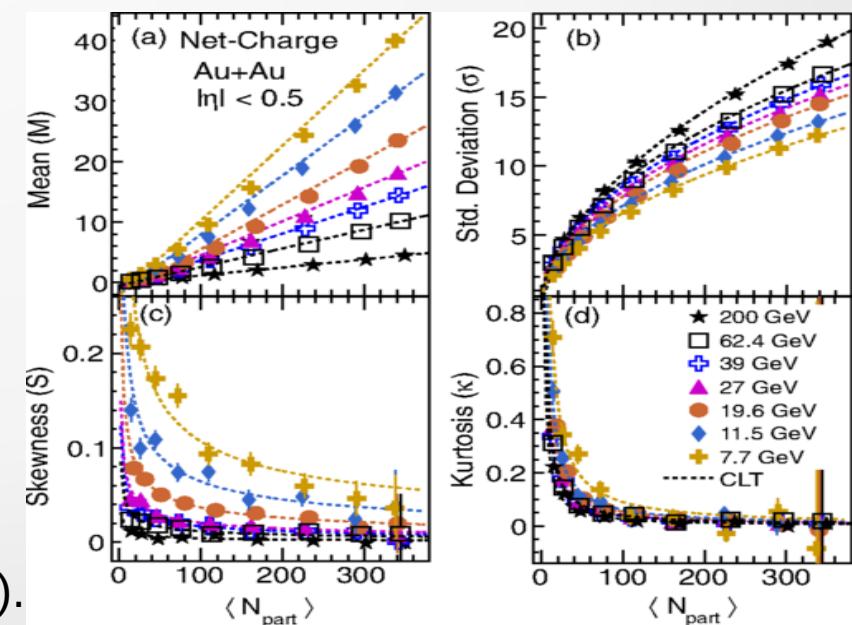
January 27, 2015.

Workshop on QCD at High Density,
TIFR, Mumbai.

Beam energy scan at RHIC



- Look at higher moments of net charge (electric, baryon number,...) distributions.
 - Talks by N.Xu, B.Mohanty, R.Lacey,...

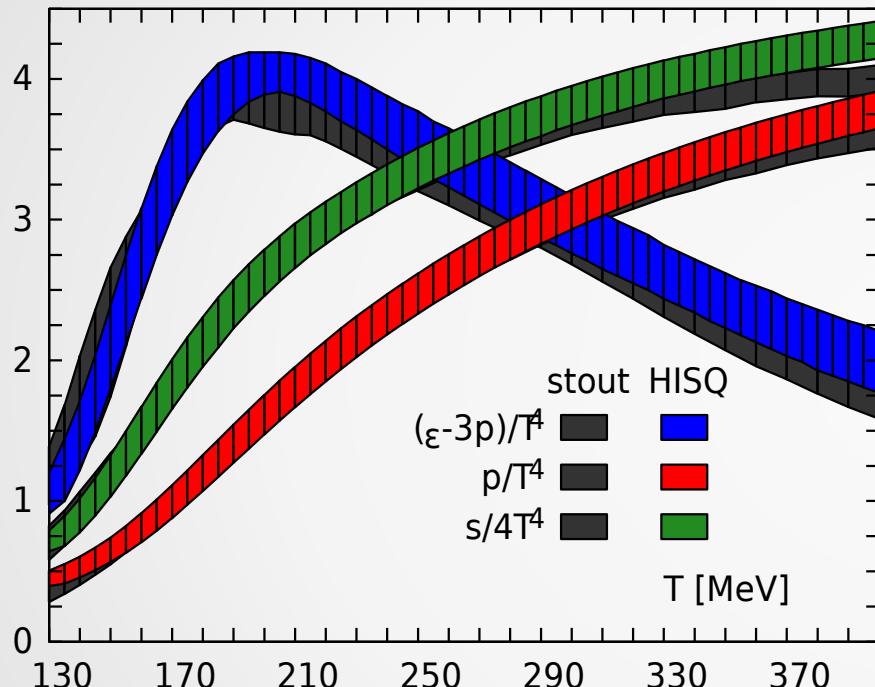


STAR collaboration, PRL 113, 0902301 (2014).

- Possible existence of a critical point at large μ_B .
 - Talk by F.Karsch this morning.
- Search up to $\mu_B \sim 400-450$ MeV.

Equation of state: What we know

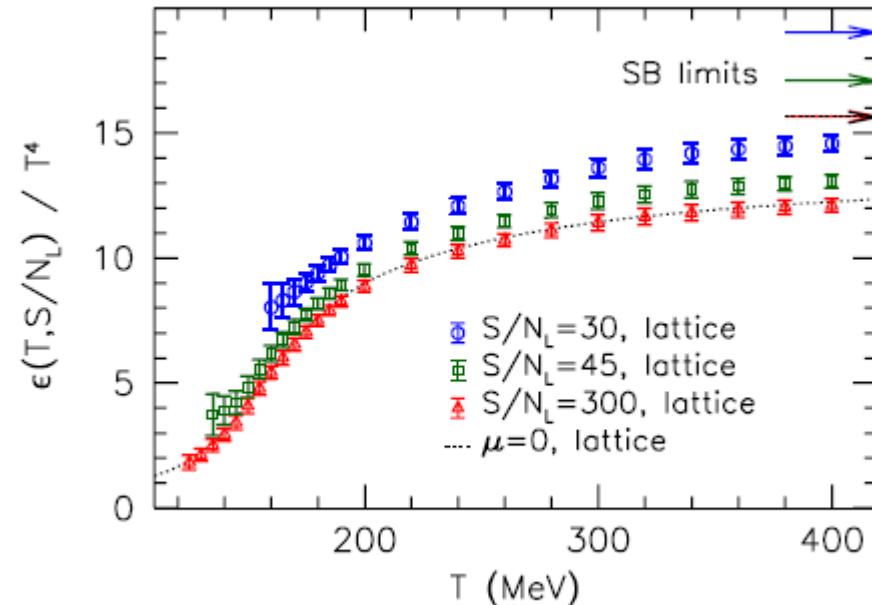
0th-order equation of state



A. Bazavov et al. [HotQCD collaboration]
Phys. Rev. D90, 054903 (2014); see talk
by P.Petreczky at this workshop.

S. Borsanyi et al. [BMW collaboration],
JHEP 1011, 077 (2010).

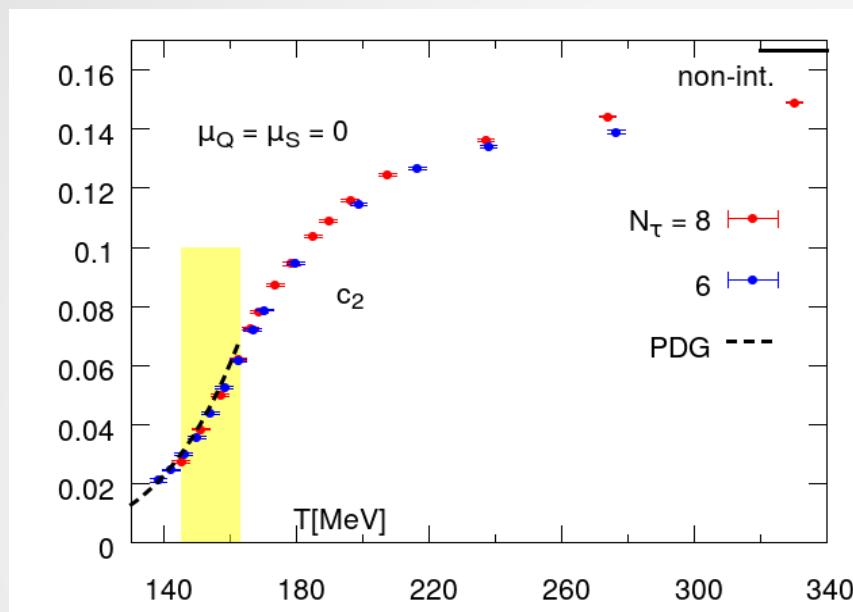
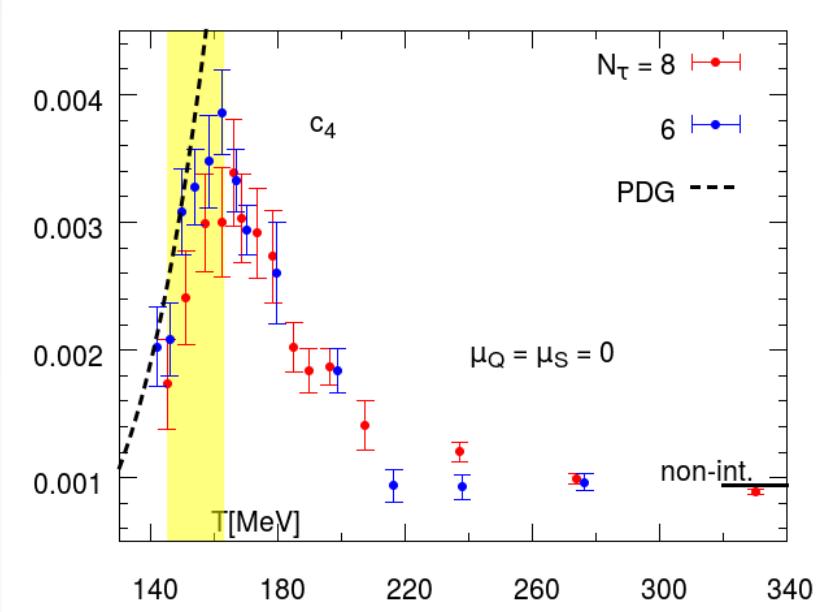
2nd-order equation of state



S. Borsanyi et al. [BMW collaboration],
JHEP 1208, 053 (2012).

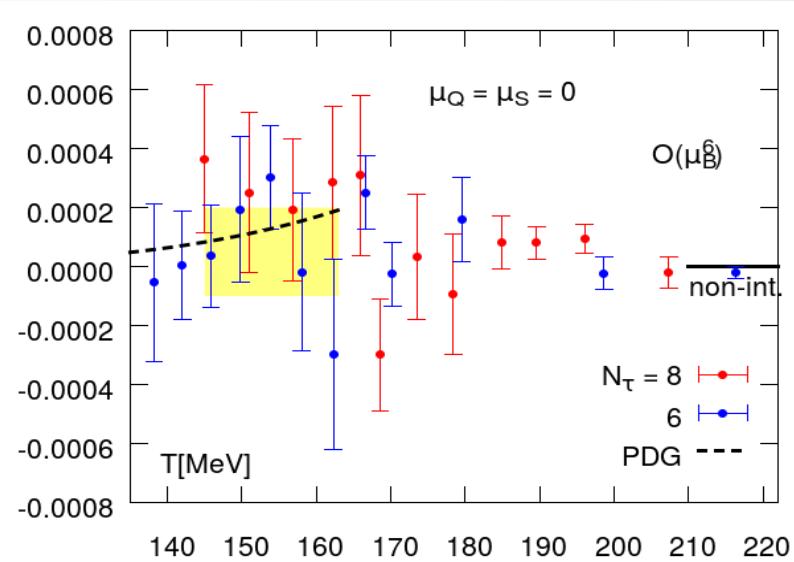
Here we will present results for a
4th-order equation of state.

The method of Taylor expansions



$$\frac{p}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{\chi_{ijk}}{i! j! k!} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

Estimate the pressure for $\mu_B > 0$ using n^{th} -order expansion.



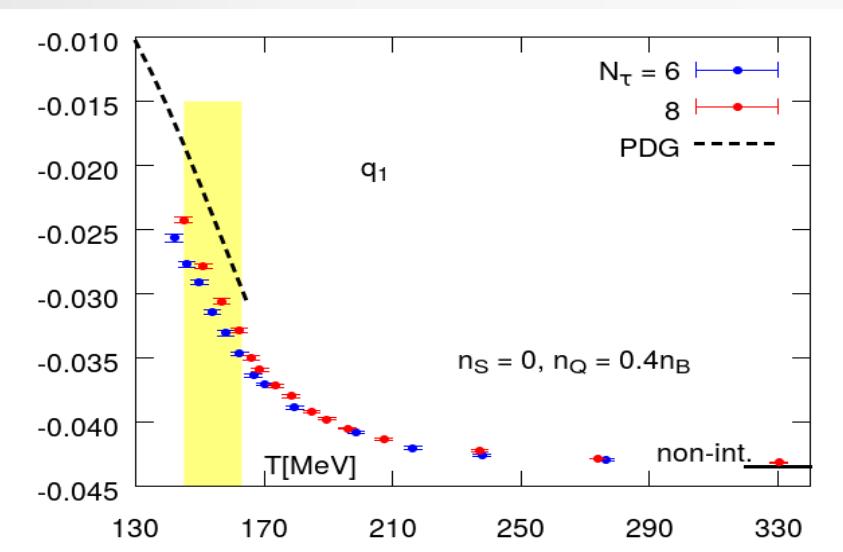
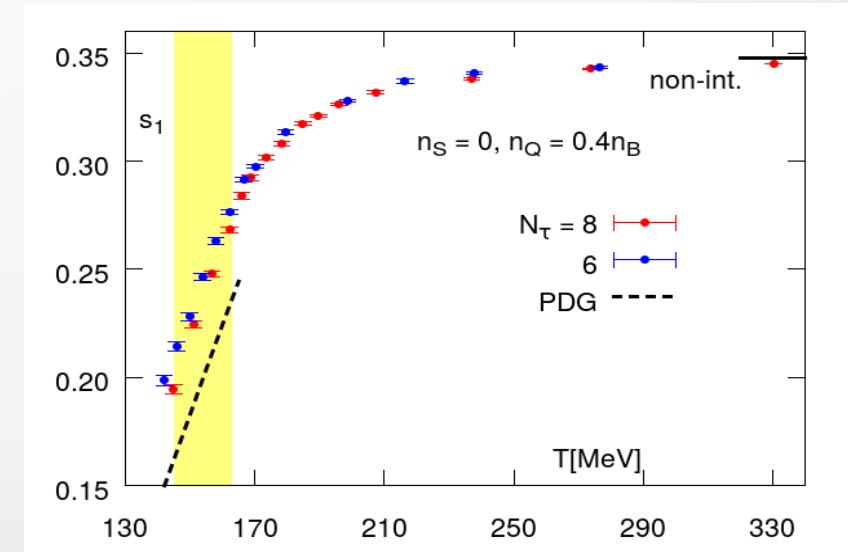
Initial conditions in heavy-ion collisions

Fix μ_Q and μ_S from initial conditions:

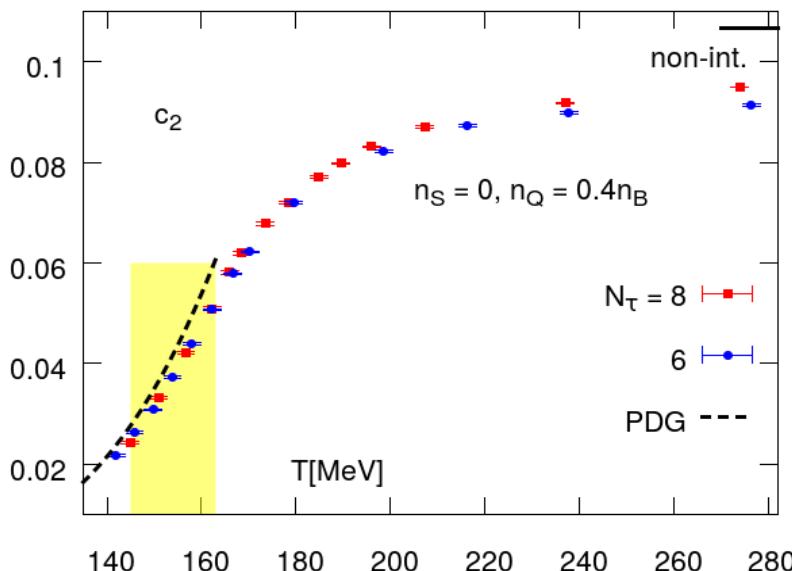
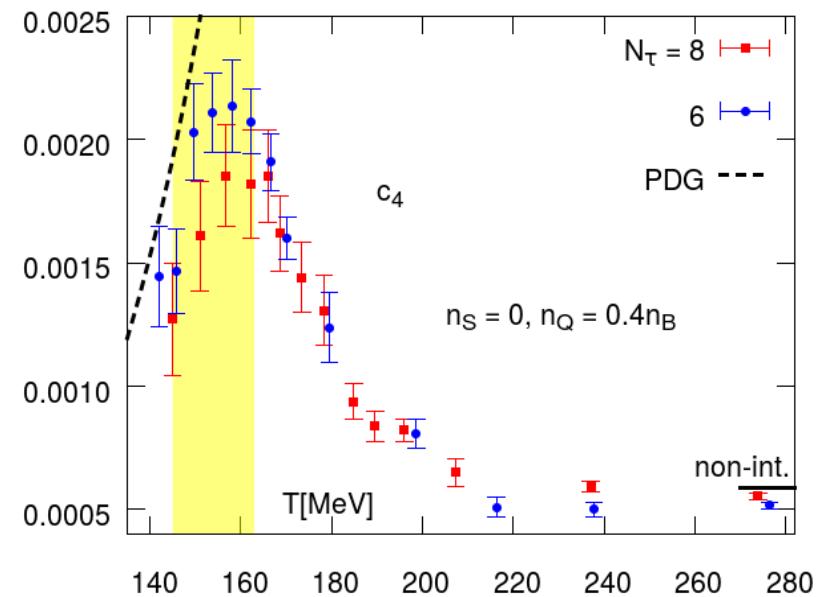
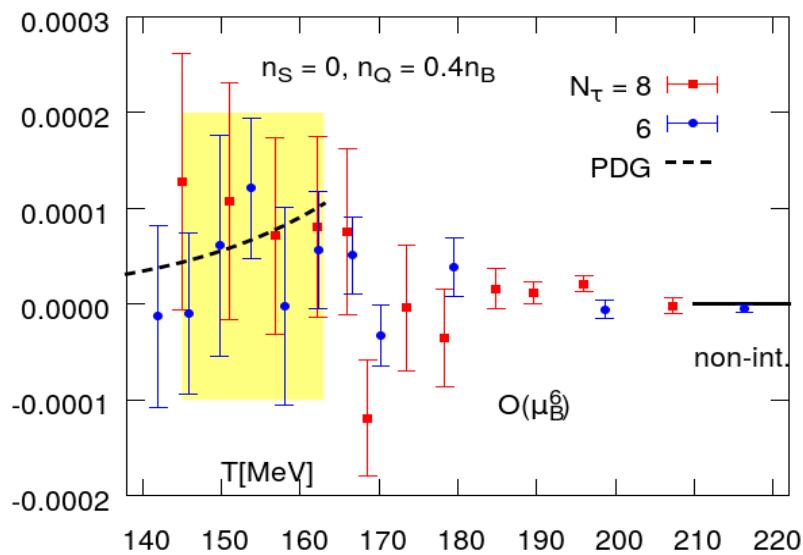
- $N_s = 0$ (no valence strange quarks),
- $r = N_p/(N_p + N_n) = \text{const.}$ (fixed Z-to-A ratio).

$$\frac{\mu_Q}{T} = q_1 \frac{\mu_B}{T} + q_3 \left(\frac{\mu_B}{T} \right)^3 + \dots$$

$$\frac{\mu_S}{T} = s_1 \frac{\mu_B}{T} + s_3 \left(\frac{\mu_B}{T} \right)^3 + \dots$$



Susceptibilities: Constrained case



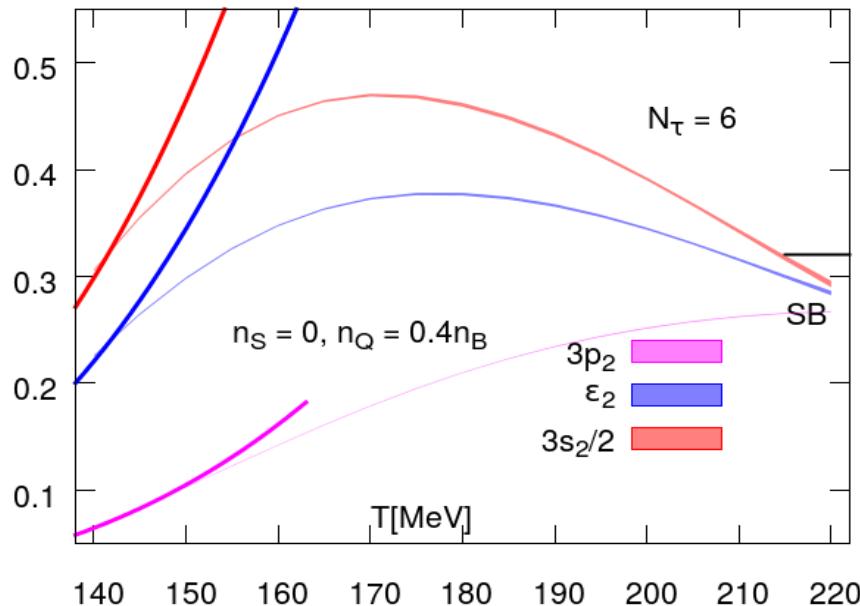
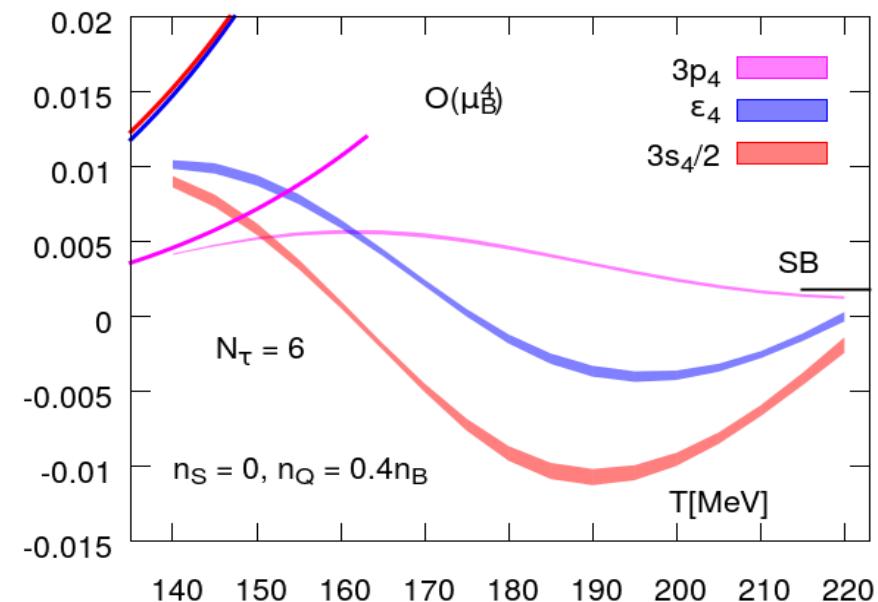
- We will use $r = 0.40$ throughout, which is the value for Pb-Pb collisions.
- Constrained case qualitatively similar to $\mu_Q = \mu_S = 0$ case, but values about 30-40% smaller.

First derivatives

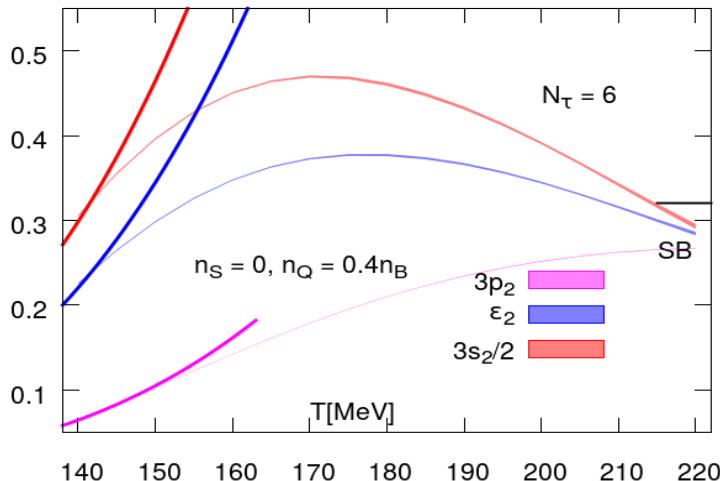
Just as for the pressure, we can Taylor-expand the energy density, and entropy density as well.

$$\frac{s}{T^3} = \sum_{n=0}^{\infty} \left(\frac{\mu_B}{T} \right)^n \left\{ T \frac{dc_n}{dT} + (4-n)c_n \right\}$$

$$\frac{\varepsilon}{T^4} = \sum_{n=0}^{\infty} \left(\frac{\mu_B}{T} \right)^n \left\{ T \frac{dc_n}{dT} + 3c_n \right\}$$

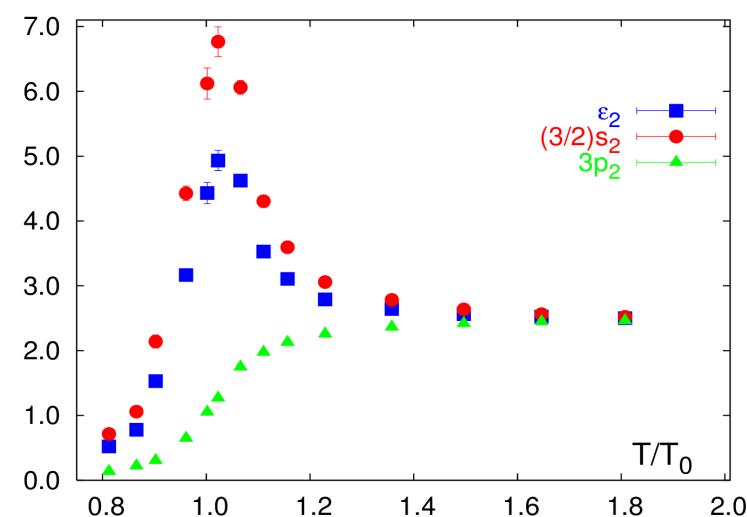
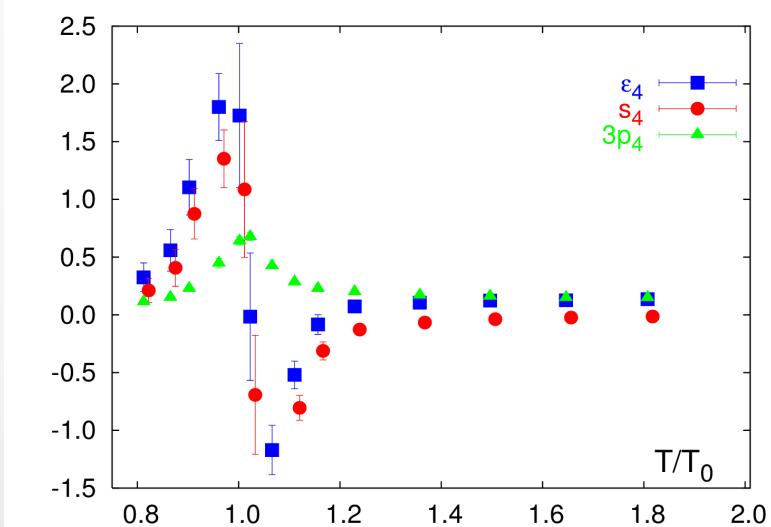


First derivatives

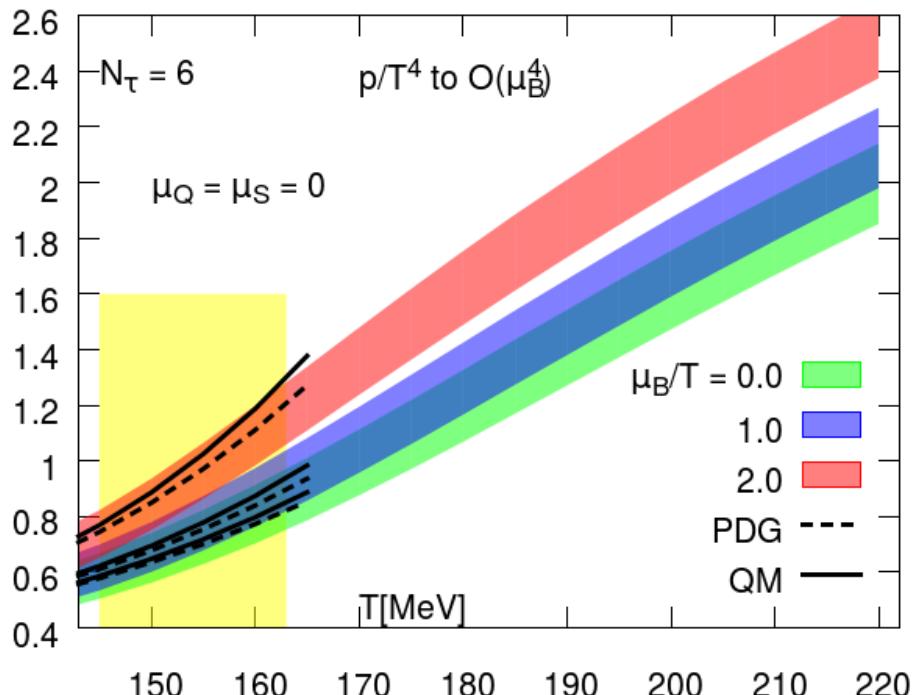


S.Ejiri *et al.* Phys. Rev. D73, 054506 (2006).

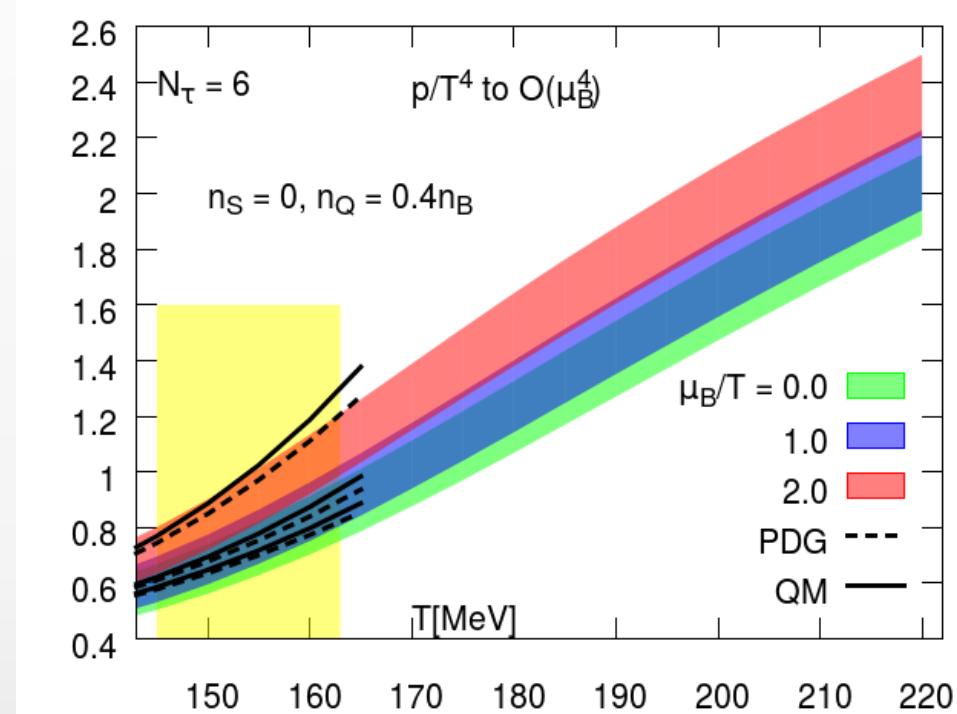
$$t \sim \left| \frac{T - T_c}{T_c} + \frac{\mu^2}{T_c^2} \right|$$



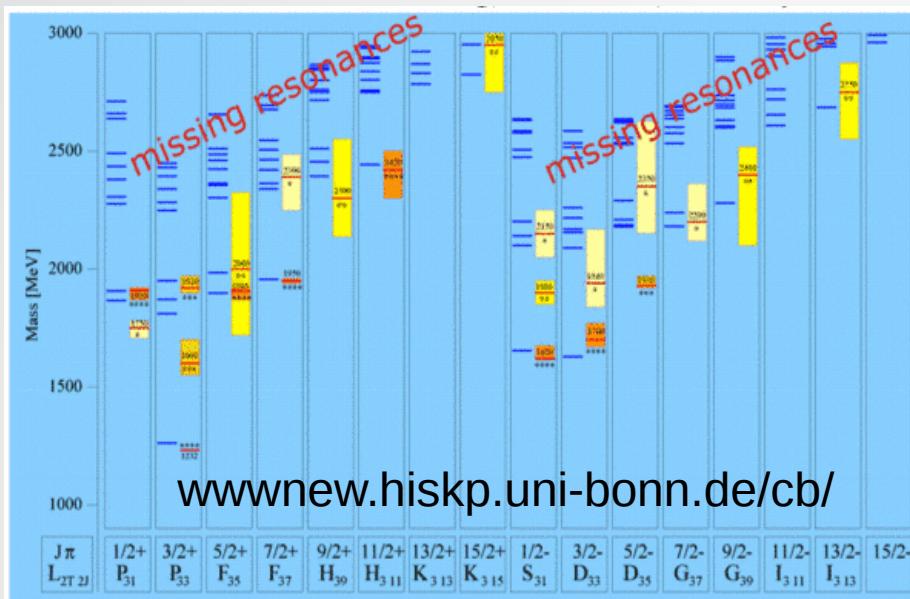
Putting everything together - I



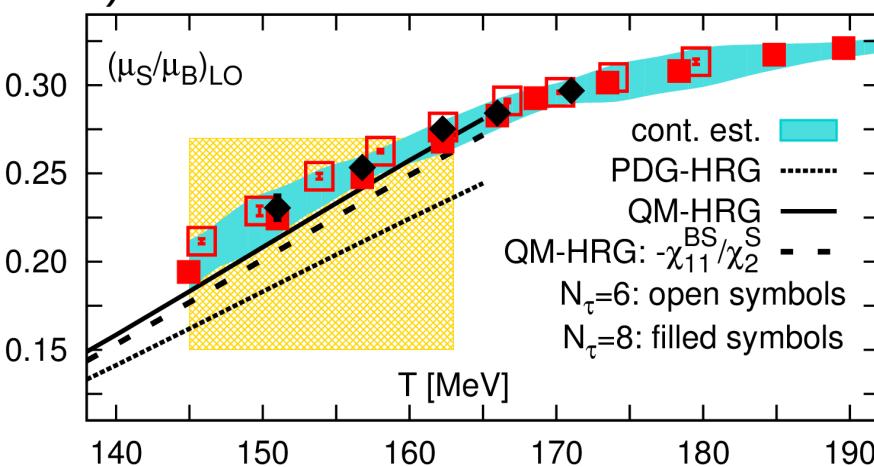
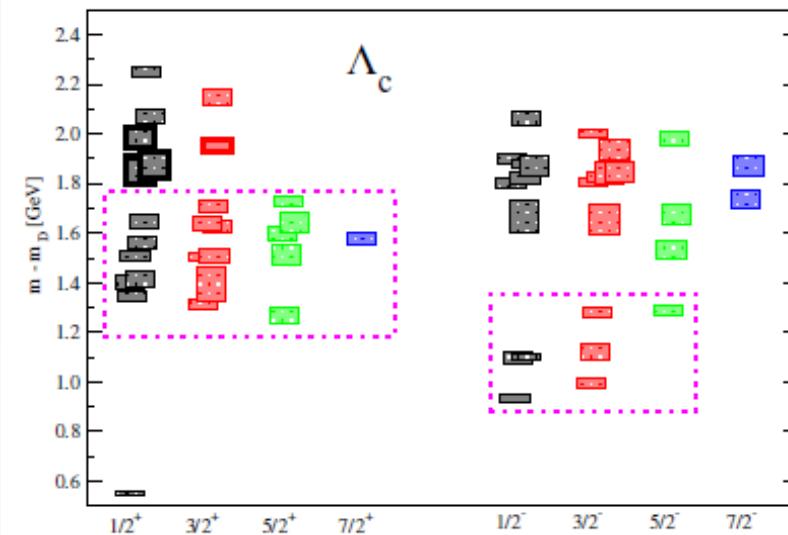
~10% corrections around the transition region up to $\mu_B / T = 2.0$.



Additional resonances and the Quark Model



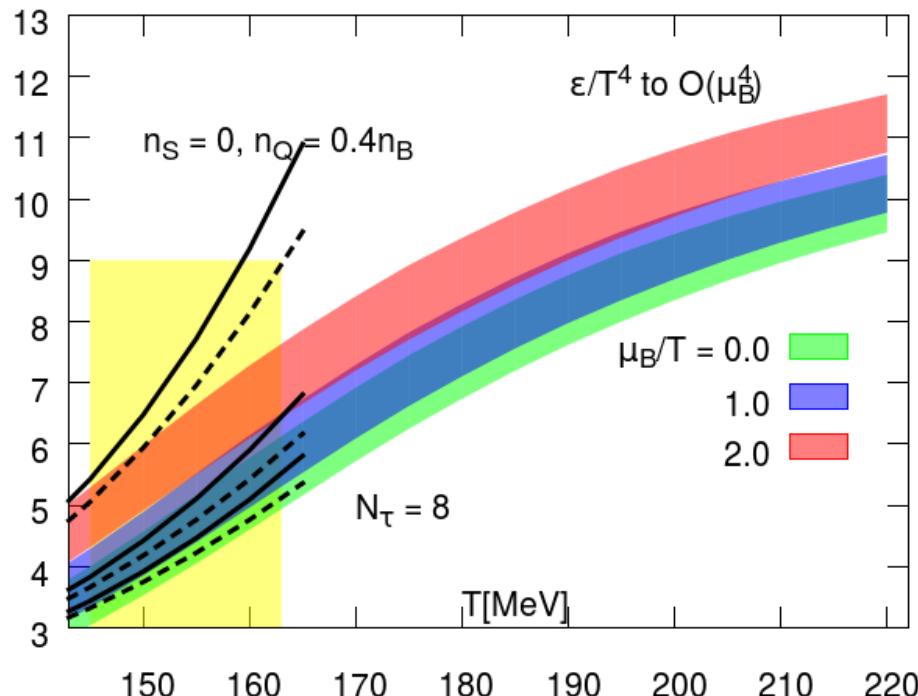
A.Bazavov *et al.* [HotQCD], PRL 113, 072001 (2014).



Padmanath *et al.* arXiv:1410.8791 [hep-lat]
 D.Ebert, R.Faustov & V.Galkin, Phys. Rev. D79, 114029 (2010).

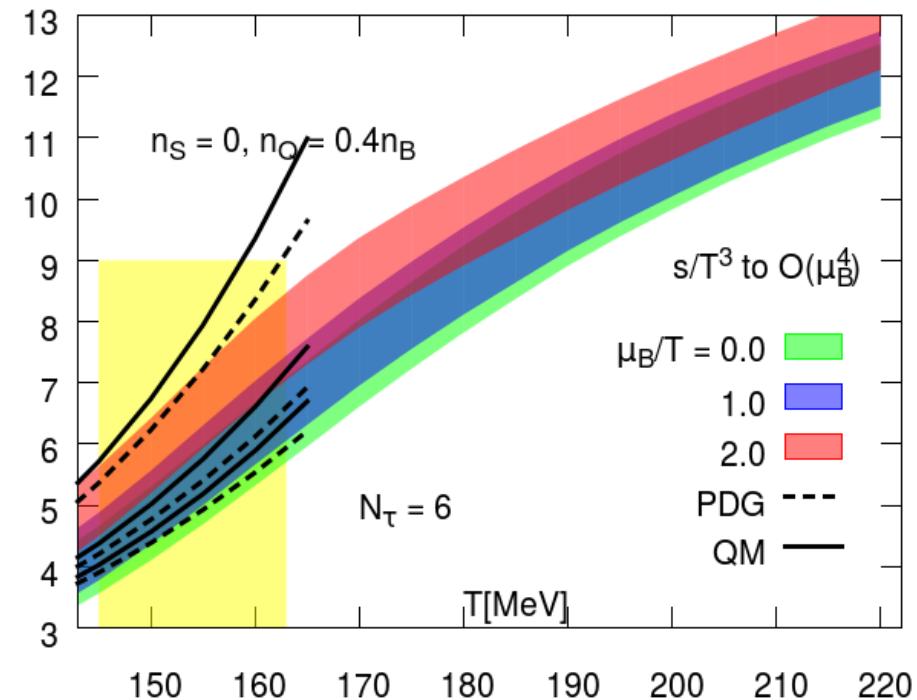
Possibility of additional light and strange resonances beyond those listed in the PDG; see talk by C. Schmidt.

Putting everything together - II

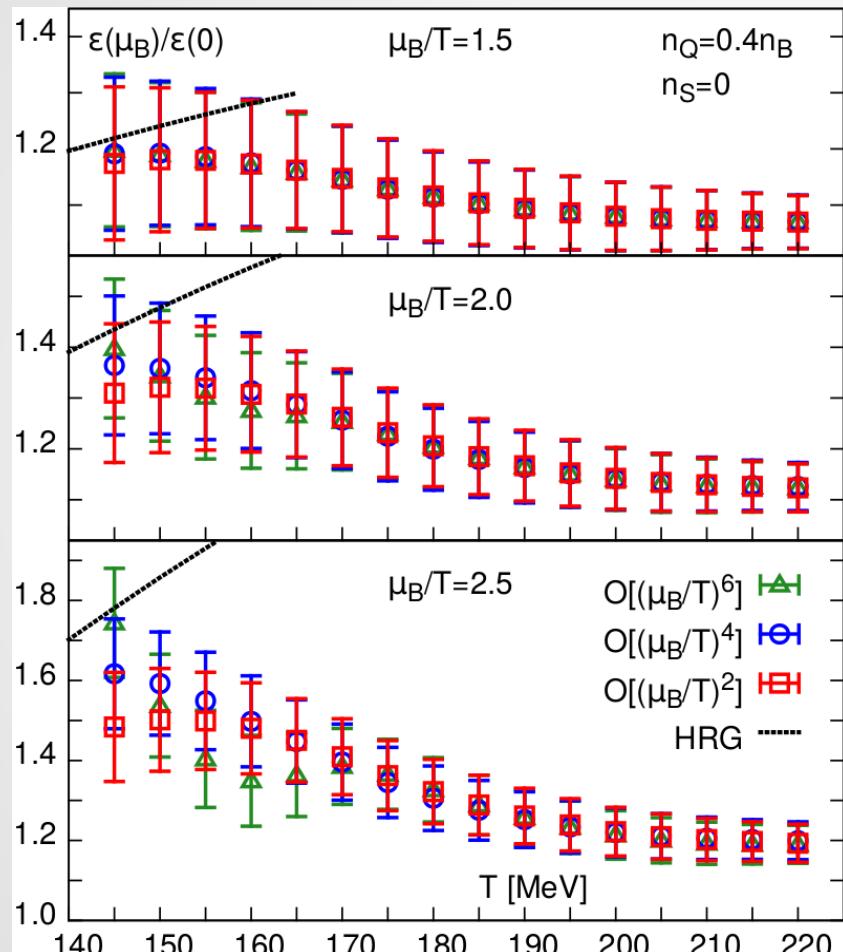
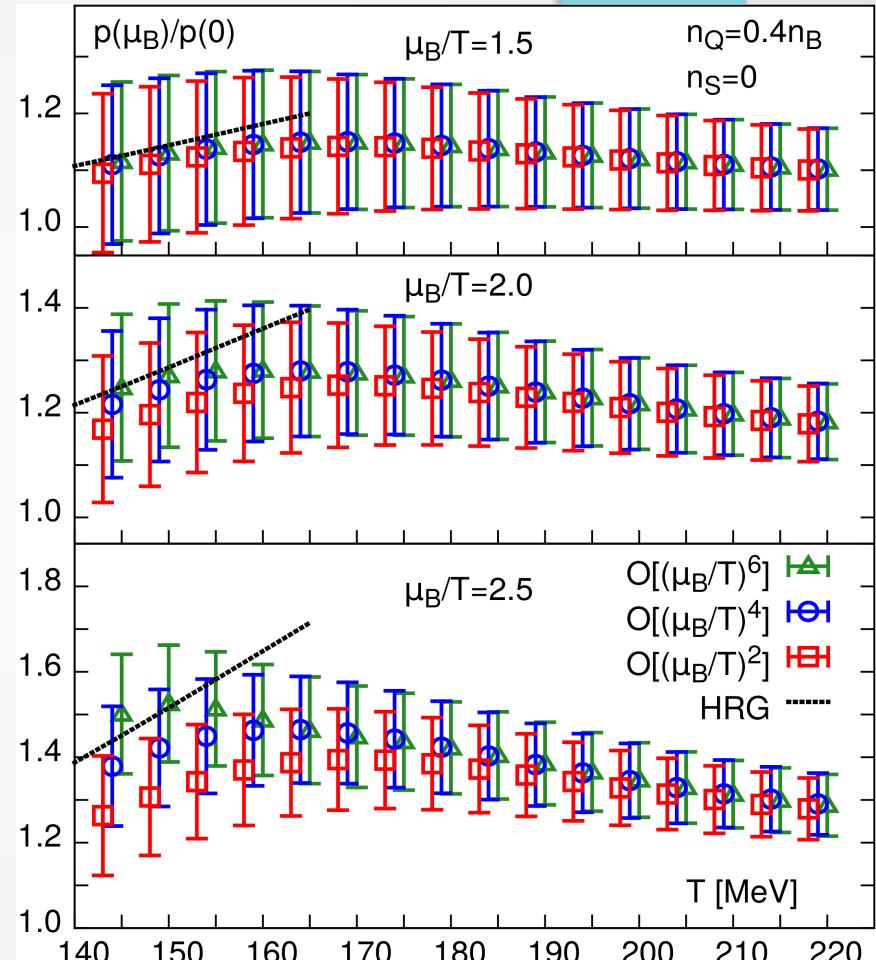


~10% corrections around the transition region up to $\mu_B / T = 2.0$.

Higher derivatives expected to be more sensitive to higher-order corrections.

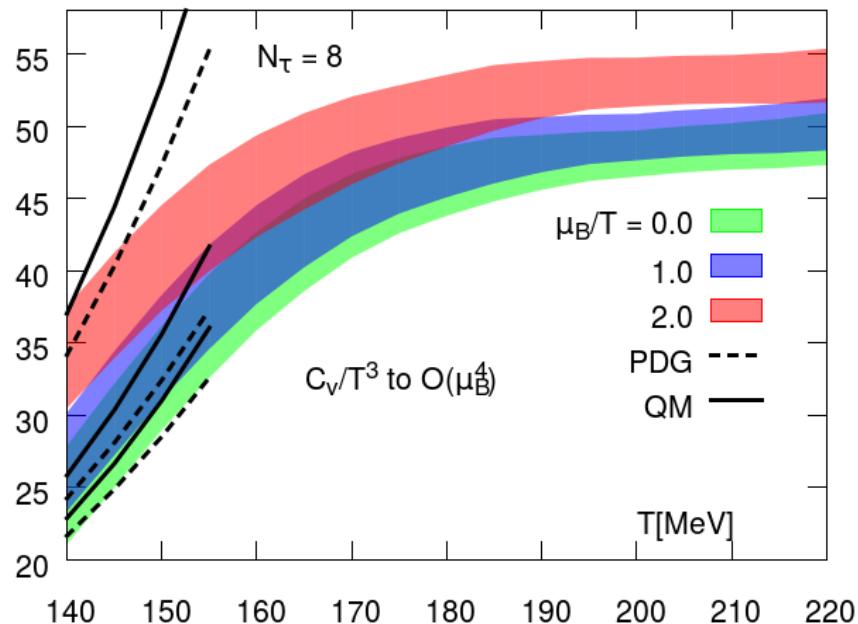


Range of extrapolation



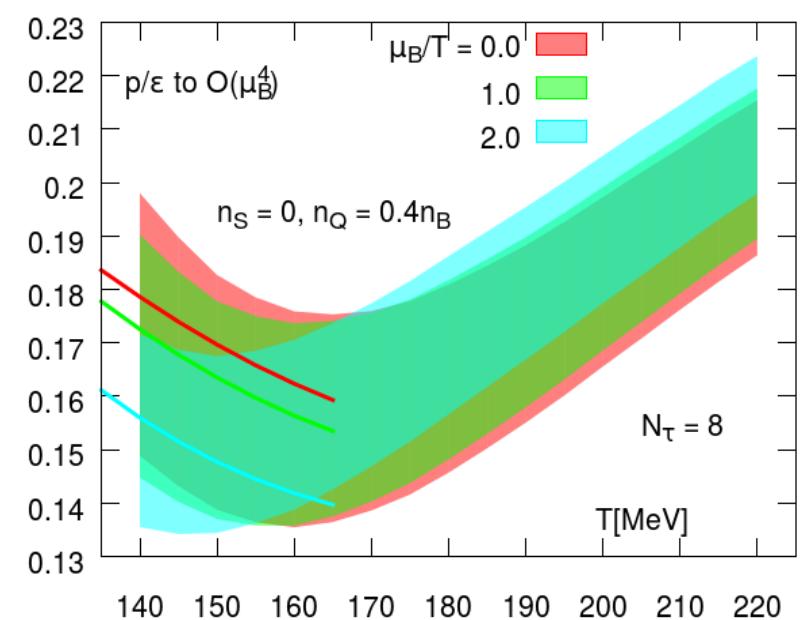
Different orders start to differ above $\mu_B/T \sim 2.0$.

Specific heat and softest point

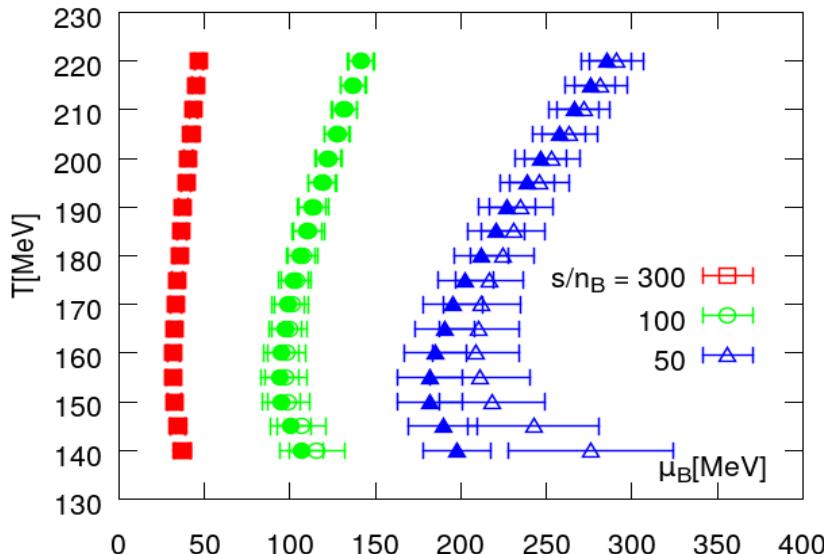
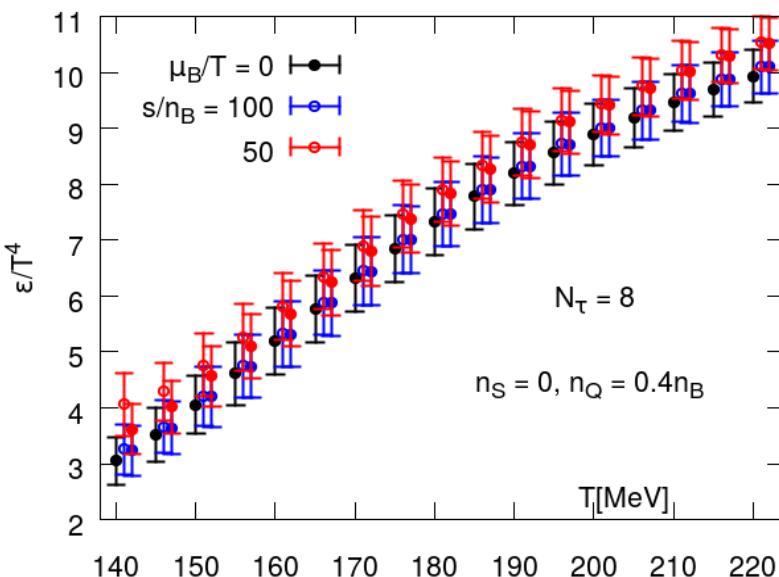


$$\frac{C_v}{T^3} = \sum_{n=0}^{\infty} \left(\frac{\mu_B}{T} \right)^n \left\{ T^2 \frac{d^2 c_n}{dT^2} + 8T \frac{dc_n}{dT} + 12c_n \right\}$$

Minimum in 'speed of sound' moves to lower T.



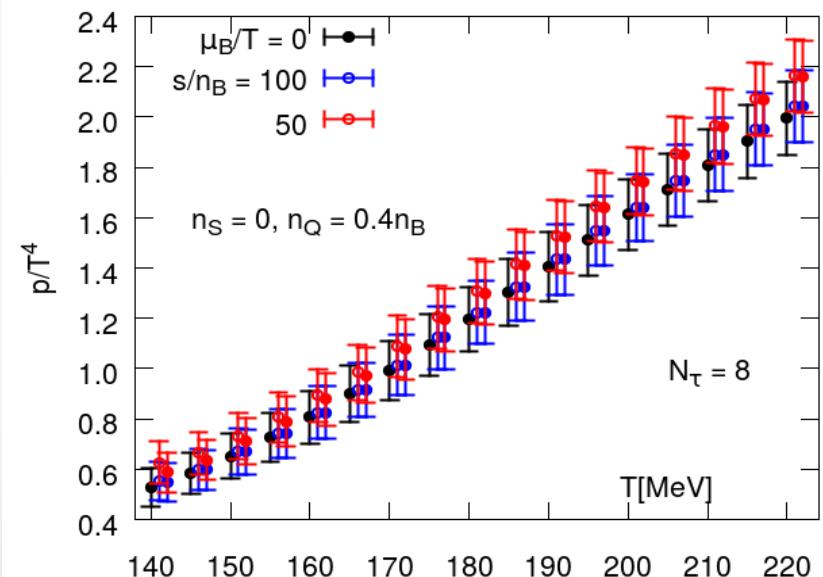
Equation of state at fixed s/n_B



$s/n_B = \text{constant}$ gives μ_B for a given T .

$$s_0 + s_2 \left(\frac{\mu_B}{T} \right)^2 = K n_{B_1} \frac{\mu_B}{T}$$

Quadratic to lowest order.



Freeze-out curve

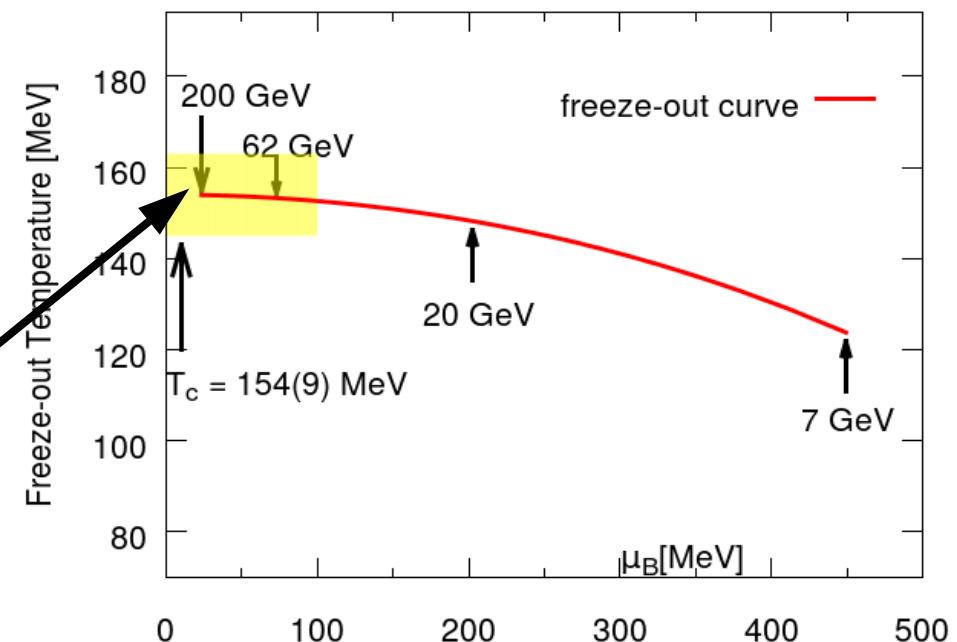
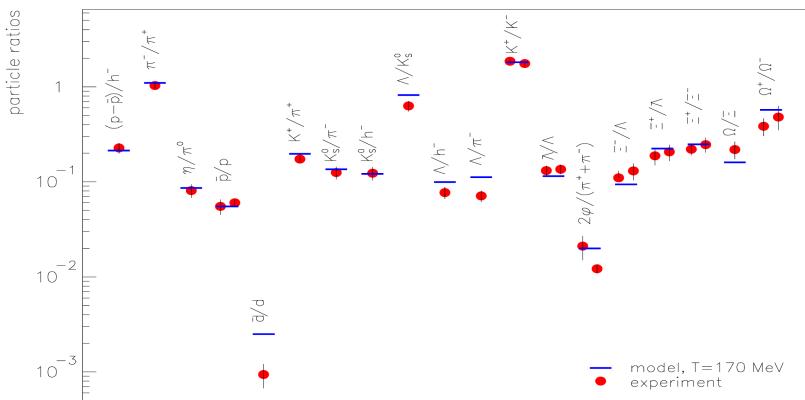
$$T^f = \frac{T_\infty^f}{1 + \exp\left(1.176 - \frac{\ln x}{0.45}\right)}$$

Andronic *et al.* Nucl.Phys. A772 (2006)
167-199.

$$x = s_{NN}^{1/2} \text{ in GeV}$$

$$T_\infty^f = 154 \text{ MeV}$$

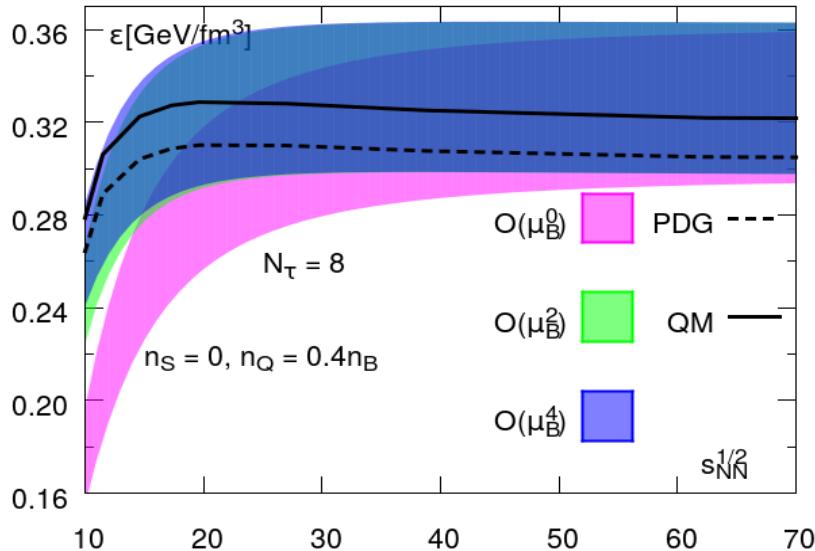
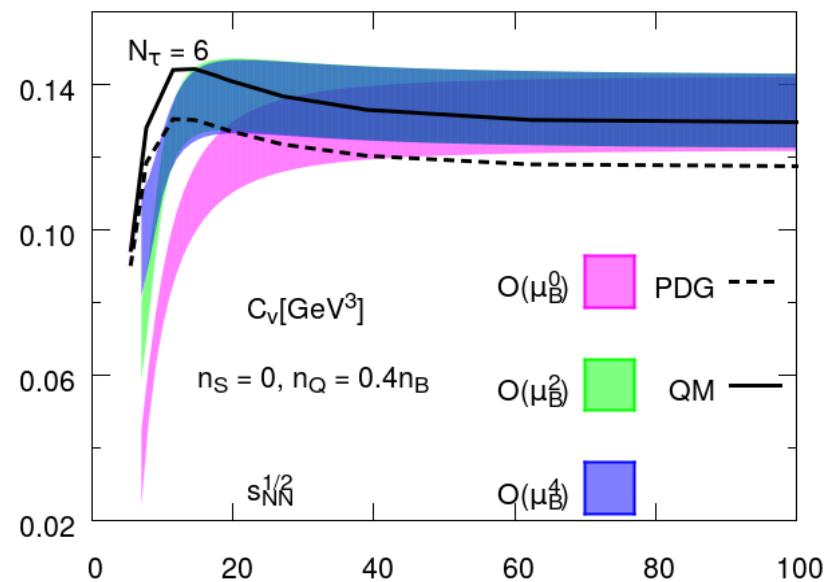
A.Bazavov *et al.* [HotQCD]
Phys. Rev. D85 054503
(2012).



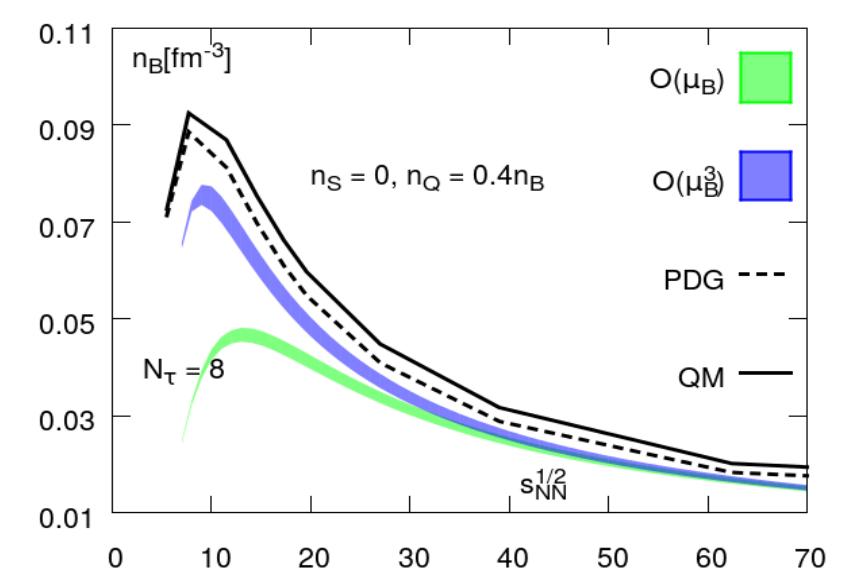
$$\mu_B^f = \frac{1.303}{1 + 0.286x} \text{ GeV}$$

Braun-Munzinger *et al.* in Hwa, R.C. (ed.)
et al.: Quark gluon plasma* 491-599
[nucl-th/0304013].

Freeze-out equation of state



Fourth-order expansion valid down to beam energies ~ 20 GeV.



Conclusions

- Need robust QCD inputs to extract physics from heavy-ion collisions.
- Lattice QCD has provided such inputs in the past and can continue to do so in the future.
- Equation of state is a key input in hydrodynamic modelling. $\mu=0$ useful at LHC and RHIC 200 GeV runs, whereas $\mu>0$ useful for the Beam Energy Scan programs.
- Fourth-order Taylor expansion can provide an equation of state valid upto $\sqrt{s} \sim 20$ GeV. With higher orders we should be able to push this to even lower CoM energies (unless the expansion breaks down).