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Introduction

The analysis of fluctuations is a powerful method for characterizing
the thermodynamic properties of a system.

Fluctuations are enhanced at the critical region hence an essential
characteristic of phase transitions.
[Asakawa et. al. PRL 85,(2000), Jeon & Koch, PRL 85 (2000)]

Modifications in the magnitude of fluctuations : a phenomenological
probe of deconfinement and chiral symmetry restoration in heavy-ion
collisions. [Son and Stephanov PRL 88,(2002)]

A measure of the intrinsic statistical fluctuations in a system close to
thermal equilibrium is provided by the corresponding susceptibilities.

Hence, fluctuations in a thermodynamic system may be explored by
finding the dependence of susceptibilities on the thermal parameters,
basically temperature T and chemical potential µ.
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Introduction

Quark Number Susceptibility (QNS) : Fluctuation of net quark
number w.r.t. chemical potential.

QNS may be used to identify the critical point in the QCD phase
diagram. [Hatta and Ikeda PRD 67 (2003)]

QNS have been studied extensively in lattice QCD. [Alton et. al. PRD 71 (2005),

Gavai and Gupta, PRD 73 (2006), Borsányi et. al. JHEP (2012), HOTQCD PRD 86 (2012)]

Observation : A suppression in the confined phase and increase with
temperature near the transition region.

The susceptibility near the transition temperature shows a strong
increase with increasing quark chemical potential, leading to cusp-like
structure.

In effective model framework : QNS has been explored both in zero
and non zero chemical potential. [Sasaki et. al. PRD75 (2007), Ghosh et. al. PRD77 (2006)]
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Effective mean field models

Use of effective QCD inspired models to understand the phase
structure of Quantum Chromo Dynamics is a popular tool.

NJL model :

LNJL = ψ̄(i /∂ −m0 + γ0µq)ψ +
Gs

2
[(ψ̄ψ)2 + (ψ̄iγ5~τψ)

2]

Successfully reproduces chiral symmetry breaking of QCD through a
non vanishing chiral condensate σ = 〈ψ̄ψ〉.

PNJL model : Introduction of static background field → ties together
the two aspects of QCD, i.e. the chiral symmetry breaking and the
confinement-deconfinement transition.

LPNJL = ψ̄(i /D−m0+γ0µq)ψ+
Gs

2
[(ψ̄ψ)2+(ψ̄iγ5~τψ)

2]−U(Φ, Φ̄,T )

where, Dµ = ∂µ − igAµ
aλa/2 with Aµ

a = δµ4A
4
a and λa are Gell-Mann

matrices.
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Only temporal component of the background field is considered.

The Polyakov Loop L is given as:

L(~x , τ) = e−i
∫ β

0 dτA4(~x ,τ)

Traced Polyakov loop Φ = 1
Nc

Trc(L), Φ̄ = 1
Nc

Trc(L
†);

Thermal average of Polyakov Loop, < Φ >→ order parameter for
pure gluon theory [McLerran & Svetitsky, PRD 24 (1981)].

< Φ >∼ e−βFq ; Fq is quark free energy.

Fq = ∞ in confined phase ⇒ Φ=0

Deconfinement sets in → Φ has non zero value.

In presence of dynamical quarks: indicator of phase transition.
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Lagrangian to thermodynamic potential

1 The partition function :

Z =

∫

DψDψ̄e−S

2 Introduction of auxiliary field :

Z =

∫

DψDψ̄DXe−SMF

3 Integration over fermionic fields :

Z =

∫

DXe−SMF(T ,µ)

4 Saddle point approximation :

Z =

∫

DXe−SMF ≈ e−SMF(T ,µ,X (T ,µ))

5 Thermodynamic potential :

Ω = −
T

V
lnZ
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From Ω to QNS :

Thermodynamic Potential is minimised w.r.t. the fields Φ, Φ̄, σ.
Solution of the simultaneous equations :

∂Ω

∂Φ
= 0;

∂Ω

∂Φ̄
= 0;

∂Ω

∂σ
= 0

The field value is used to evaluate the thermodynamic quantities :
pressure, entropy, energy density, specific heat etc.

QNS is usually obtained as the second order Taylor coefficient of
pressure, when pressure is Taylor expanded in the direction of quark
chemical potential.

Sarbani Majumder. SINP. QNS in mean field model & FDT 8



QNS and FDT

Temporal component of the vector correlator:

γ
0

γ
0 Q

P

K=P+Q

Q

Fluctuation Dissipation Theorem(FDT) → QNS from the temporal
component of the vector correlator. [Kunihiro, PLB 271 (1991)]

χq = − lim
q→0

ReΠ00(0, q = |~Q|)

χq = lim
q→0

β

∫ +∞

−∞

dω

2π

−2

1− e−βω
ImΠ00(ω, q = |~Q|)

where, Π00(q0 = ω, q = |~Q|) = Tr[γ0Sf (P + Q)γ0Sf (P)]
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QNS and FDT : Contd ....

QNS obtained both from real part and imaginary part of Π00 :

χq = 2βNfNc

∫

d3p

(2π)3
{

eβ(Ep−µq)

(1 + eβ(Ep−µq))2
+

eβ(Ep+µq)

(1 + eβ(Ep+µq))2
}

⇓

χq =
∂2P

∂µ2q

Starting from the temporal correlator with amputated external leg :

∂2P

∂µ2q
= i

∫

d4P

(2π)4
TrD,f ,c [γ0S1(P)γ0S1(P)].

[Ghosh et. al., PRD 90 (2014)]
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QNS in NJL model : Let’s Revisit..

In model calculations any response of a thermodynamic quantity to
some external parameters should also account for the fact that the
mean fields also depend on that parameter implicitly.

Numerical computation of QNS from second order Taylor coefficient
of Pressure w.r.t. chemical potential. [Ghosh et. al. PRD73 (2006), Mukherjee et. al.

PRD75 (2007)] Implicit contribution already embedded ⇒ χq =
d2P

dµ2

Analytic calculation of QNS from pressure: we need to consider the
total derivative w.r.t. µ.

Starting from pressure we can write;

χq =
d2P

dµ2q
=

∂2P

∂µ2q
+
[ ∂

∂µq

(∂P

∂σ

)

+
∂

∂σ

( ∂P

∂µq

)]

·
dσ

dµq

+
∂P

∂σ
·
d2σ

dµ2q
+
∂2P

∂σ2
·
( dσ

dµq

)2
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Derivative of mean fields : Semi-analytical approach

NJL model Lagrangian under mean field approximation:

LMF = ψ̄(i /∂ −m0 + γ0µq + Gsσ)ψ −
Gs

2
σ2

Chiral condensate σ = iTr(S1), basically function of T ,m0 and µq

S1 is dressed propagator with modified mass M = m0 − Gsσ.

S1
−1 = /p −m0 + γ0µq + Gsσ = S0

−1 + Gsσ

where, S0 is bare propagator with current mass m0.

Ward identity at finite T and µq [Finite-Temperature Field Theory : Kapusta] :

bare insertion factor corresponding to S0 is given by :
dS0

−1

dµq
= γ0.
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Semi-analytical approach : Contd....

Applying Ward identity for S1 and considering σ to be µ dependent,
one can write;

dS1
−1

dµq
= γ0 +

(

Gs
dσ

dµq

)

· 11D ≡ Γ0

Γ0 is the effective three-point function. [Ghosh et. al PRD 90,(2014)]

σ = iTr(S1) : transcendental equation.

Impossible to extract closed form expression of σ solely in terms of T
and µq.

On the contrary the situation is markedly different for the derivatives
of σ.
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Field derivative : first order

Starting from σ = iTr(S1), one can show :

dσ

dµq
= iTr[S1Γ0S1] = −iTr(S1γ0S1)− iTr(S1Gs

dσ

dµq
S1)

Finally a compact expression :

dσ

dµq
=

−iTr(S1γ0S1)

1 + iGsTr(S1
2)

not of trancendental type !!

dσ
dµq

is written in terms of T ,
µq and σ only.
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Field derivative : first order

Starting from σ = iTr(S1), one can show :

dσ

dµq
= iTr[S1Γ0S1] = −iTr(S1γ0S1)− iTr(S1Gs

dσ

dµq
S1)

Finally a compact expression :

dσ

dµq
=

−iTr(S1γ0S1)

1 + iGsTr(S1
2)

not of trancendental type !!

dσ
dµq

is written in terms of T ,
µq and σ only.

NJL model

 0

 0.04

 0.08

 0.12

 0.16

 0  0.5  1  1.5  2  2.5

dσ
/d

µ q

T/Tc

µq/Tc=1

numerical

semi-analytic

Sarbani Majumder. SINP. QNS in mean field model & FDT 14



Field derivative : second order

Similarly starting from

dσ

dµq
= iTr[S1Γ0S1] = iTr(S1γ0S1) + iTr(S1G

dσ

dµq
S1)

one further differentiation w.r.t. µq leads to;

d2σ

dµ2q
= −2iTr[S1Γ0S1Γ0S1] + iTr(S1G

d2σ

dµ2q
S1)

We can write a compact expression :

d2σ

dµ2q
=

−2iTr(S1Γ0S1Γ0S1)

1− iGTr(S1
2)

.

d2σ
dµ2

q
is written in terms of T , µq, σ and dσ

dµq
only.
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Field derivative : second order

d2σ

dµ2q
=

−2i [Tr(S1γ0S1γ0S1) + 2(G dσ
dµq

)Tr(S1
3γ0) + (G dσ

dµq
)2Tr(S1

3)]

1− iGTr(S1
2)

.
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Field derivative : second order

d2σ

dµ2q
=

−2i [Tr(S1γ0S1γ0S1) + 2(G dσ
dµq

)Tr(S1
3γ0) + (G dσ

dµq
)2Tr(S1

3)]

1− iGTr(S1
2)

.

NJL model
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Field derivative : second order

d2σ

dµ2q
=

−2i [Tr(S1γ0S1γ0S1) + 2(G dσ
dµq

)Tr(S1
3γ0) + (G dσ

dµq
)2Tr(S1

3)]

1− iGTr(S1
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NJL model
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This method is quite
general and can be
carried upto any
order.
Generally, dnσ

dµn
q
can be

expressed in terms of
T , µ, σ, dσ

dµq
, · · · · · · · ·

· · ·, d
(n−1)σ

dµ
(n−1)
q

.
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Returning to QNS from FDT

Derivation of QNS using FDT ⇒ Vector correlator needs
modification.

The thermodynamic potential Ω = −iTr ln S−1
1 +

Gs

2
σ2

Pressure in NJL model P = −Ω

One can derive the relations; [Ghosh et. al. , PRD90 (2014)]

∂2P

∂µ2q
= −iTr[γ0S1γ0S1];

∂

∂µq

(∂P

∂σ

)

= −iGsTr[S1γ0S1]

∂

∂σ

( ∂P

∂µq

)

= −iGsTr[S1γ0S1];
∂2P

∂σ2
= Gs [−iGsTr(S

2
1 )− 1]
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Using these the QNS becomes: [Ghosh et. al. PRD90 (2014)]

χq =
d2P

dµ2q
= −iTr(Γ0S1Γ0S1)− Gs(−iTr[S1Γ0S1])

2.

In terms of diagramatic topology the terms in the R.H.S. can be
viewed as :

S 1

S 1

Γ0 Γ0���
���
���

���
���
���

���
���
���

���
���
���

S 1

S 1

S 1

S 1

Γ0 Γ 0

G

���
���
���

���
���
���

���
���
���

���
���
���

These are equivalent to the vector correlator in the NJL model in
static limit or amputated legs.

Inclusion of implicit µq dependences of the mean fields lead to
modified correlators associated with the conserved density fluctuation.
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QNS in NJL model : Result

At µq = 0, dσ
dµq

= 0 ⇒ Implicit contributions vanishes in QNS.
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QNS in NJL model : Result

At µq = 0, dσ
dµq

= 0 ⇒ Implicit contributions vanishes in QNS.

µq 6= 0
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T
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Implicit contributions
dominate close to the
transition region
where the change in
the mean fields is
most significant.
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QNS in PNJL model

Lagrangian of PNJL model in mean field approximation:

LPNJL = ψ̄(i /D −m0 + γ0µ)ψ +
Gs

2
σ2 − U [Φ, Φ̄,T ]

No gluon-like quasi particles in PNJL model. We treat such bosonic
fields as purely classical ones unlike the fermionic fields.

The mean fields Φ and Φ̄ also depend on T and µq in a similar way
as σ.

Analytic forms of dΦ
dµq

and dΦ̄
dµq

are difficult to extract within the
present formalism.
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Derivatives of mean fields in PNJL model

Mean field condition ∂Ω′

∂X
= 0 with X = Φ, Φ̄, σ.

Ω′ = Ω− κT 4 ln[J(Φ, Φ̄)] [Ghosh et. al. PRD 77 (2008)]

Start with:
d

dµq
(
∂Ω′

∂X
) = 0

which immediately gives :

∂

∂µq
(
∂Ω′

∂X
) +

∂

∂Φ
(
∂Ω′

∂X
) ·

dΦ

dµq
+

∂

∂Φ̄
(
∂Ω′

∂X
) ·

dΦ̄

dµq

+
∂

∂σu
(
∂Ω′

∂X
) ·

dσu
dµq

+
∂

∂σd
(
∂Ω′

∂X
) ·

dσd
dµq

= 0

Matrix Equation of the form A · x = B .
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A =





























∂

∂Φ
(
∂Ω′

∂Φ
)

∂

∂Φ̄
(
∂Ω′

∂Φ
)

∂

∂σu
(
∂Ω′

∂Φ
)

∂

∂σd
(
∂Ω′

∂Φ
)

∂

∂Φ
(
∂Ω′

∂Φ̄
)

∂

∂Φ̄
(
∂Ω′

∂Φ̄
)

∂

∂σu
(
∂Ω′

∂Φ̄
)

∂

∂σd
(
∂Ω′

∂Φ̄
)

∂

∂Φ
(
∂Ω′

∂σu
)

∂

∂Φ̄
(
∂Ω′

∂σu
)

∂

∂σu
(
∂Ω′

∂σu
)

∂

∂σd
(
∂Ω′

∂σu
)

∂

∂Φ
(
∂Ω′

∂σd
)

∂

∂Φ̄
(
∂Ω′

∂σd
)

∂

∂σu
(
∂Ω′

∂σd
)

∂

∂σd
(
∂Ω′

∂σd
)





























x = (
dΦ

dµq
,
dΦ̄

dµq
,
dσu
dµq

,
dσd
dµq

)T

and

B = (−
∂

∂µq
(
∂Ω′

∂Φ
),−

∂

∂µq
(
∂Ω′

∂Φ̄
),−

∂

∂µq
(
∂Ω′

∂σu
),−

∂

∂µq
(
∂Ω′

∂σd
))T
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A =





























∂

∂Φ
(
∂Ω′

∂Φ
)

∂

∂Φ̄
(
∂Ω′

∂Φ
)

∂

∂σu
(
∂Ω′

∂Φ
)

∂

∂σd
(
∂Ω′

∂Φ
)

∂

∂Φ
(
∂Ω′

∂Φ̄
)

∂

∂Φ̄
(
∂Ω′

∂Φ̄
)

∂

∂σu
(
∂Ω′

∂Φ̄
)

∂

∂σd
(
∂Ω′

∂Φ̄
)

∂

∂Φ
(
∂Ω′

∂σu
)

∂

∂Φ̄
(
∂Ω′

∂σu
)

∂

∂σu
(
∂Ω′

∂σu
)

∂

∂σd
(
∂Ω′

∂σu
)

∂

∂Φ
(
∂Ω′

∂σd
)

∂

∂Φ̄
(
∂Ω′

∂σd
)

∂

∂σu
(
∂Ω′

∂σd
)

∂

∂σd
(
∂Ω′

∂σd
)





























x = (
dΦ

dµq
,
dΦ̄

dµq
,
dσu
dµq

,
dσd
dµq

)T

and

B = (−
∂

∂µq
(
∂Ω′

∂Φ
),−

∂

∂µq
(
∂Ω′

∂Φ̄
),−

∂

∂µq
(
∂Ω′

∂σu
),−

∂

∂µq
(
∂Ω′

∂σd
))T

Solution of dX
dµq

→ using Cramer’s rule or Gaussian elimination method.
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Field Derivatives in PNJL model for µq 6= 0
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Field Derivatives in PNJL model for µq 6= 0
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Effect of numerical inaccuracy is only through the calculation of mean
fields. Expected to be stable at higher order.
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One can intuitively write as in the case of the NJL model,

dP

dµq
=

∂P

∂µq
+
∂P

∂σ

dσ

dµq
+
∂P

∂Φ

dΦ

dµq
+
∂P

∂Φ̄

dΦ̄

dµq

VdM term in the thermodynamic potential :

P = −Ω 6= −Ω′

As a consequence : ∂P
∂σ

= 0 but ∂P
∂Φ 6= 0 and ∂P

∂Φ̄
6= 0.

Implicit contributions through Φ and Φ̄, exist even for first order derivative.
For second order :

d2P

dµ2q
=
∂2P

∂µ2q
+ 2

∑

X=σ,Φ,Φ̄

∂2P

∂µq∂X
·
dX

dµq
+

∑

X=σ,Φ,Φ̄

∂P

∂X
·
d2X

dµ2q

+
∑

X ,Y=σ,Φ,Φ̄

∂2P

∂X∂Y
·
dX

dµq
·
dY

dµq

Implicit contributions to QNS survive even for µq = 0, unlike NJL.
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QNS revisited in PNJL model

µq = 0
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Lattice data taken from Alton et. al. Phys. Rev D71,054508 (2005).

µq = 0 : implicit contributions changes sign near Tc .

µq 6= 0 : implicit contributions are strictly positive over the whole T

range.
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Diagrammatics in Non-perturbative QCD

Starting from [Gavai & Gupta, PRD 68, 034506 (2003)] :

Z(T , {mf }, {µf }) =

∫

DA
∏

f=u,d ,····

detM(T ,mf , µf )e
−SG(A)

number of any given flavor :

nf =
T

V

∂

∂µf
lnZ =

T

V
〈Of

1〉

and flavor diagonal susceptibilities :

χff =
T

V

∂2

∂µ2f
lnZ =

T

V
〈Of

2〉+
T

V
〈Of

1 · O
f
1〉 −

T

V
〈Of

1〉
2

flavor off-diagonal susceptibilities :

χfg =
T

V

∂2

∂µ2f
lnZ =

T

V
〈Of

1 · O
g
1 〉 −

T

V
〈Of

1〉 · 〈O
g
1 〉
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Diagrammatics in NPQCD : contd..

At vanishing chemical potential : flavor diagonal susceptibilities have
two types of contributions. [Gavai & Gupta, PRD 68, 034506 (2003)]

1 quark-line connected contributions :

2 quark-line disconnected contributions :

Flavor off diagonal susceptibilities : only quark line disconnected
contribution.
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Specifically :

χuu =
T

V
[〈ou2 〉+ 〈ou1 · ou1 〉 − 〈ou1 〉

2]

χdd =
T

V
[〈od2 〉+ 〈od1 · od1 〉 − 〈od1 〉

2]

χud =
T

V
[〈ou1 · od1 〉 − 〈ou1 〉 · 〈o

d
1 〉]

the quark number and isospin number susceptibility can be written as:

χq = χuu + χdd + 2χud and χI = χuu + χdd − 2χud

In isospin symmetric limit the contribution of the disconnected diagrams of
χuu and χdd are same as that of χud .

QNS will contain both quark line connected and disconnected
contributions.

INS will contain only quark line connected contributions.
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Returning to model

χud =
∂2P

∂µu∂µd
+

∑

X=σu ,σd ,Φ,Φ̄

∂2P

∂X∂µu
·
dX

dµd
+
∑

X

∂2P

∂X∂µd
·
dX

dµu

+
∑

X

∂P

∂X
·

d2X

dµudµd
+

∑

X ,Y=σu ,σd ,Φ,Φ̄

∂2P

∂X∂Y
·
dX

dµu
·
dY

dµd
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No flavor mixing
term in pressure
⇒ ∂2P

∂µu∂µd
= 0.

Only implicit
depedences
contribute to χud .
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A possible conjecture

An important observation in χud :

model : solely through implicit dependences.

QCD : solely through quark line disconnected diagrams.

✞

✝

☎

✆
implicit dependences ⇔ disconnected diagrams

If the conjecture is correct then at µu = µd = 0 :

Implicit contributions will add up in case of QNS.
χq = χuu + χdd + 2χud will have explicit as well as implicit
contribution.

Implicit contributions will cancel in case of INS
χI = χuu + χdd − 2χud will have only explicit contribution.
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χuu =
∂2P

∂µ2u
+ 2

∑

X

∂2P

∂µu∂X
·
dX

dµu
+

∑

X ,Y

∂2P

∂X∂Y
·
dX

dµu
·
dY

dµu

+
∑

X

∂P

∂X
·
d2X

dµ2u

χdd =
∂2P

∂µ2d
+ 2

∑

X

∂2P

∂µd∂X
·
dX

dµd
+

∑

X ,Y

∂2P

∂X∂Y
·
dX

dµd
·
dY

dµd

+
∑

X

∂P

∂X
·
d2X

dµ2d

χud =
∂2P

∂µu∂µd
+
∑

X

∂2P

∂µu∂X
·
dX

dµd
+
∑

X

∂2P

∂µd∂X
·
dX

dµu

+
∑

X ,Y

∂2P

∂X∂Y
·
dX

dµu
·
dY

dµd
+
∑

X

∂P

∂X
·

d2X

dµudµd
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INS in PNJL model

µq = 0
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INS has also non-trivial
implicit contributions
which are always
positive, unlike QNS.
∂P
∂X

6= 0 for X = Φ, Φ̄.
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INS in PNJL model

µq = 0
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INS has also non-trivial
implicit contributions
which are always
positive, unlike QNS.
∂P
∂X

6= 0 for X = Φ, Φ̄.

Our claimed conjecture seems to be perfectly fine if we start all of our
calculations from logarithm of partition function or full
thermodynamic potential Ω′ = Ω− κT 4 ln[J(Φ, Φ̄)].

Then mean field condition will give ∂Ω′

∂X
= 0. The base line is set to

associate implicit dependences and quark line disconnected diagrams.
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More on association

4th order : quark line connected diagrams does not have the cusp like
structure, rather behaves like order parameter [Gavai & Gupta, PRD 72 (2005)].
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More on association

4th order : quark line connected diagrams does not have the cusp like
structure, rather behaves like order parameter [Gavai & Gupta, PRD 72 (2005)].

µq = 0

 0
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χq 4/
(χ

q 4)
S

B

T/Tc

explicit

total

explicit contribution
never goes beyond SB
limit ⇒ cusp like
structure is coming
solely due to implicit
contributions.
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Summary

QNS is calculated using FDT both In NJL and PNJL model.

Effect of implicit µq dependence of mean fields plays a major role.

Static correlator is modified with this implicit derivatives.

As a side result an analytical tool is proposed for calculating the
derivatives of mean field.

A baseline is set for the association of implicit dependences to quark
line disconnected diagrams.
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Back-Up
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Introduction of VdM term

Z =

∫

∏

x

DL(x) e−S

where, S is the action of the system and DL being the SU(3) Haar
measure. Now, after transforming the integration variable from the Wilson
line L to Polyakov loop Φ and its conjugate Φ̄ one obtains:

Z =

∫

∏

x

DΦ(x)DΦ̄(x) J[Φ(x), Φ̄(x)] e−S

=

∫

∏

x

DΦ(x)DΦ̄(x) e

−S+

∑

x

ln J[Φ(x),Φ̄(x)]

Z ≈ e−S+N ln J |Φ=Φmin,Φ̄=Φ̄min

= e−βVU+N ln J = e−βV (U−NT
V

ln J) ≡ e−βVU ′
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Derivation of pressure

P = T
d

dV
lnZ

= T
d

dV
(−βVΩ′)

= −Ω′ − V
dΩ′

dV

= −Ω′ − V (
∂Ω′

∂V
+
∑

α

∂Ω′

∂Xα
·
dXα

dV
)

= −Ω′ − V
∂Ω′

∂V

= −Ω′ − V
∂

∂V
(Ω−

NT

V
ln J)

= −(Ω−
NT

V
ln J)− V (

∂Ω

∂V
+

NT

V 2
ln J)

Ω being an intensive quantity, we are left with P = −Ω.
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number density in nonperturbative QCD

nf =
T

V

∂

∂µf
lnZ =

T

V

1

Z

∂Z

∂µf

=
T

V

1

Z

∫

DA M ′
f

∏

f ′ 6=f

detMf ′ e
−SG(A)

=
T

V

1

Z

∫

DA Tr(M ′
fM

−1
f )

∏

f ′

detMf ′ e
−SG(A)

=
T

V
〈Tr(M ′

fM
−1
f )〉 =

T

V
〈O1〉.

where, we have used,

M ′(x) =
∂

∂x
detM(x) = Tr(M ′M−1) detM(x).

Every M ′
f corresponds to an insertion of γ0 in continuum and each M−1

f is
a quark propagator of flavor f .
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diagonal susceptibility in nonperturbative QCD

χff =
T

V

∂2

∂µ2f
lnZ

=
T

V

1

Z

∫

DA Tr(M ′′
f M

−1
f −M ′

fM
−1
f M ′

fM
−1
f )

∏

f ′

detMf ′ e
−SG(A)

+
T

V

1

Z

∫

DA Tr(M ′
fM

−1
f ) · Tr(M ′

fM
−1
f )

∏

f ′

detMf ′ e
−SG(A)

−
T

V

( 1

Z

∫

DA Tr(M ′
fM

−1
f )

∏

f ′

detMf ′ e
−SG(A)

)2

=
T

V
〈Tr(M ′′

f M
−1
f −M ′

fM
−1
f M ′

fM
−1
f )〉

+
T

V
〈Tr(M ′

fM
−1
f ) · Tr(M ′

fM
−1
f )〉 −

T

V
〈Tr(M ′

fM
−1
f )〉2

=
T

V
〈O2〉+

T

V
〈O1 · O1〉 −

T

V
〈O1〉

2
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off-diagonal susceptibility in NPQCD

χfg =
T

V

∂2

∂µf ∂µg
lnZ

=
T

V

1

Z

∫

DA Tr(M ′
fM

−1
f ) · Tr(M ′

gM
−1
g )

∏

f ′

detMf ′ e
−SG(A)

−
T

V

( 1

Z

∫

DA Tr(M ′
fM

−1
f )

∏

f ′

detMf ′ e
−SG(A)

)

×
( 1

Z

∫

DA Tr(M ′
gM

−1
g )

∏

f ′

detMf ′ e
−SG(A)

)

=
T

V
〈Of

1 · O
g
1 〉 −

T

V
〈Of

1〉 · 〈O
g
1 〉.
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