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Introduction

@ The analysis of fluctuations is a powerful method for characterizing
the thermodynamic properties of a system.

@ Fluctuations are enhanced at the critical region hence an essential
characteristic of phase transitions.

[Asakawa et. al. PRL 85,(2000), Jeon & Koch, PRL 85 (2000)]

@ Modifications in the magnitude of fluctuations : a phenomenological
probe of deconfinement and chiral symmetry restoration in heavy-ion

collisions. [son and Stephanov PRL 88,(2002)]
@ A measure of the intrinsic statistical fluctuations in a system close to
thermal equilibrium is provided by the corresponding susceptibilities.
@ Hence, fluctuations in a thermodynamic system may be explored by

finding the dependence of susceptibilities on the thermal parameters,
basically temperature T and chemical potential u.
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Introduction

@ Quark Number Susceptibility (QNS) : Fluctuation of net quark
number w.r.t. chemical potential.

@ QNS may be used to identify the critical point in the QCD phase
diagram. [Hatta and Ikeda PRD 67 (2003)]

@ QNS have been studied extensively in lattice QCD. (aiton et a1 PRD 71 (2005),
Gavai and Gupta, PRD 73 (2006), Borsanyi et. al. JHEP (2012), HOTQCD PRD 86 (2012)]

@ Observation : A suppression in the confined phase and increase with
temperature near the transition region.

@ The susceptibility near the transition temperature shows a strong
increase with increasing quark chemical potential, leading to cusp-like
structure.

@ In effective model framework : QNS has been explored both in zer
and non zero chemical potential. [sasaki et a1 PRD75 (2007), Ghosh et. al. PRD77 (2

@ Y /D
N =24
Sarbani Majumder. SINP. QNS in mean field model & FDT 4




Effective mean field models

@ Use of effective QCD inspired models to understand the phase
structure of Quantum Chromo Dynamics is a popular tool.

@ NJL model :
- Gs ., - -
Lo = Y(id — mo + vyopq )y + 7[(1/”#)2 + (PirsT)?]

Successfully reproduces chiral symmetry breaking of QCD through a
non vanishing chiral condensate o = (1)).

@ PNJL model : Introduction of static background field — ties together
the two aspects of QCD, i.e. the chiral symmetry breaking and the
confinement-deconfinement transition.

LengL = (i) — mo+opq)t + %[(1/_”/1)2 + (Qirs ™)’ ] —U(P, D, T)

where, D¥ = 9 — jg A5 ,/2 with Ay = u4A2 and A, are Gell-
matrices.

Sarbani Majumder. SINP. QNS in mean field model & FDT 5




@ Only of the background field is considered.
@ The Polyakov Loop L is given as:

L(%,7) = e~ i drutzn)

@ Traced Polyakov loop ¢ = N%TrC(L), ¢ = N%Trc(LT)'

Thermal average of Polyakov Loop, < ® >— order parameter for
pure glUOn theory [McLerran & Svetitsky, PRD 24 (1981)].

< O >~ e BFa; Fq is quark free energy.
Fq = o0 in confined phase = ®=0

Deconfinement sets in — ® has non zero value.

e ¢ ¢ ¢

In presence of dynamical quarks: indicator of phase transition.
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Lagrangian to thermodynamic potential

@ The partition function :
Z = / DyDipe>
© Introduction of auxiliary field :
Z= / DY DYDXe >MF
© Integration over fermionic fields :
7= / DXe™SMr(T:#)
© Saddle point approximation :

Z = /DXe_SMF ~ e Smr(T.uX(T.n))

© Thermodynamic potential :

Q= —V InZ
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From Q2 to QNS :

@ Thermodynamic Potential is minimised w.r.t. the fields ®, ®, .
Solution of the simultaneous equations :

00 o0 o0
2% %" a5 0
@ The field value is used to evaluate the thermodynamic quantities :

pressure, entropy, energy density, specific heat etc.

@ QNS is usually obtained as the second order Taylor coefficient of
pressure, when pressure is Taylor expanded in the direction of quark
chemical potential.
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QNS and FDT

@ Temporal component of the vector correlator:
K=P+Q

Q Y, Y Q
. I

P

@ Fluctuation Dissipation Theorem(FDT) — QNS from the temporal
component of the vector correlator. [Kunihiro, PLB 271 (1991)]

— — lim Rel —1Q
Xq lim. Re 00(0,9 = |Q|)

T dw - =
xo=lim B [ G mo(e.q = 1)

where, Moo(go = w, g = |Q|) = Tr[10Sr(P + Q)10Sr(P)]
L o e T g



QNS and FDT : Contd ....

@ QNS obtained both from real part and imaginary part of MNgg :

d3p eB(Ep_Nq) eB(Ep+Mq)
Xa = zﬂNch/ (27r)3{(1 e ER eﬁ(EP*“q)V}
4
_op
Xq = 8#?,

@ Starting from the temporal correlator with amputated external leg :

7 =i | =—2Trpf.c[70S1(P)y0S1(P)].
o2

PP / d*P
(2m)*

[Ghosh et. al., PRD 90 (2014)]
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QNS in NJL model : Let's Reuvisit..

@ In model calculations any response of a thermodynamic quantity to
some external parameters should also account for the fact that the
mean fields also depend on that parameter implicitly.

@ Numerical computation of QNS from second order Taylor coefficient
of Pressure w.r.t. chemical potential. [Ghosh et al PRD73 (2006), Mukherjee et. al

d*p

du?

@ Analytic calculation of QNS from pressure: we need to consider the
total derivative w.r.t. p.

pro75 (2007) Implicit contribution already embedded = x4 =

@ Starting from pressure we can write;

d*p 0P o (0P 0 (0P do
Codp2 Ol + [8/;,;, <87> + %(%ﬂ .diuq
oP d’c  0*P do \2
0 az " o0z (g

o Nq o Nq

Xq

+
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Derivative of mean fields : Semi-analytical approach

@ NJL model Lagrangian under mean field approximation:

Gs 5

Lyr = P(id — mo + Yopg + Gso )b — oy

@ Chiral condensate o = iTr(S1), basically function of T, mg and 4

@ S is dressed propagator with modified mass M = mg — Go.
51_1 = P — Mo + Yolq + Gso = 50_1 + Gso

where, Sy is bare propagator with current mass mg.

o Ward |dent|ty at f|n|te T and /,Lq [Finite-Temperature Field Theory : Kapusta] -
—1
dSo

dug

bare insertion factor corresponding to Sy is given by :

Sarbani Majumder. SINP. QNS in mean field model & FDT 12



Semi-analytical approach : Contd....

@ Applying Ward identity for S; and considering ¢ to be u dependent,
one can write;

ds; 1
dpig

=7 + (Gs;{;) -1p =Ty

g is the effective three-point function. [Ghosh et. a1 PRD 90,(2014)]

@ o = iTr(S;) : transcendental equation.

@ Impossible to extract closed form expression of o solely in terms of T
and igq.

@ On the contrary the situation is markedly different for the derivatives
of o.
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Field derivative : first order

Starting from o = iTr(5;1), one can show :
do

do ) . )
T/Lq = /Tr[51F051] = —ITI‘(Sl’}/Osl) — ITI'(51 Gsmsl)

Finally a compact expression :

do  —iTr(51751)
dig 1+ iGTr(52)

not of trancendental type !!

(77" is written in terms of T,

uqqa nd o only.
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Field derivative : first order

Starting from o = iTr(5;1), one can show :

dug

Finally a compact expression :

do  —iTr(51751)
dig 1+ iGTr(52)

dcr/duq

not of trancendental type !!

(77" is written in terms of T,

uqqa nd o only.

do

do _ ITr[$1T051] = —iTr(S17051) — iTr(S1 GSWSI)
q

NJL model
0.16 f ‘ ]
numerical e
012 + semi-analytic — |
0.08
Mg/ Te=1
0.04 ¢
O L
0 0.5 1 1.5 2
TIT,
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Field derivative : second order

Similarly starting from

d
d:q iTr[S1T0S1] = iTr(S17051) + iTr(S1 Gd—'uqsl)

one further differentiation w.r.t. pq leads to;

d*c d*c
—_— = —2iTr[51I'051I'051] + /TI‘(Sl G—Sl)
du? du?

We can write a compact expression :

d’c  —2iTr(51MoS1T0S1)
dpz — 1-iGTr(S?)

d2

anl is written in terms of T, g, 0 and 7> only
q
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Field derivative : second order

d?s  —2i[Tr(S170817051) +2(GET)Te(S1%70) + (G 4% ) Tr(S17)]
du2 1 —iGTr(5:?) '
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Field derivative : second order

d%c —2/[T1“(Sl’7081’7081) + 2(G§7(’q)Tr(81370) + (G(?f:q)zTr(Sl‘g)]

di 1 iGTr(S,?)
NJL model
25 ; . . :
2L numerical e
15 semi-analytic — |

v
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Field derivative : second order

o —20[Te(S170817681) + 2(C L2 )Tx(S1%90) + (G 22 )2 Tr(,?)]

d,u%, 1— /GT1(51 )
NJL model
- | | | | @ This method is quite
Py numerical + | general and can be
15 | semi-analytic — | carried upto any
] order.
GeneraIIy,
expressed in terms of
T, o ’d# e
.. d Vo
) d#gn—l)'

v
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Returning to QNS from FDT

@ Derivation of QNS using FDT = Vector correlator needs
modification.

G
o The thermodynamic potential Q = —iTrIn S;* + 7502
@ Pressure in NJL model P = —Q

@ One can derive the relations; (Ghosh et. a1, PRDYO (2014)]

92P o /0P
— = —iTr[oS17%S1];, —(=—) = —iGTr[S1v%S
o2 [70517051] aﬂq(ao_) [S17051]
o /0P . P , 2
5 (g, ) = i6TS0S: 55 = Gal-iGT(S]) - 1
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@ Using these the QNS becomes: [Ghosh et. a1 PRDOO (2014)]

d*P

Xq = TM% = —iTr(roSlI_OSl) - Gs(—iTI'[S]_rOS]_])z-

@ In terms of diagramatic topology the terms in the R.H.S. can be

viewed as :
Sy S, S,
G
r0 rO rO rO
S, S, S,

@ These are equivalent to the vector correlator in the NJL model in
static limit or amputated legs.

@ Inclusion of implicit ;14 dependences of the mean fields lead to
moditfied correlators associated with the conserved density fluctua
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QNS in NJL model : Result

At g =0, j—:q = 0 = Implicit contributions vanishes in QNS.

Sarbani Majumder. SINP. QNS in mean field model & FDT 19



QNS in NJL model : Result

At g =0, j—:q = 0 = Implicit contributions vanishes in QNS.

pq # 0
4
35 Implicit contributions
37 dominate close to the
T+ 2‘2 | transition region
< 15l where the Fhang.e in
1l . the mean fields is
explicit --- i
0.5 total — most significant.
O n n n n
0 0.5 1 15 2 25
T/T,

v
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QNS in PNJL model

@ Lagrangian of PNJL model in mean field approximation:

_ G -
LpngL = (i) — mo + vou)y + 7502 —U[d, 0, T]

@ No gluon-like quasi particles in PNJL model. We treat such bosonic
fields as purely classical ones unlike the fermionic fields.

@ The mean fields ® and ® also depend on T and ftq in a similar way
as o.

@ Analytic forms of % and j—i are difficult to extract within the

. q
present formalism.
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Derivatives of mean fields in PNJL model

Mean field condition 2 8X =0 with X = o, CD 0.
Q/ =Q - HT4 In[J(CD, (B)] [Ghosh et. al. PRD 77 (2008)]

Start with:
d oY

(%) =

which immediately gives :

o 0. 9,00, do 9 00, db

auaox) T 56 ax) dpg T 98 ax) dng
0 O doy 0 0 doy

Oo, 0X’ dug 0dog 0X d,uq

Matrix Equation of the form A-x =B .
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g ,0Q

o 0

0 oY

g 0

76(90) 56907 90, 90) Fogl o)
o o o 0 o o o 0
. 995 3395 80”(875) 87,1(876)
o o0 o o o o o o
%(8au 87@(60“) do, Oo,” 0oy doy
o 0 o 0 o 0 o 0
%(aad 6753(60(1) Oo, 0og” Ooyg 0oy
_(dCD do do, dad)T
*= dug’ dug’ dpg’ dug
and
B o o o 0 o o0 9 0
_(_aTq a¢)’_%(£)’_3uq doy” g Dog

QNS in mean field model & FDT 22
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o ,0Q
aTb(acb)
0,0
2955
o 0
%(8Uu
0,0
%(aad)

)

x= (

and
(D
Oug - 0P

)7

Solution of % — using Cramer's rule or Gaussian elimination method. J
q

o 0 o o o 0
25'96) 30, 90) 0y 00
o 0 o o o 0
25 95" 80,,(876) 87,1(876)
o o o o o o
90 (90*u) do, 0o,” 0oy 0oy,
o 0 o o o 0
675)(80(1) do, O0oq’ Ooyg 0oy
dd do do, doy T

dug dug’ dpg’ duq)

o 0 o o0 9 0
%(%)’_auq 90" Opg Oog
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Field Derivatives in PNJL model for 114 # 0
3 ;
X=p o
25t et —
:?_ 2 p'q/TC:l X=¢p =
S 15¢ X=o —
'>c§ X=0 -
1 L
X=0 —
0.5
0 A
0 0.5 1 1.5 2 2.5
TIT,
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Field Derivatives in PNJL model for p1q # 0
3 .
X=p o
25| et —
:?_ 2 p'q/TC:l X=¢p =
S 15} X=® —
5 X=0 -
1 L
X=0 —
0.5
O A
0 0.5 1 15 2 2.5
TIT,

Effect of numerical inaccuracy is only through the calculation of mean
fields. Expected to be stable at higher order.
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One can intuitively write as in the case of the NJL model,

dp _ 0P | OP do | OP d® L IPd®
dug 8 Jo dug — 0P dug 0P dug

VdM term in the thermodynamic potential :

P=-Q+-Q

As a consequence : %—7; =0 but gp #0 and ;é 0.
Implicit contributions through ® and ®, eX|st even for first order derivative.

For second order :

d’P _ 9°P ) 9*P X 3 d?X
— .
dug 8,uq M OpgdX duq M BX du
PP dX dY
+ Z . .
XY o0, OXOY dug dug

Implicit contributions to QNS survive even for 11g = 0, unlike NJL.
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QNS revisited in PNJL model

pg =20 fiqg # 0
2 5 T T
_____________ explicit —--
16 | Hg =0 4 total — |
T Lz +
< 08} - 1 <
explicit —--
04 t total — |
Lattice -®-
0 L L L
0 0.5 1 1.5 2 2.5
T/T,
w v

Lattice data taken from Alton et. al. Phys. Rev D71,054508 (2005).

@ 11g = 0 : implicit contributions changes sign near T..

@ 11q # 0 : implicit contributions are strictly positive over the whole
range. 3
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Diagrammatics in Non-perturbative QCD

Starting from [Gavai & Gupta, PRD 68, 034506 (2003)] -
Z(T, {me},{nr}) = /DA [T detM(T,me, ue)e S
f=u,d, -

number of any given flavor :

T 0 T
=——InzZ=—(0f
ne V our n V<Ol>
and flavor diagonal susceptibilities :
T 02 T T T
L9 hz="l001 iof . ofy_ Lo
Xff Va//b% n V<O2> + V<Ol Ol> V<(91>

flavor off-diagonal susceptibilities :

T 02 T
O Iz - —(0f - 0%)

_To T
X = Vouz %

~(00) - (0)
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Diagrammatics in NPQCD : contd..

@ At vanishing chemical potential : flavor diagonal susceptibilities have
two types of contributions. [Gavai & Gupta, PRD 68, 034506 (2003)]

© quark-line connected contributions :

P

@ quark-line disconnected contributions :

(O

@ Flavor off diagonal susceptibilities : only quark line disconnected
contribution.
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Specifically :
T

Xuw = 1;1(02) + (o - of) — (o1)?]

T

Xdd = V[<Og> + (of - of) — (of )?]

T d d
Xud = V[<Of -of) — (o) - {o1)]
the quark number and isospin number susceptibility can be written as:

Xg = Xuu + Xdd +2Xud and X = Xuu + Xdd — 2Xud

In isospin symmetric limit the contribution of the disconnected diagrams of

Xuu and Yq4gq are same as that of y,q.
@ QNS will contain both quark line connected and disconnected

contributions.
@ INS will contain only quark line connected contributions.
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Returning to model

o*P P PP dX
Xud = Oty Ot + M Z 0 OX0y d,u,d Z OXO,ud diy
Ou,0d,

0’P  dX dY
2

oXoY duu ditg

+
ZaX d'u d'ud X,Y=0y,04,0,®
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Returning to model

0’P 0P 0’P  dX
Xud = ('),u,u(‘)udJr Z OX0y d,ud Z@X@ud diy

X= o‘u,a'd,d>¢'
+ Zax

0’P  dX dY
2

d d oXoY du, d
Hulld o 0.8 Hu  GBd
Xud in PNJL
0
0.01 |
0.02
L -0.03
2 -0.04
0.05
0.06 Lattice —e— |
0.07 ‘ : ‘ :
0 05 1 15 2 25
T,

v
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Returning to model

>*P o*P O*P  dX
Xud P P + Z Z
Oty Ot OX0y d,u,d OXO,ud diy
X= o‘u,a'd,d> )
?P  dX dY
+ Z ax du dud T2 axav du dng
X,Y=0y,04,0,®
Xud in PNJL
0
0.01 | @ No flavor mixing
0.02 term in pressure
‘& -0.03 PP _
t’% 0.04 = OpuOpg _O'
=~ Only implicit
0.05
0.06 _ | depedences
0.07 v Hadce mem contribute to x,
0 05 1 15 2 25
T,

v
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A possible conjecture

An important observation in xq:
@ model : solely through implicit dependences.
@ QCD : solely through quark line disconnected diagrams.

[implicit dependences < disconnected diagrams]

If the conjecture is correct then at p, = pg =0 :

@ Implicit contributions will add up in case of QNS.
Xg = Xuu + Xdd + 2Xua Will have explicit as well as implicit
contribution.

@ Implicit contributions will cancel in case of INS
X! = Xuu + Xdd — 2Xud Will have only explicit contribution.

Sarbani Majumder. SINP. QNS in mean field model & FDT 30



92P Z 2P dX 2P dX dY
9

Yoo = 5o 10X dpy | 2 OXOY du, dp
Xdd = % ZZ aijgx ' j;i, +z;(‘)i))<2:\/ . j/)z(d ' j/j/d

0’P dX dY 873 d’X
+ XZ()X()Y d/zu dug Z
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INS in PNJL model

ftg =0
2
16t o @ INS has also non-trivial
12 implicit contributions
£ os which are always
' ex’)"c': T positive, unlike QNS.
0.4 total — | _
)
Lattice - - o S8 #£0for X =0,0.
0 L L L
0 05 1 15 2 25
T,
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INS in PNJL model

fg =0
2
16| - @ INS has also non-trivial
121 implicit contributions
£ os which are always
' ex’J"c': T positive, unlike QNS.
0.4 total — | —
ap _
Lattice ~-e - ® 5% #0for X =0, 0.
0 L L L
0 05 1 15 2 25
T,

v

@ Our claimed conjecture seems to be perfectly fine if we start all of our
calculations from logarithm of partition function or full
thermodynamic potential Q' = Q — T4 In[J(, ®)].

@ Then mean field condition will give ax = 0. The base line is set
associate implicit dependences and quark line disconnected diagr
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1.6

o 1.2
"tm explicit ------
=< 08 fromP ——-
0.4 from Q' —
Lattice --e -

0 0.5 1 15 2 2.5
TIT,
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16

12

qu/T 2

0.8

0.4

explicit ------
frompP —---
from Q' —

Lattice --e -

0.5 1 15 2 2.5
TIT,

XudIT 2

-0.01
-0.02
-0.03
-0.04
-0.05
-0.06
-0.07

fromQ' —
Lattice --e -

1 15 2
TIT,

25
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2 . . ———oo—== -
1.6 -0.01
-0.02
1
o 1.2 N - !
5“ explicit ----- tg 0.08 1
< 08 fromP ——- =< 004 \
, -0.05 Wi frompP ——-
04 from Q' — 0,06 vy from Q' —
. Lattice - - ' \ Lattice - -
0 -0.07
0 0.5 1 15 2 25 0 0.5 1 15 2 25
TIT, TIT,
w w
2 . . . .
1.6 . o o 4
N': 1.2 ¢ h 1
= :
< o08f . ]
04 * explicit ------ j
Lattice -- -
0 L L L L
0 0.5 1 1.5 2 2.5
TIT,
w
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2 oo 0 -
1.6 -0.01
-0.02
1
o 1.2 N - !
5“ explicit ----- tg 0.08 1
< 08 fromP ——- =< 004 \
-0.05 Wi frompP —--
. \
04 from Q' — v from Q' —
. -0.06 V! .
0 . Lattice --e - 0.07 v Lattice - -
0 05 1 15 2 25 "o 05 1 15 2 25
TIT, TIT,
w w
2
1.6
N': 1.2 ¢
=
087 explicit ------
04 fromP —-- |
Lattice -- -
0 e = L L L
0 0.5 1 1.5 2 25
TIT,
w
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2 . . ———oo—== 0 -
1.6 -0.01
-0.02
1
o 1.2 N - !
5“ explicit ----- tg 0.08 1
< 08 fromP ——- =< 004 \
-0.05 Wi frompP —--
. \
04 from Q' — v from Q' —
. -0.06 V! .
0 . Lattice --e - 0.07 v Lattice - -
0 05 1 15 2 25 "o 05 1 15 2 25
TIT, TIT,
w w
2 . . e
16 r
o 1.2 ¢
_':N explicit ------
= 08¢ fromP —-- ]
04 fromQ" — |
Lattice -- -
0 L L
0 0.5 1 1.5 2 2.5
TIT,
w
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More on association

4™ order : quark line connected diagrams does not have the cusp like
structure, rather behaves like order parameter [cavsi & Gupta, PRD 72 (2005)].
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More on association

4™ order : quark line connected diagrams does not have the cusp like
structure, rather behaves like order parameter [cavsi & Gupta, PRD 72 (2005)].

fg =0

" explicit - - explicit contribution
total — never goes beyond SB
limit = cusp like
structure is coming
solely due to implicit
contributions.

XY0Dss
o - N w S (4] (o]

o
=}
wn
=
|
wn
N
N
w0
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Summary

@ QNS is calculated using FDT both In NJL and PNJL model.

o Effect of implicit 11y dependence of mean fields plays a major role.

@ Static correlator is modified with this implicit derivatives.

@ As a side result an analytical tool is proposed for calculating the
derivatives of mean field.

@ A baseline is set for the association of implicit dependences to quark

line disconnected diagrams.
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Thank you!
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Back-Up
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Introduction of VdM term

7= /]:[DL(X) e

where, S is the action of the system and DL being the SU(3) Haar
measure. Now, after transforming the integration variable from the Wilson
line L to Polyakov loop ® and its conjugate ¢ one obtains:

Z = / [[Po(x)Dd(x) J[o(x),d(x)] e°

) ,3+Z In J[&(x),®(x)]

~ —S+NinJ _
Z ~ € ’q):q)mfn:q):q)min

e BVUANINJ _ —BVU-TFInJ) — —BVU'
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Derivation of pressure

d
P = T inz
- 79 Cava
= T
L
- v
XY 99" dX.
— _0O _ —t e
= VGt  Xa dV
o9
JE— — I_
= -V
9 NT
—_ P /_ - —_
= -V (@)
NT 09  NT

Q being an intensive quantity, we are left with P = —Q.
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number density in nonperturbative QCD

T 0 T102
nf = ——INZ=

V O,uf V Z 0ur
= /D.A Mf H det Mf/ e —5g(A)
FIAF

ri - ~Sg(A
= VZ/DA Tr(M,'chl)l;Idet Mg e=S5(A)
-

DAT(MEME ) = 1 (1),

where, we have used,

M/ (x) = ;Xdet M(x) = Te(M'M~1) det M(x).

Every M corresponds to an insertion of +° in continuum and each {
a quark propagator of flavor f.
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diagonal susceptibility in nonperturbative QCD

T 9?2

X = Vﬁ'“z

= /DA Te(M{ Mt — MM MM T T det My e=55(A)
f'/

;. - ~Sg(A
* VZ/DA Tr(Mtlfol)'Tf(MﬁMfl)l;Ideth, e—Sa(A)

_ I1 e ~Sg(A))°
V<Z/DA Te(M}M; )l;[det/\/lf/ e )

_ gm(/w MY — MM MM

" §<Tr(M;M;1)-Tr(Mf ) - §< (MM )2
T T T

= V<Oz>+v(01~01>—v<01>
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off-diagonal susceptibility in NPQCD

T 92

= —— "~ Iz
X T Voo

T1 1 1 ~Sg(A
— VZ/DA Tr(M;M 1) - Tr(M, M, )I;Idet/\/lf/ e So(A)

_ I(1 e ~5g(A)
V(Z/DA Te(M} M; )l;Idet My e )

X (;/DA Tr(l\/lél\/lg—l)l;[det M e—sg(A)>

= O] 0f) — L0 - 108).
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