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Outline:
<> Phase diagram of QCD
<> Theoretical (brief) and Experimental status (BES-I)
<> Freeze-out Dynamics
<> Summary

Study of QCD Phase diagram — excellent test of QCD in the non-perturbative regime
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Phase Diagram and Basic Interactions

Temperature
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Phase diagram of Water Phase diagram of strong
Electromagnetic interaction interactions. Largely still a
Precisely known conjecture
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Phase Diagram of QCD - Theoretically
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Ann. Rev. Nucl. Part. Sci. 53, 163, 2003
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K. Rajagopal and F. Wilczek, Handbook of QCD
Interplay of the chiral symmetry and the center symmetry.

These symmetries are exact for zero and infinite quark

masses, respectively.
Very rich phase structure unfolds in the phase diagram. -



Cross-over and Temperature

X(Ng, Ny)=0?/(dmi)(T/V)-log Z

Physical quark masses
Continuum limit
Simulations along Lines of
Constant Physics

m/m, = 3.689; f,/m_=1.185

Staggered fermionic action
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No significant volume dependence

Nucl. Phys. A 830 (2009) 805c¢
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At high T

using chiral condensates.

and ug = 0 is a cross over.
Agreement on Cross over temperature’ °
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Phys.Rev. D85 (2012) 054503
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Thermodynamlcs at ug = 0 MeV

non-int. limit

arXiv:1407.6387
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JHEP 1208 (2012) 053
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Lattice QCD provides
Temperature and Baryon density
evolution of the system in the

QCD phase diagram.



Search for Critical Point - Theory

Numerical QCD calculations at large ug — sign problem
Techniques: Reweighting, Taylor expansion & Im. potential

1.1

Critical point estimates: ! Hegﬁ/ei,aa&vgrﬂg —
11
ILGTI Nt=8
P ILGTI Nt=6
(& ]
0.9}
=
0.8}
td i 5 3 4
ug/T

Acta Phys.Polon.Supp. 5 (2012) 825-835
Phys. Rev. D78, 14503 (2008) " pos LATTICE2013 (2013) 202 JHEP 0404, 50 (2004)
Phys.Rev.D 71, 114014 (2005)
Issues (not common to all) : lattice spacing, physical quark
mass, continuum limit, Volume

Theory: still some more work to be done ...... need more CPU



QCD Phase Diagram - Theory
Atug =0

Lattice QCD

**Quark — hadron Transition — Cross-over
“*'Transition temperature ~ 150 MeV
(Observable dependent)

“*Robust continuum limit results: EOS and Thermodynamics

At ug non-zero

“*Efforts on to draw the transition line — large
uncertainties

“*Efforts on to get EOS and thermodynamics

“*Critical point search progressing — positive results

indicate CP region below Beam energy 30 GeV



QCD Phase Diagram - Experimental
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Nature 448 (2007) 302



RHIC Beam Energy Scan—-Phase |

Vs (GeV) Statistics(Millions) Year Hg (MeV) T (MeV) ug /T
(0-80%)
7.7 ~4

2010 3.020

11.5 ~12 2010 315 152 2.084
19.6 ~36 2011 205 160 1.287
27 ~70 2011 155 163 0.961
39 ~130 2010 115 164 0.684
62.4 ~67 2010 70 165 0.439
200 ~350 2010 20 166 0.142

ug T:J. Cleymans et al., Phys. Rev. C 73, 034905 (2006).

T:gé(\(?ar 2014) The main goals of BES program:
9 28 » Freeze-out dynamics
Mg ~ 266 MeV

Events: 20 Million  » Search for Onset of De-confinement
» Search for QCD critical point
» Search for signals of first order phase transition
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QCD Phase Structure Theory Experlment
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Freeze-out Dynamics
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Freeze-out Dynamics
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Freeze-out Dynamics

Time Evolution of Heavy-ion Collisions:
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state <> Inelastic collision <> Elastic collision
cease cease
S. Chatterjee et al,, PLB 727, 554 (2013) < Particle yield fixed <~ Spectral shape fixed
K. Bugaev et al., EPL 104, 22002 (2013)
T : Strange particles 1 l
G Blast wave model:

Tys: Non-Strange
particles

Microscopically — multiple/sequentia

Statistical thermal
model: T and u,

freeze-out expected
See talks by S. Chatterjee and R. Singh

T, and <f3>
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Ratios

1CFO vs. 2CFO
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Freeze-out Dynamics

So far 15t moments of multiplicity distributions were
used, now higher moments are being considered.
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A. Aﬁdronfc, ‘e‘t aI.,‘ NPA834, 237(1.0)
J. Cleymans, et:al., PRC73, 34905(06):
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(b) LGT CP Predictions

/A S.Datta, etal., NPA904-905, 883c(13) | | !
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(T = 170 MeV)

QCD Phase Structure: Freeze-out

» RHIC experiments cover a u; region: 20 — 400
MeV (largest at a single experimental facility)
» Potentially covers the expected CP region

100
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! Ll
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Baryonic Chemical Potential pg (MeV)

» Recently new directions in freeze-out
dynamics has emerged

- Higher moments of multiplicity distribution

- Multiple/sequential/flavor freeze-out

Chemical | Pred.
Energy | Potential | Temp.
(GeV) Ug (MeV)
LHC 2760.0 2 166.0
RHIC 200.0 24 165.9
RHIC 130.0 36 165.8
RHIC 62.4 73 165.3
RHIC 39.0 112 164.2
RHIC 27.0 156 162.6
RHIC 19.6f 206 160.0
SPS 17.3] 229 158.6
RHIC 14.5 262 156.2
SPS 12.4 299 153.1
RHIC 11,51 316 151.6
SPS 8.8 383 144.4
RHIC 7.7 422 139.6
SPS 7.7 422 139.6
SPS 6.4 476 131.7
AGS 4.7] 573 114.6
AGS 4.3 602 108.8
AGS 3.8 638 100.6
AGS 3.3 686 88.9
AGS 2.7 752 70.4
SIS 2.3 799 55.8
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Establishing Quark Gluon Phase

Jet Quenching NCQ_Scaling
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QCD Phase Structure Partonic vs. Hadronic

Phys.Rev.Lett. 110 (2013) 14
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QCD Phase structure — Quark-Gluon
and Hadronic Phases

< At small baryonic chemical potential the QCD
transition corresponding to a state of de-confined
quarks and gluons takes place at high temperature.

< For large baryonic chemical potential (> 350 MeV)

hadronic interactions dominate.

20



QCD Phase Structure: 15t order P.T
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Phys.Rev.Lett. 112 (2014) 162301; SN0598

D.H. Rischke et al. HIP1, 309(1995)

H. Stoecker, NPA750, 121(2005)

J. Steinheimer et al., arXiv:1402.7236
P. Konchakovski et al., arXiv:1404.276

Transverse Dynamics in High-Energy Nuclear Collisions
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Critical Point Observable

Necessity: Observable sensitive to correlation length
and susceptibilities

Challenges: Finite system size effects, § < 6 fm
Finite time effects, £~ 2 -3 fm

Observable:
< (ON)?2>~E2| |<(ON)3>~E*> |<(ON)*>- 3<(ON)*>2~E’
S0~ %@ | | K02 ~ %y @@

Phys.Rev.Lett. 107 (2011) 052301 Phys. Rev. Lett. 102, 032301 (2009) Phys.Lett. B696 (2011) 459

22

Phys. Rev. Lett. 91, 102003 (2003) Phys. Rev. D 61, 105017 (2000) Phys.Rev.Lett. 105 (2010) 022302




QCD based Model: CP Region and Kurtosis
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QCD Phase Structure: Critical Point Search

Phys.Rev.Lett. 112 (2014) 032302; SN0598
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Critical Region: below 27 GeV »?
Find the Oscillation ....... BES-II
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New results: ngher I\/Ioments
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ngher Moments: Rapldlty Acceptance
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Higher Moments : Acceptance in p-

0-5% Au + Au Central Collisions at RHIC
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Cumulants vs. Poisson
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Cumulants vs. Binomial
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» The higher the order of cumulants the larger deviations from
Poisson expectations for net-proton and proton.

» The binomial distribution (BD) better described the data than

Poisson. But large deviations seen in C; and C, in central Au+Au
collisions 7.7, 11.5, 19.6, 27 and 62.4 GeV.



QCD Phase Structure: 15t order Phase
Transition and CP

< Non-monotonic variations of v; slope for net-protons —
signature of softening of equation of state/1* Order Phase

transition ¢

< Non-monotonic variation of Ko? for net-protons --- Is
there an osscilation ?* — BES- 11 / larger phase space

acceptance needed/ CBM/NICA.
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Phase structure: Interesting Possibilities

A
~ . - Quark-Gluon Plasma
=
£
5 Critical
g" Point =
S
‘Quarkyonic
Hadronic Phase Matter
Gas-Liquid ‘| ———— =
Nuclear -4 al)
Superfluid has
Rept.Prog.Phys. 74 (2011) 014001 Baryon Chemical Potential us

CPOD:2013: J. Stroth

Quarkyonic phase (Theoretical) 2 Experimental signature

NucI.Phys. A830 (2009) 709C-712C (Baryon CorrelationS, Photons) P
Nucl. Phys. A 796, 83 (2007 ArXiv:1302.1119 30



Theory

Summary

Lattice QCD: Solid results at zero ug Experiment
> CrOSS Over \ Sy 200 624 39 27 19.6 115 7.7 (GeV) \ S 200 624 39 27 196 15 7.7 (GeV)
» EOS, Transition Temp.  ," B I -
-J WS S - 5 o .
» QCD Thermodynamics * nbe ol R el
Progress at large ug 5 °’i‘°":'s‘°*°’f‘2°1f' s emaons %
» CP > uz =300 MeV "t [P of, bt |y
» Non Monotonic variation %= ¢¢ R |
© : e o o n 2F
in high moments observed =, =~ ' ' S A |
Fu tu re 0 100 ,JBO?M ev:;OO 400 0 100 . BO?M ev:;OO 400
. . + Freeze-out Dynamics
Measure CP Oscillations Success of BES@RHIC

Increased statistics and phase space in RHIC

BES-II/CBM, FAIR / NICA/SHINE
Search for a new state of Matter — Quarkyonic Phase
SHINE/CBM, FAIR/NICA
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Beam Energy Scan
Phase Il




STAR and PHENIX BES-Il White Papers

Studying the Phase

. i Beam Energy Scan Il (2018-2019
Diagram of QCD </ ” ( )
i I 28NS PHENIX Collaboration White Paper

Matter at RHIC _gi

iR

A STAR white paper summarizing
the current understanding and
describing future plans

01 June 2014
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The STAR Upgrades and BES Phase Il

= upgrade
Major improvements

o

for BES-II vent !"lane | Jetector

EPD Upgrade:
* Improves trigger

* Reduces background
* Allows a better and
independent reaction
plane measurement
critical to BES physics

iTPC Upgrade:

* Rebuilds the inner
sectors of the TPC

* Continuous Coverage
* Improves dE/dx

* Extends n coverage
from1.0to 1.7

EndCap TOF Upgrade:
* Rapidity coverage is critical |

* Lowers p; cut-in from * PID at forward rapidity

125 MeV/c to 60 MeV/c

1x10°%d RHIC with cooling and long

] ] bunches (V, = +/- 1m)

Electron Cooling can raise | _ . 3 Stage |
. . g 1x10 ; Vs, = 5-9 GeV
the luminosity by a factor |/ — ] NN
of 3-10in the range from | = ¢ m'c:'e”;;’;nn — Stage Il -- 3 MeV booster
5-20 GeV 2 — —— = cavity
Lo I g\// Vs = 9-20 GeV

Long Bunches increase o ;
luminosity by factor of 2-5 1x1034—@4i - °e ! Perlsormance o

center of mass energv [Ge V]



BES Phase Il Proposal

BES Phase Il is planned for two 22 cryo-week runs in 2018 and 2019

mmmmmm

ug (MeV)

BES | (MEvts) — 43 — 117 -— 24 36
Rate(MEvts/day) 0.25 1.7 24 45
BES | £ (1x10%5/cm?2sec) 0.13 1.5 2.1 4.0
BES Il (MEvts) 100 160 230 250 300 400

eCooling (Factor) 2 3 4 6 8 11 15
Beam Time (weeks) 14 95 50 30 25 3.0



