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Multiple Freezeout on your table top: Salt
mixture in water
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Multiple Freezeout in the Early Universe
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Hypothetical Q: A more rapid expansion — sudden single
freezeout a la HIC ?




Freezeout in HIC

o Freezeout is a result of competition between 2 effects:
constituent interactions and fireball expansion- Cross section
vs Dilution

e In the late stage of a heavy ion collision (HIC), the rate of
collisions between the constituents can no longer cope with
the expansion rate. As a result, hadrons start freezing out.

e Simple assumption: All strong interaction rates are same.
Hence single chemical freezeout (1CFO).




Single Chemical Freezeout: 1CFO
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1CFO at LHC
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1CFO at LHC
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Revisitng our 1CFO assumption: When does
chemistry freeze out?

Basic observables are the spectra of identified particles; from this
one gets yields. Relative yields of hadrons is the outcome of
“chemistry”.

At early times, fireball is a reactive fluid. Reaction rates depend on
local densities as well as rates of mixing.

Kinetic equations more complicated: need numerical treatment,
but many parameters fed into the code.




When does isospin freeze out?

o The rates for processes p + 7~ < n+ 7°, remain high at
=~ 150 MeV, because m, — m, is small and the yield of pions
is large. So the chemical freezeout of baryon isospin can be
delayed. The p <+ n reaction may proceed without
suppression right up to kinetic freezeout
Asakawa, Kitazawa, 2011




Can the K and 7 freeze separately?

e Indirect transmutations of K and 7 involve strange baryons in
reactions such as Q= + Kt «» =% + 79 These have very high
activation thresholds. There is no physics forcing K and 7 to
freezeout together. But K and ¢ are resonantly coupled, so
freeze out together.

SC, Godbole, Gupta, 2013




Double Chemical Freezeout: 2CFO

e ‘Isospin changing' reactions are last to freezeout
(p+ 70 < n+ 7T) (Asakawa, Kitazawa 2011)
e low activation energy
e high pion density
e ‘Strangeness changing’ reactions can freezeout earlier
(A~ + K"« =0+ 79)
e High activation energy

e Q and K densities much less compared to that of 7;
Q™ 4+ K™ reactions much suppressed

o Motivates to propose separate CFO for (strange+hidden
strangeness) and non strange hadrons: 2CFO

e T, Vs, ups characterise the strange surface

o T,s, Vs, B, Characterise the non-strange surface




Hadron Yields in Thermal Model

e The ideal hadron resonance gas (HRG) partition function Z
in the grand canonical ensemble at the time of CFO at a
particular beam energy /sNn is given as

log [Z (v/sxw)] = Z log [Z; (T (v/sxn) » i (v/snn) > Vi (vanw))]

NP = L_Iog[Z]
(%)
ViT; - -
= rami Y (=a) " I Ky (Imi/ i) %
1=1
exp (I (Bipg; + Qipg; + Sinsi) / Ti)




2CFO Freezeout Parameters
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2CFO Freezeout Parameters
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Nuclei Yields in Thermal Model

e Treat the nuclei on the same footing as other hadrons

e Thus the Boltzmann factor decides the nuclei yield:
Braun-Munzinger et al, 1996




Nuclei Yields in Simple Coalescence

o Nuclei formed by coalescence of hadrons near the KFO surface

£ BNa (AN PN
A3, A\ PR, "d3P,

o At the level of yields

Na = Ca(Ny)*(N,)*2

e For ratios of nuclei, for eg. anti-nuclei to nuclei

Ny -
N = Gaa(Na/No)” (N/ ) )

~ CZA (N/'J/NP)A




Nuclei Yields in Simple Coalescence

e Nuclei production within the coalescence model is a
combination of two distinct physics issues:

e The physics of C;,. This is related to the correlation effects
in the phase space that exist between the constituent hadrons
at the time of the KFO

e The abundances of the constituent hadrons at the time of
KFO which is already fixed at the CFO surface obtained from
fits to the hadron yields.

e Here we are interested in the role played by the latter physics
in determining the nuclei yields. Hence take Gz, = 1.
Sufficient for our purpose to demonstrate the dependence of
the nuclei production on the CFO scheme.




Ratios

e Unlike Flavor Ratio (RVF):
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Ratios

e Like Flavor Ratio (RF):
N /e 32
o - ()
&/ \mj
exp (((m;j — mi) + (B = Bj) ug) / T)

e Hence,

RLF  RLF
2CFO 1CFO

e Anti-particle to particle ratios simplifies even further.

S th
(N;t/’V;t) = exp(—2(Bius; + Qipq; + Sips;) /T)




2CFO at LHC
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Antiparticle to Particle Ratio
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Like Flavor Ratio
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Unlike Flavor Ratio
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Unlike Flavor Ratio
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Unlike Flavor Ratio: Nuclei
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Unlike Flavor Ratio
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Unlike Flavor Ratio
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Other approaches

e Post 1CFO employ hadronic afterburner: Microscopic
Transport Approach (UrQMD Model). Baryon-antibaryon
annihilation main source of correction. Systematics ?-
Steinheimer et al, 2013

e Introduce additional light and strange chemical
non-equilibrium fugacity factors- Petran et al, 2013




Summarising..

e Multiple freezeout is a common occurence in nature: from a
cooling salt mixture in water to the cooling early universe. A
multi-component system naturally freezes over a range in the
relevant parameter space.

e Freezeout in the cooling fireball in HIC- Is the freezeout
gradual enough to leave an imprint on the data ?

e 1CFO provides an overall good description of the
hadrons(nuclei) yields across a wide range of \/syn

e Does closer/careful inspection of the data reveal details in
freezeout 7 Which observables are most sensitive?

e Strange to non strange hadron/nuclei ratios are most
sensitive to flavor dynamics at freezeout

e Anomaly with data of A/p at LHC, 3H/3He at top RHIC
have a common origin: flavor dynamics at freezeout

e Influence of additional resonances ?- they will affect the
above strange to non strange ratios. On including them, can
the above anomalies with data be addressed within 1CFO 7
Need to check- require input on their branching ratios

e Data from FAIR, BES-II can throw more light
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