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Multiple Freezeout on your table top: Salt

mixture in water
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Multiple Freezeout in the Early Universe

Hypothetical Q: A more rapid expansion → sudden single
freezeout a la HIC ?
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Freezeout in HIC

• Freezeout is a result of competition between 2 effects:
constituent interactions and fireball expansion- Cross section
vs Dilution

• In the late stage of a heavy ion collision (HIC), the rate of
collisions between the constituents can no longer cope with
the expansion rate. As a result, hadrons start freezing out.

• Simple assumption: All strong interaction rates are same.
Hence single chemical freezeout (1CFO).
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Single Chemical Freezeout: 1CFO
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Standard practice:

All the hadrons CFO at

the same (T , µB) surface.

This provides an overall

good qualitative picture of

CFO at
√
sNN ∼ 2− 200

GeV with ∼ 4 params.

Andronic et al: 0812. 1186
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1CFO at LHC

no. of parameters 4+1(µB set to 0 by hand.)

Floris: 1408.6403
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1CFO at LHC

Begun et al: 1405.7252
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Revisitng our 1CFO assumption: When does

chemistry freeze out?

Basic observables are the spectra of identified particles; from this
one gets yields. Relative yields of hadrons is the outcome of
“chemistry”.

At early times, fireball is a reactive fluid. Reaction rates depend on
local densities as well as rates of mixing.

Kinetic equations more complicated: need numerical treatment,
but many parameters fed into the code.
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When does isospin freeze out?

• The rates for processes p + π− ↔ n + π0, remain high at
≃ 150 MeV, because mn −mp is small and the yield of pions
is large. So the chemical freezeout of baryon isospin can be
delayed. The p ↔ n reaction may proceed without
suppression right up to kinetic freezeout
Asakawa, Kitazawa, 2011
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Can the K and π freeze separately?

• Indirect transmutations of K and π involve strange baryons in
reactions such as Ω− + K+ ↔ Ξ0 + π0. These have very high
activation thresholds. There is no physics forcing K and π to
freezeout together. But K and φ are resonantly coupled, so
freeze out together.
SC, Godbole, Gupta, 2013
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Double Chemical Freezeout: 2CFO

• ‘Isospin changing’ reactions are last to freezeout
(p + π0 ↔ n + π+) (Asakawa, Kitazawa 2011)

• low activation energy

• high pion density

• ‘Strangeness changing’ reactions can freezeout earlier
(Ω− + K+ ↔ Ξ0 + π0)

• High activation energy

• Ω and K densities much less compared to that of π;

Ω− + K
+ reactions much suppressed

• Motivates to propose separate CFO for (strange+hidden
strangeness) and non strange hadrons: 2CFO

• Ts , Vs , µBs characterise the strange surface

• Tns , Vns , µBns characterise the non-strange surface
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Hadron Yields in Thermal Model

• The ideal hadron resonance gas (HRG) partition function Z

in the grand canonical ensemble at the time of CFO at a
particular beam energy

√
sNN is given as

log [Z (
√
sNN)] =

∑

i

log [Zi (Ti (
√
sNN) , µi (

√
sNN) ,Vi (

√
sNN))]

•

N
p
i =

∂

∂
(

µi

Ti

) log [Z ]

=
ViTi

π2
gim

2
i

∞
∑

l=1

(−a)
l+1

l−1K2 (lmi/Ti )×

exp (l (BiµB i + QiµQi + SiµS i ) /Ti )
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2CFO Freezeout Parameters
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SC, Godbole, Gupta: 1306.2006
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2CFO Freezeout Parameters
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Nuclei Yields in Thermal Model

• Treat the nuclei on the same footing as other hadrons

• Thus the Boltzmann factor decides the nuclei yield:
Braun-Munzinger et al, 1996
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Nuclei Yields in Simple Coalescence

• Nuclei formed by coalescence of hadrons near the KFO surface

EA

d3NA

d3PA

= BA

(

Ep

d3Np

d3Pp

)Z (

En

d3Nn

d3Pn

)A−Z

• At the level of yields

NA = CA (Np)
Z
(Nn)

A−Z

• For ratios of nuclei, for eg. anti-nuclei to nuclei

NA

NA

= CAA (Np̄/Np)
Z
(Nn̄/Nn)

(A−Z)

∼ CAA (Np̄/Np)
A
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Nuclei Yields in Simple Coalescence

• Nuclei production within the coalescence model is a
combination of two distinct physics issues:

• The physics of CAA. This is related to the correlation effects

in the phase space that exist between the constituent hadrons

at the time of the KFO

• The abundances of the constituent hadrons at the time of

KFO which is already fixed at the CFO surface obtained from

fits to the hadron yields.

• Here we are interested in the role played by the latter physics
in determining the nuclei yields. Hence take CAA = 1.
Sufficient for our purpose to demonstrate the dependence of
the nuclei production on the CFO scheme.
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Ratios

• Unlike Flavor Ratio (RUF):

(

N t
s/N

t
ns

)th
= exp (SµS/Ts)

gsVs

gnsVns

(

Tsms

Tnsmns

)3/2

×

exp (mns/Tns −ms/Ts)×

exp (µBs/Ts − µBns/Tns)

• Hence,

RUF
2CFO ∼

(

Ts

Tns

)3/2 (
Vs

Vns

)

RUF
1CFO

, 18/30



Ratios

• Like Flavor Ratio (RLF):

N t
i /N

t
j =

(

gi

gj

)(

mi

mj

)3/2

×

exp (((mj −mi ) + (Bi − Bj)µB) /T )

• Hence,

RLF
2CFO ∼ RLF

1CFO

• Anti-particle to particle ratios simplifies even further.

(

N t
i /N

t
i

)th

= exp (−2 (BiµB i + QiµQi + SiµS i ) /T )

, 19/30



2CFO at LHC

SC, Mohanty: 1405.2632

, 20/30



Antiparticle to Particle Ratio

SC, Mohanty: 1405.2632
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Like Flavor Ratio

SC, Mohanty: 1405.2632
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Unlike Flavor Ratio

SC, Mohanty: 1405.2632
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Unlike Flavor Ratio

SC, Mohanty: 1405.2632
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Unlike Flavor Ratio: Nuclei
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Andronic et al 2011, Cleymans et al 2011, Pal et al 2013
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Unlike Flavor Ratio

SC, Mohanty: 1405.2632
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Unlike Flavor Ratio

SC, Mohanty: 1405.2632
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Other approaches

• Post 1CFO employ hadronic afterburner: Microscopic
Transport Approach (UrQMD Model). Baryon-antibaryon
annihilation main source of correction. Systematics ?-
Steinheimer et al, 2013

• Introduce additional light and strange chemical
non-equilibrium fugacity factors- Petran et al, 2013
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Summarising..
• Multiple freezeout is a common occurence in nature: from a
cooling salt mixture in water to the cooling early universe. A
multi-component system naturally freezes over a range in the
relevant parameter space.

• Freezeout in the cooling fireball in HIC- Is the freezeout
gradual enough to leave an imprint on the data ?

• 1CFO provides an overall good description of the
hadrons(nuclei) yields across a wide range of

√
sNN

• Does closer/careful inspection of the data reveal details in
freezeout ? Which observables are most sensitive?

• Strange to non strange hadron/nuclei ratios are most
sensitive to flavor dynamics at freezeout

• Anomaly with data of Λ/p at LHC, 3
ΛH/

3He at top RHIC
have a common origin: flavor dynamics at freezeout

• Influence of additional resonances ?- they will affect the
above strange to non strange ratios. On including them, can
the above anomalies with data be addressed within 1CFO ?
Need to check- require input on their branching ratios

• Data from FAIR, BES-II can throw more light
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Take home
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