

Spontaneous CP Violation in Quark Scattering from QCD Z(3) domains and its Implications

Abhishek Atreya

Institute Of Physics
Bhubaneswar

Outline

1 $Z(N)$ and CP Violation

- Confinement Deconfinement Transition
- $Z(N)$ Symmetry
- CP Violation

2 Implications of CP Violation

- In Early Universe
- Heavy Ion Collisions

3 Effect of Quarks

- Explicit Breaking of $Z(N)$
- Varying Quark Mass

Outline

1 $Z(N)$ and CP Violation

- Confinement Deconfinement Transition
- $Z(N)$ Symmetry
- CP Violation

2 Implications of CP Violation

- In Early Universe
- Heavy Ion Collisions

3 Effect of Quarks

- Explicit Breaking of $Z(N)$
- Varying Quark Mass

Pure Gauge Theory at Finite T

- Partition function

$$\mathcal{Z} = \text{Tr}(e^{-\beta H}) \propto \int_{A_\mu(\tau=0)}^{A_\mu(\tau=\beta)=A_\mu(\tau=0)} \mathcal{D}A_\mu \exp(-S_E)$$

where

$$S_E = \int_0^\beta d\tau \int d^3x \frac{1}{4} \text{Tr}(F_{\mu\nu} F^{\mu\nu})$$

Pure Gauge Theory at Finite T

- Partition function

$$\mathcal{Z} = \text{Tr}(e^{-\beta H}) \propto \int_{A_\mu(\tau=0)}^{A_\mu(\tau=\beta)=A_\mu(\tau=0)} \mathcal{D}A_\mu \exp(-S_E)$$

where

$$S_E = \int_0^\beta d\tau \int d^3x \frac{1}{4} \text{Tr}(F_{\mu\nu} F^{\mu\nu})$$

- In presence of a static test quark,

$$\mathcal{Z}_q \propto \int \mathcal{D}A_\mu \exp(-S_E) \text{Tr} \Omega(\vec{x})$$

$$\Omega(\vec{x}) = \mathbf{P} \exp \left(ig \int_0^\beta A_0(\vec{x}, \tau) d\tau \right)$$

is called Thermal Wilson Loop.

Order Parameter

- Polyakov loop $L(x) = (1/N) \text{Tr} \Omega(\vec{x})$ [► L\(x\) Profile](#)
- Also $\mathcal{Z} = e^{-\beta F}$
 $\Rightarrow \frac{\mathcal{Z}_q}{\mathcal{Z}} = e^{-\beta \Delta F_q} = \langle L(\vec{x}) \rangle$

Order Parameter

- Polyakov loop $L(x) = (1/N) \text{Tr} \Omega(\vec{x})$ [► L\(x\) Profile](#)

- Also $\mathcal{Z} = e^{-\beta F}$

$$\Rightarrow \frac{\mathcal{Z}_q}{\mathcal{Z}} = e^{-\beta \Delta F_q} = \langle L(\vec{x}) \rangle$$

$$\langle L^*(\vec{y}) L(\vec{x}) \rangle \propto e^{-\beta \Delta F_{q\bar{q}}(|\vec{x} - \vec{y}|)} \xrightarrow{|\vec{x} - \vec{y}| \rightarrow \infty} \langle L^*(\vec{y}) \rangle \langle L(\vec{x}) \rangle = |\langle L(\vec{x}) \rangle|^2$$

Order Parameter

- Polyakov loop $L(x) = (1/N) \text{Tr} \Omega(\vec{x})$ [► L\(x\) Profile](#)
- Also $\mathcal{Z} = e^{-\beta F}$

$$\Rightarrow \frac{\mathcal{Z}_q}{\mathcal{Z}} = e^{-\beta \Delta F_q} = \langle L(\vec{x}) \rangle$$

$$\langle L^*(\vec{y}) L(\vec{x}) \rangle \propto e^{-\beta \Delta F_{q\bar{q}}(|\vec{x} - \vec{y}|)} \xrightarrow{|\vec{x} - \vec{y}| \rightarrow \infty} \langle L^*(\vec{y}) \rangle \langle L(\vec{x}) \rangle = |\langle L(\vec{x}) \rangle|^2$$

- **Confining Phase:-**

$$|\vec{x} - \vec{y}| \rightarrow \infty, \Delta F_{q\bar{q}}(|\vec{x} - \vec{y}|) \rightarrow \infty, \Rightarrow |\langle L(\vec{x}) \rangle| \rightarrow 0$$

Order Parameter

- Polyakov loop $L(x) = (1/N) \text{Tr} \Omega(\vec{x})$ [► L\(x\) Profile](#)

- Also $\mathcal{Z} = e^{-\beta F}$

$$\Rightarrow \frac{\mathcal{Z}_q}{\mathcal{Z}} = e^{-\beta \Delta F_q} = \langle L(\vec{x}) \rangle$$

$$\langle L^*(\vec{y}) L(\vec{x}) \rangle \propto e^{-\beta \Delta F_{q\bar{q}}(|\vec{x} - \vec{y}|)} \xrightarrow{|\vec{x} - \vec{y}| \rightarrow \infty} \langle L^*(\vec{y}) \rangle \langle L(\vec{x}) \rangle = |\langle L(\vec{x}) \rangle|^2$$

- **Confining Phase:-**

$$|\vec{x} - \vec{y}| \rightarrow \infty, \Delta F_{q\bar{q}}(|\vec{x} - \vec{y}|) \rightarrow \infty, \Rightarrow |\langle L(\vec{x}) \rangle| \rightarrow 0$$

- **Deconfining Phase:-** $|\vec{x} - \vec{y}| \rightarrow \infty, \Delta F_{q\bar{q}}(|\vec{x} - \vec{y}|)$ is finite
 $\Rightarrow |\langle L(\vec{x}) \rangle| \neq 0.$

Outline

1 Z(N) and CP Violation

- Confinement Deconfinement Transition
- **Z(N) Symmetry**
- CP Violation

2 Implications of CP Violation

- In Early Universe
- Heavy Ion Collisions

3 Effect of Quarks

- Explicit Breaking of Z(N)
- Varying Quark Mass

Spontaneously Broken $Z(N)$ Symmetry

- Under $SU(N)$, $\Omega(\vec{x}) \rightarrow U(\vec{x}, \beta)\Omega(\vec{x})U^\dagger(\vec{x}, 0)$ and
 $A_\mu(\vec{x}, \tau) \rightarrow U(\vec{x}, \beta)A_\mu(\vec{x}, \tau)U^\dagger(\vec{x}, 0) + iU(\vec{x}, \beta)\partial_\mu U^\dagger(\vec{x}, 0)$

Spontaneously Broken $Z(N)$ Symmetry

- Under $SU(N)$, $\Omega(\vec{x}) \rightarrow U(\vec{x}, \beta)\Omega(\vec{x})U^\dagger(\vec{x}, 0)$ and
 $A_\mu(\vec{x}, \tau) \rightarrow U(\vec{x}, \beta)A_\mu(\vec{x}, \tau)U^\dagger(\vec{x}, 0) + iU(\vec{x}, \beta)\partial_\mu U^\dagger(\vec{x}, 0)$
 $A'_\mu(\vec{x}, \beta) = A'_\mu(\vec{x}, 0)$ if $U(\vec{x}, \beta) = U(\vec{x}, 0)$
 $\Rightarrow L(\vec{x})$ is invariant.

Spontaneously Broken $Z(N)$ Symmetry

- Under $SU(N)$, $\Omega(\vec{x}) \rightarrow U(\vec{x}, \beta)\Omega(\vec{x})U^\dagger(\vec{x}, 0)$ and
 $A_\mu(\vec{x}, \tau) \rightarrow U(\vec{x}, \beta)A_\mu(\vec{x}, \tau)U^\dagger(\vec{x}, 0) + iU(\vec{x}, \beta)\partial_\mu U^\dagger(\vec{x}, 0)$
 $A'_\mu(\vec{x}, \beta) = A'_\mu(\vec{x}, 0)$ if $U(\vec{x}, \beta) = U(\vec{x}, 0)$
 $\Rightarrow L(\vec{x})$ is invariant.
- However, if $U(\vec{x}, \beta) = ZU(\vec{x}, 0)$; where $Z \in Z(N)$
 $Z = e^{i\phi}\mathbf{1}; \phi = 2\pi m/N; m = 0, 1 \dots (N-1)$
- Then, $A'_\mu(\vec{x}, \beta) = A'_\mu(\vec{x}, 0)$ but $L(\vec{x}) \rightarrow Z(L(\vec{x}))$.

Spontaneously Broken $Z(N)$ Symmetry

- Under $SU(N)$, $\Omega(\vec{x}) \rightarrow U(\vec{x}, \beta)\Omega(\vec{x})U^\dagger(\vec{x}, 0)$ and
 $A_\mu(\vec{x}, \tau) \rightarrow U(\vec{x}, \beta)A_\mu(\vec{x}, \tau)U^\dagger(\vec{x}, 0) + iU(\vec{x}, \beta)\partial_\mu U^\dagger(\vec{x}, 0)$
 $A'_\mu(\vec{x}, \beta) = A'_\mu(\vec{x}, 0)$ if $U(\vec{x}, \beta) = U(\vec{x}, 0)$
 $\Rightarrow L(\vec{x})$ is invariant.
- However, if $U(\vec{x}, \beta) = ZU(\vec{x}, 0)$; where $Z \in Z(N)$
 $Z = e^{i\phi}\mathbf{1}; \phi = 2\pi m/N; m = 0, 1 \dots (N-1)$
- Then, $A'_\mu(\vec{x}, \beta) = A'_\mu(\vec{x}, 0)$ but $L(\vec{x}) \rightarrow Z(L(\vec{x}))$.

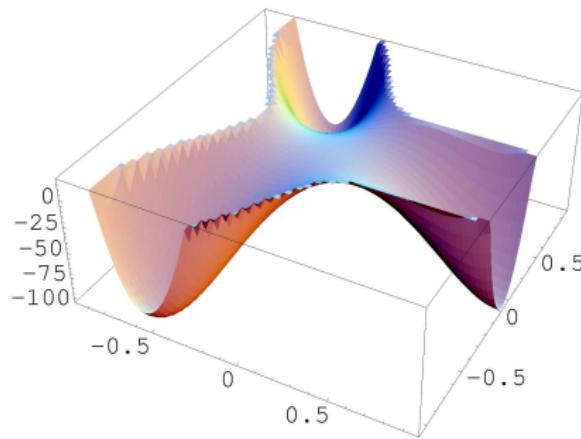
Degeneracy and Interfaces

- N -fold degeneracy of ground states.
- Domains with different $L(\vec{x})$ values will be formed.
- Interfaces exist between different domains.

Effective Potential

$$V(L) = \left(-\frac{b_2}{2} |L|^2 - \frac{b_3}{6} (L^3 + (L^*)^3) + \frac{1}{4} (|L|^2)^2 \right) b_4 T^4$$

- For $T > T_c$, second term leads to the three degenerate vacua corresponding to the three $\langle L(x) \rangle$ values.



¹R.D. Pisarski, PRD 62,111501 (2000)

Effective Potential

Various parameters in the potential are fixed as ²:-

- $b_3 = 2.0$ and $b_4 = 0.6061 \times 47.5/16$
- $b_2 = (1 - 1.11/x)(1 + 0.265/x)^2(1 + 0.300/x)^3 - 0.478$; where $x = T/T_c$ with $T_c \sim 182$ Mev
- As $T \rightarrow \infty$, $\langle L(x) \rangle \rightarrow y = b_3/2 + \frac{1}{2} \times \sqrt{b_3^2 + 4b_2}$ ($T = \infty$)

Various quantities are rescaled as:-

- $L(x) \rightarrow L(x)/y$, $b_2 \rightarrow b_2/y^2$, $b_3 \rightarrow b_3/y$ and $b_4 \rightarrow b_4 y^4$
- $\langle L(x) \rangle \rightarrow 1$ as $T \rightarrow \infty$

²Dimitru and Pisarski, Phys. Lett. B 504, (2001); PRD 66, (2000); Nucl. Phys. A 698 (2002)

Explicit Breaking of $Z(N)$

- Fermion fields have anti-periodic boundary conditions

$$\psi(\vec{x}, 0) = -\psi(\vec{x}, \beta)$$

- Under $Z(N)$ transformations,

$$\psi(\vec{x}, 0) \longrightarrow \psi'(\vec{x}, 0) = U^\dagger(\vec{x}, 0)\psi(\vec{x}, 0)$$

$$\psi(\vec{x}, \beta) \longrightarrow \psi'(\vec{x}, \beta) = e^{-i\phi} U^\dagger(\vec{x}, 0)\psi(\vec{x}, \beta)$$

¹³Dumitru et al PRD 70 (074001)

Explicit Breaking of $Z(N)$

- Fermion fields have anti-periodic boundary conditions
 $\psi(\vec{x}, 0) = -\psi(\vec{x}, \beta)$
- Under $Z(N)$ transformations,
 $\psi(\vec{x}, 0) \rightarrow \psi'(\vec{x}, 0) = U^\dagger(\vec{x}, 0)\psi(\vec{x}, 0)$
 $\psi(\vec{x}, \beta) \rightarrow \psi'(\vec{x}, \beta) = e^{-i\phi} U^\dagger(\vec{x}, 0)\psi(\vec{x}, \beta)$
- $Z(N)$ symmetry is explicitly broken.
- At the level of effective potential, the effect is studied by the addition of a linear term ¹³

$$V(L) = \left(-\frac{b_2}{2}|L|^2 - \frac{b_3}{6}(L^3 + (L^*)^3) + \frac{1}{4}(|L|^2)^2 \right) b_4 T^4$$

$$- b_1 \left(\frac{L + L^*}{2} \right) b_4 T^4$$

¹³Dumitru et al PRD 70 (074001)

Continued..

Metastable States

- Degeneracy is lifted, with $L(x) = 1$ being the true vaccum.
- $L(x) \neq 1$ states are thermodynamically metastable.
- Relevance to Cosmology and Heavy Ion Collisions.
- The value of b_1 can be related to the analytical estimates of the difference in the energies of the true and metastable vacua ¹⁴

$$\Delta V \sim \left(\frac{2}{3}\right) \left(\frac{N_l}{N^3}\right) \pi^2 T^4 (N^2 - 2) \sim 3 T^4$$

- At $T = 400 \text{ MeV}$, the corresponding value of b_1 which gives the correct splitting is 0.645.

¹⁴V. Dixit and M. C. Ogilvie, Phys. Lett. B, 269, 353 (1991)

Outline

1 $Z(N)$ and CP Violation

- Confinement Deconfinement Transition
- $Z(N)$ Symmetry
- CP Violation

2 Implications of CP Violation

- In Early Universe
- Heavy Ion Collisions

3 Effect of Quarks

- Explicit Breaking of $Z(N)$
- Varying Quark Mass

CP Violation

- CP Violation in SM due to thermal effects of the phase of Wilson line ⁴.

$$A_0 \equiv g_s (A_0)_{SU(3)} + g_w (A_0)_{SU(2)} + g_Y (B_0)_{U(1)}.$$

- Computed the free energy, in perturbation theory.
- There are long lived metastable states.
- Metastable states are *not* CP self-conjugate. **CP Violation!**
- They then show that non-zero value of the Higgs field forces the phase of the Wilson line either to be zero or in the metastable minimum.

⁴Korthals Altes, Lee, Pisarski, PRL 73, 1754 (1994)

Localized Quark Solution

- Dirac eqn in $1 + 1$ dim Euclidean space is⁵:

$$[\gamma_e^0 \partial_0 \delta^{jk} + ig \gamma_e^0 A_0^{jk}(z) + \gamma_e^3 \partial_3] \psi_k = 0$$

where $\gamma_e^0 \equiv \gamma^0$ and $\gamma_e^3 \equiv i\gamma^3$ are Euclidean Dirac matrices.

- $\psi_{1,4}(z) = N \times \exp \left[\int_z \left(\pi T - A_0(\zeta) \right) d\zeta \right] \exp(-\pi iT\tau)$

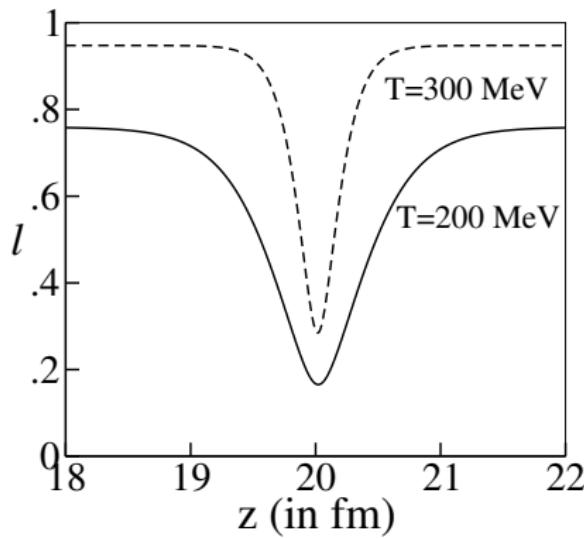
CP Conjugate and Density

- If ψ localizes then its CP conjugate $\gamma^0 \gamma^2 \psi^*$ does not.
- Density $(\psi^\dagger \psi)$ is static and localized.
- Qualitative discussion. No calculation of A_0 profile.

⁵Korthal Altes and Watson, PRL 75, 2799 (1995)

$L(x)$ Profile

- Profile of $L(x)$ for Polynomial Potential was calculated by energy minimization.³ [Gauge Profile](#)
- Scattering of quarks and it's implication were discussed **with no CP Violation**.



³Layek, Mishra, Srivastava PRD 71, 070415 (2005)

Our Work

Atreya, Sarkar, Srivastava. (PRD85 (2012) 014009)

- We choose

$$A_0 = \frac{2\pi T}{g} \left(\frac{a}{3} \lambda_3 + \frac{b}{3} \lambda_8 \right)$$

where λ_3 and λ_8 are Gell-Mann Matrices.

- a and b are fields depending on spatial coordinate only.

► L(x)

Our Work

Atreya, Sarkar, Srivastava. (PRD85 (2012) 014009)

- We choose

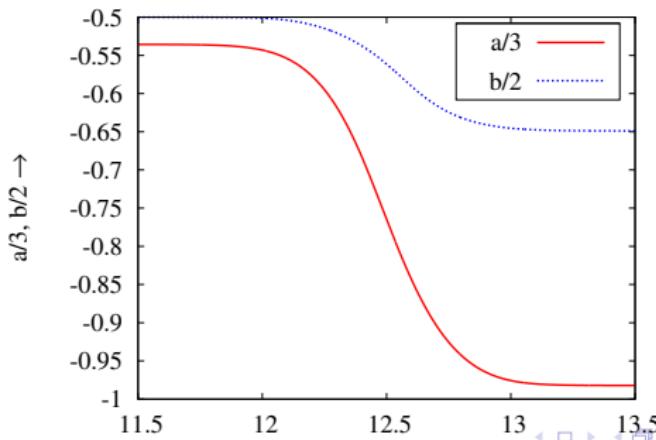
$$A_0 = \frac{2\pi T}{g} \left(\frac{a}{3} \lambda_3 + \frac{b}{3} \lambda_8 \right)$$

where λ_3 and λ_8 are Gell-Mann Matrices.

- a and b are fields depending on spatial coordinate only.

▶ L(x)

▶ Details



A_0 Profile

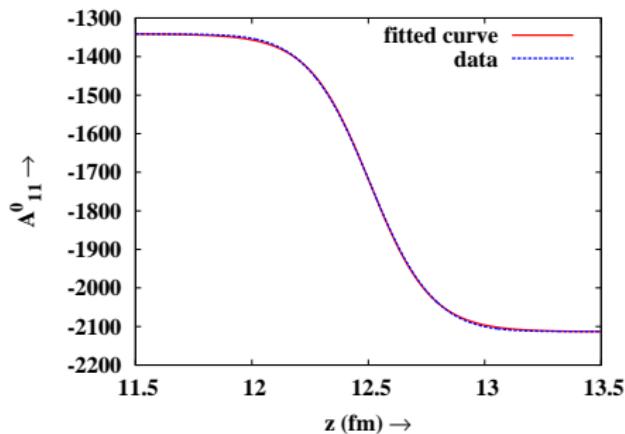
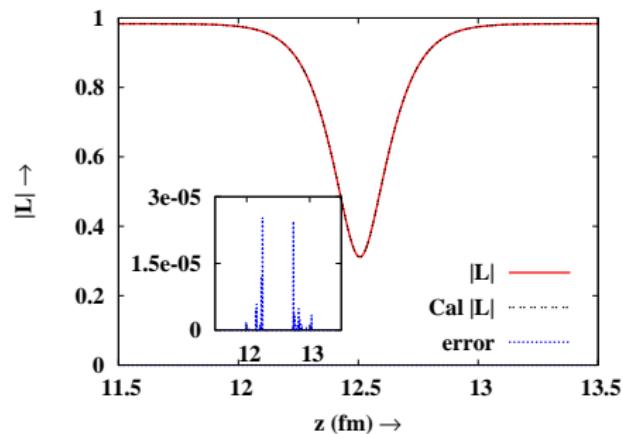
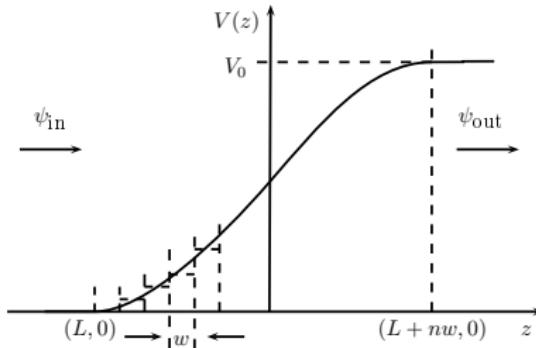


Figure : On Left: Corresponding A_0 Profile. Initial value is $(-1.5, -1.0)$. On Right: Plot of calculated $|L|$ and $|L|$ obtained from minimizing the energy.

Reflection and Transmission Coeff.

- We first approximated the profile by step function.
- For smooth profile we use the step potential approximation method.⁶
- Wavefunctions are matched at each step, relating ψ_j and ψ_{j+1} .
- The height of the j^{th} step potential is taken to be the mean value

$$V_j = \frac{[V(L + jw) + V(L + (j + 1)w)]}{2}$$



⁶Kalotas and Lee, Am. J. Phys. 59, 48 (1991)

Continued..

- The incoming fermion wave-functions (ψ_j) and outgoing fermion wave-functions (ψ_{j+1}) are

$$\psi_j(z) = A_j \begin{pmatrix} 1 \\ 0 \\ \frac{k_j}{E_j+m} \\ 0 \end{pmatrix} e^{ik_j z} + B_j \begin{pmatrix} 1 \\ 0 \\ \frac{-k_j}{E_j+m} \\ 0 \end{pmatrix} e^{-ik_j z},$$

$$\psi_{j+1}(z) = A_{j+1} \begin{pmatrix} 1 \\ 0 \\ \frac{k_{j+1}}{E_{j+1}+m} \\ 0 \end{pmatrix} e^{ik_{j+1} z} + B_{j+1} \begin{pmatrix} 1 \\ 0 \\ \frac{-k_{j+1}}{E_{j+1}+m} \\ 0 \end{pmatrix} e^{-ik_{j+1} z},$$

where $k_j = \sqrt{E_j^2 - m^2}$, and $E_j = E - V_j$.

Continued..

- Apply boundary conditions at j^{th} step i.e at $z = L + jw$.

$$\begin{pmatrix} A_j \\ B_j \end{pmatrix} = M^{-1}(L + jw, k_j) \times M(L + jw, k_{j+1}) \begin{pmatrix} A_{j+1} \\ B_{j+1} \end{pmatrix}$$

where $M(L + jw, q) = \begin{pmatrix} e^{ik_q(L+jw)} & e^{-ik_q(L+jw)} \\ \frac{e^{ik_q(L+jw)} k_q}{E_q + m} & -\frac{e^{-ik_q(L+jw)} k_q}{E_q + m} \end{pmatrix}$

- On iteration we obtain the relation

$$\begin{pmatrix} A_{\text{in}} \\ B_{\text{in}} \end{pmatrix} = M^{-1}(L, k_{\text{in}}) M(L, k_1) \dots M^{-1}(L + nw, k_n) M(L + nw, k_{\text{out}}) \begin{pmatrix} A_{\text{out}} \\ 0 \end{pmatrix}$$

Continued..

- The reflection and transmission coefficients are then given by

$$R \equiv \left| \frac{J_{\text{ref}}}{J_{\text{in}}} \right| = \left| \frac{B_{\text{in}}}{A_{\text{in}}} \right| \quad (3a)$$

$$T \equiv \left| \frac{J_{\text{trans}}}{J_{\text{in}}} \right| = \left| \frac{A_{\text{out}}}{A_{\text{in}}} \right| \times r \quad (3b)$$

$$\text{where } r = \left(\frac{k_{\text{out}}}{k_{\text{in}}} \right) \left(\frac{E + m}{E - V_{\text{max}} + m} \right). \quad (3c)$$

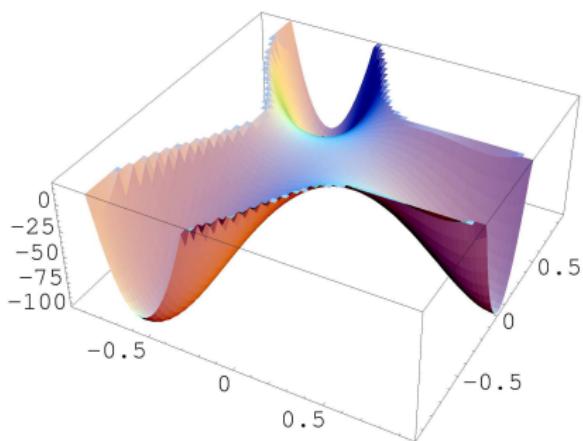
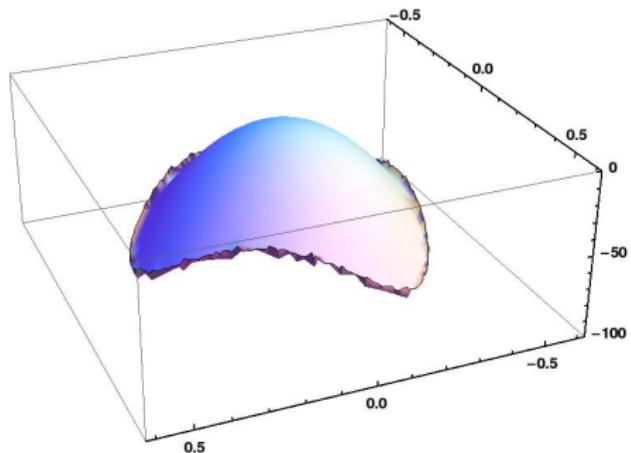
- For Charm $R_q = 0.00104992$ and $R_{\bar{q}} = 5.24229 \times 10^{-10}$.

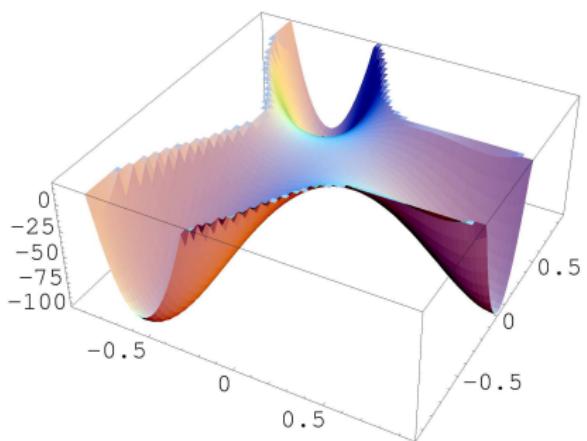
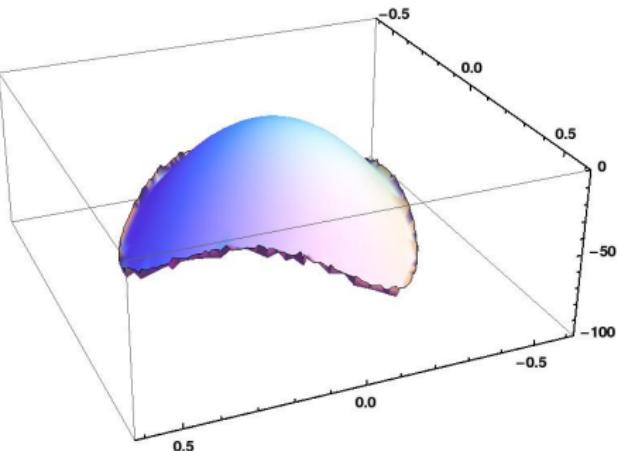
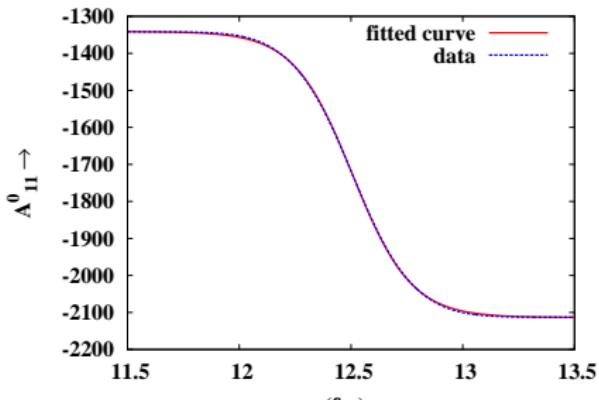
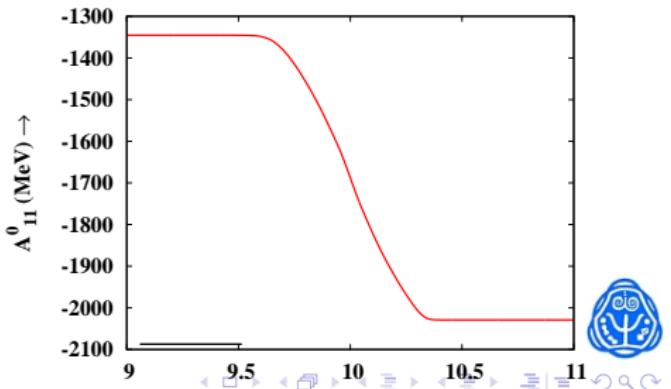
Logarithmic Potential

$$V \frac{a^3}{T^4} = -2(d-1)e^{-\sigma a/T} |L|^2 - \log \left[-|L|^4 + 8Re(L)^3 - 18|L|^2 + 27 \right]$$

where⁷

- $\sigma = (425\text{MeV})^2$ is the string tension,
- $T_d = 270\text{MeV}$ is the confinement temperature.
- a is the lattice constant with $a^{-1} = 272\text{MeV}$.
- For first order transition, $2(d-1)e^{-\sigma a/T_d} = 0.5153$.





Outline

1 $Z(N)$ and CP Violation

- Confinement Deconfinement Transition
- $Z(N)$ Symmetry
- CP Violation

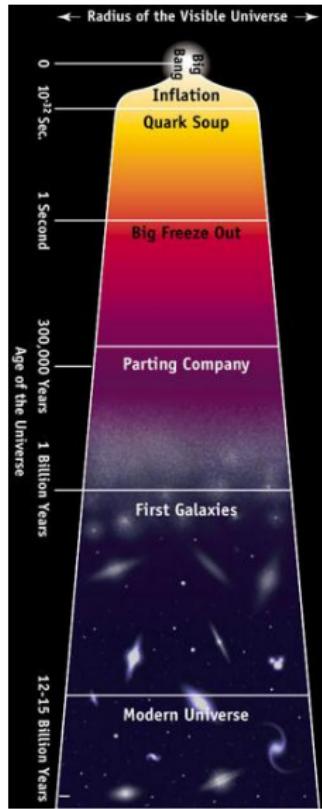
2 Implications of CP Violation

- In Early Universe
- Heavy Ion Collisions

3 Effect of Quarks

- Explicit Breaking of $Z(N)$
- Varying Quark Mass

Evolution of Universe



Quark – Gluon Plasma

- Deconfined Phase; Free quarks and gluons

← Hadronization

- Confined Phase; Hadron formation

← Nucleosynthesis

- Helium Nuclei formed; Decoupling of Photons

← Star Formation

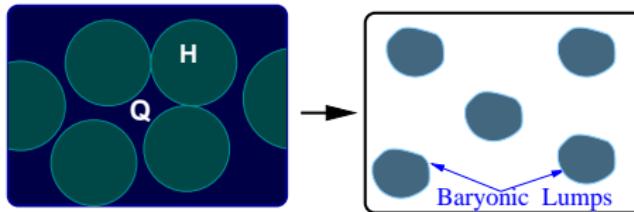
- Galaxy formation

← Present Universe

Quark Nuggets

Atreya, Sarkar, Srivastava. (PRD90 (2014) 045010)

- Formation of stable quark nuggets during the phase transition ⁸.
- If QCD phase transition is first order, then the bubbles of Hadronic phase will form in the QGP Phase.
- As Universe cools, Hadronic bubbles will expand, and coalesce.
- The QGP region will shrink, in the process trapping the baryons inside them.



⁸E. Witten, Phys.Rev. D32, (1984)

Why First Order?

- Provides with an interface between two region of the universe while being in thermal equilibrium.
- Baryon excess in the collapsing domains is due to the baryon transport across the phase boundary.
- **Not Possible** in a cross-over or Second order transition.

⁹Gorham PRD 83, 123005; Astone et al arXiv:1306.5164

¹⁰Berilenkov et al arXiv:1304.7521

³Layek et al PRD 71, 070415 (2005)

Why First Order?

- Provides with an interface between two region of the universe while being in thermal equilibrium.
- Baryon excess in the collapsing domains is due to the baryon transport across the phase boundary.
- **Not Possible** in a cross-over or Second order transition.
- Even now there are attempts to detect these objects ⁹.
- They have been proposed as the **dark matter and dark energy candidates** ¹⁰.
- $Z(N)$ interface provide us with an attractive alternative to the phase boundary as proposed by Witten.
- $Z(3)$ domain walls can lead to baryon inhomogeneity generation³.
- Possibility of quark nuggets formation **irrespective** of the order of Phase transition.

⁹Gorham PRD 83, 123005; Astone et al arXiv:1306.5164

¹⁰Berilenkov et al arXiv:1304.7521

³Layek et al PRD 71, 070415 (2005)

Domain Wall Formation

- $Z(3)$ symmetry is broken in the high temperature phase, and is restored as the universe cools while expanding.
- For $Z(3)$ structures to form, we need a situation where the Universe goes from hadronic phase to the QGP phase: **Inflation**.

Domain Wall Formation

- $Z(3)$ symmetry is broken in the high temperature phase, and is restored as the universe cools while expanding.
- For $Z(3)$ structures to form, we need a situation where the Universe goes from hadronic phase to the QGP phase: **Inflation**.
- During inflation, universe cools drastically and matter is in Hadronic (confined) phase.
- Universe reheats, and transition from Hadronic (confined) phase to QGP (deconfined) phase occurs.
- **$Z(3)$ structures are formed via standard Kibble Mechanism.**

Domain Wall Formation

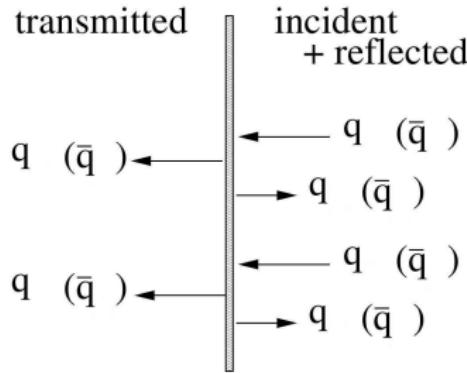
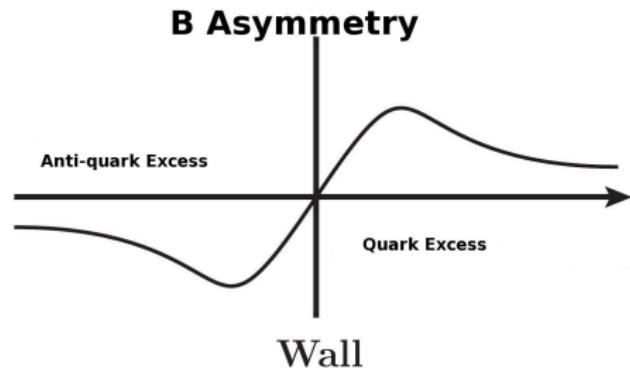
- $Z(3)$ symmetry is broken in the high temperature phase, and is restored as the universe cools while expanding.
- For $Z(3)$ structures to form, we need a situation where the Universe goes from hadronic phase to the QGP phase: **Inflation**.
- During inflation, universe cools drastically and matter is in Hadronic (confined) phase.
- Universe reheats, and transition from Hadronic (confined) phase to QGP (deconfined) phase occurs.
- **$Z(3)$ structures are formed via standard Kibble Mechanism.**
- Regions of true vacuum ($L = 1$) will expand, metastable vacua ($L \neq 1$) will shrink.
- Certain **low energy inflationary models** allow $Z(3)$ domains to survive till QCD transition epoch.

Scattering From Interfaces

- $Z(3)$ structures may survive till QCD transition scale if dynamics of these walls is **friction dominated because of the non-trivial scattering of quarks across the wall**.

Scattering From Interfaces

- $Z(3)$ structures may survive till QCD transition scale if dynamics of these walls is **friction dominated because of the non-trivial scattering of quarks across the wall.**
- Due to CP violating effects, quarks and anti-quarks scatter differently from interfaces.
- Results in segregation of Baryon number.



Evolution of Over-densities

- Total number of particle inside the wall

$$N_i = n_i V_i$$

$$\Rightarrow \dot{N}_i = \dot{n}_i V_i + n_i \dot{V}_i$$

Evolution of Over-densities

- Total number of particle inside the wall

$$N_i = n_i V_i$$

$$\Rightarrow \dot{N}_i = \dot{n}_i V_i + n_i \dot{V}_i$$

$$\dot{N}_i = \underbrace{\left(-\frac{2}{3} v_w T_w n_i + \frac{v_{rel}^o n_o T_{(-)}}{6} - \frac{v_{rel}^i n_i T_{(+)}}{6} \right) S }_{\Downarrow}$$

Inside quarks moving parallel to wall

Evolution of Over-densities

- Total number of particle inside the wall

$$N_i = n_i V_i$$

$$\Rightarrow \dot{N}_i = \dot{n}_i V_i + n_i \dot{V}_i$$

$$\dot{N}_i = \left(-\frac{2}{3} v_w T_w n_i + \underbrace{\frac{v_{rel}^o n_o T_{(-)}}{6} - \frac{v_{rel}^i n_i T_{(+)}}{6}}_{\Downarrow} \right) S$$

quarks moving from outside to inside

Evolution of Over-densities

- Total number of particle inside the wall

$$N_i = n_i V_i$$

$$\Rightarrow \dot{N}_i = \dot{n}_i V_i + n_i \dot{V}_i$$

$$\dot{N}_i = \left(-\frac{2}{3} v_w T_w n_i + \frac{v_{rel}^o n_o T_{(-)}}{6} - \underbrace{\frac{v_{rel}^i n_i T_{(+)}}{6}}_{\downarrow} \right) S$$

quarks moving from inside to outside

Equations to be Solved

$$\dot{n}_i = \left(-\frac{2}{3} v_w T_w n_i + \frac{v_{rel}^o n_o T_{(-)} - v_{rel}^i n_i T_{(+)}}{6} \right) \frac{S}{V_i} - n_i \frac{\dot{V}_i}{V_i}$$

Equations to be Solved

$$\dot{n}_i = \left(-\frac{2}{3} v_w T_w n_i + \frac{v_{rel}^o n_o T_{(-)} - v_{rel}^i n_i T_{(+)}}{6} \right) \frac{S}{V_i} - n_i \frac{\dot{V}_i}{V_i}$$

$$\dot{n}_o = \left(\frac{2}{3} v_w T_w n_i - \frac{v_{rel}^o n_o T_{(-)} - v_{rel}^i n_i T_{(+)}}{6} \right) \frac{S}{V_o} + n_o \frac{\dot{V}_i}{V_o}$$

Equations to be Solved

$$\dot{n}_i = \left(-\frac{2}{3} v_w T_w n_i + \frac{v_{rel}^o n_o T_{(-)} - v_{rel}^i n_i T_{(+)} }{6} \right) \frac{S}{V_i} - n_i \frac{\dot{V}_i}{V_i}$$

$$\dot{n}_o = \left(\frac{2}{3} v_w T_w n_i - \frac{v_{rel}^o n_o T_{(-)} - v_{rel}^i n_i T_{(+)} }{6} \right) \frac{S}{V_o} + n_o \frac{\dot{V}_i}{V_o}$$

$$R(t) = \frac{t}{N_d^{1/3}} - v_w (t - t_0)$$

where:-

- \dot{n}_i and \dot{n}_o are number densities inside and outside wall.
- v_w is the wall velocity.
- T_w , $T_{(-)}$ and $T_{(+)}$ are the Transmission coefficients for the quarks moving transverse to v_w , towards the wall from inside and from outside respectively.

Baryon Anti-Baryon Segregation

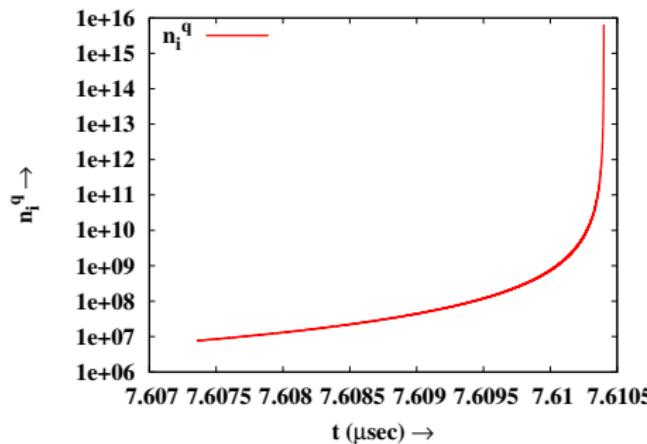
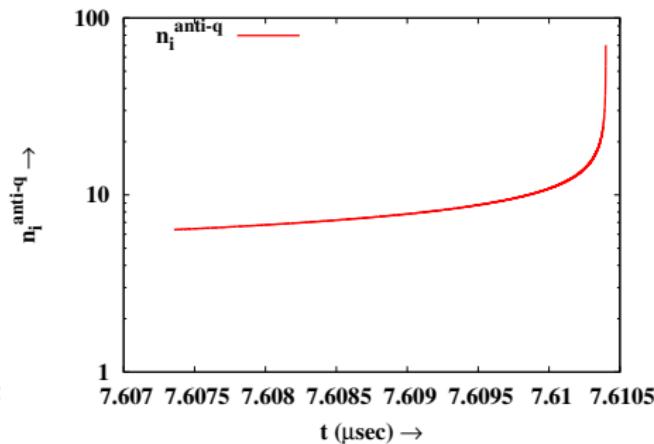


Figure : Evolution of number densities inside the domain wall. **Left:** For charm-quark. **Right:** For anti-charm.

Baryon Density Profile

$$\rho(R) = \frac{\dot{N}_i}{4\pi v_w R^2}$$

- $n_b \sim 10^{52} - 10^{53}$ for $R < 1$ m.

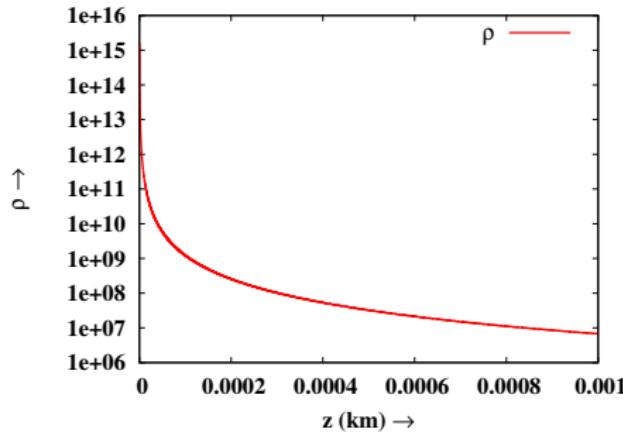


Figure : Baryon density left behind by collapsing wall.

Consequences

- **Dark Matter candidates** within the standard model of particle physics.
- Quark nuggets may act as the seed for Black hole formation¹¹.
- Important role in the structure formation.
- Inhomogeneties produced near QCD Phase transition can modify the dynamics of QCD phase transition¹².
- The over-densities which are produced near the electro-weak transition can alter the baryogenesis scenario.

¹¹Lai and Xu, arXiv:0911.4777

¹²S. Sanyal PRD 67, 074009 (2003)

Outline

1 $Z(N)$ and CP Violation

- Confinement Deconfinement Transition
- $Z(N)$ Symmetry
- CP Violation

2 Implications of CP Violation

- In Early Universe
- Heavy Ion Collisions

3 Effect of Quarks

- Explicit Breaking of $Z(N)$
- Varying Quark Mass

J/ψ Disintegration in QGP

Atreya, Bagchi, Srivastava. (PRC 90, 034912 (2014))

- QGP is supposed to be formed in Heavy Ion Collision experiments at RHIC and at LHC.
- QGP is the thermal system of quarks and gluons.
- Debye Screening of color charge. Debye radius $\propto T^{-1}$
- Matsui and Satz³ proposed that due to this QGP medium, the $q\bar{q}$ potential in quarkonia (like J/ψ) meson will be Debye screened.
- If Debye screening length is smaller than the radius of J/ψ , then the potential will be completely screened and it will melt in the medium.
- This is the conventional mechanism of J/ψ melting.
- If the Debye length is larger, then the conventional mechanism of J/ψ melting does not work.

³Phys.Lett.B 178, 416 (1986)

J/ψ interaction with $Z(3)$ walls

- If there are $Z(3)$ domains, there will be a background A_0 profile.
- Then a J/ψ moving through the medium will interact with it.
- So c and \bar{c} in J/ψ will experience different color forces depending on the color of quark and color composition of wall.
- This can change the color composition of J/ψ and also facilitates its transition to higher excited states (like χ_c).
- As these states have size comparable or larger to Debye length, they will melt in the medium.
- This provides us an **alternate mechanism of J/ψ melting**.

Basic Assumptions

- We work in the rest frame of J/ψ with domain wall hitting the J/ψ with a velocity v along z -axis.
- Assume that there is no background vector potential, $A_i(z) = 0$ $i = 1, 2, 3$.
- Work with first order perturbation theory.
- The center of mass motion is not affected by the external perturbation.
- The interaction Hamiltonian is

$$\mathcal{H}_{int} = V^q(z'_1) \otimes \mathbb{1}^{\bar{q}} + \mathbb{1}^q \otimes V^{\bar{q}}(z'_2)$$

$$\text{with } V^{q,\bar{q}}(z'_{1,2}) = g A_0'^{q,\bar{q}}(z'_{1,2})$$

Color Interaction

- The incoming state is a color singlet: $\frac{1}{\sqrt{3}}|r\bar{r} + b\bar{b} + g\bar{g}\rangle$.
- If the outgoing state is a singlet then the transition probability is identically zero as A_0 is traceless.

Color Interaction

- The incoming state is a color singlet: $\frac{1}{\sqrt{3}}|r\bar{r} + b\bar{b} + g\bar{g}\rangle$.
- If the outgoing state is a singlet then the transition probability is identically zero as A_0 is traceless.
- If the outgoing state is an octet state, it can be either of $|r\bar{b}\rangle$, $|r\bar{g}\rangle$, $|b\bar{g}\rangle$, $|b\bar{r}\rangle$, $|g\bar{b}\rangle$, $|g\bar{r}\rangle$, $\frac{1}{\sqrt{2}}|r\bar{r} - b\bar{b}\rangle$ and $\frac{1}{\sqrt{6}}|r\bar{r} + b\bar{b} - 2g\bar{g}\rangle$.
- Due to diagonal form of A_0 we get no transition to state like $|r\bar{g}\rangle$.
- Only non-zero transition is for the two states with repulsive potential.

Color Interaction

- The incoming state is a color singlet: $\frac{1}{\sqrt{3}}|r\bar{r} + b\bar{b} + g\bar{g}\rangle$.
- If the outgoing state is a singlet then the transition probability is identically zero as A_0 is traceless.
- If the outgoing state is an octet state, it can be either of $|r\bar{b}\rangle$, $|r\bar{g}\rangle$, $|b\bar{g}\rangle$, $|b\bar{r}\rangle$, $|g\bar{b}\rangle$, $|g\bar{r}\rangle$, $\frac{1}{\sqrt{2}}|r\bar{r} - b\bar{b}\rangle$ and $\frac{1}{\sqrt{6}}|r\bar{r} + b\bar{b} - 2g\bar{g}\rangle$.
- Due to diagonal form of A_0 we get no transition to state like $|r\bar{g}\rangle$.
- Only non-zero transition is for the two states with repulsive potential.
- We get the color part of transition probability as

$$\langle r\bar{r} - b\bar{b} | \mathcal{H}_{int} | \psi_{singlet} \rangle = A_0^r - A_0^b$$

$$\langle r\bar{r} + b\bar{b} - 2g\bar{g} | \mathcal{H}_{int} | \psi_{singlet} \rangle = A_0^r + A_0^b - 2A_0^g$$

where A_0^r , A_0^b and A_0^g are the diagonal components of the matrix $A'_0(z'_1) - A'_0(z'_2)$.

▶ Details

Spatial Excitations

Cornell Potential

$$V(|\vec{r}_1 - \vec{r}_2|) = -\frac{\alpha_s}{|\vec{r}_1 - \vec{r}_2|} + \sigma |\vec{r}_1 - \vec{r}_2|$$

where α_s is the strong coupling constant and σ is the string tension.

Spatial Excitations

Cornell Potential

$$V(|\vec{r}_1 - \vec{r}_2|) = -\frac{\alpha_s}{|\vec{r}_1 - \vec{r}_2|} + \sigma |\vec{r}_1 - \vec{r}_2|$$

where α_s is the strong coupling constant and σ is the string tension.

- In CM coordinates, the transitional amplitude is

$$\int_{-\infty}^{\infty} \psi_j^* A_0^r \psi_i \, d\vec{r}_1 d\vec{r}_2 = \int_0^{\infty} \int_{-1}^1 \int_0^{2\pi} \psi_n^*(r) Y_l^m(\cos\theta, \phi) A_0^r \psi_{100}(r) r^2 \, dr d(\cos\theta) d\phi.$$

Spatial Excitations

Cornell Potential

$$V(|\vec{r}_1 - \vec{r}_2|) = -\frac{\alpha_s}{|\vec{r}_1 - \vec{r}_2|} + \sigma |\vec{r}_1 - \vec{r}_2|$$

where α_s is the strong coupling constant and σ is the string tension.

- In CM coordinates, the transitional amplitude is

$$\int_{-\infty}^{\infty} \psi_j^* A_0^r \psi_i \, d\vec{r}_1 d\vec{r}_2 = \int_0^{\infty} \int_{-1}^1 \int_0^{2\pi} \psi_n^*(r) Y_l^m(\cos \theta, \phi) A_0^r \psi_{100}(r) r^2 \, dr d(\cos \theta) d\phi.$$

- No transition to a state which is symmetric under $\cos \theta \rightarrow -\cos \theta$.
- The excitation is possible to the first excited state of an octet (like an 'octet χ ' state) which is more prone to melting in the medium.

▶ Details

Transition Probability

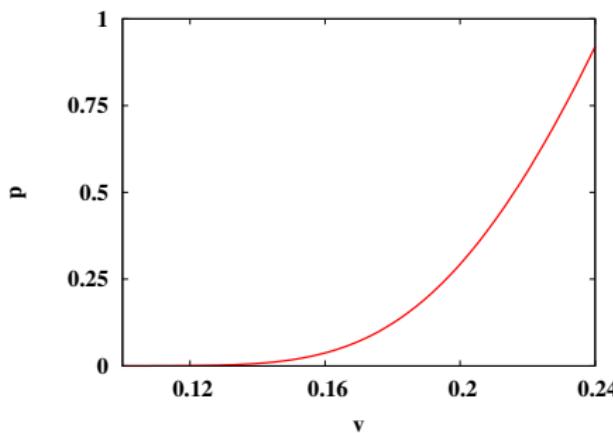


Figure : Transition Probability versus Energy.

- Probability increases dramatically for a slight increase in the energy.
- At higher energies, the perturbation theory breaks down and the results are not trustworthy.

► Details

Outline

1 $Z(N)$ and CP Violation

- Confinement Deconfinement Transition
- $Z(N)$ Symmetry
- CP Violation

2 Implications of CP Violation

- In Early Universe
- Heavy Ion Collisions

3 Effect of Quarks

- Explicit Breaking of $Z(N)$
- Varying Quark Mass

Domain wall Profile

Atreya, Bagchi, Das, Srivastava. (PRD 90, 125016 (2014))

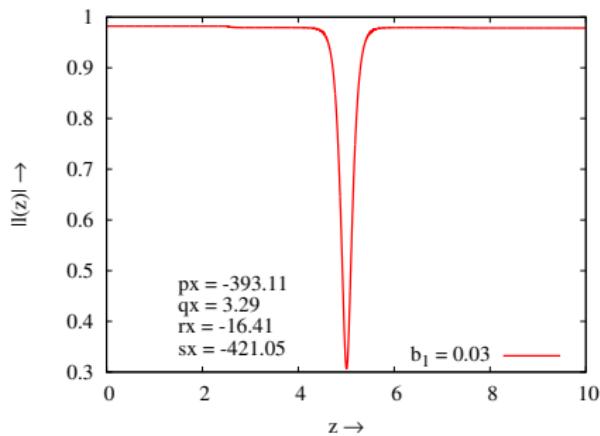
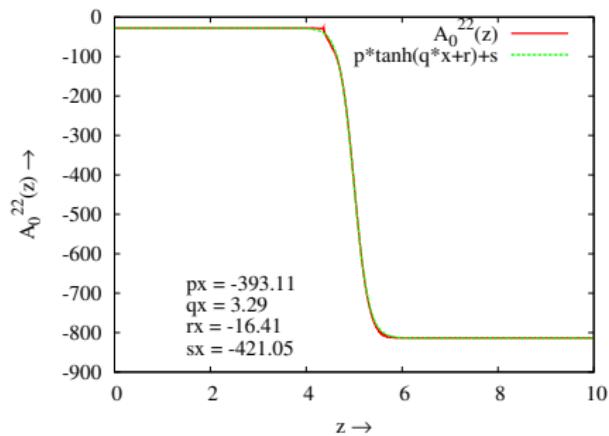


Figure : The domain wall profile for $b_1 = 0.03$ On Left:- $|L|$ profile. On Right:- A_0 profile.

Asymmetric Profile

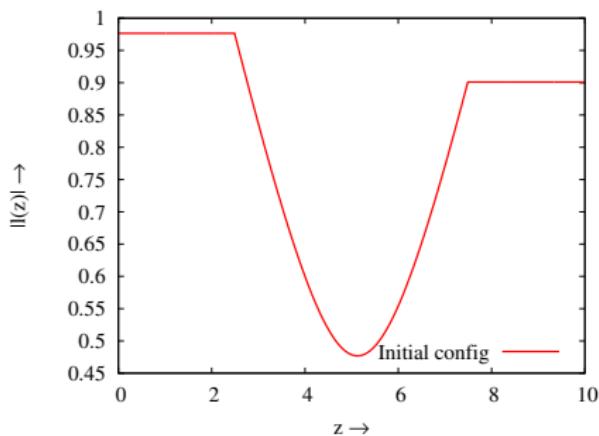
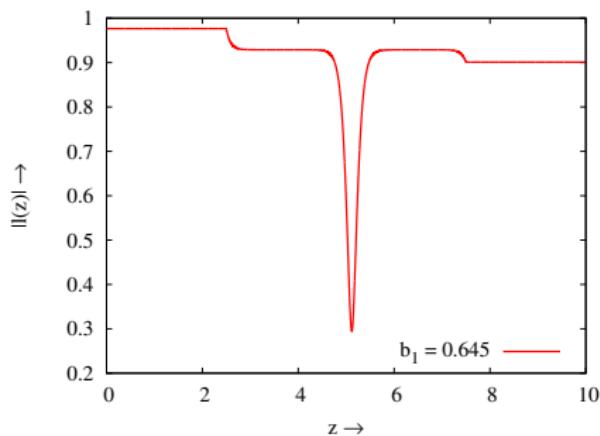


Figure : The domain wall profile for $b_1 = 0.645$ On Left:- Initial Condition. On Right:- Stable configuration.

Asymmetric Profile

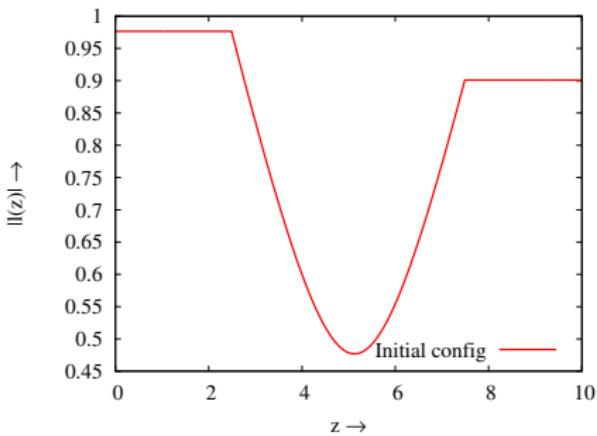
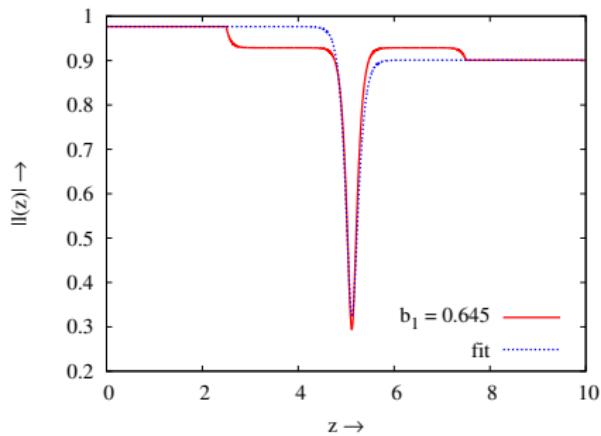


Figure : The domain wall profile for $b_1 = 0.645$ On Left:- Initial Condition. On Right:- Stable configuration.

Asymmetric Profile?

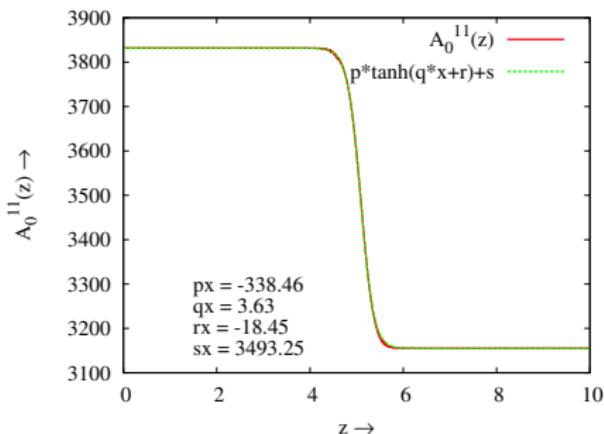
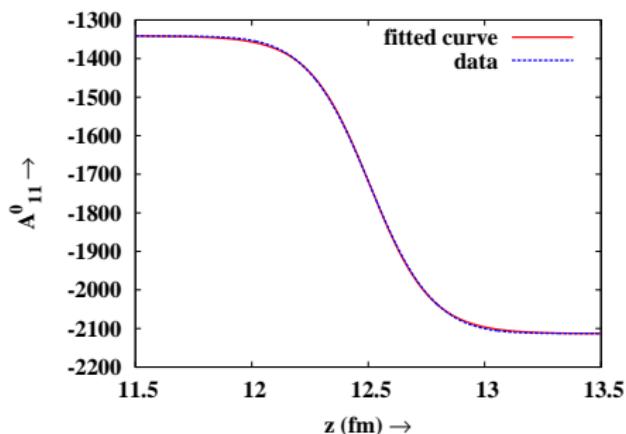


Figure : The domain wall profile for $b_1 = 0.645$. The fit is again $p^* \tanh(q^* z + r) + s$ function

Outline

1 $Z(N)$ and CP Violation

- Confinement Deconfinement Transition
- $Z(N)$ Symmetry
- CP Violation

2 Implications of CP Violation

- In Early Universe
- Heavy Ion Collisions

3 Effect of Quarks

- Explicit Breaking of $Z(N)$
- Varying Quark Mass

Modeling the Quark Mass

- We know that $\langle L(x) \rangle = 0$ in the confined phase while it's non-zero in the deconfined phase.
- Also free (deconfined) quarks (as in QGP) have a dynamical mass which is very small ($m_{u,d} \sim 10 \text{ MeV}$) as compared to it's constituent mass ($\sim 350 \text{ MeV}$) which is the mass of the quarks in hadrons.
- *Is there any connection between the two?*

³Layek et al PRD 71, 070415 (2005)

Modeling the Quark Mass

- We know that $\langle L(x) \rangle = 0$ in the confined phase while it's non-zero in the deconfined phase.
- Also free (deconfined) quarks (as in QGP) have a dynamical mass which is very small ($m_{u,d} \sim 10 \text{ MeV}$) as compared to it's constituent mass ($\sim 350 \text{ MeV}$) which is the mass of the quarks in hadrons.
- *Is there any connection between the two?*
- Proposal³:

$$m(x) = m_q + m_0 (I_0 - |L(x)|),$$

where $|L(x)|$ is the profile of $Z(3)$ domain wall, m_q is the dynamical quark mass and m_0 is the constituent quark mass. I_0 is the vacuum value of $|L(x)|$.

³Layek et al PRD 71, 070415 (2005)

Dirac Equation

$$\left[i\gamma^0\gamma^3\partial_3\delta^{jk} + \gamma^0 m(z)\delta^{jk} - gA_0^{jk}(z) \right] \psi_k(z) = E\psi_k(z).$$

Dirac Equation

$$\left[i\gamma^0\gamma^3\partial_3\delta^{jk} + \gamma^0 m(z)\delta^{jk} - gA_0^{jk}(z) \right] \psi_k(z) = E\psi_k(z).$$

$$\left[i\gamma^0\gamma^3\partial_3\delta^{jk} + \gamma^0 m\delta^{jk} \right] \psi_k(z) = (E - V(z))\psi_k(z).$$

Dirac Equation

$$\left[i\gamma^0\gamma^3\partial_3\delta^{jk} + \gamma^0 m(z)\delta^{jk} - gA_0^{jk}(z) \right] \psi_k(z) = E\psi_k(z).$$

$$\left[i\gamma^0\gamma^3\partial_3\delta^{jk} + \gamma^0 m\delta^{jk} \right] \psi_k(z) = (E - V(z))\psi_k(z).$$

- The total potential now is

$$V(z) = gA_0^{jk}(z) - m_0 (l_0 - |L(z)|).$$

- The space dependent part of quark mass appears as the potential in Dirac equation.
- The reflection is then calculated in the same way as the earlier case.

Asymmetric Reflection Coefficients

	$b_1 = 0.03$	0.126	0.645
Left R_q	1.65437×10^{-6}	4.40706×10^{-6}	1.43314×10^{-10}
Right R_q	0.00003366	0.0141752	0.00394808
Left R_{aq}	2.25671×10^{-6}	1.85367×10^{-7}	2.07835×10^{-7}
Right R_{aq}	0.000376883	0.0820803	0.073885

Table : Reflection of Charm quark from the left and right side for different b_1

Summary

- We have studied QCD $Z(3)$ interfaces at finite temp.
- Showed CP violating nature of $Z(3)$ domain walls and calculated Transmission Coeff.
- In context of early universe, we studied the evolution of baryon over-densities and discussed their effects.
- In context of heavy ion collisions, we showed that these $Z(3)$ structures can lead to the disintegration of J/ψ .
- We have also studied the effect of quarks on the spontaneous CP violation and calculated the reflection and transmission coeffecients from the asymmetric $I(x)$ profile.

Thank You !

Outline

4

CP Violation

- Gauge Profile
- Calculation of Reflection Coeff.
- Results

5

J/ψ Disintegration

- Formalism
- Numerical Results

Background A_0 Profile

- $L(x) = (1/3) \text{Tr} \left[\mathbf{P} \exp \left(ig \int_0^\beta A_0(\vec{x}, \tau) d\tau \right) \right]$
- For state corresponding to $L = 1, A_0 = 0$ is a solution trivially.

Background A_0 Profile

- $L(x) = (1/3) \text{Tr} \left[\mathbf{P} \exp \left(ig \int_0^\beta A_0(\vec{x}, \tau) d\tau \right) \right]$
- For state corresponding to $L = 1, A_0 = 0$ is a solution trivially.

Gauge Choice

- We choose

$$A_0 = \frac{2\pi T}{g} (a\lambda_3 + b\lambda_8)$$

a and b are constants, λ_3 and λ_8 are Gell-Mann Matrices

- a and b profiles are needed to get exact A_0 Profile.

Equations to be Solved

- On substituting and simplifying, we get

$$3L(x) = \exp(i\alpha) + \exp(i\beta) + \exp(i\gamma)$$

- Two equations that are to be solved for a and b are:-

$$\cos(\alpha) + \cos(\beta) + \cos(\gamma) = 3|L| \cos(\theta)$$

$$\sin(\alpha) + \sin(\beta) + \sin(\gamma) = 3|L| \sin(\theta)$$

Where $\alpha = 2\pi \left(\frac{a}{3} + \frac{b}{2} \right)$, $\beta = 2\pi \left(\frac{a}{3} - \frac{b}{2} \right)$ and $\gamma = 2\pi \left(\frac{-2a}{3} \right)$

The Solutions

```
(* r=1, θ=0 *)
Solve[{Cos[2*π*(a/3+b/2)] + Cos[2*π*(a/3-b/2)] + Cos[2*π*(-2*a/3)] == 3*L1[1, 0],
       Sin[2*π*(a/3+b/2)] + Sin[2*π*(a/3-b/2)] + Sin[2*π*(-2*a/3)] == 3*L2[1, 0]},
       {a, b}, InverseFunctions→True] // N

{{b→-2., a→-3.}, {b→-2., a→0.}, {b→-2., a→3.}, {b→-1., a→-1.5},
 {b→-1., a→1.5}, {b→0., a→-3.}, {b→0., a→0.}, {b→0., a→3.},
 {b→1., a→-1.5}, {b→1., a→1.5}, {b→2., a→-3.}, {b→2., a→0.}, {b→2., a→3.}]

(* r=1, θ=2*π/3 *)
Solve[{Cos[2*π*(a/3+b/2)] + Cos[2*π*(a/3-b/2)] + Cos[2*π*(-2*a/3)] == 3*L1[1, 2*π/3],
       Sin[2*π*(a/3+b/2)] + Sin[2*π*(a/3-b/2)] + Sin[2*π*(-2*a/3)] == 3*L2[1, 2*π/3]},
       {a, b}, InverseFunctions→True] // N

{{b→-2., a→-2.}, {b→-2., a→1.}, {b→-1., a→-0.5}, {b→-1., a→2.5}, {b→0., a→-2.},
 {b→0., a→1.}, {b→1., a→-0.5}, {b→1., a→2.5}, {b→2., a→-2.}, {b→2., a→1.}]

(* r=1, θ=4*π/3 *)
Solve[{Cos[2*π*(a/3+b/2)] + Cos[2*π*(a/3-b/2)] + Cos[2*π*(-2*a/3)] == 3*L1[1, 4*π/3],
       Sin[2*π*(a/3+b/2)] + Sin[2*π*(a/3-b/2)] + Sin[2*π*(-2*a/3)] == 3*L2[1, 4*π/3]},
       {a, b}, InverseFunctions→True] // N

{{b→-2., a→-1.}, {b→-2., a→2.}, {b→-1., a→-2.5}, {b→-1., a→0.5}, {b→0., a→-1.},
 {b→0., a→2.}, {b→1., a→-2.5}, {b→1., a→0.5}, {b→2., a→-1.}, {b→2., a→2.}}
```


Procedure for Intermediate Values

- We start from $\theta = 0$ vacuum and choose one value.
- The variation of the gauge field (A_0) should be continuous.

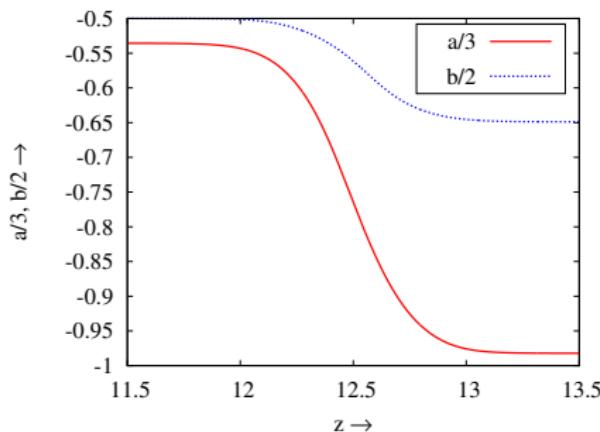
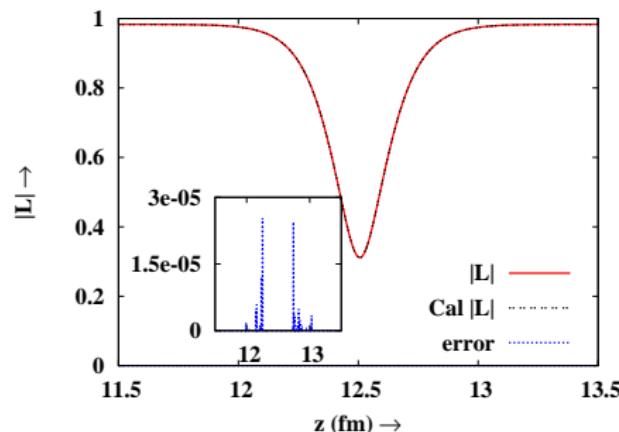
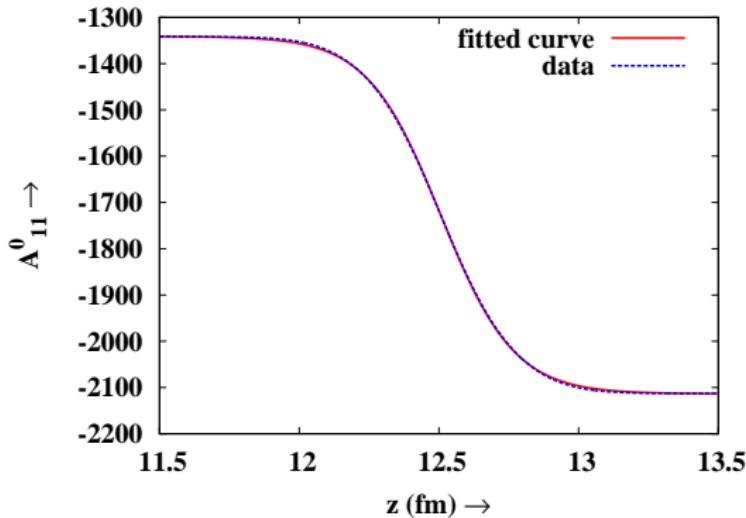


Figure : On left: Variation of a and b across the domain wall. On right: Plot of calculated $|L|$ and the one obtained from minimizing the energy.

A_0 Profile



- Profile was fitted to $A_0(x) = p \tanh(qx + r) + s$.
- Parameters are $p = -378.27$, $q = 7.95001$, $r = -49.7141$, $s = -1692.48$.
- The difference between the two profiles is extremely small.

Outline

4 CP Violation

- Gauge Profile
- Calculation of Reflection Coeff.
- Results

5 J/ψ Disintegration

- Formalism
- Numerical Results

Propagating Solutions

- We are interested in the propagating solutions.
- Need to solve Dirac Equation in Minkowski space with background gauge field.
- The background gauge field profile comes from the finite temperature field theory formulated in Euclidean space.
- How to justify?

Propagating Solutions

- We are interested in the propagating solutions.
- Need to solve Dirac Equation in Minkowski space with background gauge field.
- The background gauge field profile comes from the finite temperature field theory formulated in Euclidean space.
- How to justify?
- Start with Dirac Equation in Euclidean space.
- Do the analytic continuation of the full equation to Minkowski space.
- Using that equation we calculate the reflection and transmission coefficient.

Numerical Method

- We use step potential approximation method.¹
- The potential in j^{th} bin is taken to be the

$$V_j = \frac{[V(L + jw) + V(L + (j + 1)w)]}{2}$$

- Wavefunctions are matched at each step, relating ψ_j and ψ_{j+1} .

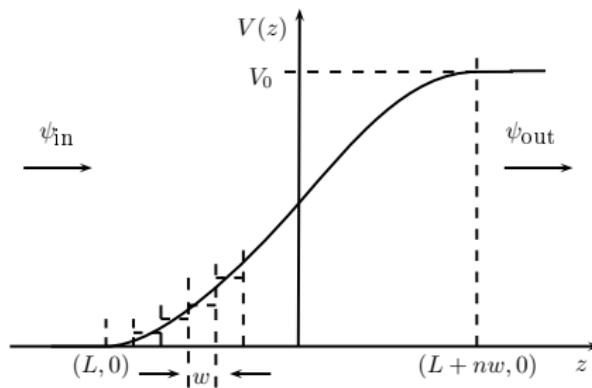


Figure : Potential ($V(z)$) approximated by n step potentials.

Outline

4 CP Violation

- Gauge Profile
- Calculation of Reflection Coeff.
- **Results**

5 J/ψ Disintegration

- Formalism
- Numerical Results

With Step Potential

- We first approximate the entire profile by a single step function.
- The reflection coeff. is given by

$$R = \frac{(1-r)^2}{(1+r)^2}; \text{ where } r = \frac{q}{k} \frac{(E + m_0)}{(E - V_0 + m_0)}$$

- $V_0 = -gA_0$ is the potential as seen by the incoming fermion.
- CP violating effect is larger for heavier quarks.

	m (MeV)	E (GeV)	R_q	$R_{\bar{q}}$
u	2.5	3.0	1.72×10^{-7}	1.92×10^{-8}
d	5.0	3.0	6.76×10^{-7}	7.54×10^{-8}
s	100	3.0	2.83×10^{-4}	3.14×10^{-5}
c	1270	3.0	0.14	0.006

Using Exact Profile

- Calculated using Mathematica and FORTRAN.
- For c quark $R = 0.001$ and for \bar{c} we get $R = 5.24 \times 10^{-10}$
- As a check, we shrank the profile and compared with step potential.

Shrinking Factor	Reflection Coeff
No shrinking	0.001
0.5	0.01
0.05	0.11
0.005	0.12
Step Potential	0.14

Table : Table for the reflection coefficients when the profile is shrunk. Results approach the step potential as the profile gets narrower.

Outline

4

CP Violation

- Gauge Profile
- Calculation of Reflection Coeff.
- Results

5

J/ψ Disintegration

- Formalism
- Numerical Results

Basic Assumptions

- We work in the rest frame of J/ψ .
- Gauge Potential is chosen to be in diagonal gauge,

$$A_0 = a\lambda_3 + b\lambda_8.$$

- Consider the domain wall coming and hitting the J/ψ with a velocity v along z -axis.

$$A_0(z) \rightarrow A'_0(z') = \gamma (A_0(z) - v A_3(z))$$

$$A_3(z) \rightarrow A'_3(z') = \gamma (A_3(z) - v A_0(z))$$

$$z = \gamma (z' + vt')$$

- Assume that there is no background vector potential,
 $A_i(z) = 0 \quad i = 1, 2, 3.$

Perturbation Theory

- Color electric field due to t' dependence A_0 .

$$E_{induced} = -\frac{\partial A'_3}{\partial t'} \propto v^2 \ll 1.$$

- We use first order time dependent perturbation theory

$$\mathcal{A}_{ij} = \delta_{ij} - i \int_{t_i}^{t_f} \langle \psi_j | \mathcal{H}_{int} | \psi_i \rangle e^{-i(E_j - E_i)t} dt.$$

- The interaction Hamiltonian is

$$\mathcal{H}_{int} = V^q(z'_1) \otimes \mathbb{1}^{\bar{q}} + \mathbb{1}^q \otimes V^{\bar{q}}(z'_2)$$

$$\text{with } V^{q,\bar{q}}(z'_{1,2}) = g A'_0{}^{q,\bar{q}}(z'_{1,2})$$

Color Interaction

- The color interaction can be written as

$$\begin{aligned}\langle \psi_{out} | \mathcal{H}_{int} | \psi_{singlet} \rangle &= \langle \psi_{out} | g A_0'^q(z'_1) \otimes \mathbb{1}^{\bar{q}} | \psi_{singlet} \rangle \\ &\quad + \langle \psi_{out} | \mathbb{1}^q \otimes g A_0'^{\bar{q}}(z'_2) | \psi_{singlet} \rangle.\end{aligned}$$

- The incoming state is a color singlet

$$\begin{aligned}|\psi_{singlet}\rangle &= \frac{1}{\sqrt{3}} \left[\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}^q \otimes \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}^{\bar{q}} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}^q \otimes \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}^{\bar{q}} \right. \\ &\quad \left. + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}^q \otimes \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}^{\bar{q}} \right]\end{aligned}$$

- If the outgoing state is a singlet then each of the above term on the RHS is identically zero, $\mathcal{A}_{ij} = 1$ for ground state ($i = j$).

Color Octets

- If the outgoing state is an octet state, it can be either of $|r\bar{b}\rangle$, $|r\bar{g}\rangle$, $|b\bar{g}\rangle$, $|b\bar{r}\rangle$, $|g\bar{b}\rangle$, $|g\bar{r}\rangle$, $\frac{1}{\sqrt{2}}|r\bar{r} - b\bar{b}\rangle$ and $\frac{1}{\sqrt{6}}|r\bar{r} + b\bar{b} - 2g\bar{g}\rangle$.
- Due to diagonal form of A_0 we get no transition to state like $|r\bar{g}\rangle$.
- Only non-zero transition is for the two states with repulsive potential.
- We get the color part of transition probability as

$$\langle r\bar{r} - b\bar{b} | \mathcal{H}_{int} | \psi_{singlet} \rangle = A_0^r - A_0^b$$

$$\langle r\bar{r} + b\bar{b} - 2g\bar{g} | \mathcal{H}_{int} | \psi_{singlet} \rangle = A_0^r + A_0^b - 2A_0^g$$

where A_0^r , A_0^b and A_0^g are the diagonal components of the matrix $A'_0(z'_1) - A'_0(z'_2)$. [Back](#)

Spatial Excitations

- For spatial part, we need the potential between c and \bar{c}

$$V(|\vec{r}_1 - \vec{r}_2|) = -\frac{\alpha_s}{|\vec{r}_1 - \vec{r}_2|} + \sigma|\vec{r}_1 - \vec{r}_2|$$

where α_s is the strong coupling constant and σ is the string tension.

- As potential is central, we go to the centre of mass coordinates.

$$\vec{R}_{cm} = \frac{\vec{r}'_1 + \vec{r}'_2}{2} \text{ and}$$

$$\vec{r} = \vec{r}'_1 - \vec{r}'_2,$$

- We write J/ψ wavefunction as $\Psi(\vec{R}_{cm})\psi(\vec{r})$.

Spatial Excitations

- Assuming that the centre of mass motion is not affected by the external perturbation, we get

$$\Psi(\vec{R}_{cm}) = \exp^{-i\vec{K}_{cm} \cdot \vec{R}_{cm}} \quad \text{and}$$

$$\psi(r, \theta, \phi) = \psi(r) Y_l^m(\cos \theta, \phi)$$

- The perturbation is then

$$A_0^r = \gamma A_0^{11} [\gamma(r \cos \theta + vt')] - \gamma A_0^{11} [\gamma(-r \cos \theta + vt')]$$

- The transitional amplitude then gives

$$\int_{-\infty}^{\infty} \psi_j^* A_0^r \psi_i \, d\vec{r}_1 d\vec{r}_2 = \int_0^{\infty} \int_{-1}^1 \int_0^{2\pi} \psi_n^*(r) Y_l^m(\cos \theta, \phi) A_0^r \psi_{100}(r) r^2 dr d(\cos \theta) d\phi.$$

Spatial Excitations

- Under $\cos \theta \rightarrow -\cos \theta$, $A_0^r \rightarrow -A_0^r$ and ψ_i does not change.
- So if $Y_l^m(\cos \theta, \phi) = Y_l^m(-\cos \theta, \phi)$ then transition probability is zero.
- No transition to a state which is symmetric under $\cos \theta \rightarrow -\cos \theta$.
- The excitation is possible to the first excited state of an octet (like an 'octet χ ' state).
- As the excited state will have a radius larger than the ground state it is more prone to melting in the medium.

▶ Back

Outline

4

CP Violation

- Gauge Profile
- Calculation of Reflection Coeff.
- Results

5

J/ψ Disintegration

- Formalism
- Numerical Results

Charmonium Wavefunctions

- The radial wavefunction is the solution of radial part of Schrödinger eqn with the potential

$$V(r) = -\frac{\alpha_s}{r} + \sigma r + \frac{l(l+1)}{2\mu r^2}$$

where μ is the reduced mass.

- We used energy minimization to get the wavefunction.
- **Check:-** wavefunction and binding energy of the hydrogen atom.
- $m_c = 1.3 \text{ GeV}$, $\alpha_s = 0.3$, and $\sigma = 0.16 \text{ GeV}^2$ ⁹.
- The strong coupling is chosen such that $N/g^2 = 0.8$.

⁹F. Giannuzzi and M. Mannarelli, Phys.Rev. D80, 054004 (2009)

Charmonium Wavefunctions

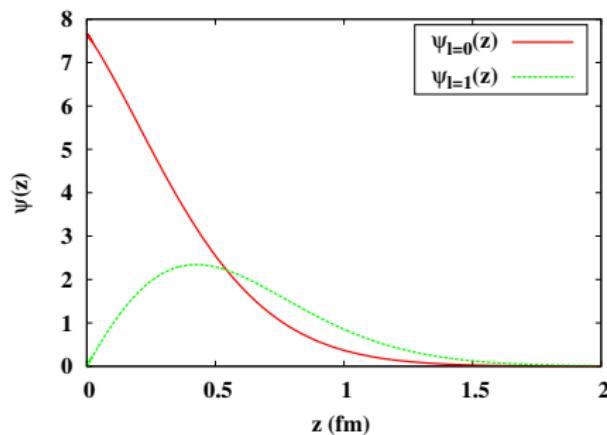


Figure : Wavefunctions for J/ψ ($I = 0$) and χ ($I = 1$) states.

- The binding energies are $E_{J/\psi} = 0.5 \text{ GeV}$ and $E_{\chi_c} = 0.83 \text{ GeV}$
- Radius of $J/\psi \sim 0.5 \text{ fm}$ while that for $\chi \sim 1.0 \text{ fm}$.

Transition Probability

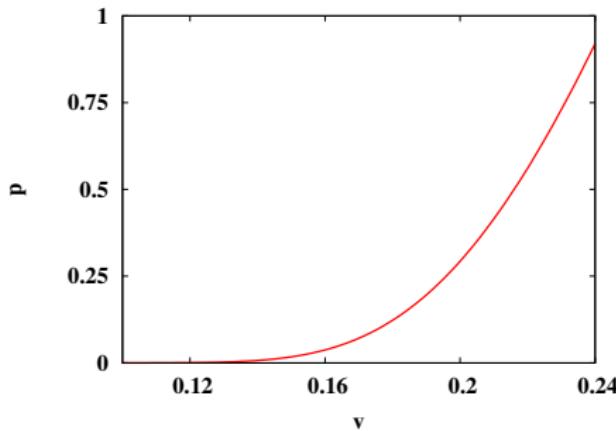


Figure : Transition Probability versus Energy.

- Probability increases dramatically for a slight increase in the energy.
- At higher energies, the perturbation theory breaks down and the results are not trustworthy.

Back