Spontaneous CP Violation in Quark Scattering
from QCD Z(3) domains and its Implications
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Outline

@ Z(N) and CP Violation
@ Confinement Deconfinement Transition
@ Z(N) Symmetry
@ CP Violation

e Implications of CP Violation
@ In Early Universe
@ Heavy lon Collisions

@ Effect of Quarks
@ Explicit Breaking of Z(N)
@ Varying Quark Mass
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Confinement Deconfinement Transition
Pure Gauge Theory at Finite T

@ Partition function
y Au(m=pB)=Au(r=0)
Z = Tr(e M) oc/ DA,.exp(—Sg)
AM(T:O)
where

s 1
Se :/ dT/d3xZTr(FWFW)
0
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Z(N) and CP Violation Confinement Deconfinement Transition

Pure Gauge Theory at Finite T

@ Partition function
y Au(m=pB)=Au(r=0)
Z = Tr(e M) oc/ DA,.exp(—Sg)
AM(TZO)
where

s 1
Se :/ dT/d3xZTr(FWFW)
0

@ In presense of a static test quark,

Zq x /DAuexp(—SE) TrQ(X)

B
Q(F) = Pexp(ig / Ao(F, T)d7>
0
is called Thermal Wilson Loop.

\1
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Order Parameter
@ Polyakov loop L(x) = (1/N)TrQ(X)
@ Also Z = e FF
o Za_
Z =

e 78F = (L(%))
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Z(N) and CP Violation Confinement Deconfinement Transition

Order Parameter

@ Polyakov loop L(x) = (1/N)TrQ(X)
@ Also Z = e #F

= 23 = e R = (1(3)

|X—y|—o0
STy

(L (LX) o e PAFa(F=1) (L NLE)) = (LGP

1)
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Z(N) and CP Violation Confinement Deconfinement Transition

Order Parameter

@ Polyakov loop L(x) = (1/N)TrQ(X)
@ Also Z = e #F

= 23 = e R = (1(3)

|X—y|—o0
STy

(L (LX) o e PAFa(F=1) (L NLE)) = (LGP

@ Confining Phase:-
X — | — 00, AFgg (IX = JI) — oo, = [(L(X))| — O
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Z(N) and CP Violation Confinement Deconfinement Transition

Order Parameter

@ Polyakov loop L(x) = (1/N)TrQ(X)
@ Also Z = e #F

= 23 = e R = (1(3)

|X—y|—o0
STy

(L (LX) o e PAFa(F=1) (L NLE)) = (LGP

@ Confining Phase:-
X — | — 00, AFgg (X — J|) — 00, = [(L(X))] — O
@ Deconfining Phase:- [X — J| — oo, AFg5 (|X — ¥|) is finite

= [{L(X))| # . &
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@ 2z(N) and CP Violation

@ Z(N) Symmetry
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Spontaneously Broken Z(N) Symmetry

@ Under SU(N), Q(X) — U(X,8)Q (X)U'(X,0) and
Au(X,7) — ( ,B)AL(X, )UT(X 0) +iU(X, 8)3,U'(X,0)

1)
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Spontaneously Broken Z(N) Symmetry

@ Under SU(N), Q(X) — U(X,8)Q (X)U'(X,0) and
AR, T) — U( B)AL(%, ) UI(%.0) +iU(%, )9, U' (%, 0)
A.(X,B) = A,(X,0) if U(x,ﬁ) U(X,0)
= L()‘(’) is invariant.
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Z(N) and CP Violation Z(N) Symmetry

Spontaneously Broken Z(N) Symmetry

@ Under SU(N), Q(X) — U(X,8)Q (X)U'(X,0) and
A(X, ) — U( B)ALX, T)UT(X 0) +iU(X, B)9,U'(X,0)
A.(X,B) = A,(X,0) if U(x,ﬁ) U(X,0)
= L()‘(’) is invariant.
@ However, if U(X, 3) = ZU(X,0); where Z € Z(N)
Z=e%1,¢=2rm/N;m=0,1...(N—1)
o Then, A, (X, 8) = A,(%,0) but L(X) — Z(L(¥)).
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Z(N) and CP Violation Z(N) Symmetry

Spontaneously Broken Z(N) Symmetry

° Under SU(N), Q(X) — U(X, B)Q(X)U'(X,0) and
A (X, 1) — U()? B)A.(X, T)UT(X 0) +i ()? 8)0,U'(X,0)
AL(X,B) = A,(X,0)if UXX,B) = U(X,0)
= L()‘(’) is invariant.
@ However, if U(X, 3) = ZU(X,0); where Z € Z(N)
Z=e%";¢=2rm/N;m=0,1...(N—1)
o Then, A, (%, 8) = A,(,0) but L(X) — Z(L(X)).

Degeneracy and Interfaces
@ N -fold degeneracy of ground states.
@ Domains with different L(X) values will be formed.
@ Interfaces exist between different domains.

)
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Z(N) and CP Violation Z(N) Symmetry
Effective Potential

V(L) = (~ IR - (154 () + 4 LR T

@ "For T > T,, second term leads to the three degenerate vacua
corresponding to the three (L(x)) values.

ol
—25‘1’
50|
-75,
—-100¢

&
'R.D. Pisarski, PRD 62,111501 (2000)
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Z(N) and CP Violation Z(N) Symmetry

Effective Potential

Various parameters in the potential are fixed as 2:-

@ by =2.0and by = 0.6061 x 47.5/16

o by = (1—1.11/x) (1 +0.265/x)2 (1 + 0.300/x)® — 0.478; where
x = T/ T, with T; ~ 182 Mev

® AS T = 00, (L(x)) =y = bg/2+ } x \ /B +4bp (T = o0)

Various quantities are rescaled as:-

® L(x) = L(x)/y, ba = ba/y?, b3 — bz/y and by — bay*
@ (L(x)) »1as T — o0

2Dimitru and Pisarski, Phys, Lett. B 504, (2001); PRD 66, (2000); Nucl. Phys. A
698 (2002)
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Z(N) and CP Violation Z(N) Symmetry

Explicit Breaking of Z(N)

@ Fermion fields have anti-periodic boundary conditions
w(zvo) = _w()?‘?B)

@ Under Z(N) transformations,
¥(X,0) — ¢/(X,0) = U'(X, 0)1(X, 0)
Y(X, 8) — /(X B) = e PUI(X,0)p:(X, 5)

3Dumitru et al PRD 70 (074001)
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Z(N) and CP Violation Z(N) Symmetry

Explicit Breaking of Z(N)

@ Fermion fields have anti-periodic boundary conditions
¢()_(‘?0) = —¢(Y75)

@ Under Z(N) transformations,
¥(X,0) — ¢/(X,0) = U'(X, 0)1(X, 0)
WX, B) — ¢'(X, B) = e U (X, 0)9:(X, B)

@ Z(N) symmetry is explicitly broken.

@ At the level of effective potential, the effect is studied by the
addition of a linear term '3

V(L) = (- RIL2 = 2 (154 ) + 4 (LR T
by (S5 )b

3Dumitru et al PRD 70 (074001)
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Z(N) and CP Violation Z(N) Symmetry

Continued..

Metastable States
@ Degeneracy is lifted, with L(x) = 1 being the true vaccum.
@ L(x) # 1 states are thermodynamically metastable.
@ Relevence to Cosmology and Heavy lon Collisions.

@ The value of by can be related to the analytical estimates of the
difference in the energies of the true and metastable vaccua '*

AV ~ (2) <,'\\/’;> 2T (N2 —2) ~ 3T

@ At T =400 MeV, the corresponding value of by which gives the
correct splitting is 0.645.

&
4y, Dixit and M. C. Qgilvie, Phys. Lett. B, 269, 353 (1991)
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Outline
@ 2z(N) and CP Violation

@ CP Violation
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Z(N) and CP Violation CP Violation

CP Violation

@ CP Violation in SM due to thermal effects of the phase of Wilson
line 4.

Ao = s (Ao)sy(a) + 9w (Ao)suce) + 9y (Bo)yqry -

@ Computed the free energy, in perturbation theory.
@ There are long lived metastable states.
@ Metastable states are not CP self-conjugate. CP Violation!

@ They then show that non-zero value of the Higgs field forces the
phase of the Wilson line either to be zero or in the metastable
minimum.

&
“KorthalAltes, Lee, Pisarski, PRL 73, 1754 (1994)
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Z(N) and CP Violation CP Violation

Localized Quark Solution

@ Dirac eqnin 1 + 1 dim Euclidean space is®:
(79906 + fQWgA{)k(Z) + 73093k =0
where 72 = 19 and 42 = i3 are Euclidean Dirac matrices.

@ Y14(z) =N x exp [fz <7rT - Ao(C)) d(} exp (—niTT)

CP Conjugate and Density
@ If ¢ localizes then its CP conjugate v°42¢* does not.
@ Density (/T¢) is static and localized.
@ Qualitative discussion. No calculation of Ay profile.

SKorthal Altes and Watson, PRL 75, 2799 (1995)
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Z(N) and CP Violation CP Violation

L(x) Profile

@ Profile of L(x) for Polynomial Potential was calculated by energy
minimization.3

@ Scattering of quarks and it’s implication were discussed with no

CP Violation.

9

z (in fm)

3Layek, Mishra, Srivastava PRD 71, 070415 (2005)
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Our Work

Atreya, Sarkar, Srivastava. (PRD85 (2012) 014009)

@ We choose
2nT ,a b

Ao == ~(3hs + %)

3

where A3 and \g are Gell-Mann Matrices.
@ aand b are fields depending on spatial coordinate only.

1)

Abhishek Atreya (loPB) Z(3) Domains and Implications January 29, 2015 16 /54



Our Work

Atreya, Sarkar, Srivastava. (PRD85 (2012) 014009)

@ We choose or T b
™ a
A =
0=y (3/\3 3)\8)

where A3 and \g are Gell-Mann Matrices.
@ aand b are fields depending on spatial coordinate only.
L+ Details ]

0.5
055 T
06 I
065 |
07t
075 |
08 I
085 t
09 I 1 _
095 | 1

-1 L L L A\ 3 /

11.5 12 12.5 13 13.5

a/3,b/2 -
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Z(N) and CP Violation CP Violation

Ao Profile

-1300 ‘ ‘ 1
fitted curve
-1400 |
-1500 | 08
-1600 -
T -1700 . 06
o7 | = 3e-05
% -1800 Y
-1900 1505 |
-2000 0.2
2100 0
-2200 : : : 0
115 12 125 13 135 115 12 125 13 135
z(fm) - z(fm) -

Figure : On Left: Corresponding Aq Profile. Initial value is (—1.5,—-1.0).0n
Right: Plot of calculated |L| and |L| obtained from minimizing the energy.
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Z(N) and CP Violation CP Violation

Reflection and Transmission Coeff.
@ We first approximated the profile by step function.
@ For smooth profile we use the step potential approximation
method.®
@ Wavefunctions are matched at each step, relating ¥ and ;4.
@ The height of the j step potential is taken to be the mean value

[V(L+jw)+ V(L+ (j+ 1)w)]

Vj:

0 o — Trne0) = \
7

®Kalotas and Lee, Am. J. Phys. 59, 48 (1991)
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Z(N) and CP Violation CP Violation

Continued..

@ The incoming fermion wave-functions (v;) and outgoing fermion
wave-functions (v, 1) at are

1 1
0 ikz 0 —ikiz
Vi(2)=A| K |€°+B| K | e
Ej+m E+m
0 0
1 1
0 . 0 ,
Vi1(2) = A | ko | €974 B | ki | €72
Ej1+m E1+m
0 0
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Z(N) and CP Violation CP Violation

Continued..

@ Apply boundary conditions at /" step i.e at z = L + jw.

Aj g1 . ] . ] Aj+1
(Bj) =M (L—i—jW,kj) X M(L—i—jW,kj+1) (Bj+1

gka(L+iw)  g—ikg(L+jw)
where  M(L+jw,q) = | gkatim, ekallng,
Eq-‘rm Eq-‘rm

@ On iteration we obtain the relation

(gm) - M_1 (L, km)M(L, k1) T M_1 (L+ nw, kn)M(L-i' nw, kout) <A8ut>

&
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Z(N) and CP Violation CP Violation

Continued..

@ The reflection and transmission coefficients are then given by

_ Jref o Bi,
=0~ |4,

_ Jtrans Aout
T = o= A, X r

where r = Ku\ ( E+m
Kin E—Vypax+m)~

@ For Charm R, = 0.00104992 and Ry = 5.24229 x 1010,

Abhishek Atreya (loPB) Z(3) Domains and Implications January 29, 2015
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Z(N) and CP Violation CP Violation

Logarithmic Potential

3
a —0
Vg =—2(d-1)e a/T|L12 —log |—|L|* + 8Re(L)® — 18|L|?> + 27
where’

@ o = (425MeV)? is the string tension,

@ T4 =270MeV is the confinement temperature.

@ ais the lattice constant with a=' = 272MeV.

@ For first order transition, 2(d — 1)e~?/T¢ = 0.5153.

Sy
@
<

K. Fukushima, Phys. Lett. B591 (2004)
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N) and CP Violation
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N) and CP Violation

-1300 T — T -1300 T T -
fitted curve
-1400 data - -1400
-1500 -1500
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Outline

@ Implications of CP Violation
@ In Early Universe
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Implications of CP Violation In Early Universe

Evolution of Universe

~— Radius of the Visible Universe —»

< =

: o Quark — Gluon Plasma
. @ Deconfined Phase; Free quarks and
gluons

puo3?s T

<— Hadronization

@ Confined Phase; Hadron formation

51R34 000'00E

+— Nucleosynthesis

i @ Helium Nuclei formed;
i Decoupling of Photons

<— Star Formation
@ Galaxy formation

o1t 51-21

PNy

Modern UMNerse <— Present Universe

e - W)
= - ol
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Quark Nuggets

Atreya, Sarkar, Srivastava. (PRD90 (2014) 045010)

@ Formation of stable quark nuggets during the phase transition 8.

@ If QCD phase transition is first order, then the bubbles of Hadronic
phase will form in the QGP Phase.

@ As Universe cools, Hadronic bubbles will expand, and coalese.

@ The QGP region will shrink, in the process trapping the baryons
inside them.

® ©
® ®
.Mumps

—

&
8E. Witten, Phys.Rev. D32, (1984)
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Why First Order?

@ Provides with an interface between two region of the universe
while being in thermal equillibrium.

@ Baryon excess in the collapsing domains is due to the baryon
transport across the phase boundary.

@ Not Possible in a cross-over or Second order transition.

9Gorham PRD 83, 123005; Astone et al arXiv:1306.5164 /N
0Berilenkov et al arXiv:1304.7521 \
3Layek et al PRD 71, 070415 (2005)
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Why First Order?

@ Provides with an interface between two region of the universe
while being in thermal equillibrium.

@ Baryon excess in the collapsing domains is due to the baryon
transport across the phase boundary.

@ Not Possible in a cross-over or Second order transition.

@ Even now there are attempts to detect these objects °.

@ They have been proposed as the dark matter and dark energy
candidates 1°.

@ Z(N) interface provide us with an attractive alternative to the
phase boundary as proposed by Witten.

@ Z(3) domain walls can lead to baryon inhomogeneity generation®.

@ Possibility of quark nuggets formation irrespective of the order of
Phase transition.

9Gorham PRD 83, 123005; Astone et al arXiv:1306.5164 /N

9Berilenkov et al arXivi1304.7521 \

3Layek et al PRD 71, 070415 (2005)
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Domain Wall Formation

@ Z(3) symmetry is broken in the high temperature phase, and is
restored as the universe cools while expanding.

@ For Z(3) structures to form, we need a situation where the
Universe goes form hadronic phase to the QGP phase: Inflation.

&
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Domain Wall Formation

@ Z(3) symmetry is broken in the high temperature phase, and is
restored as the universe cools while expanding.

@ For Z(3) structures to form, we need a situation where the
Universe goes form hadronic phase to the QGP phase: Inflation.

@ During inflation, universe cools drastically and matter is in
Hadronic (confined) phase.

@ Universe reheates, and transition from Hadronic (confined) phase
to QGP (deconfined) phase occurs.

@ Z(3) structures are formed via standard Kibble Mechanism.

T2/
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Implications of CP Violation In Early Universe

Domain Wall Formation

Z(3) symmetry is broken in the high temperature phase, and is
restored as the universe cools while expanding.

For Z(3) structures to form, we need a situation where the
Universe goes form hadronic phase to the QGP phase: Inflation.

During inflation, universe cools drastically and matter is in
Hadronic (confined) phase.

Universe reheates, and transition from Hadronic (confined) phase
to QGP (deconfined) phase occurs.

Z(3) structures are formed via standard Kibble Mechanism.
Regions of true vaccum (L = 1) will expand, metastable vacua
(L # 1) will shrink.

Certain low energy inflationary models allow Z(3) domainsto
survive till QCD transition epoch.

14/
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Scattering From Interfaces

@ Z(3) structures may survive till QCD transition scale if dynamics
of these walls is friction dominated because of the non-trivial
scattering of quarks across the wall.

1)
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Scattering From Interfaces

@ Z(3) structures may survive till QCD transition scale if dynamics
of these walls is friction dominated because of the non-trivial
scattering of quarks across the wall.

@ Due to CP violating effects, quarks and anti-quarks scatter
differently from interfaces.

@ Results in segregation of Baryon number.

transmitted incident B Asymmetry
+ reflected
q (q )<— q _ (q ) Anti-quark Excess
-4 @) S
B q (q ) Quark Excess
R R -
Wall \
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Implications of CP Violation

Evolution of Over-densities

@ Total number of particle inside the wall
N; = n;V;

:>Ni:hi\/;+ni\7;

e
&

u]
i}
I
ul
it
"
S
» |
]
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Implications of CP Violation In Early Universe

Evolution of Over-densities

@ Total number of particle inside the wall
N; = n;V;

:>N,':I'll,'V,‘+n,'\./,'

! venoTy  vinT,
i (R Tun s 0T YTy
—_———
i)

Inside quarks moving parallel to wall

1)

Abhishek Atreya (loPB) Z(3) Domains and Implications January 29, 2015 30/54



Implications of CP Violation In Early Universe

Evolution of Over-densities

@ Total number of particle inside the wall
N; = n;V;

:>N,':I'll,'V,‘+n,'\./,'

G (2 VanoT ) VigniT
N; = (—ngTwn,Jr 5 — 5 )S

y

quarks moving from outside to inside

1)
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Implications of CP Violation In Early Universe

Evolution of Over-densities

@ Total number of particle inside the wall
N; = n;V;

:>N,':I'll,'V,‘+n,'\./,'

: vonoTy v nT,
N; = (—ngTwn,-—i— e
—_——

y

quarks moving from inside to outside

1)
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Equations to be Solved
vonoTi_y— v nT,
R = <—§VwTwni+ rel”"0 ' ( )6 rel’li ' (+)

)E_

Vi

nj

<<
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Equations to be Solved

. (2 VailoT(—) = Vi MiT(4)\ S Vi
ni = (—ngTwn,+ 6 )Vi—n,vi
. (2 VaioT(-) = VieiMiT(4)\ S Vi
fo = (5 T = 6 ), * "oy,

e
&

u]
i}
I
ul
it
"
S
» |
]
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Implications of CP Violation In Early Universe

Equations to be Solved

_ vo noTi_y — vi T, Vi
A = <—ngTwni+ rel’’0 (=) rel’i (+)) S i

3 6 Vi TV
. (2 Vo Ty — VieNi T\ S V;
No = <§VWTWnI_ 6 )vo OVO
t
R = s (= 1)
N/

where:-

@ n; and n; are number densities inside and outside wall.

@ vy is the wall velocity.

® Tw, T~y and T4, are the Transmission coefficients for the quarks=
moving tranverse to v, towards the wall from inside and from

outside respectively.
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Implications of CP Violation In Early Universe

Baryon Anti-Baryon Segregation

le+16
Tle+l5 !
le+14 |
le+13
le+12
= le+1l |
le+10
1e+09
1e+08
1e+07

100 g
i

ti-

n "
o
>

+06 . . . . . . 1 . . .
7.607 7.6075 7.608 7.6085 7.609 7.6095 7.61 7.6105 7.607 7.6075 7.608 7.6085 7.609 7.6095 7.61 7.6105
t (usec) — t (usec) —

Figure : Evolution of number densities inside the domain wall. Left: For
charm-quark. Right: For anti-charm.
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Implications of CP Violation In Early Universe

Baryon Density Profile
p(R) = %M:Rg

@ np~10% —10%for R <1 m.

le+16
le+15
le+14
le+13
le+12
T tesn1
1e+10 |
1e+09 |
1e+08 [
1e+07 |
1e+06

0 0.0002 0.0004 0.0006 0.0008 0.001
z (km) =

Figure : Baryon density left behind by collapsing wall.
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Implications of CP Violation In Early Universe

Consequences

@ Dark Matter candidates within the standard model of particle
physics.

@ Quark nuggets may act as the seed for Black hole formation".

@ Important role in the structure formation.

@ Inhomogeneties produced near QCD Phase transition can modify
the dynamics of QCD phase transition'2.

@ The over-densities which are produced near the electro-weak
transition can alter the baryogenesis scenario.

""Lai and Xu, arXiv:0911.4777 \
128, Sanyal PRD 67, 074009 (2003)
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J/v Disintegration in QGP

Atreya, Bagchi, Srivastava. (PRC 90, 034912 (2014))

@ QGP is supposed to be formed in Heavy lon Collision experiments
at RHIC and at LHC.

@ QGP is the thermal system of quarks and gluons.
@ Debye Screening of color charge. Debye radius oc T~

@ Matsui and Satz® proposed that due to this QGP medium, the qg
potential in quarkonia (like J/+) meson will be Debye screened.

o If Debye screening length is smaller than the radius of J/1, then
the potential will be completely screened and it will melt in the
medium.

@ This is the conventional mechanism of J/ melting.

@ If the Debye length is larger, then the convetional mechanism of
J/¢ melting does not work.

14/

3Phys.Lett.B 178, 416 (1986)
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J/v interaction with Z(3) walls

@ If there are Z(3) domains, there will be a background Ay profile.
@ Then a J/¢ moving through the medium will interact with it.

@ So c and c¢in J/¢ will experience different color forces depending
on the color of quark and color composition of wall.

@ This can change the color composition of J/« and also facilitates
it’s transition to higher excited states (like x¢).

@ As these states have size comparable or larger to Debye length,
they will melt in the medium.

@ This provides us an alternate mechanism of J/« melting.

T2/
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Implications of CP Violation Heavy lon Collisions

Basic Assumptions

@ We work in the rest frame of J/¢ with domain wall hitting the J/+
with a velocity v along z-axis.

@ Assume that there is no background vector potential,
Ai(z)=0i=1,2,3.
@ Work with first order perturbation theory.

@ The center of mass motion is not affected by the external
perturbation.

@ The interaction Hamiltonian is
Hint = VI(2)) 19 + 19 VI(2})
with V39(z; ,) = gAT (2} ,)
@
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Color Interaction

@ The incoming state is a color singlet: \/L§|r? + bb + 93).

@ If the outgoing state is a singlet then the transition probability is
identically zero as A is traceless.

1)
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Color Interaction

@ The incoming state is a color singlet: %V? + bb + 93).

@ If the outgoing state is a singlet then the transition probability is
identically zero as A is traceless.

@ If the outgoing state is an octet state, it can be either of rb), |rg),
63), |bF), |gb), |gF), J5|rF — bb) and ~|rF + bb — 293).

@ Due to diagonal form of Ay we get no tran3|t|on to state like |rg).

@ Only non-zero transition is for the two states with repulsive
potential.

T2/
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Color Interaction

@ The incoming state is a color singlet: %V? + bb + 93).

@ If the outgoing state is a singlet then the transition probability is
identically zero as A is traceless.

e If the outgoing state is an octet state, it can be either of |rb), |rg),
63), |bF), |gb), |gF), J5|rF — bb) and ~|rF + bb — 293).

@ Due to diagonal form of Ay we get no transition to state like |rg).

@ Only non-zero transition is for the two states with repulsive
potential.

@ We get the color part of transition probability as
<I’I_’ - bB|Hint|¢singlet> = A6 - Ag
(T + bb — 298| Hint|Vsingiet) = Ay + Af — 2A7

where A7, Ag and Ag are the diagonal componets of the matrix
N
A (21) — A (22) - -
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Spatial Excitations
Cornell Potential
— — Qg — -
V r1—r2 :—ﬁ—‘—(fﬁ—rz
(1% = l) = —z—= +olFi ~ P
where «g is the strong coupling constant and o is the string tension.

1)
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Spatial Excitations
Cornell Potential
— — Qg — -
V r1—r2 :—ﬁﬁ-(fﬁ—rz
(1% = l) = —z—= +olFi ~ P
where «g is the strong coupling constant and o is the string tension.

@ In CM coordiantes, the transitional amplitude is

00 oo pl 27
| uiswanar = [ [ [ oy cos.0) 4
P100(r) r? drd(cos 6)d¢.

&
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Spatial Excitations
Cornell Potential
— — Qg — -
V r1—r2 :—ﬁﬁ-(fﬁ—rz
(1% = l) = —z—= +olFi ~ P
where «g is the strong coupling constant and o is the string tension.

@ In CM coordiantes, the transitional amplitude is
o9 [eS) 1 2
| uiswanar = [ [ [ oy cos.0) 4
V100(r) r? drd(cos 0)d.

@ No transition to a state which is symmetric under cos§ — — cos 6.

@ The excitation is possible to the first excited state of an octet (like _
an ‘octet x’ state) which is more prone to melting in the medium
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Implications of CP Violation Heavy lon Collisions

Transition Probability

1

0.75

0.25

0.12 0.16 0.2 0.24
v

Figure : Transition Probability versus Energy.

@ Probability increases dramatically for a slight increase in the
energy.

@ At higher energies, the perturbation theory breaks down and the
results are not trustworthy. @EEEE e
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Effect of Quarks Explicit Breaking of Z(N)

Domain wall Profile
Atreya, Bagchi, Das, Srivastava. (PRD 90, 125016 (2014)

1 : , , ; 0 , , o
0
09 -100 + prtanh(q*x+r)+s e
-200
0.8
-300
T 07 F 1 00t
= S
o
S o6t Ao 500t
-600
05 1
px =-393.11 2700 - px=-393.11
qx=3.29 qx =3.29
04 x=-16.41 7 800 x=-16.41
sx =-421.05 b; =0.03 sx =-421.05
03 . . . . 900 . . . .
0 2 4 6 8 10 0 2 4 6 8 10
Z - Z -

Figure : The domain wall profile for by = 0.03 On Left:- |L| profile. On Right:-
Ao profile.
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Effect of Quarks Explicit Breaking of Z(N)

Asymmetric Profile

0.95
0.9
0.85 |
0.8
0.75
0.7
0.65 |
0.6
0.55
0.5
0.45
0

l(z)l -
(z)l -

Figure : The domain wall profile for by = 0.645 On Left:- Initial Condition. On
Right:- Stable configuration.
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Effect of Quarks Explicit Breaking of Z(N)

Asymmetric Profile

0.95
0.9
0.85 |
0.8
0.75
0.7
0.65 |
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0.45
0

l(z)l -
(z)l -

Figure : The domain wall profile for by = 0.645 On Left:- Initial Condition. On
Right:- Stable configuration.

Abhishek Atreya (loPB) Z(3) Domains and Implications January 29, 2015 47 /54



Effect of Quarks Explicit Breaking of Z(N)

Asymmetric Profile?

3900 . -1300 . .
Ao”(l) fitted curve
3800 - pHanh(qFx+r)+s | -1400 1
3700 | -1500 ¢
-1600
;3600 f
S 3500 170y
Se -1800 t
< L
3400 1000 |
3300 px =-338.46 -2000
qx =3.63
3200 f x=-18.45 2100 |
sx = 3493.25
3100 : : : : -2200 : : :
2 4 6 8 10 115 12 125 13 135
z - z(fm) -

Figure : The domain wall profile for by = 0.645. The fit is again
p *tanh(q * z 4 r) + s function
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Modeling the Quark Mass

@ We know that (L(x)) = 0 in the confined phase while it's non-zero
in the deconfined phase.

@ Also free (deconfined) quarks (as in QGP) have a dynamical mass
which is very small (m, 4 ~ 10 MeV) as compared to it's
constituent mass (~ 350MeV) which is the mass of the quarks in
hadrons.

@ Is there any connection between the two?

&
SLayek et al PRD 71, 070415 (2005)
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Modeling the Quark Mass

@ We know that (L(x)) = 0 in the confined phase while it's non-zero
in the deconfined phase.

@ Also free (deconfined) quarks (as in QGP) have a dynamical mass
which is very small (m, 4 ~ 10 MeV) as compared to it's
constituent mass (~ 350MeV) which is the mass of the quarks in
hadrons.

@ Is there any connection between the two?

@ Proposal®:
m(x) = mg + mo (I — |L(x)[),

where |L(x)| is the profile of Z(3) domain wall, my is the
dynamical quark mass and my is the constituent quark mass. f is

the vaccum value of |L(x)]|. _
)
3Layek et al PRD 71, 070415 (2005)
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Dirac Equation
in07 20355 + A2 m(2) 5% — A (2) |k (2) = Evu(2).

Z(3) Domains and Implications
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Effect of Quarks

Dirac Equation

[i7073335jk T Om(z)s — oAk (z)] k(2) = Ed(2).

[i7073535jk T 'y°m5jk] Uil(2) = (E — V(2))n(2).

e
&

u]
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I
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"
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Effect of Quarks Varying Quark Mass

Dirac Equation

[W%Sasafk +49m(z)o% — gA{)k (z)] Yk(2) = Eyy(2).
[Mf&w+wmwpwazw—vmwwn

@ The total potential now is
V(2) = gA; (2) — mo (I — |L(2)])

@ The space dependent part of quark mass appears as the potential
in Dirac equation.

@ The reflection is then calculated in the same way as the earlier

case. \
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Effect of Quarks Varying Quark Mass

Asymmetric Reflection Coeffecients

by =0.03 0.126 0.645
Left R, | 1.65437 x 107 | 4.40706 x 107° | 1.43314 x 10~ 10
Right Ry 0.00003366 0.0141752 0.00394808
Left Raq | 2.25671 x 107° | 1.85367 x 10~/ | 2.07835 x 10~
Right Rz | 0.000376883 0.0820803 0.073885

Table : Reflection of Charm quark from the left and righ side for different by

Abhishek Atreya (loPB)

Z(3) Domains and Implications
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Summary

@ We have studied QCD Z(3) interfaces at finite temp.

@ Showed CP violating nature of Z(3) domain walls and calculated
Transmission Coeff.

@ In context of early universe, we studied the evolution of baryon
over-densities and discussed their effects.

@ In context of heavy ion collisions, we showed that these Z(3)
structures can lead to the disintegration of J/.

@ We have also studied the effect of quarks on the spontaneous CP
violation and calculated the reflection and transmission
coeffecients from the asymmetric /(x) profile.

T2/
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Thank You !
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Background Ap Profile

o L(x)=(1/3) Tr[Pexp(ig foﬁ Ao()_(’,T)dT)]

@ For state correspondingto L = 1, Ag = 0 is a solution trivially.

1)
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Background Ap Profile

o L) = 1/5)7[porp 105 A

@ For state correspondingto L = 1, Ag = 0 is a solution trivially.

Gauge Choice
@ We choose or T
Ay = %(aAg + b)g)

a and b are constants, A3 and \g are Gell-Mann Matrices

@ aand b profiles are needed to get exact Ay Profile.

&
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CP Violation Gauge Profile

Equations to be Solved

@ On substituting and simplifying, we get
3L(x) = exp(ic) + exp(iB) + exp(iv)

@ Two equations that are to be solved for a and b are:-
cos(«) + cos(B) + cos(y) = 3|L| cos(#)

sin(«) + sin(B) + sin(vy) = 3|L| sin(#)
Where o = 27 (& + 8) , 8 =27 (& - §) and v = 2r(=22)
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CP Violation Gauge Profile

The Solutions

(% £=1, ©=0 =)
Solve[{Cos[2x7x (a/3+b/2)] +Cos[2+7% (a/3-b/2)] +Cos[2+m* (-2xa/3)] = 3+L1[1, 0],
Sin[2#7m% (a/3+b/2)] +8in[2«n% (a/3-b/2)] +Sin[2«nx(-2+a/3)] =3«L2[1, 0]},

{a, b}, InverseFunctions - True] // N

{{b>-2., a>-3.}, {b>-2.,a-0.}, {(b>-2.,a->3.}, {(b>-1., a»-1.5},
{b>-1., a»1.5}, {b>0., 2a>-3.}, {b>0.,2a->0.}, {b>0., 2a>3.},
tb 1. @=1.5 b lopa=1.50; Ib 22 @ »=3: )¢ bRy 20 ke b d.y a8 1)

(* r=1, 6=2%7/3 x)

Solve[{Cos[2*7*x (a/3+b/2)] +Cos[2%n* (a/3-b/2)] +Cos[2%m* (-2%a/3)] =3*L1[1, 2/ 3],
Sin[2%7+ (a/3+b/2)] +Sin[2+n%(a/3-b/2)] +Sin[2+n*(-2+a/3)] =3xL2[1, 247/ 3]},
{a, b}, InverseFunctions - True] // N

{{b>-2.,a»5-2.}, {b»>-2., a>»1.}, {b>-1., a>5-0.5}, {bs-1., a>2.5}, {b>0., a>-2.},
{b-0.,a->1.}, {b>1., a-»-0.5}, {b>1., a-»2.5}, {b>2., a>-2.}, {(b>2.,a-1.}}

(* r=1, ©=4x7/3 %)

Solve[{Cos[2*7*(a/3+b/2)] +Cos[2*n* (a/3-b/2)] +Cos[2%m* (-2%xa/3)] ==3«L1[1, 4*x/3],
Sin[2%7w* (a/3+b/2)] +Sin[2%xn%x (a/3-b/2)] +Sin[2+mw* (-2%a/3)] == 3+L2[1, 4xn/3]},
{a, b}, InverseFunctions -+ True] // N

{{b>-2.,a->-1.}, {b>-2., a-»2.}, {b>-1., a—»-2.5}, {b>-1., a- 0.5}, {b>0., a-»-1.},
B0, a32.} {b31.; @85-2.5}, {b>1., a30.5}, {b>2.;, a>-1.}, {(bs2.; a=32.}}
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Proceedure for Intermediate Values

@ We start from § = 0 vaccum and choose one value.
@ The variation of the gauge field (Ap) should be continuous.

-0.5 — : 1
055 F
06 | 08
-0.65 |
to07 ) 06
S 015t L 3605
< 08t = o4y
-0.85 | 1505 |
09t 02
-0.95 | 0
-1 ‘ ‘ ‘ 0
1.5 12 12.5 13 13.5 115

zZ —

Figure : On left: Variation of a and b across the domain wall. On right: Plot of
calculated |L| and the one obtained from minimizing the energy.
N1
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Ay Profile

" fitted curve

115 12 125 13 135
z (fm) -

@ Profile was fitted to Ap(x) = ptanh(gx +r) + s.
@ Parameters are p = —378.27, g = 7.95001, r = —49.7141,

s = —1692.48.
@ The difference between the two profiles is extremely small. @<
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CP Violation Calculation of Reflection Coeff.

Propagating Solutions

@ We are interested in the propagating solutions.

@ Need to solve Dirac Equation in Minkowski space with background
gauge field.

@ The background gauge field profile comes from the finite
temperature filed theory formulated in Euclidean space.

@ How to justify?

&
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CP Violation Calculation of Reflection Coeff.

Propagating Solutions

@ We are interested in the propagating solutions.

@ Need to solve Dirac Equation in Minkowski space with background
gauge field.

@ The background gauge field profile comes from the finite
temperature filed theory formulated in Euclidean space.

@ How to justify?
@ Start with Dirac Equation in Euclidean space.

@ Do the analytic continuation of the full equation to Minkowski
space.

@ Using that equation we calculate the reflection and transmition
coefficient.

T2/

Abhishek Atreya (loPB) Z(3) Domains and Implications January 29, 2015 8/24



CP Violation Calculation of Reflection Coeff.

Numerical Method

@ We use step potential approximation method.’
@ The potential in j bin is taken to be the

_ WV(L+jw)+ V(L+(+ 1)w)]

Y 2
@ Wavefunctions are matched at each step, relating v; and ;4.
V(z)
[ = :
Yin ﬂt

(L +nw,0) =z

Figure : Potential (V(z)) approximated by n step potentials.
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With Step Potential
@ We first approximate the entire profile by a single step function.

@ The reflection coeff. is given by

(1—r)?

q (E+mo)

R— g_{=E+M)
k (E — Vo + mo)

:where r =

@ Vp = —gA is the potential as seen by the incoming fermion.
@ CP violating effect is larger for heavier quarks.

m (MeV) | E (GeV) Ry R
u 25 3.0 1.72x107 [ 1.92 x 108
d 5.0 3.0 6.76 x 1077 [ 7.54 x 10~ 8
s 100 3.0 283 x 104|314 x10°° _
c| 1270 3.0 0.14 0.006
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CP Violation Results

Using Exact Profile

@ Calculated using Mathematica and FORTRAN.
@ For c quark R = 0.001 and for ¢ we get R = 5.24 x 1010

@ As a check, we shrank the profile and compared with step
potential.

| Shrinking Factor | Reflection Coeff |

No shrinking 0.001
0.5 0.01

0.05 0.11
0.005 0.12
Step Potential 0.14

Table : Table for the reflection coefficients when the profile is shrunk. Results
approach the step potential as the profile gets narrower.

T2/
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Basic Assumptions
@ We work in the rest frame of J/4.
@ Gauge Potential is chosen to be in diagonal gauge,
Ap = a3z + bls.

@ Consider the domain wall coming and hitting the J/1) with a
velocity v along z-axis.

Ao(2) = Ay(Z') = v (Ao(z

As(2) = Ay(Z') = v (As(z

z=~(Z +vt)

A3(2))

) -
) — VAu(2))

@ Assume that there is no background vector potential,

A(z)=0i=1,23. )
I() » &= \

Abhishek Atreya (loPB) Z(3) Domains and Implications January 29, 2015 14/24



J /4 Disintegration Formalism

Perturbation Theory

@ Color electric field due to t' dependence Ay.

OA.
Einduced = — 3t’3 x v << 1.

@ We use first order time dependent perturbation theory
t .
Ay =y = i [Pl et
@ The interaction Hamiltonian is
Hip = VI(Z}) 19+ 190 VI(2)
with V39(Z,,) = gAZ9(Z ,) )
\1
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Color Interaction

@ The color interaction can be written as
<1/Jout|7'[int|¢singlet> = <¢0ut|gAé)q(Z*/|) ® lq’¢sing/et>
+ <¢out|1q ® gAé)q(zé)|¢singlet>'

@ The incoming state is a color singlet

fl()()() il
()]

@ If the outgoing state is a singlet then each of the above term on
the RHS is identically zero, A; = 1 for ground state (i = j). R
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J /1) Disintegration Formalism

Color Octets

e If the outgoing state is an octet state, it can be either of |rb), |rg),
[bg), |bF), |gb), |gF), J5|rF — bb) and | rT + bb — 293).
@ Due to diagonal form of Ay we get no transmon to state like |rg.

@ Only non-zero transition is for the two states with repulsive
potential.

@ We get the color part of transition probability as
<I’I_’ - bB|Hint‘¢sing/et> = A(r) - Ag
<I’I_’ + bB - ZQQI%inthing/e» = A(rJ + Ag - 2Ag

where Aj, Ag and Ag are the diagonal componets of the matrix
A (2) = Ay (2) - _
&
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J /4 Disintegration Formalism

Spatial Excitations

@ For spatial part, we need the potential between ¢ and ¢
— - Qg
"4 rH— r2| = -
( ) |fy — 12|
where «g is the strong coupling constant and o is the string tension.
@ As potential is central, we go to the centre of mass coordinates.

= r+r

+olf — P

@ We write J/) wavefunction as W(Rem)i(7).
&
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Spatial Excitations

@ Assuming that the centre of mass motion is not affected by the
external perturbation, we get

V(Rem) = exp_"’?"’""E"C”7 and
U(r.0,0) = ¥(r)Y" (cos b, ¢)
. The perturbation is then

Ay =AY [y(rcos 6 + vt')] — vAY [y(—rcos 6 + vt')]

@ The transitional amplitude then gives
00 o) 1 2
| uisvianar = [ [ [ oy cos.0) 4
b100(r) r? drd(cos 0)de. &
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J /1) Disintegration Formalism

Spatial Excitations

@ Under cos# — —cosf, Ay — —A[ and 1; does not change.

@ Soif Y/"(cosb,¢) =Y/ (—cosb, ) then transition probability is
zero.

@ No transition to a state which is symmetric under cos 8 — — cos 6.

@ The excitation is possible to the first excited state of an octet (like
an ‘octet x’ state).

@ As the excited state will have a radius larger than the ground state
it is more prone to melting in the medium.

N T
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J /1) Disintegration Numerical Results

Charmonium Wavefunctions

@ The radial wavefunction is the solution of radial part of
Schrodinger eqn with the potential

. as I(1+1)
V(r)——r +or+ ur2

where p is the reduced mass.
@ We used energy minimization to get the wavefunction.
@ Check:- wavefunction and binding energy of the hydrogen atom.
@ m;=1.3GeV, as=0.3,and o0 = 0.16 GeV??.
@ The strong coupling is chosen such that N/g? = 0.8.

&
°F. Giannuzzi and M. Mannarelli, Phys.Rev. D80, 054004 (2009)
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Charmonium Wavefunctions

()
© = N W AR UM 3 ®

0 0.5 1 15 2
z (fm)

Figure : Wavefunctions for J/¢ (I = 0) and x (/ = 1) states.

@ The binding energies are E;;;, = 0.5 GeV and E,, = 0.83 GeV _
@ Radius of J/¢ ~ 0.5 fm while that for xy ~ 1.0 fm.

Abhishek Atreya (loPB) Z(3) Domains and Implications January 29, 2015 23/24



J /4 Disintegration Numerical Results

Transition Probability
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Figure : Transition Probability versus Energy.

@ Probability increases dramatically for a slight increase in the
energy.

@ At higher energies, the perturbation theory breaks down and the
results are not trustworthy. ol
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