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Outline

* Focus on the “perspectives” part i.e. what lattice QCD has
told us so far about the QCD phase transition and the quark-

gluon plasma.
* Will try to cover the following:-

1.The QCD phase diagram at mu_=0.
2.The question of U(1), restoration.
3.Equation of state at mu_= 0.

4.Fluctuations and their applications.

5.Equation of state at mu, > O.




The phase diagram at a glance
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The two-flavor chiral limit
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H.-T.Ding, Lattice 2013

N =6 simulations with the HISQ action for various volumes

and light quark masses, keeping the strange quark mass fixed
at its physical value.

The rescaled susceptibility, (m/m_)"2x__, is independent of

the quark mass, indicating that Goldstone modes contribute
[P.Hasenfratz and H.Leutwyler, Nucl.Phys.B (1990)].




The two-flavor chiral limit
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The three-flavor transition
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H.-T.Ding et al. PoS LATTICE2013, 157 (2014).

 2"-order transition belonging to the Z(2) universality class for
m =m (Cl’it.).
« No discontinuity observed in the chiral condensate down to m =80

MeV. No volume scaling of x__either.

e Similar results also obtained by the BMW collaboration [G.Endrodi et al.
PoS Lattice 182 (2007).

e However, a similar calculation done using the Wilson action yields a
different result [X.-Y.Jin et al. Phys. Rev. D91 014508 (2014)].




U(1), symmetry restoration

 The use of a chiral action allows one to study questions related
to topology.

- U(1), restoration can alter the symmetry group, and hence the

order, of the phase transition [Pisarski & Wilczek, Phys.Rev. D29, 338
(1984)]

» Domain-wall fermions: Five-dimensional fermions with a four-
dimensional, chiral, low-energy spectrum.

e Gauge fields remain four-
dimensional.

 When the fifth dimension is
finite, residual chiral symmetry
breaking m__.

S




Crossover transition temperature
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Disconnected chiral susceptibility, X, « Satisfies an index

peaks around T=155 MeV for physical theorem.
guark masses, in agreement with the
staggered (HISQ) results.




U(1), versus SU(2), x SU(2),
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U(1),-breaking difference many

standard deviations away from
zero even above T .




Studying U, (1) through Dirac eigenvalues
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I da{abl@* . =
mosel 4  Density of zero modes is non-zero
even above T_.

« Similar results also obtained by H.Ohno et al.,
LATTICE 2013.

® e Distribution of the topological charge
Poissonian, resembles a dilute gas of
Instanton—anti-instanton pairs.




The QCD equation of state

 Fundamental property of QCD, related to the question
of the degrees of freedom at a given temperature and
density.

« Basic input in modelling the hydrodynamic evolution of
the fireball created in heavy-ion collisions.

« Resummed perturbation theory does not work for
T<=2T_. Need a non-perturbative way of calculating

such as lattice QCD, for example.




Equation of state: What we know
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|' T T T T |

SB limits =]

stout HISQ L L 5 S/N,=30, lattice

) & S/N =45, lattice
(e-3p)/F IH N 3 S/N_ =300, lottice

Jisl BN E ' — =0, lottice
SAT'EE I A

T [MeV] 300
0IIIIIIIIIIIIIIIIIIIIIIIIII T(MEU)

130 170 210 250 290 330 370

A. Bazavov et al. [HotQCD collaboration] S. Borsanyi et al. [BMW collaboration],
Phys. Rev. D90, 054903 (2014). JHEP 1208, 053 (2012).

S. Borsanyi et al. [BMW collaboration], Here we will present results for a
JHEP 1011, 077 (2010). 4™-order equation of state.




HotQCD continuum equation of state

stout  HISQ
(-3p)yT¢ N N

e 2% error from scale setting; taken into account in the
above results.

e Slight remnant discrepancy at high temperatures; stout
results ~7% less than ours.




HotQCD continuum equation of state
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* We have also provided an analytic parametrization of the
pressure [arXiv:1407.6387]:
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Comparison with perturbation theory
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« 3-loop HTL: Haque, Bandopadhyay, Anderson, Mustafa, Strickland et
al., JHEP 1405, 027 (2014).

 O(g6) EQCD: M.Laine & Y.Schroder, Phys.Rev. D73, 085009 (2006).




Speed of sound and specific heat
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Second-order phase transition
should exhibit a peak in the
specific heat.

= T —T, _
ﬁ:eﬁel( - )+O(|T—Tc|1 )

But a =-0.21 for the 3d O(4) model.

Construct a “subtracted” specific
heat

And indeed, we do see a peak
near the crossover temperature.




Speed of sound and specific heat

mon-int | -] = non-int. imit S

T [MeV] 1 i E [GeVimY

| [ I (N I I N N I I |
210 250 290 330 370 ' . 5 10 40

The “softest point” of the equation of state occurs just near the
crossover and is not very different from HRG expectation.

The energy density at the softest point is 180-500 GeV/fm3. For
comparison, €~ 450 GeV/fm3,

proton




Beam energy scan at RHIC
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Critical Paint
2\~
Hadron Gas Color
Superconductor

NN B B

Nuclear f (a) Net-Charge  #

Matter _ Neulron Stars a
————

\Y]
o

-
%)}

5900 M
Baryon Chemical Potential

Std. Deviation (o)
o

o

« Look at higher moments of net 2t i 5 & oo
charge (electric, baryon number,...) 3 e
distributions.

® 19.6 GeV
¢ 11.5 GeV
+* 7.7 GeV

STAR collaboration, PRL 113, 0902301 (2014). ol 200300 55306 566 -

< NPE“ } ( |I%‘lpart >

Skewness (S)




The method of Taylor expansions
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Initial conditions in heavy-ion collisions

Fix mu, and mu, from initial conditions:
N, = 0 (no valence strange quarks),

« r=NJ/(N +N,) = const. (fixed Z-to-A ratio).
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Additional resonances and the Quark Model
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Freeze-out conditions from lattice QCD
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* Determine freeze-out parameters in experiments from ab
Initio lattice calculations through ratios of fluctuations.

« Still in preliminary stage. Need to account for systematics.
* Preliminary study: L. Kumar [STAR], CPOD 2013 (2013), 047.




Strangeness-carrying degrees of freedom
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Susceptibilities: Constrained case
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* We will use r = 0.40 throughout,
which is the value for Pb-Pb
collisions.

« Constrained case qualitatively

similar to mu,= mug = 0 case, but

values about 30-40% smaller.




Putting everything together - |
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Putting everything together - Il
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~10% corrections around the transition
region up to mu_/ T =2.0.

Higher derivatives expected to be more
sensitive to higher-order corrections.




Range of extrapolation
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Different orders start to differ above mu_/T ~ 2.0.




Specific heat and softest point
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Equation of state at fixed s/n
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Freeze-out curve
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Freeze-out equation of state

Fourth-order expansion valid
down to beam energies ~20
GeV.
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Conclusions

Lattice QCD has proven to be very useful in furthering our knowledge
about the QCD phase transition and the quark-gluon plasma.

So far, lattice results seem to confirm the Pisarski-Wilczek picture
regarding the QCD phase diagram, though we cannot yet give exact
numbers for all parts of the diagram.

Studies with chiral fermions show that U,(1) remains broken above

the chiral transition. Above Tc, UA(1) is broken by near-zero modes
coming from instanton—anti-instanton pairs.

Equation of state is a key input in hydrodynamic modelling. p=0 useful
at LHC and RHIC 200 GeV runs, whereas p>0 useful for the Beam
Energy Scan programs.

Fourth-order Taylor expansion can provide an equation of state valid
upto Vs ~ 20 GeV. With higher orders we should be able to push this
to even lower CoM energies (unless the expansion breaks down).
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