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Limitations of LQCD — Why changing the gauge action?

Main problem for studies of the QCD phase diagram:

» Simulating QCD at (real) non-zero chemical potential. (sign problem)

Possible solutions:

» Use complex Langevin for simulations.
[ Parisi, PLB 131 (1983); Aarts, Stamatescu, JHEP 0809 (2008); Sexty, PoS LAT (2014) ]

» Simulate on a Lefschetz thimble? [ Christoforetti et al, PRD 86 (2012); PRD 88 (2013) ]

v

Dual variables and worm algorithms
[ e.g. Delgado Mercado et al, PRL 111 (2013), Gattringer, Lattice 2013 ]

v

Fermion bags [ e.g. Chandrasekharan, EPJA 49 (2013) |

Often it is the gauge action which makes it difficult to find solutions.
(see e.g. strong coupling solution to sign problem [ Karsch, Miitter, NPB 313 (1989) | )

Idea:  Find an alternative discretisation of pure gauge theory which allows the
use of strong coupling methods!

= A gauge action which is linear in the gauge fields might do this job!
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Induced QCD

This idea is not new!
Ansatz: Induce pure gauge dynamics using auxiliary fields.

» Using fermionic fields:

> with standard (Wilson) fermions. [ Hamber, PLB 126 (1983) ]
» Standard fermions + 4-fermion current-current interaction.
[ Hasenfratz, Hasenfratz, PLB 297 (1992) |

Need the limit Nf — oo, Kk — 0.

» Using scalar fields:

> Spin model. [ Bander, PLB 126 (1983) ]
Needs the limit Ns — oo and gs — oc.
> Adjoint scalar fields. [ Kazakov, Migdal, NPB 397 (1992) ]

No “exact” pure gauge limit.
It is interesting since it allows a solution in terms of large Nc.

= This is where our induced model offers improvement!
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Lattice regularised path integrals — fixing notations

Expectation value of operator O:

(0)= 5 | 1dUlidv][d7] 0 wolU] wrlv. 5. U

> wg[U]: Pure gauge weight factor.
> welth, 9, U]: Quark weight factor.

Typically:  wel[U] w1, U] = exp [=S[, 1, U]] .
Basic demands:

» The discretised action should preserve the continuum symmetries.

» The discretised action has to reproduce the continuum Yang-Mills action.
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Zirnbauer's weight factor

Consider the weight factor: [ Budczies, Zirnbauer, math-ph /0305058 |
—2N,
4
wpz|U] ~ H ‘det (mBZ — Up)‘
P

Here:
» pis an index running over unoriented plaquettes U,.

» mpz is a real parameter with mpz > 1
(or more generally mgz € C with Re(mgz) > 1)

> N is a (integer) number
> we consider a hypercubic lattice
Does this weight factor have anything to do with continuum Yang-Mills theory?

Why is this weight factor interesting?
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The naive pure gauge limit
There is one obvious way to establish a connection:

> Write the weight factor as:

wpz(U) ~ exp {—2 Ny, Re

ZTHn (1— asz Up):| }

P
with apz = mg,
BZ BZ

» Expand the exponent in small apz:

= SE(U)= -2 N, > [apz ReTr (Up) + O(aky)]

P

» Comparison with the Wilson action:

Equivalent if 8 = Np N. apz!

= Pure gauge limit: az -0 N, — o0 (so that f fixed)



Induced QCD with N. — 1 auxiliary bosonic fields
L The new weight factor

Non-trivial pure gauge limit for U(N,)
Zirnbauers conjecture: [ Budczies, Zirnbauer, math-ph /0305058 |

At fixed N, > N and d > 2 the theory for gauge group U(N.) has a
continuum limit for agz — 1 which reproduces continuum Yang-Mills theory.

(excluding the case d =2 and N, = N.)

In [ math-ph/0305058 | they give a proof for:

» The existence of a continuum limit for all numbers of dimension and
Np > N..

» The equivalence with Yang-Mills theory for d = 2 and N, > N..
For d > 2 the equivalence with Yang-Mills theory is only a conjecture and relies
on the increase of the collective behaviour of the gauge field when going to

d>2.

Conjecture: This should also work for other gauge groups.
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Non-trivial pure gauge limit for SU(N,)

The extension of the proof to SU(N,) is not completely straightforward!
(Exception: SU(2) case)

We have redone the proof for the existence of a continuum limit using a
method which differs from the one of the U(N.) case.

Result:
» The continuum limit exists for N > N, — %
(The exact border for U(N.) is Ny > Nc — 1)

» It reproduces continuum Yang-Mills theory for d =2 and N, > N, — %.
(For U(N.) the border is N, > Nc + 1)

For SU(N.) the argument for the increase of collectivity of the gauge field
when going to d > 2 still holds!
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Excursus: Why not lattice perturbation theory?

Usually one would investigate the continuum limit via lattice perturbation
theory.

Here: effective action

sf— 2 N, Re ZTrIn (1—asz Uy)
p

Expanding with U = exp(iga A) around U, =1 for apz — 1:
= Convergence radius vanishes for expansion around 1 — apz.

Alternative possibility: Use large N, perturbation theory.

> Systematic expansion possible only for apz < 0.172.
2(1 — aBz)

» Implies a suitable (Wilson like) coupling to be: g =
Npapz

» We can now compute the relation between the two couplings.

Problem: Does not apply directly to the continuum limit!
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Non-trivial pure gauge limit for SU(N,) — Numerical test
= The only option is to probe the continuum limit numerically.

To check the existence of a continuum limit:

Consider the expectation value
(F).. = %/dU F(U) [det (1 — anz U)| 2"
for some testfunction F(U).
For agz — 1 we should have
|det (1 — apzU)| 2" — 6°M(U—1).

= le (F). = F(1)

QaBZ
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Non-trivial pure gauge limit for SU(N,) — Numerical test
First: Lets look at F(U) = Tr(U)/Nc

One-link expectation value SU2

1 — I 3 Y g;x:-'izzi"
09 . . o0 ® ."
= 08 rN, =050 - ° Lottt T
>= 0.7 FNy=0.73 . o ? i
& U TNy =100 e |
~ 05 FNp,=1.25 + = o s o o =
Ny =1.50 —e— .
0.4 PNy =200 o ° 7
0.3 -Nb—300 e . . . i

0.7 0.75 0.8 0.85 0.9 0.95 1

QaBZ
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Non-trivial pure gauge limit for SU(N,) — Numerical test

Analytical results for small (asz — 1) and SU(2) from character expansion:

One-link expectation value SU2

0.95 i
=
Py 0.9
N Ny = 0.75
E 0.85 F Ny =1.00
S Ny =1.25
Ny = 1.50
08 FN, = 2.00
Nb =3.00
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0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

QBZ
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Non-trivial pure gauge limit for SU(N,) — Numerical test

One-link expectation value SU3
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Non-trivial pure gauge limit for SU(N,) — Numerical test

One-link expectation value SU4
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Non-trivial pure gauge limit for SU(N,) — Numerical test
What about other test functions F(U)? (here F(U) = Tr[U + 6U? — 1.5U7))

F expectation value SU2

6 T T T T T T
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Phases in the (Np, apy) parameter space

QaBz

YM continuum

no continuum limit?

0 N, —

ot

Ny

= We will now test the properties of the theory in this limit!
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Basic idea and setup

First: Consider the cheap case SU(2) at d = 3!

Suitable observables for a first test:

» T =0 observables:
Quantities connected with the qg potential.

> T # 0 observables:
Transition temperature and order of the transition.

Simulation setup:
> Wilson theory: Standard mixture of heatbath and overrelaxation updates.
» Induced theory: Local metropolis with links evolving in e-ball.

» Computation of gg potential: Liischer-Weisz algorithm
[ Liischer, Weisz, JHEP 0109 (2010) ]

» Scale setting: Sommer parameter ry
[ Sommer, NPB 411 (1994) ]
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First step: Matching between « and

> Start with some information from (U,).

» Compute rp in the interesting region:
= Matching via rny/a:

b_;

11—«

Bla) =

+ bo + bi(1 — «)

(consistent with perturbation theory)

b_1 bo b1
0.623(4) -1.78(11) 3.59(69)
2.453(14) -2.76(38)  0.99( 5)
4399(29) -4.43(16) -0.17(21)
6.286(52) -6.01(23) -0.52(25)
8.54 (11) -8.99(41) 0.45(38)

m-pwm:—nb_z
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Comparison to large N, perturbation theory

b_1 in large N, perturbation theory (d = 3, N = 2):

bo1(Ns) 5 0.0908283 s
v =l w2 + O(N;®)

1/N,
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Second step: Look at static potential at similar lattice
spacings

» Compare to high precision results obtained with the Wilson action.
[ BB, PoS EPS-HEP (2013) ]

> At large distances R the energy levels of the gg boundstate are well
described by an effective string theory!
[ Nambu, PLB 80, 372 (1979); Liischer, Symanzik, Weisz, NPB 173, 365 (1980), Polyakov, NPB 164, 171 (1980) |

Potential in effective string theory for the flux tube (d = 3):
[ Aharony et al, JHEP 0906 (2009); JHEP 1012 (2010); JHEP 1101 (2011); JHEP 1305 (2013) |

V(R)=0oRy/1— —"— — b ul
- 120 R? 60V o3 R4

= There are two non-universal parameters, o and b, (boundary coeff.).

> First result: \/o ro is equivalent in both theories!

> An agreement of b, means that the potential is identical up to 4-5
significant digits!
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Results for by

Results for by:

-0.01 | 1
x
0.02 t ; 3 ? 1
=003 | SU(2), WPG [BB (2011 .
SU(2), WPG [BB (2013)] —e—
-0.04 + SU(3), WPG |BB (2014)] —— 1
SU(Q;, IPG, Ny =1 ——
20.05 L | . SU(2), IP.G’ Ny =2 i
0 0.02 0.04 0.06 0.08
(a/ro)?

= All results are in excellent agreement!
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Finite T properties

For T = 0 quantities comparison looks good!
So what about the finite temperature transition?

> For SU(2) and d = 3:

Second order phase transition in the 2d Ising universality class.
[ Engels et al, NPPS 53 (1997) ]

> We will test this at N; = 4 first!

=  For N; = 6 | present some first results.

> Scale setting via ry and the mapping obtained at T = 0.



Induced QCD with N. — 1 auxiliary bosonic fields
L Numerical tests for 3d SU(2)

Phase transition at N; = 4

Polyakov loop expectation value:

0.7
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0.5
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~ 03
0.2
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T IPG Npy=1 <o o B T

L IPG Ny=2 = ® i

i =N SU(2),d=3, Ny =4, V =322 ]
06 08 1 12 14 16 1.8 2 22 24 26

TTO
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Phase transition at N; = 4

Polyakov loop expectation value:

0.7

0.6

0.5
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0.1

0

WPIG T T T T T 3 T T w
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Phase transition at N; = 4

Polyakov loop expectation value:
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Phase transition at N; = 4

Polyakov loop expectation value:
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Phase transition at N; = 4

Polyakov loop susceptibility:
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Phase transition at N; = 4

Polyakov loop susceptibility:
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Phase transition at N; = 4

Polyakov loop susceptibility:
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Phase transition at N; = 4

Polyakov loop susceptibility:
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Phase transition at N; = 4

Fit: In(x.) = C +~/v In(Ns)
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Phase transition at N, = 6

Polyakov loop expectation value:
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Phase transition at N, = 6

Polyakov loop expectation value:
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Phase transition at N, = 6

Polyakov loop expectation value:
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Phase transition at N; = 6

Polyakov loop susceptibility:
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Phase transition at N, = 6

Polyakov loop susceptibility:
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Phase transition at N, = 6

Polyakov loop susceptibility:
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LDuaI representation

The bosonic version
Now: Why is this weight factor interesting?

Bosonisation of the determinant: [ Budczies, Zirnbauer, math-ph/0305058 |

wpz[U] = H ‘det (mfrsz - Up) ‘_QNb = /[d¢_>][d¢] exp {—Spz[¢, ¢, U]}

A 4
SBZ[¢: @57 U] = Z Z Z [mBZ Q_sb,p()ﬂ"))¢b,p(xf) - (Zb,p()SP+1) U(X_,P_;_lv X_,P) ¢b,p(XJP)]

b=1 +p j=1

> ¢ are complex scalar fields - .
. . xy®/zy® z3° /25 P
> p: index for oriented plaquette
> Scalar fields carry plaquette index p.
= Propagate only locally opposite to the
plaquette orientation.

» Gauge field only couples to bosons.
= Can be modified more easily!

i U af®) ag®fag®

» N, defines the number of boson fields.
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|—Dual representation

Modified version

Problem: This action is complex!

Solution:  Rewrite determinant weight factor:
—N,
wpz[U] ~ TI, [det (my — Up) det (m4BZ — Ug)] b

~ 11, [det (m— {U,,+ U;})]

_Nb

Now bosonize this determinant:

= Real action:
Np

4
Sl &, Ul =D D> [mbop(x)6,p(x5) = Po,p(x11) Ulxi11, %) bb,0(x)
b=1 p j=1 B
—bb,p(%)) U(xj, Xj41) db,p(Xj11)]

~ 4 —a ~ 4 2
Here: m=mpgz+mg; and m=m" —4m +2.
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LDuaI representation

Integration over gauge fields

Rewrite the partition function as a product of integrals:
/ [ddllde] Flo, 3] [] / AU, (x) €3 T[00) A0 UL 4L (e 1]
X,

/ [6311d6] 16, 3] [] Tunlr 3]

V4

Np

With  F[¢, ¢] = exp {—

4
>N m b p(x) <z>bp(x,)}
P

b=1 j=1

Np
and A6, 0l =2 |:¢b,ﬁ(x,u,1/)(Xj(u,u,o,l))¢b,f1(x,u,u)(xj(;4,u,0,0))
b=1v+#p

+¢b,ra<x—a,u,u)(ﬁ(u,»,l,nﬂ’b,ﬁ(x—a,u,u)(m,u,l,m)]
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LDuaI representation

Integration over gauge fields

Need to solve integrals 7 = /dU eT'[U A+UT AT] .

For U(N.) they are known. [ e.g. Brower, Rossi, Tan, PRD23 (1981) |
For SUNG): = T — ia cos(€ @) det (Ke(\))

1 foré =0

2 for¢ >0
¢: Phase of the determinant det(A)

> g¢: Neumann's factor; e¢ = {

/\,2: eigenvalues of the N x N matrix AAT

A(N?): Vandermonde determinant

Ke(A): Ne x Ne matrix; (Ke(A))j = X lerj—1(Ai)

with I, (z) modified Bessel function of the first kind (and z € R).

vV v.vYyy

= Looks difficult, but the sum in Z converges numerically very fast.
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LDual representation

Full QCD

Now consider also fermionic fields, e.g. with a staggered type action:

Se =2 {2 [Bx)anx) Uullx + ) + Blx + B)éu(x) UL (x)w ()| +meB(x)u(x) }

Expanding the weight factor, integrating over the grassmann variables and
gauge field (following [ Karsch, Miitter, NPB 313 (1989) ] ):

_ {wal‘[wbnw,b / [d¢1[d¢11‘[{w,q[¢ 11710 3 [] 400,

(nklbl} X

> Monomer terms: wy = %(2amq)”x with n, € {0,..., Nc}
> Dimer terms: wy = 8¢ ,kkb,) with ky € {0,..., N.}

» Baryon loops: lp;  wj, depends on the loop geometry

> Quark loops: lg;  wi,[¢, q_S] depends on the loop geometry NEW

wy, and wy, are not positive definite. = Still has a sign problem!
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5. A first look at simulating 4d SU(3)
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The relevant case: SU(3) andd = 4

Now: Consider the interesting but (more) expensive case!

Problem: The local metropolis performs worse when going to SU(3).
= We need an alternative algorithm!

Possible algorithm types:

» Heatbath algorithm
Usually shows the best performance for pure gauge theory.

» Hybrid Monte-Carlo algorithm
The algorithm of choice if quarks should be included.

Starting point: Bosonised version

7= / [UIdBI[d6] exp {—Sslé, &, U]}

4

Seld, $ U =D D "> [mGop()6,6(55) = Bo,p(xi+1) U1, %) b6,p(%)

b=1 p j=1 ~
—bb,p(%)) U(xj, Xj41) db,p(Xj11)]
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A generic starting point

A suitable first step for all algorithms:
Draw the bosonic fields according to the distribution:

exp(—Sg) = exp(—dM[U]$) with M = diag(M,)
M, are 12 x 12 complex matrices and can explicitly be written as M, = K] K.
= Draw fields 7, according to exp(nz’pnb,p). = bbp =Ky bp
Some comments:

> The matrices K, can be inverted explicitly and are equivalent for all b.

» With growing N we only need to do some additional matrix
multiplications.

> In this way the role of the ¢ field is similar to the pseudo-fermionic fields
for the inclusion of fermions.

Now that we obtained the fields ¢ according to the correct distribution we need
to update the gauge field.



Induced QCD with N. — 1 auxiliary bosonic fields
LA first look at simulating 4d SU(3)

Update of the gauge field

The gauge field action is of the form:
1 - -
(looks similar to the Wilson action for link U with 5 = N)

Possible update algorithms:
> Use the standard SU(3) Cabbibo-Marinari heatbath for the update.
> Use the HMC algorithm to update U (if fermions are present).
Comments:

> Only the matrices A need to be stored, not the ¢ fields.
= Even the limit N, = oo is possible.

» The matrices A are constant for the HMC.
= No communication is needed during the MD.

» The force and action for the HMC is very easy to compute.
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First tests with the HMC algorithm

Is the HMC in this form advantageous?

> It might be that scanning of the parameter space is inefficient due to the
separate update of ¢ and U.

> Indeed in first tests we have seen rather large autocorrelation times.
= Maybe it is helpfull to include an update of ¢ in the MD.

> Possible advantage: Configurations are more decorelated.

» Communication will be needed after every update of ¢.
= Not problematic if we can put the ¢ update on a larger time-step.
(in particular in combination with fermions)

> \We need to store the full ¢ field.
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Summary and Perspectives

>

We have investigated a possible alternative discretisation of continuum
pure gauge theory.

While for d = 2 it can be shown that the theory has the correct
continuum limit this is not guaranteed if d > 2.

Numerical tests show good agreement with simulations using Wilson's
gauge action, both for T =0 and T # 0.

In its original formulation with auxiliary boson fields the theory has a sign
problem. = We introduced a modified version without sign problem.

Passing to a dual theory via a direct integration over gauge fields:

> Leads to a theory formulated in terms of auxiliary bosonic fields.

> When fermions are include one can expand the action in grassmann
variables and integrate over the fermionic degrees of freedom and the
gauge fields.

> However, the resulting dual representation has a sign problem.

> s it possible to find a formulation without sign problem?

Explore other analytical methods ...
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Thank you for your attention!
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