

Induced QCD with $N_c - 1$ auxiliary bosonic fields

Bastian Brandt

University of Regensburg

In collaboration with
Robert Lohmayer and Tilo Wettig

19.02.2015

Contents

1. Motivation
2. The new weight factor
Zirnbauers bosonic model
3. Numerical tests for 3d SU(2)
4. Dual representation
Integrating out the gauge degrees of freedom
5. A first look at simulating 4d SU(3)
6. Summary and Perspectives

Induced QCD with $N_c - 1$ auxiliary bosonic fields

└ Motivation

1. Motivation

Limitations of LQCD – Why changing the gauge action?

Main problem for studies of the QCD phase diagram:

- ▶ **Simulating QCD at (real) non-zero chemical potential.** (sign problem)

Possible solutions:

- ▶ Use complex Langevin for simulations.
[Parisi, PLB 131 (1983); Aarts, Stamatescu, JHEP 0809 (2008); Sexty, PoS LAT (2014)]
- ▶ Simulate on a Lefschetz thimble? [Christoforetti *et al.*, PRD 86 (2012); PRD 88 (2013)]
- ▶ Dual variables and worm algorithms
[e.g. Delgado Mercado *et al.*, PRL 111 (2013), Gattringer, Lattice 2013]
- ▶ Fermion bags [e.g. Chandrasekharan, EPJA 49 (2013)]

Often it is the gauge action which makes it difficult to find solutions.

(see e.g. strong coupling solution to sign problem [Karsch, Mütter, NPB 313 (1989)])

Idea: Find an alternative discretisation of pure gauge theory which allows the use of strong coupling methods!

⇒ A gauge action which is linear in the gauge fields might do this job!

Induced QCD

This idea is not new!

Ansatz: Induce pure gauge dynamics using auxiliary fields.

► Using fermionic fields:

- with standard (Wilson) fermions. [Hamber, PLB 126 (1983)]
- Standard fermions + 4-fermion current-current interaction.
[Hasenfratz, Hasenfratz, PLB 297 (1992)]

Need the limit $N_f \rightarrow \infty, \kappa \rightarrow 0$.

► Using scalar fields:

- Spin model. [Bander, PLB 126 (1983)]
Needs the limit $N_s \rightarrow \infty$ and $g_s \rightarrow \infty$.
- Adjoint scalar fields. [Kazakov, Migdal, NPB 397 (1992)]
No “exact” pure gauge limit.
It is interesting since it allows a solution in terms of large N_c .

⇒ This is where our induced model offers improvement!

Lattice regularised path integrals – fixing notations

Expectation value of operator O :

$$\langle O \rangle = \frac{1}{Z} \int [dU][d\psi][d\bar{\psi}] O \omega_G[U] \omega_F[\psi, \bar{\psi}, U]$$

- ▶ $\omega_G[U]$: Pure gauge weight factor.
- ▶ $\omega_F[\psi, \bar{\psi}, U]$: Quark weight factor.

Typically: $\omega_G[U] \omega_F[\psi, \bar{\psi}, U] = \exp[-S[\psi, \bar{\psi}, U]]$.

Basic demands:

- ▶ The discretised action should preserve the continuum symmetries.
- ▶ The discretised action has to reproduce the continuum Yang-Mills action.

Induced QCD with $N_c - 1$ auxiliary bosonic fields

└ The new weight factor

2. The new weight factor

Zirnbauer's weight factor

Consider the weight factor:

[Budczies, Zirnbauer, math-ph/0305058]

$$\omega_{\text{BZ}}[U] \sim \prod_p \left| \det \left(m_{\text{BZ}}^4 - U_p \right) \right|^{-2N_b}$$

Here:

- ▶ p is an index running over unoriented plaquettes U_p .
- ▶ m_{BZ} is a real parameter with $m_{\text{BZ}} \geq 1$
(or more generally $m_{\text{BZ}} \in \mathbb{C}$ with $\text{Re}(m_{\text{BZ}}) \geq 1$)
- ▶ N_b is a (integer) number
- ▶ we consider a hypercubic lattice

Does this weight factor have anything to do with continuum Yang-Mills theory?

Why is this weight factor interesting?

The naive pure gauge limit

There is one obvious way to establish a connection:

- ▶ Write the weight factor as:

$$\omega_{\text{BZ}}(U) \sim \exp \left\{ -2 N_b \operatorname{Re} \left[\sum_p \operatorname{Tr} \ln (1 - \alpha_{\text{BZ}} U_p) \right] \right\}$$

with $\alpha_{\text{BZ}} = m_{\text{BZ}}^{-4}$

- ▶ Expand the exponent in small α_{BZ} :

$$\Rightarrow S_{\text{BZ}}^{\text{eff}}(U) = -2 N_b \sum_p \left[\alpha_{\text{BZ}} \operatorname{Re} \operatorname{Tr} (U_p) + \mathcal{O}(\alpha_{\text{BZ}}^2) \right]$$

- ▶ Comparison with the Wilson action:

Equivalent if $\beta = N_b N_c \alpha_{\text{BZ}}$!

⇒ Pure gauge limit: $\alpha_{\text{BZ}} \rightarrow 0 \quad N_b \rightarrow \infty \quad (\text{so that } \beta \text{ fixed})$

Non-trivial pure gauge limit for $U(N_c)$

Zirnbauers conjecture:

[Budczies, Zirnbauer, math-ph/0305058]

At **fixed $N_b \geq N_c$ and $d \geq 2$** the theory for gauge group $U(N_c)$ has a continuum limit for $\alpha_{\text{BZ}} \rightarrow 1$ which reproduces continuum Yang-Mills theory.
(excluding the case $d = 2$ and $N_b = N_c$)

In [math-ph/0305058] they give a proof for:

- ▶ The existence of a continuum limit for all numbers of dimension and $N_b \geq N_c$.
- ▶ The equivalence with Yang-Mills theory for $d = 2$ and $N_b > N_c$.

For $d > 2$ the equivalence with Yang-Mills theory is only a conjecture and relies on the increase of the collective behaviour of the gauge field when going to $d > 2$.

Conjecture: This should also work for other gauge groups.

Non-trivial pure gauge limit for $SU(N_c)$

The extension of the proof to $SU(N_c)$ is not completely straightforward!
(Exception: $SU(2)$ case)

We have redone the proof for the existence of a continuum limit using a method which differs from the one of the $U(N_c)$ case.

Result:

- ▶ The continuum limit exists for $N_b \geq N_c - \frac{5}{4}$.
(The exact border for $U(N_c)$ is $N_b \geq N_c - \frac{1}{2}$)
- ▶ It reproduces continuum Yang-Mills theory for $d = 2$ and $N_b > N_c - \frac{3}{4}$.
(For $U(N_c)$ the border is $N_b > N_c + \frac{1}{2}$)

For $SU(N_c)$ the argument for the increase of collectivity of the gauge field when going to $d > 2$ still holds!

Excusus: Why not lattice perturbation theory?

Usually one would investigate the continuum limit via lattice perturbation theory.

Here: effective action

$$S^{\text{eff}} = -2 N_b \operatorname{Re} \left[\sum_p \operatorname{Tr} \ln (1 - \alpha_{\text{BZ}} U_p) \right]$$

Expanding with $U = \exp(iga A)$ around $U_p = 1$ for $\alpha_{\text{BZ}} \rightarrow 1$:

⇒ Convergence radius vanishes for expansion around $1 - \alpha_{\text{BZ}}$.

Alternative possibility: Use large N_b perturbation theory.

- ▶ Systematic expansion possible only for $\alpha_{\text{BZ}} \lesssim 0.172$.
- ▶ Implies a suitable (Wilson like) coupling to be: $g^2 = \frac{2(1 - \alpha_{\text{BZ}})}{N_b \alpha_{\text{BZ}}}$
- ▶ We can now compute the relation between the two couplings.

Problem: Does not apply directly to the continuum limit!

Induced QCD with $N_c - 1$ auxiliary bosonic fields

└ The new weight factor

Non-trivial pure gauge limit for $SU(N_c)$ – Numerical test

⇒ The only option is to probe the continuum limit numerically.

To check the existence of a continuum limit:

Consider the expectation value

$$\langle F \rangle_{\alpha_{BZ}} = \frac{1}{Z} \int dU F(U) |\det(1 - \alpha_{BZ} U)|^{-2N_b}$$

for some testfunction $F(U)$.

For $\alpha_{BZ} \rightarrow 1$ we should have

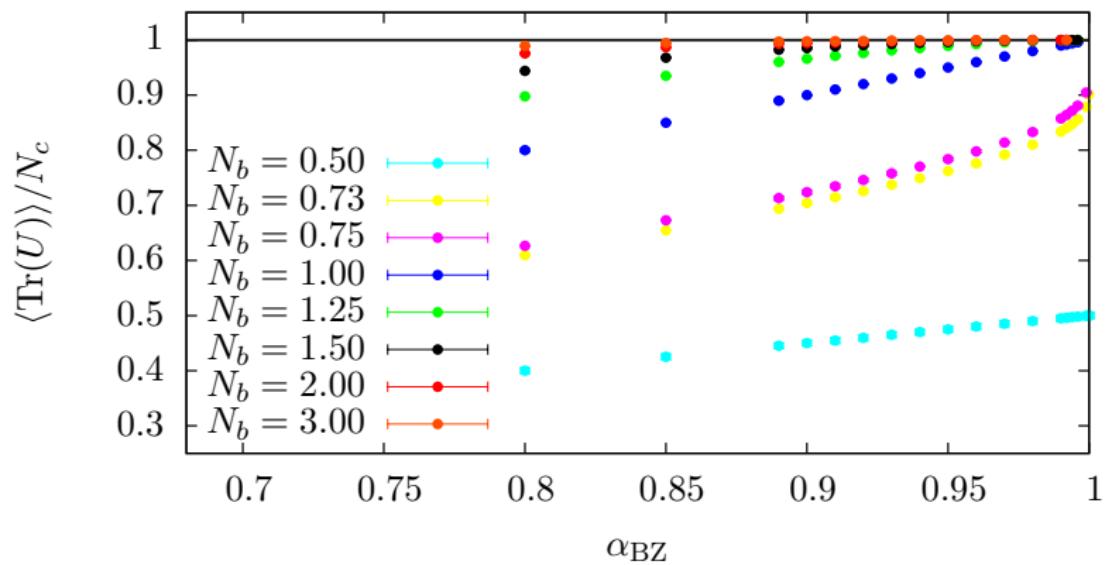
$$|\det(1 - \alpha_{BZ} U)|^{-2N_b} \rightarrow \delta^{SU(N_c)}(U - 1).$$

⇒ I.e. $\langle F \rangle_{\alpha_{BZ}} \rightarrow F(1)$

Non-trivial pure gauge limit for $SU(N_c)$ – Numerical test

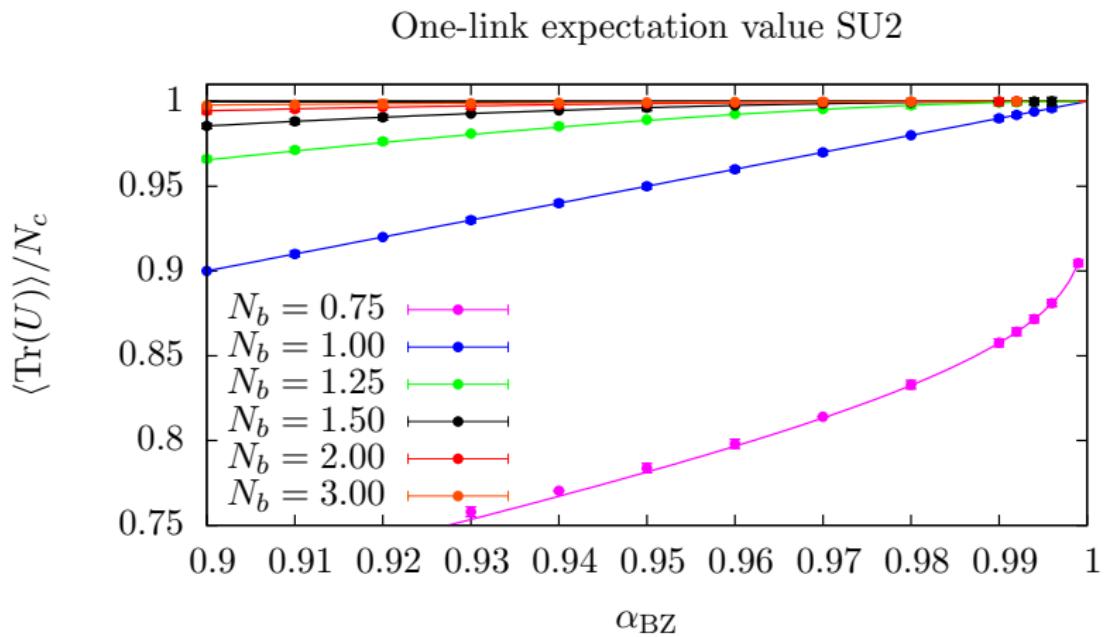
First: Lets look at $F(U) = \text{Tr}(U)/N_c$

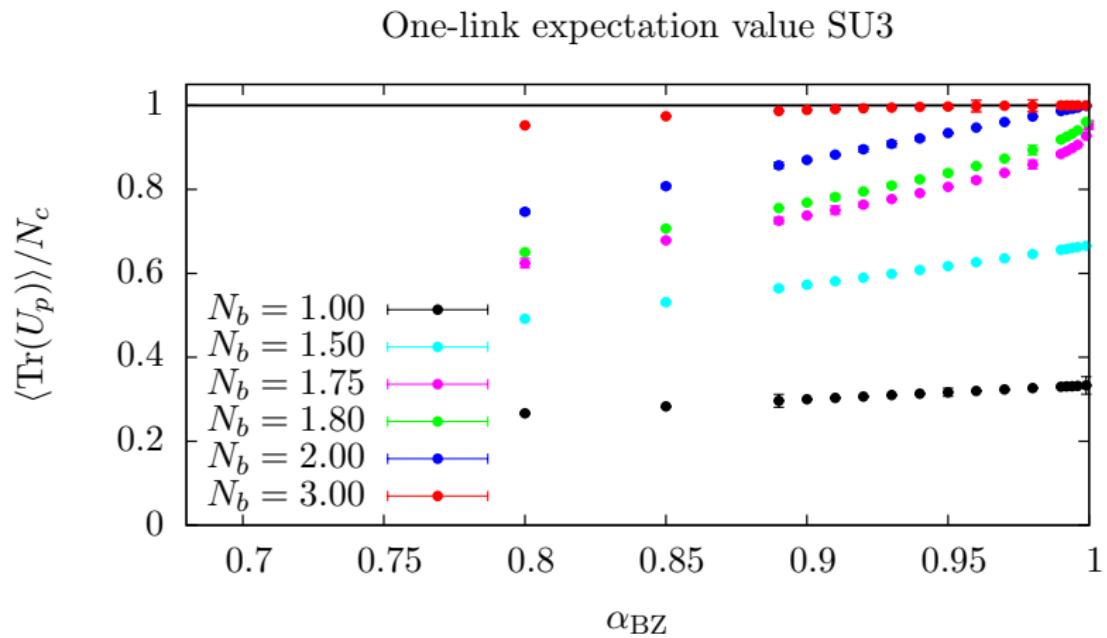
One-link expectation value SU2

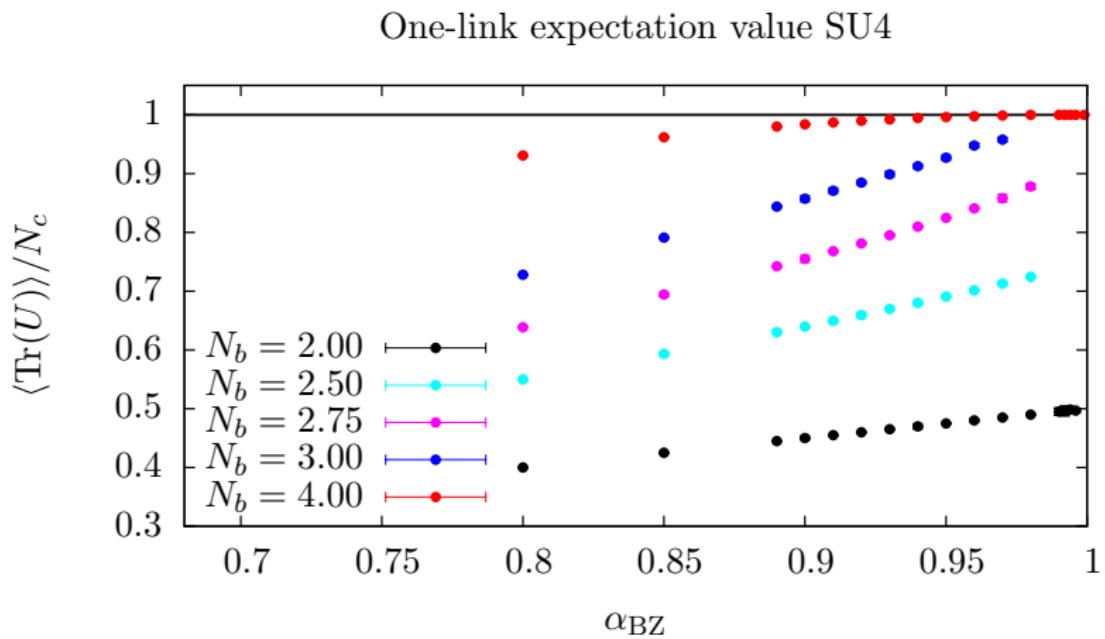


Non-trivial pure gauge limit for $SU(N_c)$ – Numerical test

Analytical results for small $(\alpha_{BZ} - 1)$ and $SU(2)$ from character expansion:

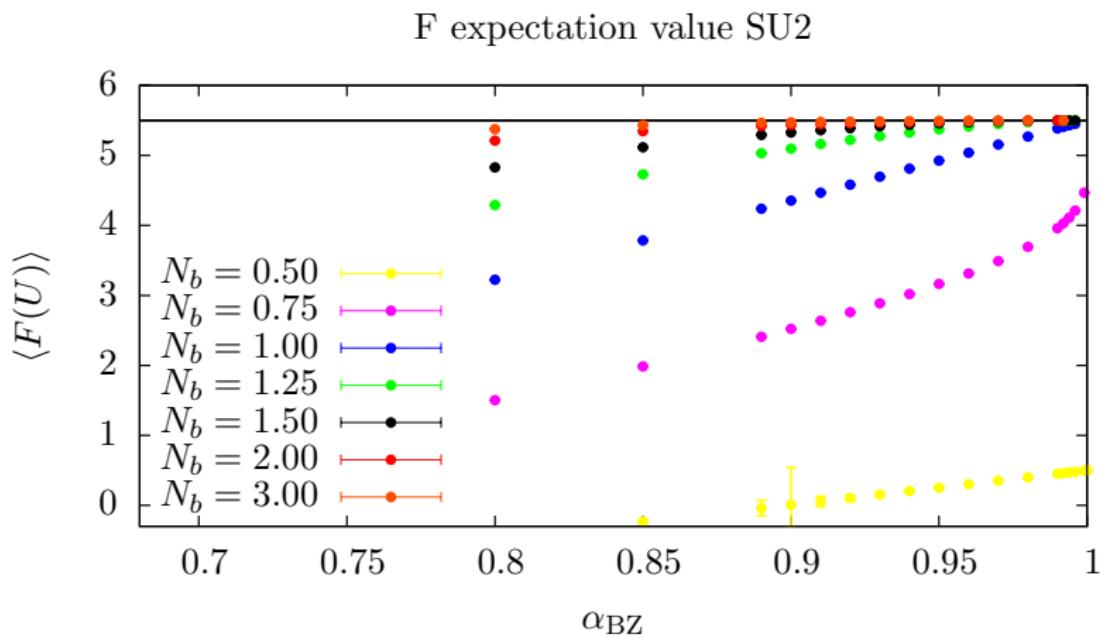


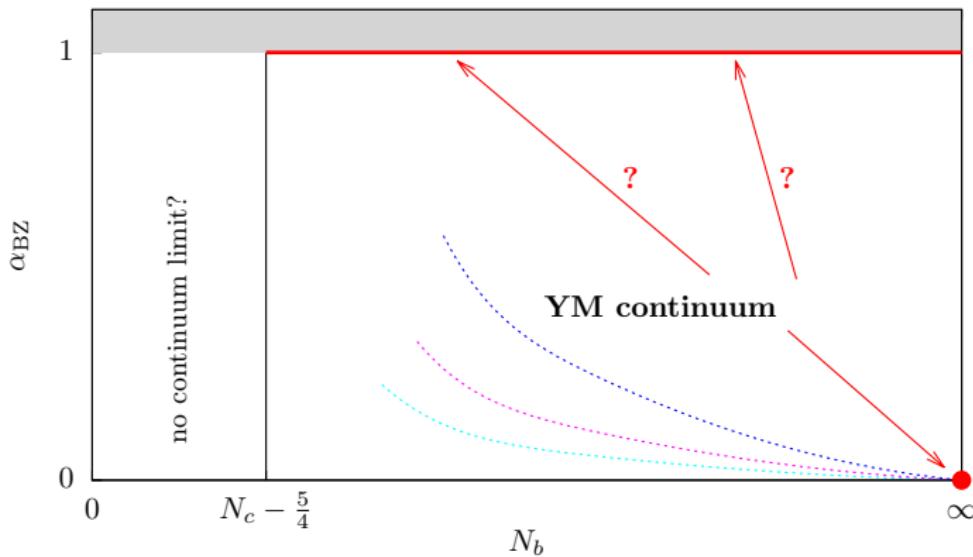
Non-trivial pure gauge limit for $SU(N_c)$ – Numerical test

Non-trivial pure gauge limit for $SU(N_c)$ – Numerical test

Non-trivial pure gauge limit for $SU(N_c)$ – Numerical test

What about other test functions $F(U)$? (here $F(U) = \text{Tr}[U + 6U^2 - 1.5U^3]$)



Phases in the $(N_b, \alpha_{\text{BZ}})$ parameter space

⇒ We will now test the properties of the theory in this limit!

Induced QCD with $N_c - 1$ auxiliary bosonic fields

└ Numerical tests for 3d SU(2)

3. Numerical tests for 3d SU(2)

Basic idea and setup

First: Consider the cheap case $SU(2)$ at $d = 3$!

Suitable observables for a first test:

- ▶ $T = 0$ observables:
Quantities connected with the $q\bar{q}$ potential.
- ▶ $T \neq 0$ observables:
Transition temperature and order of the transition.

Simulation setup:

- ▶ Wilson theory: Standard mixture of heatbath and overrelaxation updates.
- ▶ Induced theory: Local metropolis with links evolving in ϵ -ball.
- ▶ Computation of $q\bar{q}$ potential: Lüscher-Weisz algorithm
[Lüscher, Weisz, JHEP 0109 (2010)]
- ▶ Scale setting: Sommer parameter r_0
[Sommer, NPB 411 (1994)]

First step: Matching between α and β

- ▶ Start with some information from $\langle U_p \rangle$.
- ▶ Compute r_0 in the interesting region:
 \Rightarrow Matching via r_0/a :

$$\beta(\alpha) = \frac{b_{-1}}{1 - \alpha} + b_0 + b_1(1 - \alpha)$$

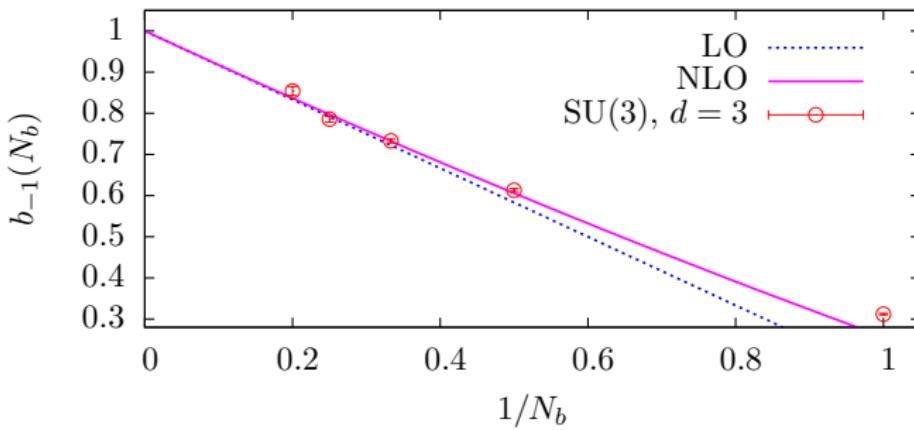
(consistent with perturbation theory)

N_b	b_{-1}	b_0	b_1
1	0.623(4)	-1.78(11)	3.59(69)
2	2.453(14)	-2.76(38)	0.99(5)
3	4.399(29)	-4.43(16)	-0.17(21)
4	6.286(52)	-6.01(23)	-0.52(25)
5	8.54 (11)	-8.99(41)	0.45(38)

Comparison to large N_b perturbation theory

b_{-1} in large N_b perturbation theory ($d = 3$, $N_c = 2$):

$$\frac{b_{-1}(N_b)}{N_c N_b} = 1 - \frac{5}{6N_b} + \frac{0.0908283}{N_b^2} + O(N_b^{-3})$$



Second step: Look at static potential at similar lattice spacings

- ▶ Compare to high precision results obtained with the Wilson action.

[BB, PoS EPS-HEP (2013)]

- ▶ At large distances R the energy levels of the $q\bar{q}$ boundstate are well described by an effective string theory!

[Nambu, PLB 80, 372 (1979); Lüscher, Symanzik, Weisz, NPB 173, 365 (1980), Polyakov, NPB 164, 171 (1980)]

Potential in effective string theory for the flux tube ($d = 3$):

[Aharony et al, JHEP 0906 (2009); JHEP 1012 (2010); JHEP 1101 (2011); JHEP 1305 (2013)]

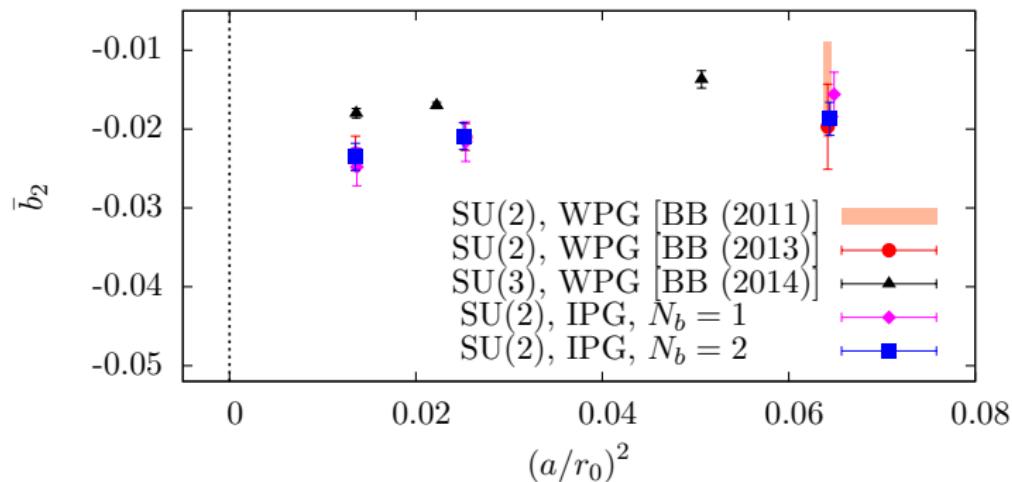
$$V(R) = \sigma R \sqrt{1 - \frac{\pi}{12\sigma R^2}} - \bar{b}_2 \frac{\pi^3}{60\sqrt{\sigma^3} R^4}$$

⇒ There are two non-universal parameters, σ and \bar{b}_2 (boundary coeff.).

- ▶ First result: $\sqrt{\sigma} r_0$ is equivalent in both theories!
- ▶ An agreement of \bar{b}_2 means that the potential is identical up to 4-5 significant digits!

Results for \bar{b}_2

Results for \bar{b}_2 :



⇒ All results are in excellent agreement!

Induced QCD with $N_c - 1$ auxiliary bosonic fields

└ Numerical tests for 3d SU(2)

Finite T properties

For $T = 0$ quantities comparison looks good!

So what about the finite temperature transition?

- ▶ For SU(2) and $d = 3$:

Second order phase transition in the 2d Ising universality class.

[Engels *et al.*, NPPS 53 (1997)]

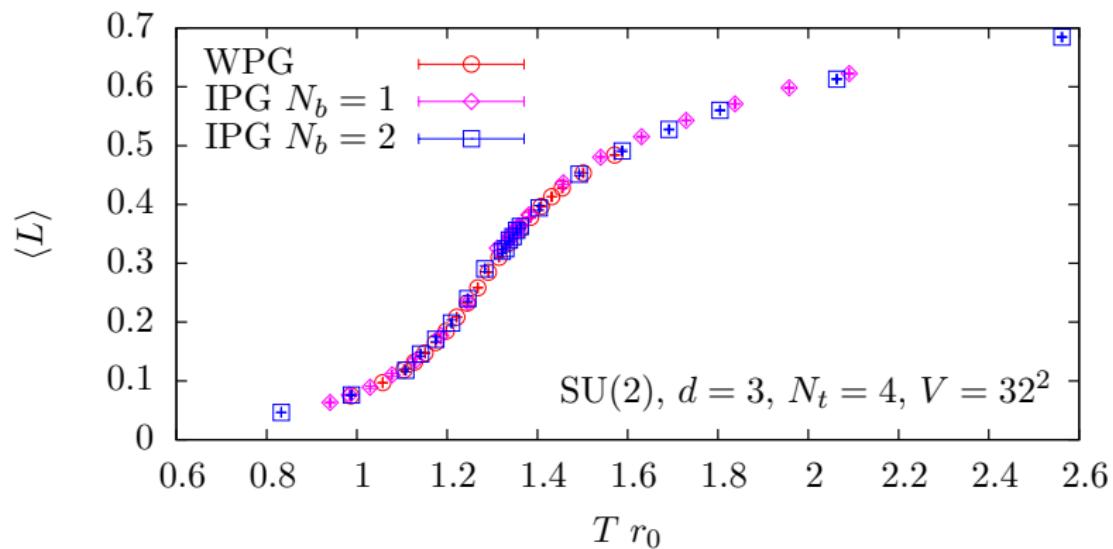
- ▶ We will test this at $N_t = 4$ first!

⇒ For $N_t = 6$ I present some first results.

- ▶ Scale setting via r_0 and the mapping obtained at $T = 0$.

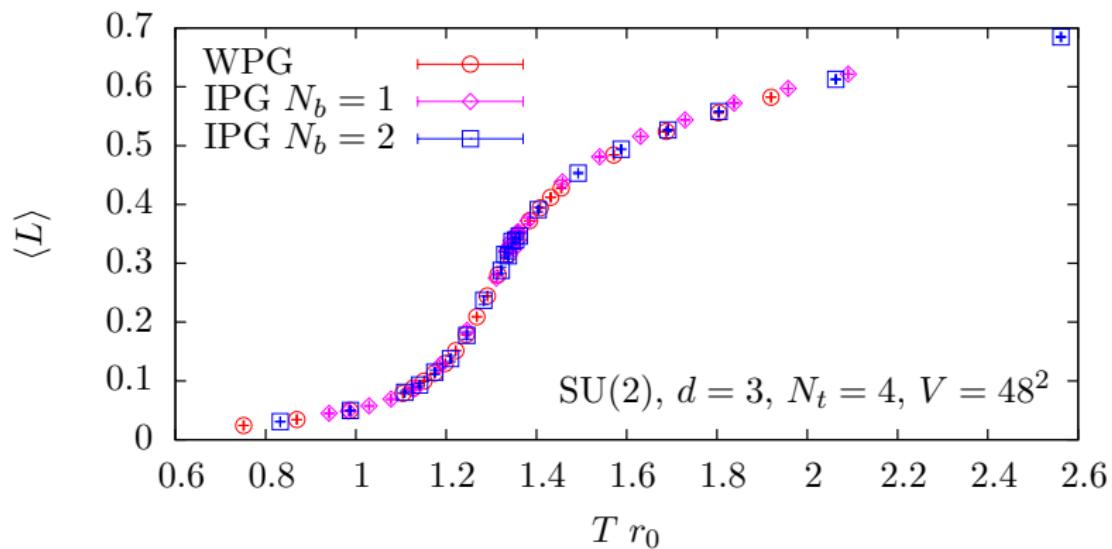
Phase transition at $N_t = 4$

Polyakov loop expectation value:



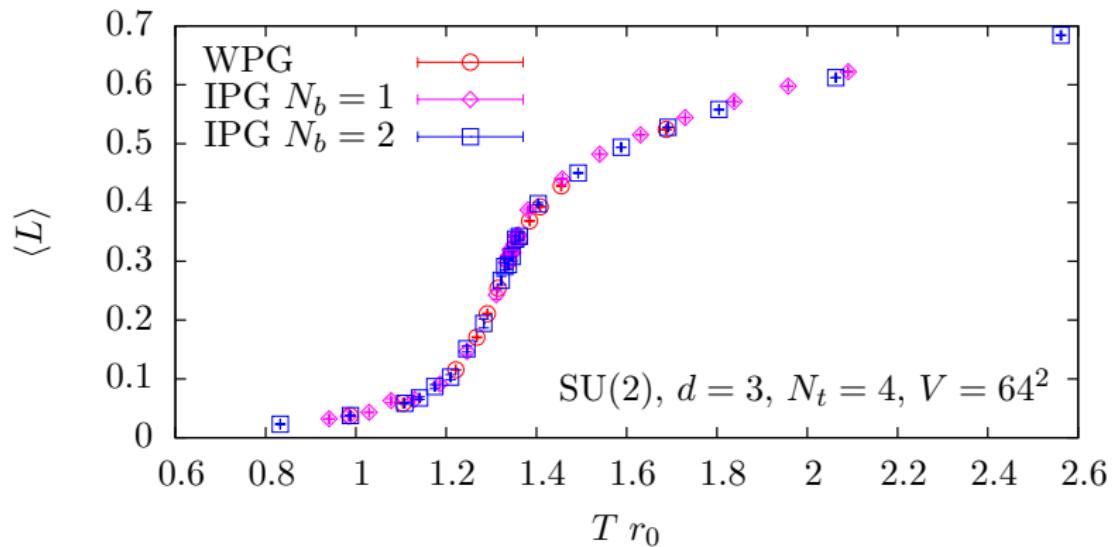
Phase transition at $N_t = 4$

Polyakov loop expectation value:



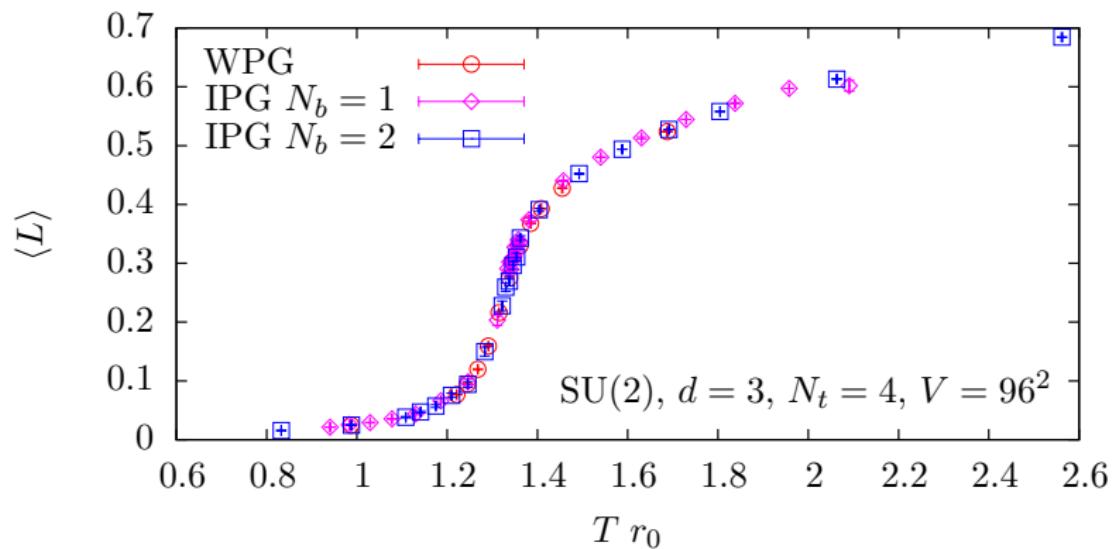
Phase transition at $N_t = 4$

Polyakov loop expectation value:



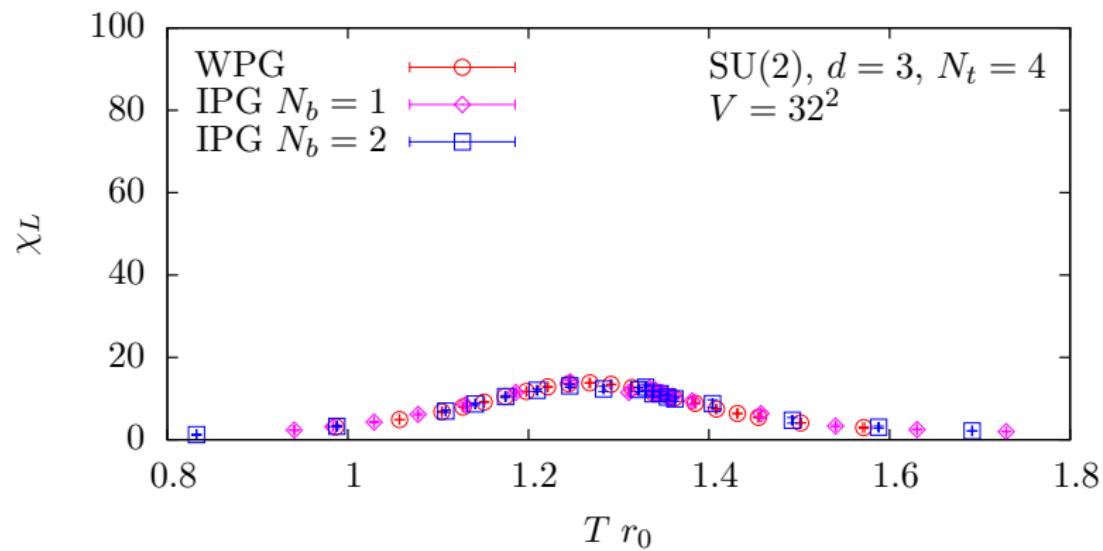
Phase transition at $N_t = 4$

Polyakov loop expectation value:



Phase transition at $N_t = 4$

Polyakov loop susceptibility:

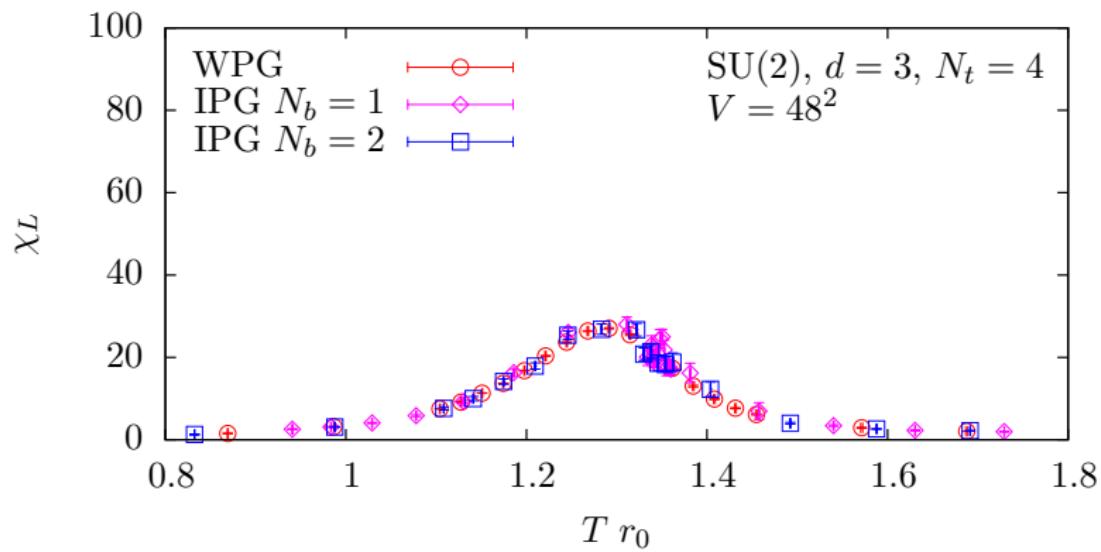


Induced QCD with $N_c - 1$ auxiliary bosonic fields

└ Numerical tests for 3d SU(2)

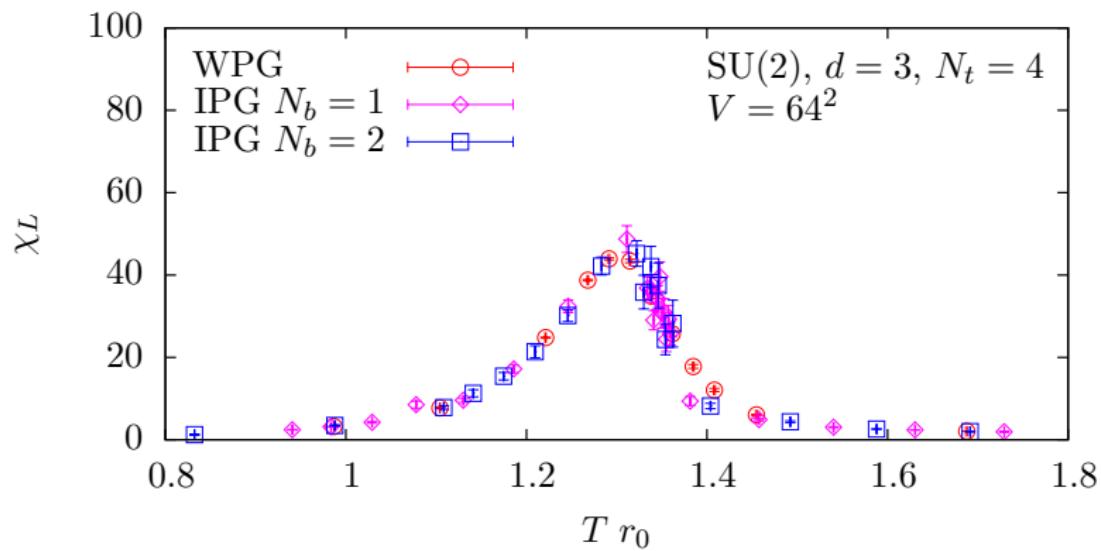
Phase transition at $N_t = 4$

Polyakov loop susceptibility:



Phase transition at $N_t = 4$

Polyakov loop susceptibility:

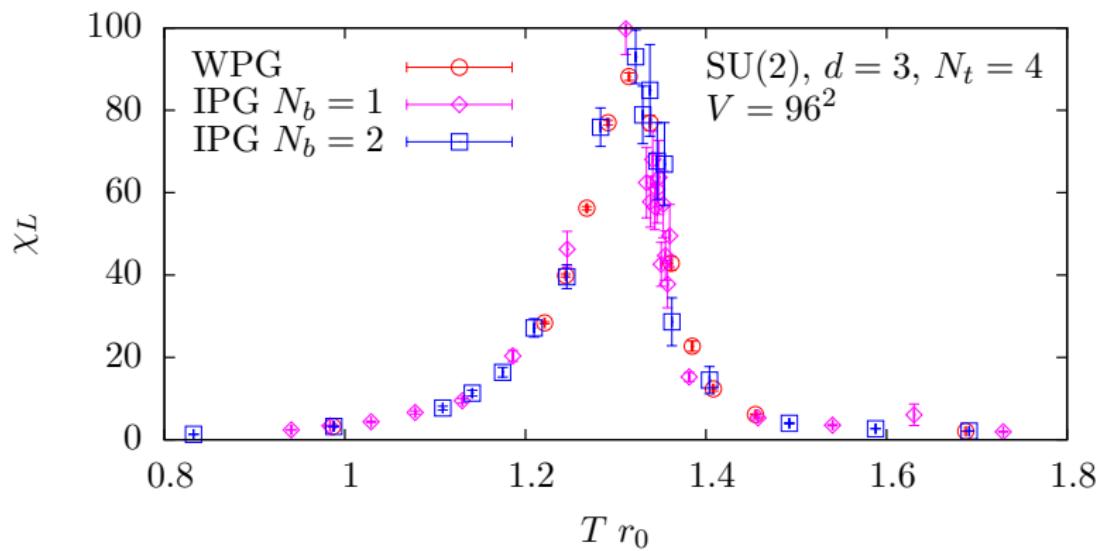


Induced QCD with $N_c - 1$ auxiliary bosonic fields

└ Numerical tests for 3d SU(2)

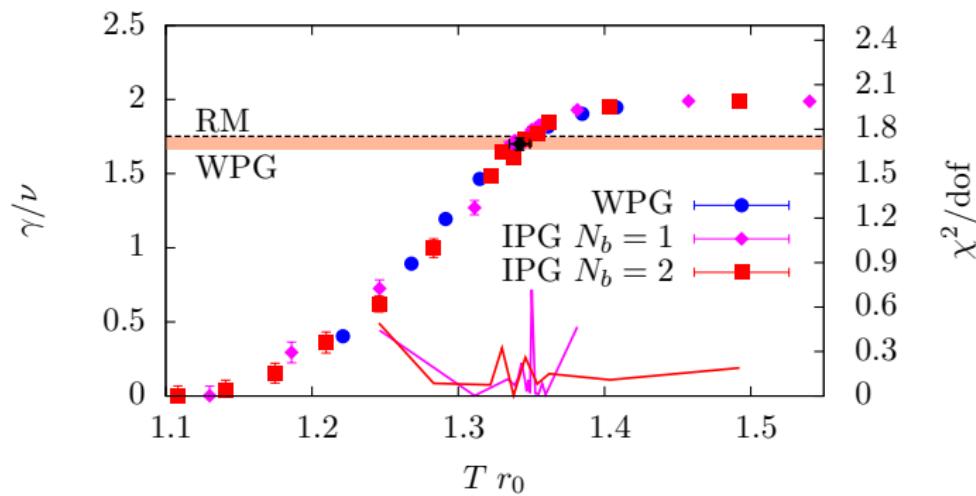
Phase transition at $N_t = 4$

Polyakov loop susceptibility:



Phase transition at $N_t = 4$

Fit: $\ln(\chi_L) = C + \gamma/\nu \ln(N_s)$

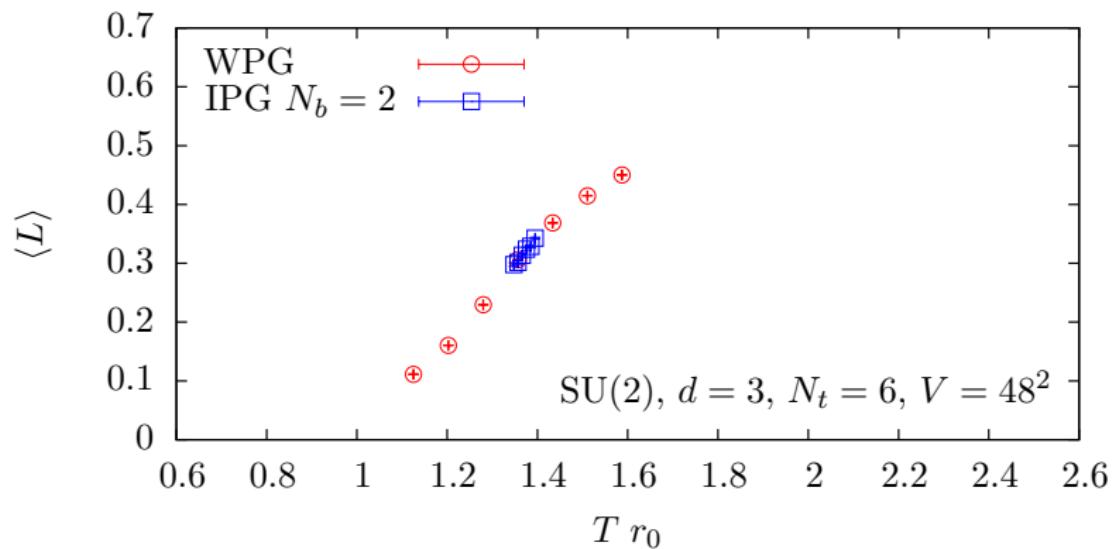


Black point: $\gamma/\nu = 1.70(4)$ (WPG)

[Engels *et al*, NPPS 53 (1997)]

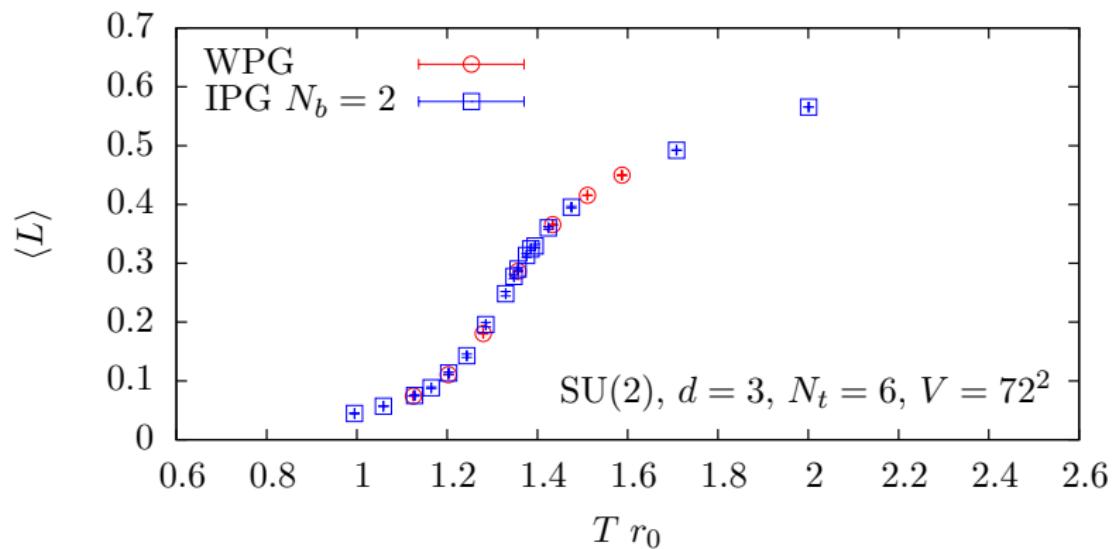
Phase transition at $N_t = 6$

Polyakov loop expectation value:



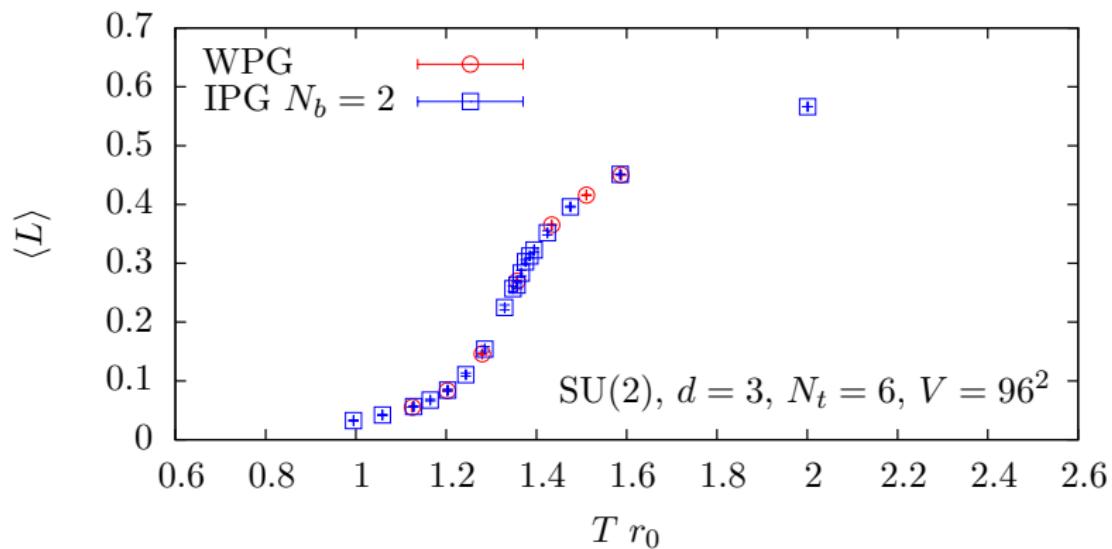
Phase transition at $N_t = 6$

Polyakov loop expectation value:



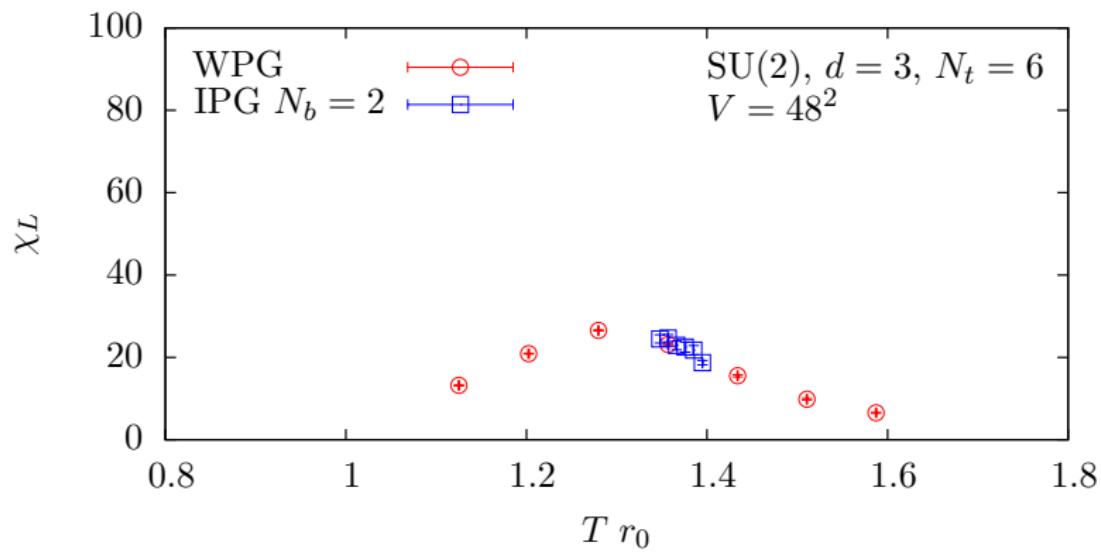
Phase transition at $N_t = 6$

Polyakov loop expectation value:



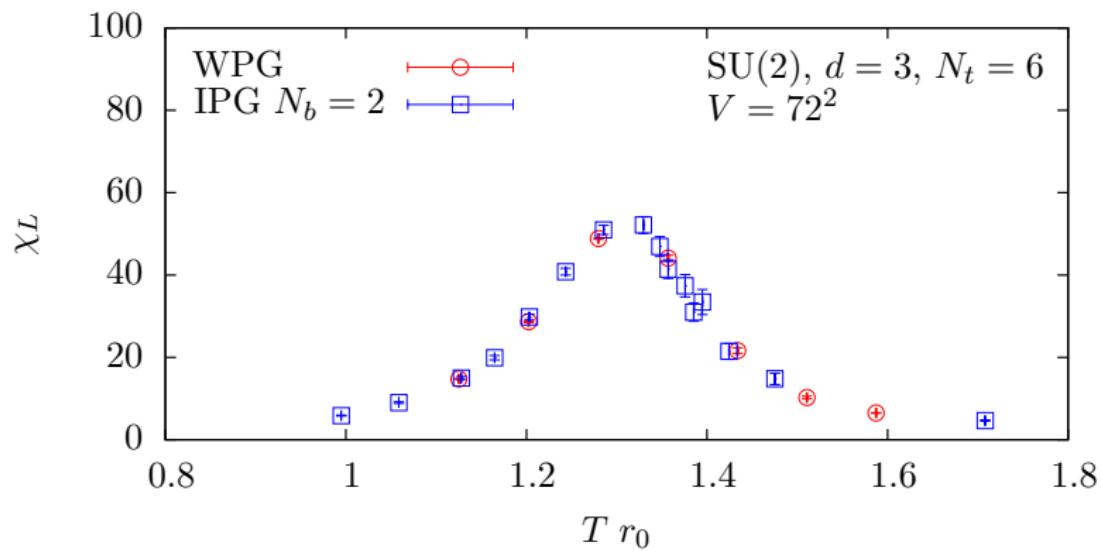
Phase transition at $N_t = 6$

Polyakov loop susceptibility:



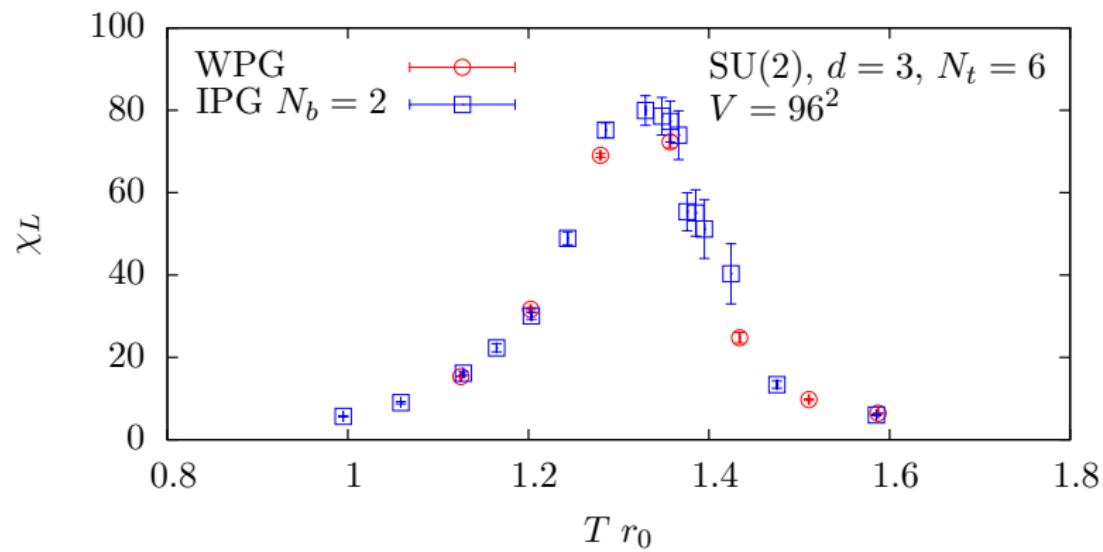
Phase transition at $N_t = 6$

Polyakov loop susceptibility:



Phase transition at $N_t = 6$

Polyakov loop susceptibility:



Induced QCD with $N_c - 1$ auxiliary bosonic fields

└ Dual representation

4. Dual representation

The bosonic version

Now: Why is this weight factor interesting?

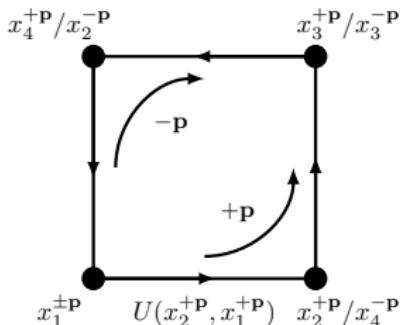
Bosonisation of the determinant:

[Budczies, Zirnbauer, math-ph/0305058]

$$\omega_{\text{BZ}}[U] = \prod_p \left| \det \left(m_{\text{BZ}}^4 - U_p \right) \right|^{-2N_b} = \int [d\bar{\phi}][d\phi] \exp \left\{ -S_{\text{BZ}}[\phi, \bar{\phi}, U] \right\}$$

$$S_{\text{BZ}}[\phi, \bar{\phi}, U] = \sum_{b=1}^{N_b} \sum_{\pm \mathbf{p}} \sum_{j=1}^4 [m_{\text{BZ}} \bar{\phi}_{b,\mathbf{p}}(x_j^{\mathbf{p}}) \phi_{b,\mathbf{p}}(x_j^{\mathbf{p}}) - \bar{\phi}_{b,\mathbf{p}}(x_{j+1}^{\mathbf{p}}) U(x_{j+1}^{\mathbf{p}}, x_j^{\mathbf{p}}) \phi_{b,\mathbf{p}}(x_j^{\mathbf{p}})]$$

- ▶ ϕ are complex scalar fields
- ▶ \mathbf{p} : index for oriented plaquette
- ▶ Scalar fields carry plaquette index \mathbf{p} .
⇒ Propagate only locally opposite to the plaquette orientation.
- ▶ Gauge field only couples to bosons.
⇒ Can be modified more easily!
- ▶ N_b defines the number of boson fields.



Modified version

Problem: **This action is complex!**

Solution: Rewrite determinant weight factor:

$$\begin{aligned}\omega_{\text{BZ}}[U] &\sim \prod_p \left[\det(m_{\text{BZ}}^4 - U_p) \det(m_{\text{BZ}}^4 - U_p^\dagger) \right]^{-N_b} \\ &\sim \prod_p \left[\det(\tilde{m} - \{U_p + U_p^\dagger\}) \right]^{-N_b}\end{aligned}$$

Now bosonize this determinant:

⇒ **Real action:**

$$S_B[\phi, \bar{\phi}, U] = \sum_{b=1}^{N_b} \sum_p \sum_{j=1}^4 [m \bar{\phi}_{b,p}(x_j) \phi_{b,p}(x_j) - \bar{\phi}_{b,p}(x_{j+1}) U(x_{j+1}, x_j) \phi_{b,p}(x_j) - \bar{\phi}_{b,p}(x_j) U(x_j, x_{j+1}) \phi_{b,p}(x_{j+1})]$$

Here: $\tilde{m} = m_{\text{BZ}}^4 + m_{\text{BZ}}^{-4}$ and $\tilde{m} = m^4 - 4m^2 + 2$.

Integration over gauge fields

Rewrite the partition function as a product of integrals:

$$\begin{aligned} Z &= \int [d\bar{\phi}][d\phi] \mathcal{F}[\phi, \bar{\phi}] \prod_{x, \mu} \int dU_\mu(x) e^{\frac{1}{2} \text{Tr}[U_\mu(x) A_\mu(x)[\phi, \bar{\phi}] + U_\mu^\dagger(x) A_\mu^\dagger(x)[\phi, \bar{\phi}]]} \\ &= \int [d\bar{\phi}][d\phi] \mathcal{F}[\phi, \bar{\phi}] \prod_{x, \mu} \mathcal{I}_{x, \mu}[\phi, \bar{\phi}] \end{aligned}$$

With $\mathcal{F}[\phi, \bar{\phi}] = \exp \left\{ - \sum_{b=1}^{N_b} \sum_p \sum_{j=1}^4 m \bar{\phi}_{b,p}(x_j) \phi_{b,p}(x_j) \right\}$

and $A_\mu(x)[\phi, \bar{\phi}] = 2 \sum_{b=1}^{N_b} \sum_{\nu \neq \mu} \left[\phi_{b, \bar{p}(x, \mu, \nu)}(x_{\bar{j}(\mu, \nu, 0, 1)}) \bar{\phi}_{b, \bar{p}(x, \mu, \nu)}(x_{\bar{j}(\mu, \nu, 0, 0)}) \right. \\ \left. + \phi_{b, \bar{p}(x - \hat{\nu}, \mu, \nu)}(x_{\bar{j}(\mu, \nu, 1, 1)}) \bar{\phi}_{b, \bar{p}(x - \hat{\nu}, \mu, \nu)}(x_{\bar{j}(\mu, \nu, 1, 0)}) \right]$

Integration over gauge fields

Need to solve integrals $\mathcal{I} = \int dU e^{\text{Tr}[U A + U^\dagger A^\dagger]}.$

For $U(N_c)$ they are known.

[e.g. Brower, Rossi, Tan, PRD23 (1981)]

For $SU(N_c)$: $\Rightarrow \mathcal{I} \sim \frac{1}{\Delta(\lambda^2)} \sum_{\xi=0}^{\infty} \varepsilon_\xi \cos(\xi \varphi) \det(K_\xi(\lambda))$

- ▶ ε_ξ : Neumann's factor; $\varepsilon_\xi = \begin{cases} 1 & \text{for } \xi = 0 \\ 2 & \text{for } \xi > 0 \end{cases}$
- ▶ φ : Phase of the determinant $\det(A)$
- ▶ λ_i^2 : eigenvalues of the $N_c \times N_c$ matrix AA^\dagger
- ▶ $\Delta(\lambda^2)$: Vandermonde determinant
- ▶ $K_\xi(\lambda)$: $N_c \times N_c$ matrix; $(K_\xi(\lambda))_{ij} = \lambda_i^{j-1} I_{\xi+j-1}(\lambda_i)$
with $I_m(z)$ modified Bessel function of the first kind (and $z \in \mathbb{R}$).
- ⇒ Looks difficult, but the sum in \mathcal{I} converges numerically very fast.

Full QCD

Now consider also **fermionic fields**, e.g. with a staggered type action:

$$S_F = \sum_x \left\{ \sum_\mu \left[\bar{\psi}(x) \alpha_\mu(x) U_\mu(x) \psi(x + \hat{\mu}) + \bar{\psi}(x + \hat{\mu}) \tilde{\alpha}_\mu(x) U_\mu^\dagger(x) \psi(x) \right] + m_q \bar{\psi}(x) \psi(x) \right\}$$

Expanding the weight factor, integrating over the grassmann variables and gauge field (following [Karsch, Mütter, NPB 313 (1989)]):

$$Z = \sum_{\{n, k, l_b, l_q\}} \left\{ \prod_x \omega_x \prod_b \omega_b \prod_{l_b} \omega_{l_b} \right\} \int [d\bar{\phi}] [d\phi] \prod_{l_q} \{\omega_{l_q}[\phi, \bar{\phi}]\} \mathcal{F}[\phi, \bar{\phi}] \prod_b \mathcal{I}_b[\phi, \bar{\phi}]$$

- ▶ **Monomer terms:** $\omega_x = \frac{N_c!}{n_x!} (2am_q)^{n_x}$ with $n_x \in \{0, \dots, N_c\}$
- ▶ **Dimer terms:** $\omega_b = \frac{(N_c - k_b)!}{N_c! k_b!}$ with $k_b \in \{0, \dots, N_c\}$
- ▶ **Baryon loops:** l_b ; ω_{l_b} depends on the loop geometry
- ▶ **Quark loops:** l_q ; $\omega_{l_q}[\phi, \bar{\phi}]$ depends on the loop geometry **NEW**

ω_{l_b} and ω_{l_q} are not positive definite. \Rightarrow **Still has a sign problem!**

Induced QCD with $N_c - 1$ auxiliary bosonic fields

└ A first look at simulating 4d SU(3)

5. A first look at simulating 4d SU(3)

The relevant case: **SU(3)** and **d = 4**

Now: Consider the interesting but (more) expensive case!

Problem: The local metropolis performs worse when going to SU(3).

⇒ We need an alternative algorithm!

Possible algorithm types:

- ▶ **Heatbath algorithm**

Usually shows the best performance for pure gauge theory.

- ▶ **Hybrid Monte-Carlo algorithm**

The algorithm of choice if quarks should be included.

Starting point: Bosonised version

$$Z = \int [dU][d\bar{\phi}][d\phi] \exp \{-S_B[\phi, \bar{\phi}, U]\}$$

$$S_B[\phi, \bar{\phi}, U] = \sum_{b=1}^{N_b} \sum_p \sum_{j=1}^4 [m \bar{\phi}_{b,p}(x_j) \phi_{b,p}(x_j) - \bar{\phi}_{b,p}(x_{j+1}) U(x_{j+1}, x_j) \phi_{b,p}(x_j) - \bar{\phi}_{b,p}(x_j) U(x_j, x_{j+1}) \phi_{b,p}(x_{j+1})]$$

A generic starting point

A suitable first step for all algorithms:

Draw the bosonic fields according to the distribution:

$$\exp(-S_B) = \exp(-\bar{\phi} M[U] \phi) \quad \text{with} \quad M = \text{diag}(M_p)$$

M_p are 12×12 complex matrices and can explicitly be written as $M_p = K_p^\dagger K_p$.

⇒ Draw fields $\eta_{b,p}$ according to $\exp(\eta_{b,p}^\dagger \eta_{b,p})$. → $\phi_{b,p} = K_p^{-1} \eta_{b,p}$

Some comments:

- ▶ The matrices K_p can be inverted explicitly and are equivalent for all b .
- ▶ With growing N_b we only need to do some additional matrix multiplications.
- ▶ In this way the role of the ϕ field is similar to the pseudo-fermionic fields for the inclusion of fermions.

Now that we obtained the fields ϕ according to the correct distribution we need to update the gauge field.

Update of the gauge field

The gauge field action is of the form:

$$S_g = \frac{1}{2} \text{Tr} \left\{ U A[\phi, \bar{\phi}] + U^\dagger A^\dagger[\phi, \bar{\phi}] \right\}$$

(looks similar to the Wilson action for link U with $\beta = N_c$)

Possible update algorithms:

- ▶ Use the standard SU(3) Cabibbo-Marinari heatbath for the update.
- ▶ Use the HMC algorithm to update U (if fermions are present).

Comments:

- ▶ Only the matrices A need to be stored, not the ϕ fields.
⇒ Even the limit $N_b \rightarrow \infty$ is possible.
- ▶ The matrices A are constant for the HMC.
⇒ No communication is needed during the MD.
- ▶ The force and action for the HMC is very easy to compute.

First tests with the HMC algorithm

Is the HMC in this form advantageous?

- ▶ It might be that scanning of the parameter space is inefficient due to the separate update of ϕ and U .
- ▶ Indeed in first tests we have seen rather large autocorrelation times.

⇒ Maybe it is helpful to include an update of ϕ in the MD.

- ▶ Possible advantage: Configurations are more decorrelated.
- ▶ Communication will be needed after every update of ϕ .
⇒ Not problematic if we can put the ϕ update on a larger time-step.
(in particular in combination with fermions)
- ▶ We need to store the full ϕ field.

Summary and Perspectives

- ▶ We have investigated a possible alternative discretisation of continuum pure gauge theory.
- ▶ While for $d = 2$ it can be shown that the theory has the correct continuum limit this is not guaranteed if $d > 2$.
- ▶ Numerical tests show good agreement with simulations using Wilson's gauge action, both for $T = 0$ and $T \neq 0$.
- ▶ In its original formulation with auxiliary boson fields the theory has a sign problem. \Rightarrow We introduced a modified version without sign problem.
- ▶ Passing to a dual theory via a direct integration over gauge fields:
 - ▶ Leads to a theory formulated in terms of auxiliary bosonic fields.
 - ▶ When fermions are included one can expand the action in Grassmann variables and integrate over the fermionic degrees of freedom and the gauge fields.
 - ▶ However, the resulting dual representation has a sign problem.
 - ▶ Is it possible to find a formulation without sign problem?
- ▶ Explore other analytical methods ...

Thank you for your attention!