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Motivation

Limitations of LQCD – Why changing the gauge action?
Main problem for studies of the QCD phase diagram:

I Simulating QCD at (real) non-zero chemical potential. (sign problem)

Possible solutions:

I Use complex Langevin for simulations.
[ Parisi, PLB 131 (1983); Aarts, Stamatescu, JHEP 0809 (2008); Sexty, PoS LAT (2014) ]

I Simulate on a Lefschetz thimble? [ Christoforetti et al, PRD 86 (2012); PRD 88 (2013) ]

I Dual variables and worm algorithms
[ e.g. Delgado Mercado et al, PRL 111 (2013), Gattringer, Lattice 2013 ]

I Fermion bags [ e.g. Chandrasekharan, EPJA 49 (2013) ]

Often it is the gauge action which makes it difficult to find solutions.
(see e.g. strong coupling solution to sign problem [ Karsch, Mütter, NPB 313 (1989) ] )

Idea: Find an alternative discretisation of pure gauge theory which allows the
use of strong coupling methods!

⇒ A gauge action which is linear in the gauge fields might do this job!
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Induced QCD

This idea is not new!

Ansatz: Induce pure gauge dynamics using auxiliary fields.

I Using fermionic fields:

I with standard (Wilson) fermions. [ Hamber, PLB 126 (1983) ]

I Standard fermions + 4-fermion current-current interaction.
[ Hasenfratz, Hasenfratz, PLB 297 (1992) ]

Need the limit Nf →∞, κ→ 0.

I Using scalar fields:

I Spin model. [ Bander, PLB 126 (1983) ]

Needs the limit Ns →∞ and gs →∞.
I Adjoint scalar fields. [ Kazakov, Migdal, NPB 397 (1992) ]

No “exact” pure gauge limit.
It is interesting since it allows a solution in terms of large NC .

⇒ This is where our induced model offers improvement!
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Motivation

Lattice regularised path integrals – fixing notations

Expectation value of operator O:

〈O〉 =
1

Z

∫
[dU][dψ][dψ̄] O ωG [U] ωF [ψ, ψ̄,U]

I ωG [U]: Pure gauge weight factor.

I ωF [ψ, ψ̄,U]: Quark weight factor.

Typically: ωG [U] ωF [ψ, ψ̄,U] = exp
[
−S [ψ, ψ̄,U]

]
.

Basic demands:

I The discretised action should preserve the continuum symmetries.

I The discretised action has to reproduce the continuum Yang-Mills action.
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The new weight factor

Zirnbauer’s weight factor

Consider the weight factor: [ Budczies, Zirnbauer, math-ph/0305058 ]

ωBZ[U] ∼
∏
p

∣∣∣det
(
m4

BZ − Up

)∣∣∣−2Nb

Here:

I p is an index running over unoriented plaquettes Up.

I mBZ is a real parameter with mBZ ≥ 1
(or more generally mBZ ∈ C with Re(mBZ) ≥ 1)

I Nb is a (integer) number

I we consider a hypercubic lattice

Does this weight factor have anything to do with continuum Yang-Mills theory?

Why is this weight factor interesting?
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The new weight factor

The naive pure gauge limit

There is one obvious way to establish a connection:

I Write the weight factor as:

ωBZ(U) ∼ exp

{
−2 Nb Re

[∑
p

Tr ln (1− αBZ Up)

]}

with αBZ = m−4
BZ

I Expand the exponent in small αBZ:

⇒ Seff
BZ(U) = −2 Nb

∑
p

[
αBZ ReTr (Up) +O(α2

BZ)
]

I Comparison with the Wilson action:

Equivalent if β = Nb Nc αBZ!

⇒ Pure gauge limit: αBZ → 0 Nb →∞ (so that β fixed)
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Non-trivial pure gauge limit for U(Nc)

Zirnbauers conjecture: [ Budczies, Zirnbauer, math-ph/0305058 ]

At fixed Nb ≥ Nc and d ≥ 2 the theory for gauge group U(Nc) has a
continuum limit for αBZ → 1 which reproduces continuum Yang-Mills theory.

(excluding the case d = 2 and Nb = Nc)

In [ math-ph/0305058 ] they give a proof for:

I The existence of a continuum limit for all numbers of dimension and
Nb ≥ Nc .

I The equivalence with Yang-Mills theory for d = 2 and Nb > Nc .

For d > 2 the equivalence with Yang-Mills theory is only a conjecture and relies
on the increase of the collective behaviour of the gauge field when going to
d > 2.

Conjecture: This should also work for other gauge groups.
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Non-trivial pure gauge limit for SU(Nc)

The extension of the proof to SU(Nc) is not completely straightforward!
(Exception: SU(2) case)

We have redone the proof for the existence of a continuum limit using a
method which differs from the one of the U(Nc) case.

Result:

I The continuum limit exists for Nb ≥ Nc − 5
4
.

(The exact border for U(Nc) is Nb ≥ Nc − 1
2
)

I It reproduces continuum Yang-Mills theory for d = 2 and Nb > Nc − 3
4
.

(For U(Nc) the border is Nb > Nc + 1
2
)

For SU(Nc) the argument for the increase of collectivity of the gauge field

when going to d > 2 still holds!
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The new weight factor

Excursus: Why not lattice perturbation theory?
Usually one would investigate the continuum limit via lattice perturbation
theory.

Here: effective action

Seff = −2 Nb Re

[∑
p

Tr ln (1− αBZ Up)

]

Expanding with U = exp(iga A) around Up = 1 for αBZ → 1:

⇒ Convergence radius vanishes for expansion around 1− αBZ.

Alternative possibility: Use large Nb perturbation theory.

I Systematic expansion possible only for αBZ . 0.172.

I Implies a suitable (Wilson like) coupling to be: g 2 =
2(1− αBZ)

NbαBZ

I We can now compute the relation between the two couplings.

Problem: Does not apply directly to the continuum limit!
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Non-trivial pure gauge limit for SU(Nc) – Numerical test

⇒ The only option is to probe the continuum limit numerically.

To check the existence of a continuum limit:

Consider the expectation value

〈F 〉αBZ
=

1

Z

∫
dU F (U) |det (1− αBZU)|−2Nb

for some testfunction F (U).

For αBZ → 1 we should have

|det (1− αBZU)|−2Nb → δSU(Nc )(U − 1) .

⇒ I.e. 〈F 〉αBZ
→ F (1)
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Non-trivial pure gauge limit for SU(Nc) – Numerical test
First: Lets look at F (U) = Tr(U)/Nc
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Non-trivial pure gauge limit for SU(Nc) – Numerical test
Analytical results for small (αBZ − 1) and SU(2) from character expansion:
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Non-trivial pure gauge limit for SU(Nc) – Numerical test
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Non-trivial pure gauge limit for SU(Nc) – Numerical test
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Non-trivial pure gauge limit for SU(Nc) – Numerical test
What about other test functions F (U)? (here F (U) = Tr[U + 6U2 − 1.5U3])
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Phases in the (Nb, αBZ) parameter space
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⇒ We will now test the properties of the theory in this limit!
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3. Numerical tests for 3d SU(2)
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Numerical tests for 3d SU(2)

Basic idea and setup

First: Consider the cheap case SU(2) at d = 3!

Suitable observables for a first test:

I T = 0 observables:
Quantities connected with the qq̄ potential.

I T 6= 0 observables:
Transition temperature and order of the transition.

Simulation setup:

I Wilson theory: Standard mixture of heatbath and overrelaxation updates.

I Induced theory: Local metropolis with links evolving in ε-ball.

I Computation of qq̄ potential: Lüscher-Weisz algorithm
[ Lüscher, Weisz, JHEP 0109 (2010) ]

I Scale setting: Sommer parameter r0

[ Sommer, NPB 411 (1994) ]
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Numerical tests for 3d SU(2)

First step: Matching between α and β

I Start with some information from 〈Up〉.
I Compute r0 in the interesting region:

⇒ Matching via r0/a:

β(α) =
b−1

1− α + b0 + b1(1− α)

(consistent with perturbation theory)

Nb b−1 b0 b1

1 0.623( 4) -1.78(11) 3.59(69)
2 2.453(14) -2.76(38) 0.99( 5)
3 4.399(29) -4.43(16) -0.17(21)
4 6.286(52) -6.01(23) -0.52(25)
5 8.54 (11) -8.99(41) 0.45(38)
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Comparison to large Nb perturbation theory

b−1 in large Nb perturbation theory (d = 3, Nc = 2):

b−1(Nb)

NcNb
= 1− 5

6Nb
+

0.0908283

N2
b

+ O(N−3
b )
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Numerical tests for 3d SU(2)

Second step: Look at static potential at similar lattice
spacings

I Compare to high precision results obtained with the Wilson action.
[ BB, PoS EPS-HEP (2013) ]

I At large distances R the energy levels of the qq̄ boundstate are well
described by an effective string theory!

[ Nambu, PLB 80, 372 (1979); Lüscher, Symanzik, Weisz, NPB 173, 365 (1980), Polyakov, NPB 164, 171 (1980) ]

Potential in effective string theory for the flux tube (d = 3):
[ Aharony et al, JHEP 0906 (2009); JHEP 1012 (2010); JHEP 1101 (2011); JHEP 1305 (2013) ]

V (R) = σR

√
1− π

12σR2
− b̄2

π3

60
√
σ3R4

⇒ There are two non-universal parameters, σ and b̄2 (boundary coeff.).

I First result:
√
σ r0 is equivalent in both theories!

I An agreement of b̄2 means that the potential is identical up to 4-5
significant digits!
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Numerical tests for 3d SU(2)

Results for b̄2

Results for b̄2:
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⇒ All results are in excellent agreement!
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Finite T properties

For T = 0 quantities comparison looks good!

So what about the finite temperature transition?

I For SU(2) and d = 3:

Second order phase transition in the 2d Ising universality class.
[ Engels et al, NPPS 53 (1997) ]

I We will test this at Nt = 4 first!

⇒ For Nt = 6 I present some first results.

I Scale setting via r0 and the mapping obtained at T = 0.
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Numerical tests for 3d SU(2)

Phase transition at Nt = 4

Polyakov loop expectation value:
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Numerical tests for 3d SU(2)

Phase transition at Nt = 4

Polyakov loop expectation value:
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Numerical tests for 3d SU(2)

Phase transition at Nt = 4

Polyakov loop expectation value:
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Numerical tests for 3d SU(2)

Phase transition at Nt = 4

Polyakov loop expectation value:
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Numerical tests for 3d SU(2)

Phase transition at Nt = 4

Polyakov loop susceptibility:
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Numerical tests for 3d SU(2)

Phase transition at Nt = 4
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Numerical tests for 3d SU(2)

Phase transition at Nt = 4

Polyakov loop susceptibility:
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Numerical tests for 3d SU(2)

Phase transition at Nt = 4

Polyakov loop susceptibility:
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Numerical tests for 3d SU(2)

Phase transition at Nt = 4

Fit: ln(χL) = C + γ/ν ln(Ns)
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Numerical tests for 3d SU(2)

Phase transition at Nt = 6

Polyakov loop expectation value:
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Numerical tests for 3d SU(2)

Phase transition at Nt = 6

Polyakov loop expectation value:
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Numerical tests for 3d SU(2)

Phase transition at Nt = 6

Polyakov loop expectation value:
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Numerical tests for 3d SU(2)

Phase transition at Nt = 6

Polyakov loop susceptibility:
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Numerical tests for 3d SU(2)

Phase transition at Nt = 6

Polyakov loop susceptibility:
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Numerical tests for 3d SU(2)

Phase transition at Nt = 6

Polyakov loop susceptibility:
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4. Dual representation
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Dual representation

The bosonic version
Now: Why is this weight factor interesting?

Bosonisation of the determinant: [ Budczies, Zirnbauer, math-ph/0305058 ]

ωBZ[U] =
∏
p

∣∣∣det
(
m4

BZ − Up

)∣∣∣−2Nb

=

∫
[d φ̄][dφ] exp

{
−SBZ[φ, φ̄,U]

}
SBZ[φ, φ̄,U] =

Nb∑
b=1

∑
±p

4∑
j=1

[
mBZ φ̄b,p(xp

j )φb,p(xp
j )− φ̄b,p(xp

j+1) U(xp
j+1, x

p
j ) φb,p(xp

j )
]

I φ are complex scalar fields

I p: index for oriented plaquette

I Scalar fields carry plaquette index p.
⇒ Propagate only locally opposite to the

plaquette orientation.

I Gauge field only couples to bosons.
⇒ Can be modified more easily!

I Nb defines the number of boson fields.
U(x+p

2 , x+p
1 )

+p

−p

x±p
1 x+p

2 /x−p
4

x+p
3 /x−p

3x+p
4 /x−p

2
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Dual representation

Modified version

Problem: This action is complex!

Solution: Rewrite determinant weight factor:

ωBZ[U] ∼ ∏
p

[
det
(
m4

BZ − Up
)

det
(
m4

BZ − U†p
)]−Nb

∼ ∏
p

[
det
(
m̃ −

{
Up + U†p

})]−Nb

Now bosonize this determinant:

⇒ Real action:

SB [φ, φ̄,U] =

Nb∑
b=1

∑
p

4∑
j=1

[
m φ̄b,p(xj)φb,p(xj)− φ̄b,p(xj+1) U(xj+1, xj) φb,p(xj)

−φ̄b,p(xj) U(xj , xj+1) φb,p(xj+1)
]

Here: m̃ = m4
BZ + m−4

BZ and m̃ = m4 − 4 m2 + 2.
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Dual representation

Integration over gauge fields

Rewrite the partition function as a product of integrals:

Z =

∫
[d φ̄][dφ] F [φ, φ̄]

∏
x,µ

∫
dUµ(x) e

1
2

Tr[Uµ(x) Aµ(x)[φ,φ̄]+U†
µ(x) A†

µ(x)[φ,φ̄]]

=

∫
[d φ̄][dφ] F [φ, φ̄]

∏
x,µ

Ix,µ[φ, φ̄]

With F [φ, φ̄] = exp

−
Nb∑
b=1

∑
p

4∑
j=1

m φ̄b,p(xj )φb,p(xj )


and Aµ(x)[φ, φ̄] = 2

Nb∑
b=1

∑
ν 6=µ

[
φb,p̄(x,µ,ν)(xj̄(µ,ν,0,1))φ̄b,p̄(x,µ,ν)(xj̄(µ,ν,0,0))

+φb,p̄(x−ν̂,µ,ν)(xj̄(µ,ν,1,1))φ̄b,p̄(x−ν̂,µ,ν)(xj̄(µ,ν,1,0))
]
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Dual representation

Integration over gauge fields

Need to solve integrals I =

∫
dU eTr[U A+U† A†] .

For U(Nc) they are known. [ e.g. Brower, Rossi, Tan, PRD23 (1981) ]

For SU(Nc): ⇒ I ∼ 1

∆(λ2)

∞∑
ξ=0

εξ cos(ξ ϕ) det (Kξ(λ))

I εξ: Neumann’s factor; εξ =

{
1 forξ = 0
2 forξ > 0

I ϕ: Phase of the determinant det(A)

I λ2
i : eigenvalues of the Nc × Nc matrix AA†

I ∆(λ2): Vandermonde determinant

I Kξ(λ): Nc × Nc matrix; (Kξ(λ))ij = λj−1
i Iξ+j−1(λi )

with Im(z) modified Bessel function of the first kind (and z ∈ R).

⇒ Looks difficult, but the sum in I converges numerically very fast.
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Dual representation

Full QCD
Now consider also fermionic fields, e.g. with a staggered type action:

SF =
∑
x

{∑
µ

[
ψ̄(x)αµ(x)Uµ(x)ψ(x + µ̂) + ψ̄(x + µ̂)α̃µ(x)U†µ(x)ψ(x)

]
+mqψ̄(x)ψ(x)

}
Expanding the weight factor, integrating over the grassmann variables and
gauge field (following [ Karsch, Mütter, NPB 313 (1989) ] ):

Z =
∑

{n,k,lb,lq}

{∏
x

ωx

∏
b

ωb

∏
lb

ωlb

}∫
[d φ̄][dφ]

∏
lq

{
ωlq [φ, φ̄]

}
F [φ, φ̄]

∏
b

Ib[φ, φ̄]

I Monomer terms: ωx = Nc !
nx !

(2amq)nx with nx ∈ {0, . . . ,Nc}

I Dimer terms: ωb = (Nc−kb)!
Nc !kb !

with kb ∈ {0, . . . ,Nc}
I Baryon loops: lb; ωlb depends on the loop geometry

I Quark loops: lq; ωlq [φ, φ̄] depends on the loop geometry NEW

ωlb and ωlq are not positive definite. ⇒ Still has a sign problem!
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The relevant case: SU(3) and d = 4
Now: Consider the interesting but (more) expensive case!

Problem: The local metropolis performs worse when going to SU(3).
⇒ We need an alternative algorithm!

Possible algorithm types:

I Heatbath algorithm
Usually shows the best performance for pure gauge theory.

I Hybrid Monte-Carlo algorithm
The algorithm of choice if quarks should be included.

Starting point: Bosonised version

Z =

∫
[dU][d φ̄][dφ] exp

{
−SB [φ, φ̄,U]

}
SB [φ, φ̄,U] =

Nb∑
b=1

∑
p

4∑
j=1

[
m φ̄b,p(xj)φb,p(xj)− φ̄b,p(xj+1) U(xj+1, xj) φb,p(xj)

−φ̄b,p(xj) U(xj , xj+1) φb,p(xj+1)
]



Induced QCD with Nc − 1 auxiliary bosonic fields

A first look at simulating 4d SU(3)

A generic starting point

A suitable first step for all algorithms:
Draw the bosonic fields according to the distribution:

exp(−SB) = exp(−φ̄M[U]φ) with M = diag(Mp)

Mp are 12× 12 complex matrices and can explicitly be written as Mp = K †pKp.

⇒ Draw fields ηb,p according to exp(η†b,pηb,p). → φb,p = K−1
p ηb,p

Some comments:

I The matrices Kp can be inverted explicitly and are equivalent for all b.

I With growing Nb we only need to do some additional matrix
multiplications.

I In this way the role of the φ field is similar to the pseudo-fermionic fields
for the inclusion of fermions.

Now that we obtained the fields φ according to the correct distribution we need

to update the gauge field.
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Update of the gauge field

The gauge field action is of the form:

Sg =
1

2
Tr
{
U A[φ, φ̄] + U† A†[φ, φ̄]

}
(looks similar to the Wilson action for link U with β = Nc)

Possible update algorithms:

I Use the standard SU(3) Cabbibo-Marinari heatbath for the update.

I Use the HMC algorithm to update U (if fermions are present).

Comments:

I Only the matrices A need to be stored, not the φ fields.
⇒ Even the limit Nb →∞ is possible.

I The matrices A are constant for the HMC.
⇒ No communication is needed during the MD.

I The force and action for the HMC is very easy to compute.
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First tests with the HMC algorithm

Is the HMC in this form advantageous?

I It might be that scanning of the parameter space is inefficient due to the
separate update of φ and U.

I Indeed in first tests we have seen rather large autocorrelation times.

⇒ Maybe it is helpfull to include an update of φ in the MD.

I Possible advantage: Configurations are more decorelated.

I Communication will be needed after every update of φ.
⇒ Not problematic if we can put the φ update on a larger time-step.
(in particular in combination with fermions)

I We need to store the full φ field.
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Summary and Perspectives

I We have investigated a possible alternative discretisation of continuum
pure gauge theory.

I While for d = 2 it can be shown that the theory has the correct
continuum limit this is not guaranteed if d > 2.

I Numerical tests show good agreement with simulations using Wilson’s
gauge action, both for T = 0 and T 6= 0.

I In its original formulation with auxiliary boson fields the theory has a sign
problem. ⇒ We introduced a modified version without sign problem.

I Passing to a dual theory via a direct integration over gauge fields:

I Leads to a theory formulated in terms of auxiliary bosonic fields.
I When fermions are include one can expand the action in grassmann

variables and integrate over the fermionic degrees of freedom and the
gauge fields.

I However, the resulting dual representation has a sign problem.
I Is it possible to find a formulation without sign problem?

I Explore other analytical methods ...
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Thank you for your attention!
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