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Matter in magnetic fields



Matter in magnetic fields (linear response)

• paramagnets: attracted by magnetic field
• diamagnets: repel magnetic field

paramagnet: liquid oxygen
[NCSU physics demonstrations]

χ ≈ 0.004
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Matter in magnetic fields (linear response)

• paramagnets: attracted by magnetic field
• diamagnets: repel magnetic field

paramagnet: liquid oxygen diamagnet: frog
[NCSU physics demonstrations] [Ignobel prize ’10]

χ ≈ 0.004 χ ≈ −0.00001
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QCD matter in magnetic fields

• is the thermal/dense QCD medium para- or diamagnetic?

• what implications does the magnetic response have for
phenomenology?
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QCD matter in magnetic fields



QCD and quark-gluon plasma

• elementary particle interactions:
gravitational, electromagnetic, weak, strong︸ ︷︷ ︸

Standard Model
• strong sector: Quantum Chromodynamics
• elementary particles: quarks (∼ electrons) and

gluons (∼ photons)
but: they cannot be observed directly
⇒ confinement at low temperatures
• asymptotic freedom [Gross, Politzer, Wilczek ’04]

⇒ heating or compressing the system leads to
deconfinement: quark-gluon plasma is formed
• transition between the two phases
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QCD phase diagram
• quark-gluon plasma in nature and in experiments

I large T : early Universe, cosmological models
I large ρ: neutron stars
I large T and/or ρ: heavy-ion collisions

• additional, relevant parameters:
I background magnetic field B
I proton-neutron density asymmetry ρI = ρp − ρn 4 / 31



Example 1: neutron star

[Rea et al. ’13]

• possible quark core at center with high density, low
temperature
• magnetars: extreme strong surface magnetic fields are

measured
• nonzero isospin density: ρn > ρp
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Example 2: heavy-ion collision

[STAR collaboration, ’10]

• off-central collisions generate magnetic fields:
strength controlled by

√
s and impact parameter (centrality)

• strong (but very uncertain) time-dependence
• again ρn > ρp
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Typical magnetic fields

• magnetic field of Earth 10−5 T
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Typical magnetic fields

• magnetic field of Earth 10−5 T
• fridge magnet 10−3 T
• magnetic resonance imaging 10 T
• magnetar surface [Duncan, Thompson ’92] 1010 T
• magnetar core 1014 T?
• LHC Pb-Pb at 2.7 TeV, b = 10 fm [Skokov ’09] 1015 T

convert: e · 1015 T ≈ 3m2
π ≈ Λ2

QCD
⇒ electromagnetic and strong interactions compete

7 / 31



Magnetic susceptibility

• simplification: constant background magnetic field B
• free energy density in background magnetic field

f (B) = −T
V logZ(B)

• magnetization

M = − ∂f
∂(eB)

, M|B=0 = 0

• susceptibility

χ =
∂M
∂(eB)

∣∣∣∣
B=0

= − ∂2f
∂(eB)2

∣∣∣∣∣
B=0

• sign distinguishes between
I paramagnets (χ > 0) enjoy magnetic field
I diamagnets (χ < 0) repel magnetic field
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Objective

• calculate χ along the QCD phase diagram
I advantageous to use µ instead of ρ, and µI instead of ρI

(grand canonical approach)
• consider the free case (no strong interactions) → can be

solved analytically
χfree(T , µ, µI)

• consider full (non-perturbative) QCD → lattice simulations

χ(T , µ = 0, µI)

(sign problem at µ > 0 . . .)
I asymptotic freedom: χfree = χ for high T/µ/µI
I free case can give some insight
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Analytical considerations
in the free theory



Expectation for the susceptibility

• based on the free theory
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Renormalization

• statement: χ undergoes additive renormalization
• proof: let’s write down the total free energy density

f total = f γ + f matter =
B2

2 + f matter

I photon wavefunction renormalizes:

A2
µ = Zq · A2

µ,r , Zq = 1 + β1q2
r log Λ2

I due to Ay = B · x and QED Ward identity

B2 = Zq · B2
r , q2 = Z−1

q · q2
r , qB = qr Br

I β1: lowest-order QED β-function coefficient (no internal γ)
I matter part should cancel this divergence

(no new divergences due to B in f total)

f total =
B2

r
2 + β1(qB)2 log Λ + f matter︸ ︷︷ ︸

should be finite 11 / 31



Renormalization

• consider free quarks (electric charge but no color charge)
• expand f matter in B at T = 0: in terms of diagrams

= + + + . . .

I O(B2) term is indeed −β1 · (qB)2 log Λ [Schwinger ’51],
making f total finite

I O(B4,6,...) terms are finite
I background field method [Abbott ’81]

I ‘vacuum polarization diagram with magnetic field-legs’

• 2-loop contribution: β1 → β2q2 [Abbott ’81, Dunne ’04]
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= + + + . . .

I O(B2) term is indeed −β1 · (qB)2 log Λ [Schwinger ’51],
making f total finite

I O(B4,6,...) terms are finite
I background field method [Abbott ’81]

I ‘vacuum polarization diagram with magnetic field-legs’
• 2-loop contribution: β1 → β1c1g2
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Magnetic susceptibility

• total free energy density

f total(T = 0,B) =
B2

r
2 + O((qB)4)︸ ︷︷ ︸

matter-related

I so the susceptibility vanishes at T = 0

χr (T = 0) = 0

• at nonzero temperatures f matter gets thermal O((qB)2)
contributions

χr (T > 0) 6= 0
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Magnetic susceptibility at high T

• consider a free quark with charge q
• using Schwinger proper time regularization, the susceptibility

reads [Bali, Bruckmann, Endrődi et al 1406.0269]

χfree
r = −Nc · β1 · (q/e)2

∫ ds
s e−m2s ·

{
Θ4

[
0, e−1/(4sT 2)

]
− 1

}
T→∞−−−−→ Nc · β1 · (q/e)2 log

(
T 2

m2

)
(see also [Elmfors et al. ’94])

• QED is not asymptotically free (β1 = 1/12π2 > 0)
⇒ free quarks at high T are paramagnetic
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Magnetic susceptibility at high µ or µI

• consider a free quark with charge q
• using Schwinger proper time regularization, the susceptibility

reads [Bali, Bruckmann, Endrődi et al 1406.0269]

χfree
r = −Nc · β1 · (q/e)2

∫ ds
s e−m2s ·

{
Θ4

[ iµ
2T , e−1/(4sT 2)

]
− 1

}
µ→∞−−−→ Nc · β1 · (q/e)2 log

(
µ2

m2

)
(see also [Elmfors et al. ’94])

• QED is not asymptotically free (β1 = 1/12π2 > 0)
⇒ free quarks at high µ/µI are paramagnetic
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Magnetic susceptibility at low energies

• low-energy regime of QCD: dominant degrees of freedom are
pions (χPT)

I so consider a free pion (charge ±e)
• similarly as before: proper-time regularization

[Bali, Bruckmann, Endrődi et al 1406.0269]

χpion
r (T ) = −βscalar

1

∫ ds
s e−m2s ·

{
Θ3
[
0, e−1/(4sT 2)

]
− 1

}
︸ ︷︷ ︸

finite and positive

(see also [Elmfors et al. ’94])
I scalar QED β-function βscalar

1 = 1/48π2 > 0
⇒ free pions are diamagnetic
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Expectation for the susceptibility

• χr (T = 0) = 0 due to renormalization prescription
• asymptotic freedom in QCD + no asymptotic freedom in QED
⇒ χr > 0 for high temperatures
• expectation: pions are relevant at low energies
⇒ χr < 0 for low temperatures
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Results I: T > 0, µ = µI = 0



Lattice results

• direct lattice simulation at nonzero B is possible (no sign
problem)
• complication: B in a finite periodic volume is quantized

Φ = qB · L2 = 2πNb, Nb ∈ Z

I χ is not directly accessible
• various methods to circumvent this problem

[Bali et al 1303.1328] [DeTar et al 1309.1142]
[Bonati et al 1307.8063] [Bali et al 1406.0269]

• lattice setup: stout smeared staggered quarks + Symanzik
gauge action, physical pion mass, continuum estimate based
on Nt = 6, 8, 10 [Bali et al 1406.0269]
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Lattice results

• confirms the free-case prediction qualitatively
• quantitative agreement among the different approaches

[Bali, Bruckmann, Endrődi et al 1406.0269]

• notice magnitude χr ≈ 0.04 at high T
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Lattice results at T > 0

• transition from diamagnetism to paramagnetism slightly below
Tc [Bali, Bruckmann, Endrődi et al 1406.0269]

• comparison to Hadron Resonance Gas model (low T )
and to perturbation theory (high T )
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Results II: T = µ = 0, µI 6= 0



Isospin chemical potential

• µI = µu = −µd excites pions π+ = d̄γ5u

• at T = 0: to produce a pion costs µI = mπ/2 energy
I below µI = mπ/2 nothing can happen: Silver Blaze region
I above µI > mπ/2: Bose-Einstein condensation

• there is a phase transition in between, characterized by various
fermionic observables

I quark condensate ψ̄ψ = ūu + d̄d
I pion condensate π = ūγ5d − d̄γ5u
I isospin density nI = ūγ0u − d̄γ0d
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Expectation for µI > 0, T = 0

• χr (µI < mπ/2) = 0 due to renormalization prescription +
Silver Blaze
• asymptotic freedom in QCD + no asymptotic freedom in QED
⇒ χr > 0 for high µI
• pion condensation phase, superconducting
⇒ χr → −∞ just above µI = mπ/2
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Isospin chemical potential on the lattice

• 2-flavor QCD

Sfermion = ψ̄Mψ, ψ =

(
u
d

)
with fermion matrix [Kogut, Sinclair ’02]

M =

(
/D(+µI) + m +λγ5
−λγ5 /D(−µI) + m

)
• symmetry breaking pattern

SU(2)L × SU(2)R
m 6=0−−−→ SU(2)V

µI 6=0−−−→ U(1)τ3
λ 6=0−−→ /o

• explicit breaking λ is necessary to observe spontaneous
symmetry breaking of U(1) (in finite volume)

I simulate at λ 6= 0 and extrapolate λ→ 0 at end
• lattice setup: rooted staggered quarks + plaquette gauge

action, mπa = 0.402(5) [Endrődi 1407.1216]
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Observables at nonzero µI [Endrődi 1407.1216]

• extrapolation λ→ 0: use χPT [Splittorff et al. ’02] 23 / 31



Susceptibility at nonzero µI [Endrődi 1407.1216]

• again Silver Blaze up to mπ/2 (as should be for any
observable)
• strong diamagnetism, as predicted by the free-case argument

24 / 31



Perfect diamagnetism?

• condensed pions form a superconducting state
→ should expel magnetic field completely (χr = −∞)

I no real superconductivity due to pionic interactions plus finite
volume

I at µI > mπ/2 deconfinement also sets in, pions dissolve
• altogether, χr remains finite 25 / 31



Implications



Magnetic phase diagram

• strong paramagnetism at low µI , high T
⇒ affect elliptic flow in HIC
[Bali, Bruckmann, Endrődi, Schäfer 1311.2559]

• strong diamagnetism at T = 0, high µI
⇒ impact on inner core of magnetars [Endrődi 1407.1216]
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Paramagnetism and inhomogeneous fields

• −∂2f r/∂(eB)2 = χr > 0
⇒ free energy f r minimized in the region where B is maximal
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Implication I: heavy ion collisions

• strong paramagnetism at high T
→ free energy minimal where B is maximal

I non-uniform magnetic fields in HIC [Deng et al ’12]

• free energy minimization squeezes QCD matter anisotropically
[Bali, Bruckmann, Endrődi, Schäfer 1311.2559]
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Squeezing versus elliptic flow

• elliptic flow: anisotropic pressure gradients due to initial
geometry

I competition between squeezing and elliptic flow
I crude estimate: squeezing contributes 5− 50%, depending on

beam energy [Bali, Bruckmann, Endrődi, Schäfer 1311.2559]
I need more sophisticated models foc realistic comparison,

ongoing work
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Implication II: magnetized neutron stars

• strong diamagnetism at high µI
→ free energy minimal where B is minimal

I in magnetars: outward force

I poloidal field configuration
[Bocquet et al ’95]:
component towards equator is
larger

I consider typical pressure profile
estimate [Glendenning]

I Fd can be 10% of the pressure
gradient [Endrődi 1407.1216]

impact on e.g. convective
processes in the core
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Summary

• B significantly affects the thermal/dense QCD medium

I ‘magnetic phase diagram’

I possible implication for
heavy-ion collisions:
paramagnetic squeezing

I possible implication for
neutron stars: anisotropic
outward force
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Backup



Susceptibility and BEC

• qualitative understanding of strong diamagnetism from a
different point of view:

I pion mass in magnetic field mπ(B) =
√

m2
π + eB

I expect condensation threshold µI,crit = mπ(B)/2
I automatically ensures a large negative χr



Magnetic field and magnetic induction

• distinguish between external field and induction

B = H +M · e

• here we work with a field B traversing the medium

M≈ χr · (eB)

I finding out H for small fields

H = (1− e2χr ) · B → B
H =

1
1− (4πα)χr

(then complete Meissner effect ↔ χr = −∞)
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