

Magnetic response of isospin-asymmetric QCD matter

Gergely Endrődi

University of Regensburg

Universität Regensburg

Perspectives and Challenges in Lattice Gauge Theory
Mumbai, 16. February 2015

Contents

- introduction
 - ▶ a tale about matter in magnetic fields
 - ▶ QCD matter at nonzero density and in nonzero background magnetic field
- magnetic susceptibility
 - ▶ renormalization
 - ▶ prediction at low energies (free hadrons)
 - ▶ prediction at high energies (free quarks+gluons)
 - ▶ lattice results at nonzero temperature, zero densities
 - ▶ lattice results at zero temperature, nonzero isospin density
- implication of the results
 - ▶ heavy-ion collisions
 - ▶ magnetars
 - ▶ sketch of the 'magnetic phase diagram'

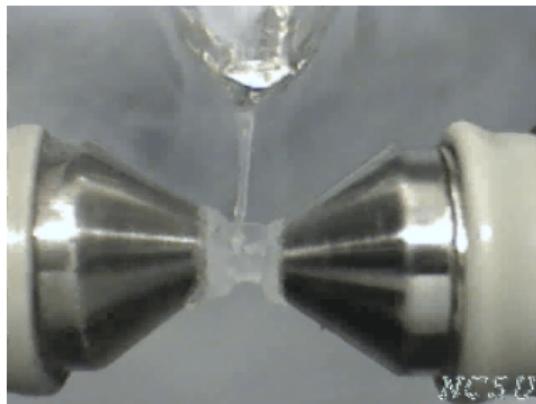
Matter in magnetic fields

Matter in magnetic fields (linear response)

- paramagnets: attracted by magnetic field
- diamagnets: repel magnetic field

Matter in magnetic fields (linear response)

- paramagnets: attracted by magnetic field
- diamagnets: repel magnetic field



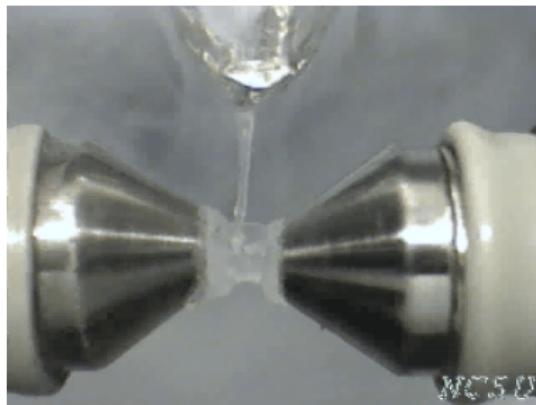
paramagnet: liquid oxygen

[NCSU physics demonstrations]

$$\chi \approx 0.004$$

Matter in magnetic fields (linear response)

- paramagnets: attracted by magnetic field
- diamagnets: repel magnetic field



paramagnet: liquid oxygen

[NCSU physics demonstrations]

$$\chi \approx 0.004$$

diamagnet: frog

[Ignobel prize '10]

$$\chi \approx -0.00001$$

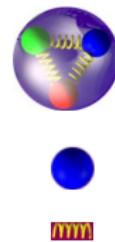
QCD matter in magnetic fields

- is the thermal/dense QCD medium para- or diamagnetic?
- what implications does the magnetic response have for phenomenology?

QCD matter in magnetic fields

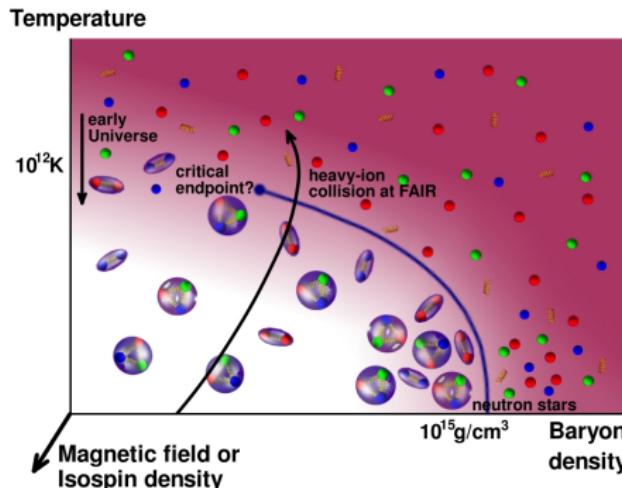
QCD and quark-gluon plasma

- elementary particle interactions:
gravitational, electromagnetic, weak, strong
Standard Model
- strong sector: Quantum Chromodynamics
- elementary particles: quarks (\sim electrons) and gluons (\sim photons)
but: they cannot be observed directly
 \Rightarrow *confinement* at low temperatures
- asymptotic freedom [Gross, Politzer, Wilczek '04]
 \Rightarrow heating or compressing the system leads to
deconfinement: quark-gluon plasma is formed
- transition between the two phases



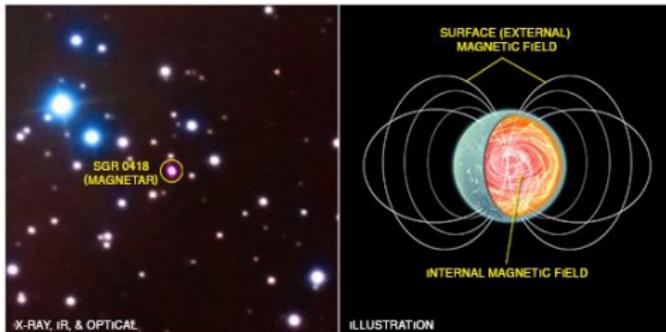
QCD phase diagram

- quark-gluon plasma in nature and in experiments
 - ▶ large T : early Universe, cosmological models
 - ▶ large ρ : neutron stars
 - ▶ large T and/or ρ : heavy-ion collisions



- additional, relevant parameters:
 - ▶ background magnetic field B
 - ▶ proton-neutron density asymmetry $\rho_I = \rho_p - \rho_n$

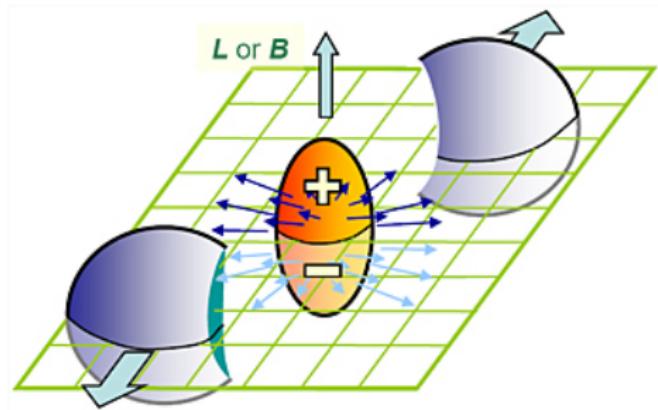
Example 1: neutron star



[Rea et al. '13]

- possible quark core at center with high density, low temperature
- magnetars: extreme strong surface magnetic fields are measured
- nonzero isospin density: $\rho_n > \rho_p$

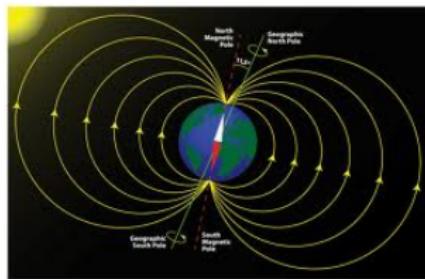
Example 2: heavy-ion collision



[STAR collaboration, '10]

- off-central collisions generate magnetic fields: strength controlled by \sqrt{s} and impact parameter (centrality)
- strong (but very uncertain) time-dependence
- again $\rho_n > \rho_p$

Typical magnetic fields



- magnetic field of Earth 10^{-5} T

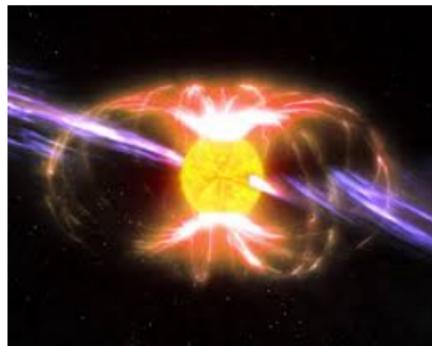
Typical magnetic fields

- magnetic field of Earth 10^{-5} T
- fridge magnet 10^{-3} T

Typical magnetic fields

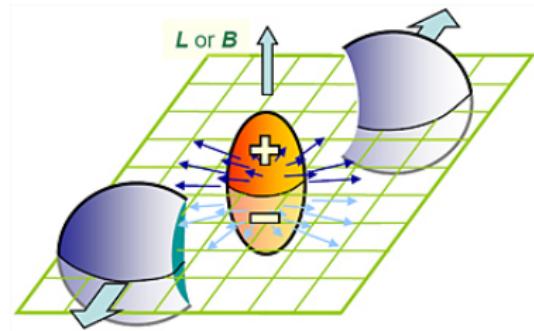
- magnetic field of Earth 10^{-5} T
- fridge magnet 10^{-3} T
- magnetic resonance imaging 10 T

Typical magnetic fields



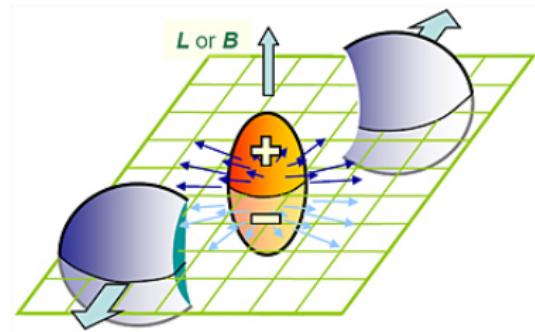
- magnetic field of Earth 10^{-5} T
- fridge magnet 10^{-3} T
- magnetic resonance imaging 10 T
- magnetar surface [Duncan, Thompson '92] 10^{10} T
- magnetar core 10^{14} T?

Typical magnetic fields



- magnetic field of Earth 10^{-5} T
- fridge magnet 10^{-3} T
- magnetic resonance imaging 10 T
- magnetar surface [Duncan, Thompson '92] 10^{10} T
- magnetar core 10^{14} T?
- LHC Pb-Pb at 2.7 TeV, $b = 10$ fm [Skokov '09] 10^{15} T

Typical magnetic fields



- magnetic field of Earth 10^{-5} T
- fridge magnet 10^{-3} T
- magnetic resonance imaging 10 T
- magnetar surface [Duncan, Thompson '92] 10^{10} T
- magnetar core 10^{14} T?
- LHC Pb-Pb at 2.7 TeV, $b = 10$ fm [Skokov '09] 10^{15} T

$$\text{convert: } e \cdot 10^{15} \text{ T} \approx 3m_\pi^2 \approx \Lambda_{\text{QCD}}^2$$

\Rightarrow electromagnetic and strong interactions compete

Magnetic susceptibility

- simplification: constant background magnetic field B
- free energy density in background magnetic field

$$f(B) = -\frac{T}{V} \log \mathcal{Z}(B)$$

- magnetization

$$\mathcal{M} = -\frac{\partial f}{\partial(eB)}, \quad \mathcal{M}|_{B=0} = 0$$

- susceptibility

$$\chi = \frac{\partial \mathcal{M}}{\partial(eB)} \bigg|_{B=0} = -\frac{\partial^2 f}{\partial(eB)^2} \bigg|_{B=0}$$

- sign distinguishes between
 - ▶ paramagnets ($\chi > 0$) enjoy magnetic field
 - ▶ diamagnets ($\chi < 0$) repel magnetic field

Objective

- calculate χ along the QCD phase diagram
- ▶ advantageous to use μ instead of ρ , and μ_I instead of ρ_I (grand canonical approach)
- consider the free case (no strong interactions) \rightarrow can be solved analytically

$$\chi^{\text{free}}(T, \mu, \mu_I)$$

- consider full (non-perturbative) QCD \rightarrow lattice simulations

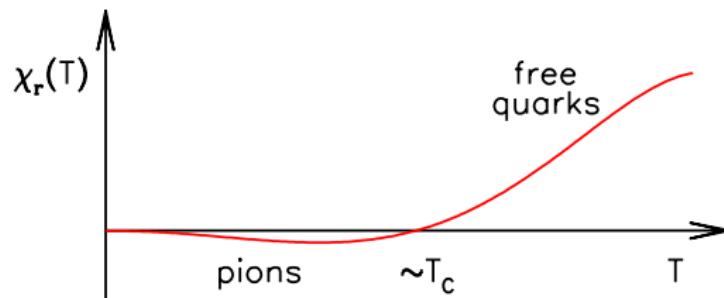
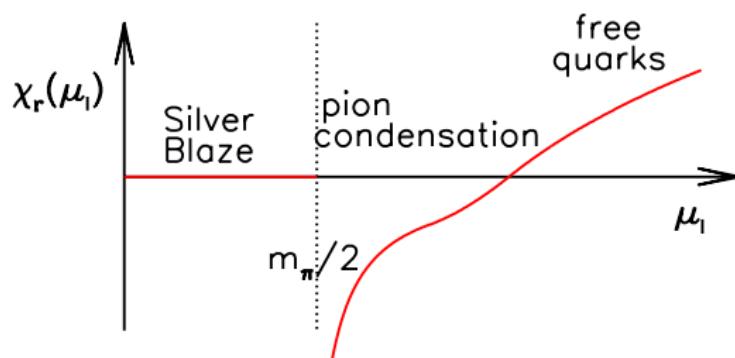
$$\chi(T, \mu = 0, \mu_I)$$

(sign problem at $\mu > 0 \dots$)

- ▶ asymptotic freedom: $\chi^{\text{free}} = \chi$ for high $T/\mu/\mu_I$
- ▶ free case can give some insight

Analytical considerations in the free theory

Expectation for the susceptibility



- based on the free theory

Renormalization

- statement: χ undergoes additive renormalization
- proof: let's write down the *total* free energy density

$$f^{\text{total}} = f^\gamma + f^{\text{matter}} = \frac{B^2}{2} + f^{\text{matter}}$$

- ▶ photon wavefunction renormalizes:

$$A_\mu^2 = Z_q \cdot A_{\mu,r}^2, \quad Z_q = 1 + \beta_1 q_r^2 \log \Lambda^2$$

- ▶ due to $A_y = B \cdot x$ and QED Ward identity

$$B^2 = Z_q \cdot B_r^2, \quad q^2 = Z_q^{-1} \cdot q_r^2, \quad qB = q_r B_r$$

- ▶ β_1 : lowest-order QED β -function coefficient (no internal γ)
- ▶ matter part should cancel this divergence
(no new divergences due to B in f^{total})

$$f^{\text{total}} = \frac{B_r^2}{2} + \underbrace{\beta_1 (qB)^2 \log \Lambda + f^{\text{matter}}}_{\text{should be finite}}$$

Renormalization

- consider free quarks (electric charge but no color charge)
- expand f^{matter} in B at $T = 0$: in terms of diagrams

- ▶ $\mathcal{O}(B^2)$ term is indeed $-\beta_1 \cdot (qB)^2 \log \Lambda$ [Schwinger '51], making f^{total} finite
- ▶ $\mathcal{O}(B^{4,6,\dots})$ terms are finite
- ▶ background field method [Abbott '81]
- ▶ 'vacuum polarization diagram with magnetic field-legs'

Renormalization

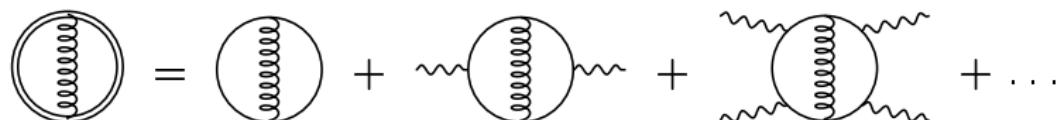
- consider free quarks (electric charge but no color charge)
- expand f^{matter} in B at $T = 0$: in terms of diagrams



- ▶ $\mathcal{O}(B^2)$ term is indeed $-\beta_1 \cdot (qB)^2 \log \Lambda$ [Schwinger '51], making f^{total} finite
- ▶ $\mathcal{O}(B^{4,6,\dots})$ terms are finite
- ▶ background field method [Abbott '81]
- ▶ 'vacuum polarization diagram with magnetic field-legs'
- 2-loop contribution: $\beta_1 \rightarrow \beta_2 q^2$ [Abbott '81, Dunne '04]

Renormalization

- consider free quarks (electric charge but no color charge)
- expand f^{matter} in B at $T = 0$: in terms of diagrams



- ▶ $\mathcal{O}(B^2)$ term is indeed $-\beta_1 \cdot (qB)^2 \log \Lambda$ [Schwinger '51], making f^{total} finite
- ▶ $\mathcal{O}(B^{4,6,\dots})$ terms are finite
- ▶ background field method [Abbott '81]
- ▶ 'vacuum polarization diagram with magnetic field-legs'
- 2-loop contribution: $\beta_1 \rightarrow \beta_1 c_1 g^2$

Magnetic susceptibility

- *total* free energy density

$$f^{\text{total}}(T = 0, B) = \frac{B_r^2}{2} + \underbrace{\mathcal{O}((qB)^4)}_{\text{matter-related}}$$

- ▶ so the susceptibility vanishes at $T = 0$

$$\chi_r(T = 0) = 0$$

- at nonzero temperatures f^{matter} gets thermal $\mathcal{O}((qB)^2)$ contributions

$$\chi_r(T > 0) \neq 0$$

Magnetic susceptibility at high T

- consider a free quark with charge q
- using Schwinger proper time regularization, the susceptibility reads [Bali, Bruckmann, Endrődi et al 1406.0269]

$$\chi_r^{\text{free}} = -N_c \cdot \beta_1 \cdot (q/e)^2 \int \frac{ds}{s} e^{-m^2 s} \cdot \left\{ \Theta_4 \left[0, e^{-1/(4sT^2)} \right] - 1 \right\}$$
$$\xrightarrow{T \rightarrow \infty} N_c \cdot \beta_1 \cdot (q/e)^2 \log \left(\frac{T^2}{m^2} \right)$$

(see also [Elmfors et al. '94])

- QED is not asymptotically free ($\beta_1 = 1/12\pi^2 > 0$)
 \Rightarrow free quarks at high T are *paramagnetic*

Magnetic susceptibility at high μ or μ_I

- consider a free quark with charge q
- using Schwinger proper time regularization, the susceptibility reads [Bali, Bruckmann, Endrődi et al 1406.0269]

$$\chi_r^{\text{free}} = -N_c \cdot \beta_1 \cdot (q/e)^2 \int \frac{ds}{s} e^{-m^2 s} \cdot \left\{ \Theta_4 \left[\frac{i\mu}{2T}, e^{-1/(4sT^2)} \right] - 1 \right\}$$
$$\xrightarrow{\mu \rightarrow \infty} N_c \cdot \beta_1 \cdot (q/e)^2 \log \left(\frac{\mu^2}{m^2} \right)$$

(see also [Elmfors et al. '94])

- QED is not asymptotically free ($\beta_1 = 1/12\pi^2 > 0$)
 \Rightarrow free quarks at high μ/μ_I are *paramagnetic*

Magnetic susceptibility at low energies

- low-energy regime of QCD: dominant degrees of freedom are pions (χ PT)
 - ▶ so consider a free pion (charge $\pm e$)
- similarly as before: proper-time regularization
[Bali, Bruckmann, Endrődi et al 1406.0269]

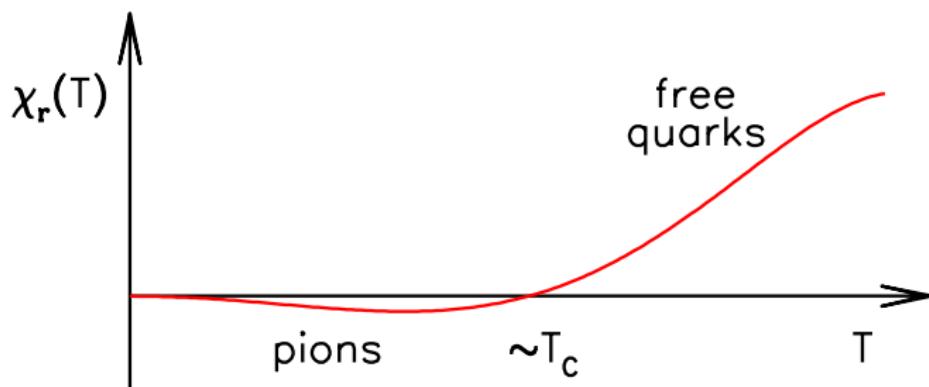
$$\chi_r^{\text{pion}}(T) = -\beta_1^{\text{scalar}} \underbrace{\int \frac{ds}{s} e^{-m^2 s} \cdot \left\{ \Theta_3 \left[0, e^{-1/(4sT^2)} \right] - 1 \right\}}_{\text{finite and positive}}$$

(see also [Elmfors et al. '94])

- ▶ scalar QED β -function $\beta_1^{\text{scalar}} = 1/48\pi^2 > 0$
 \Rightarrow free pions are *diamagnetic*

Expectation for the susceptibility

- $\chi_r(T = 0) = 0$ due to renormalization prescription
- asymptotic freedom in QCD + no asymptotic freedom in QED
 $\Rightarrow \chi_r > 0$ for high temperatures
- expectation: pions are relevant at low energies
 $\Rightarrow \chi_r < 0$ for low temperatures



Results I: $T > 0, \mu = \mu_I = 0$

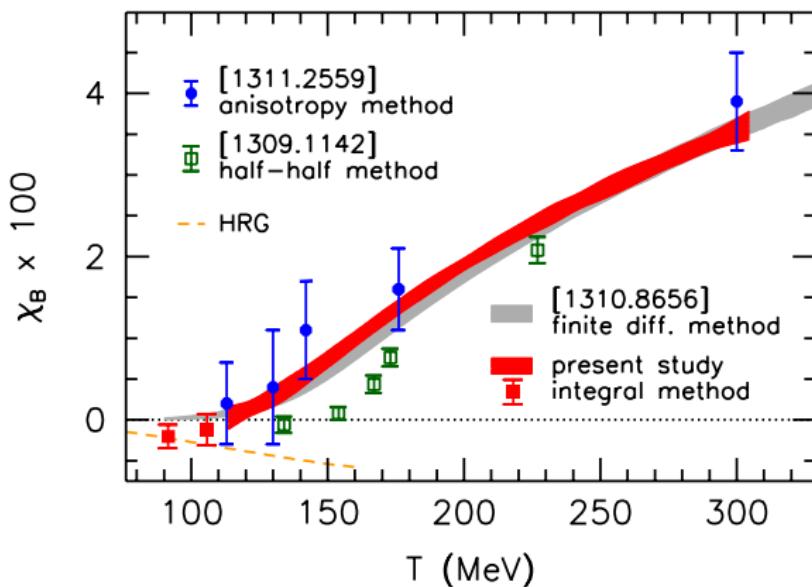
Lattice results

- direct lattice simulation at nonzero B is possible (no sign problem)
- complication: B in a finite periodic volume is quantized

$$\Phi = qB \cdot L^2 = 2\pi N_b, \quad N_b \in \mathbb{Z}$$

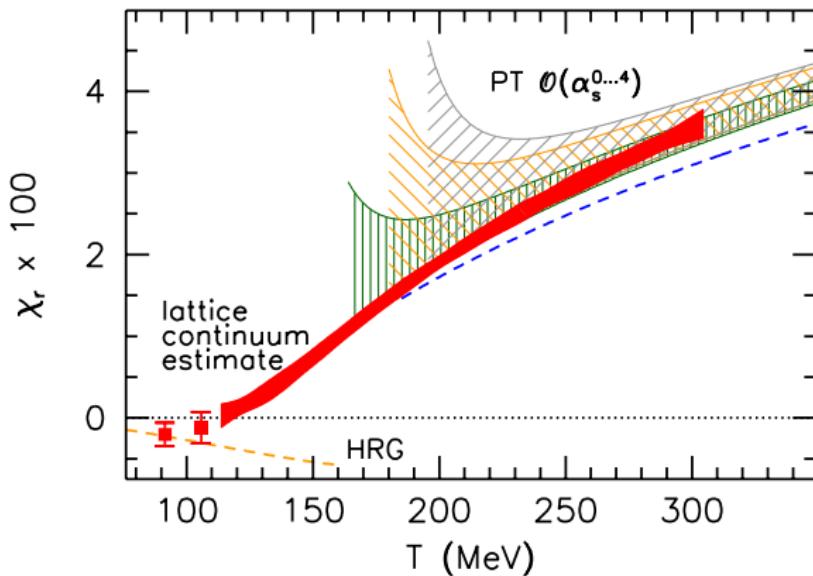
- ▶ χ is not directly accessible
- various methods to circumvent this problem
 - [Bali et al 1303.1328] [DeTar et al 1309.1142]
 - [Bonati et al 1307.8063] [Bali et al 1406.0269]
- lattice setup: stout smeared staggered quarks + Symanzik gauge action, physical pion mass, continuum estimate based on $N_t = 6, 8, 10$ [Bali et al 1406.0269]

Lattice results



- confirms the free-case prediction qualitatively
- quantitative agreement among the different approaches
[Bali, Bruckmann, Endrődi et al 1406.0269]
- notice magnitude $\chi_r \approx 0.04$ at high T

Lattice results at $T > 0$



- transition from diamagnetism to paramagnetism slightly below T_c [Bali, Bruckmann, Endrődi et al 1406.0269]
- comparison to Hadron Resonance Gas model (low T) and to perturbation theory (high T)

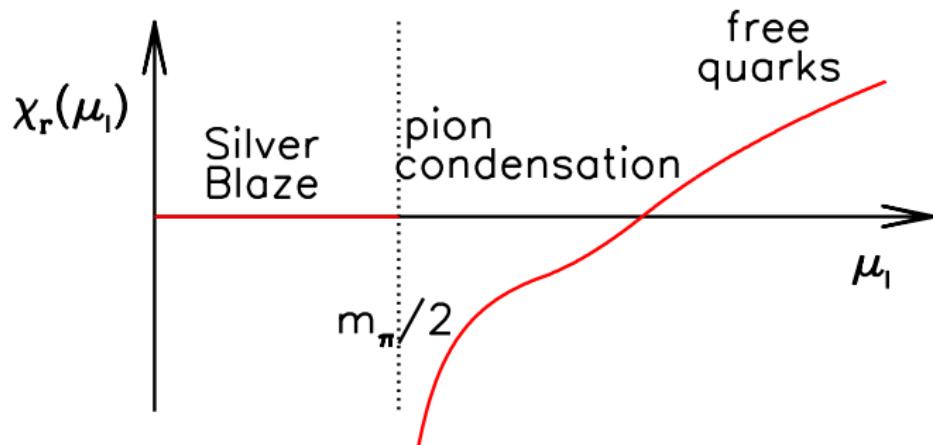
Results II: $T = \mu = 0$, $\mu_I \neq 0$

Isospin chemical potential

- $\mu_I = \mu_u = -\mu_d$ excites pions $\pi^+ = \bar{d}\gamma_5 u$
- at $T = 0$: to produce a pion costs $\mu_I = m_\pi/2$ energy
 - ▶ below $\mu_I = m_\pi/2$ nothing can happen: *Silver Blaze* region
 - ▶ above $\mu_I > m_\pi/2$: *Bose-Einstein condensation*
- there is a phase transition in between, characterized by various fermionic observables
 - ▶ quark condensate $\bar{\psi}\psi = \bar{u}u + \bar{d}d$
 - ▶ pion condensate $\pi = \bar{u}\gamma_5 d - \bar{d}\gamma_5 u$
 - ▶ isospin density $n_I = \bar{u}\gamma_0 u - \bar{d}\gamma_0 d$

Expectation for $\mu_I > 0, T = 0$

- $\chi_r(\mu_I < m_\pi/2) = 0$ due to renormalization prescription + Silver Blaze
- asymptotic freedom in QCD + no asymptotic freedom in QED
 $\Rightarrow \chi_r > 0$ for high μ_I
- pion condensation phase, superconducting
 $\Rightarrow \chi_r \rightarrow -\infty$ just above $\mu_I = m_\pi/2$



Isospin chemical potential on the lattice

- 2-flavor QCD

$$S_{\text{fermion}} = \bar{\psi} M \psi, \quad \psi = \begin{pmatrix} u \\ d \end{pmatrix}$$

with fermion matrix [Kogut, Sinclair '02]

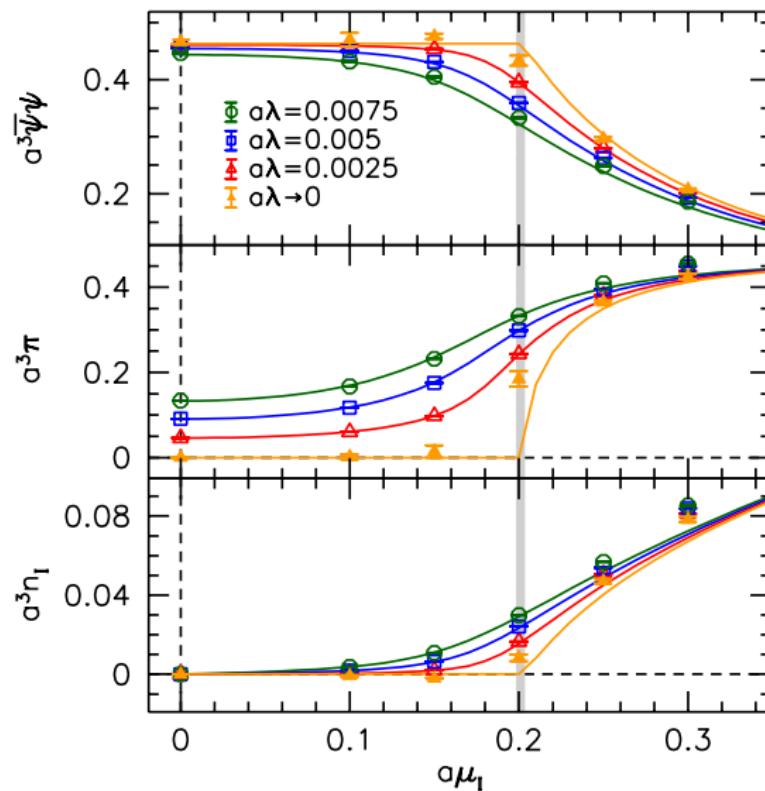
$$M = \begin{pmatrix} \not{D}(+\mu_I) + m & +\lambda\gamma_5 \\ -\lambda\gamma_5 & \not{D}(-\mu_I) + m \end{pmatrix}$$

- symmetry breaking pattern

$$\text{SU}(2)_L \times \text{SU}(2)_R \xrightarrow{m \neq 0} \text{SU}(2)_V \xrightarrow{\mu_I \neq 0} \text{U}(1)_{\tau_3} \xrightarrow{\lambda \neq 0} \phi$$

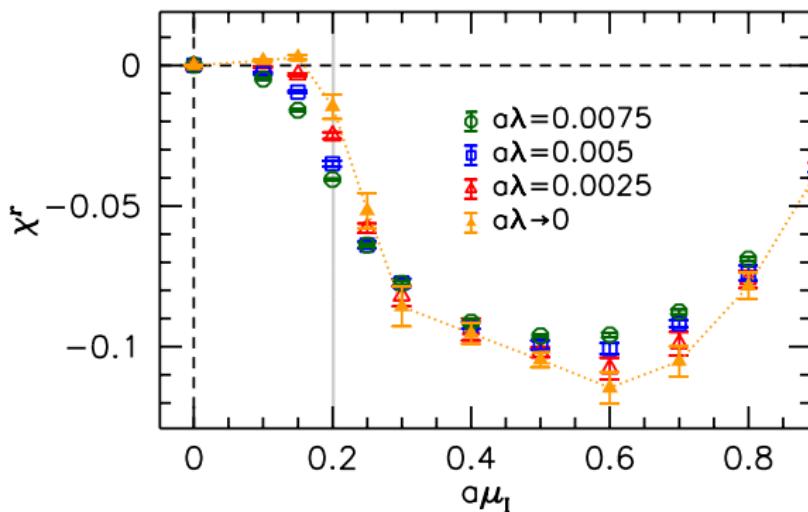
- explicit breaking λ is necessary to observe spontaneous symmetry breaking of $\text{U}(1)$ (in finite volume)
 - ▶ simulate at $\lambda \neq 0$ and extrapolate $\lambda \rightarrow 0$ at end
- lattice setup: rooted staggered quarks + plaquette gauge action, $m_\pi a = 0.402(5)$ [Endrődi 1407.1216]

Observables at nonzero μ_I [Endrődi 1407.1216]



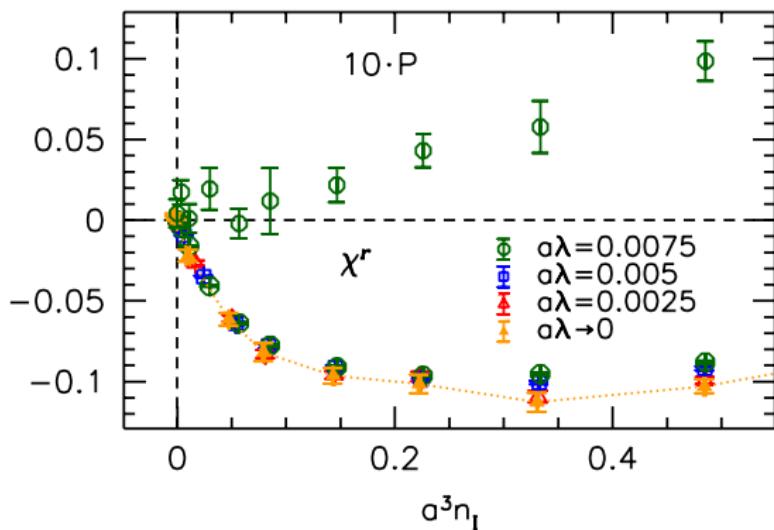
- extrapolation $\lambda \rightarrow 0$: use χ PT [Splittorff et al. '02]

Susceptibility at nonzero μ_I [Endrődi 1407.1216]



- again Silver Blaze up to $m_\pi/2$ (as should be for any observable)
- strong diamagnetism, as predicted by the free-case argument

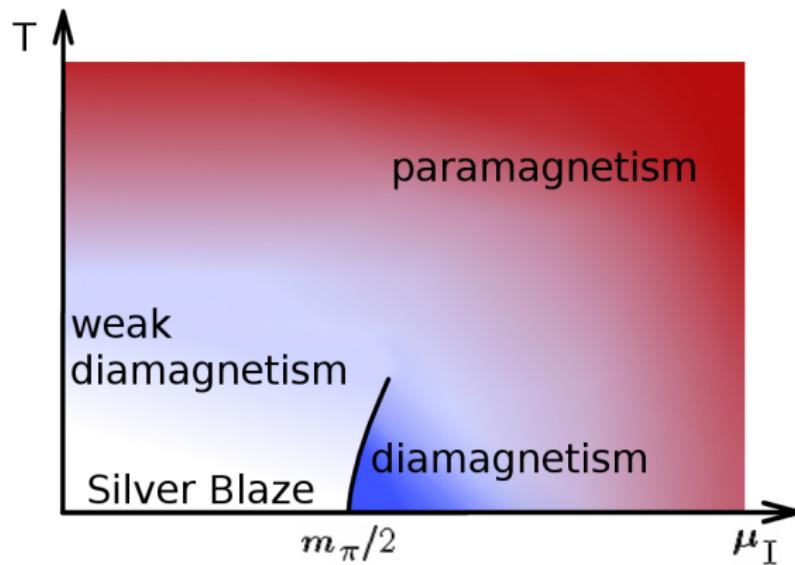
Perfect diamagnetism?



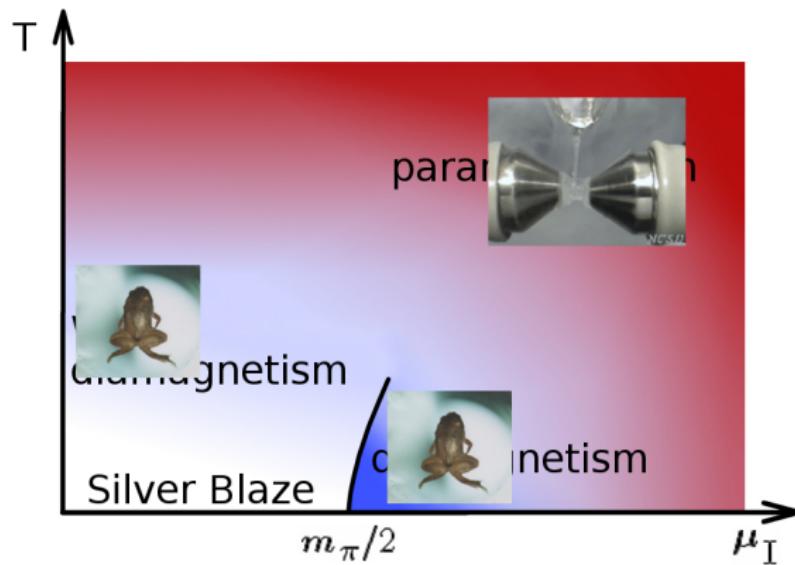
- condensed pions form a superconducting state
→ should expel magnetic field completely ($\chi_r = -\infty$)
- no real superconductivity due to pionic interactions plus finite volume
- at $\mu_I > m_\pi/2$ deconfinement also sets in, pions dissolve
- altogether, χ_r remains finite

Implications

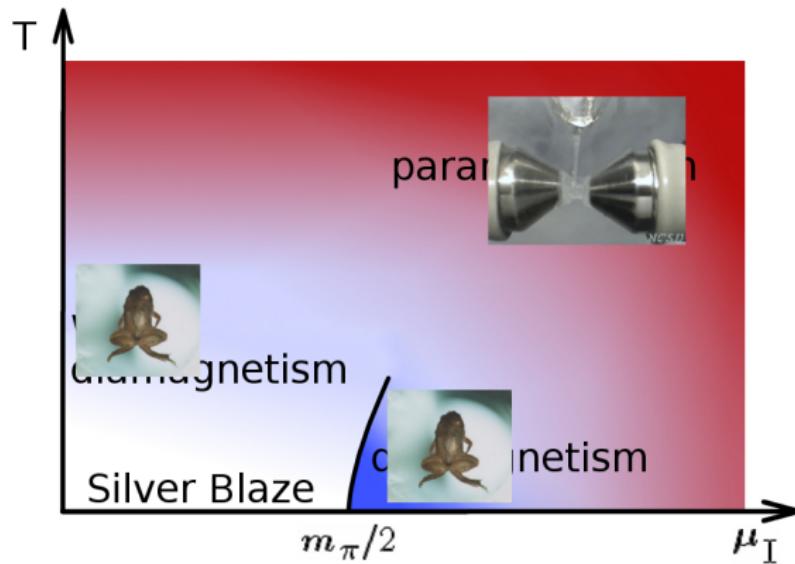
Magnetic phase diagram



Magnetic phase diagram

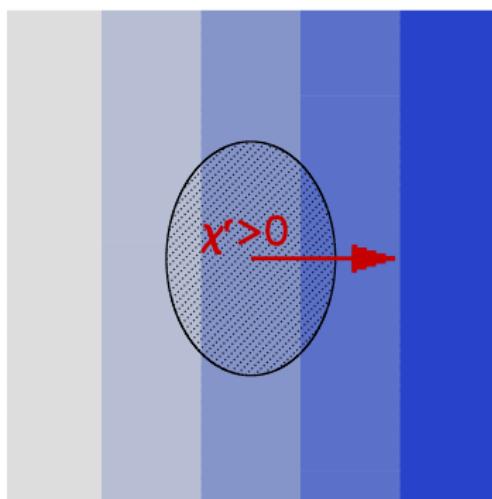


Magnetic phase diagram



- strong paramagnetism at low μ_I , high T
⇒ affect elliptic flow in HIC
[Bali, Bruckmann, Endrődi, Schäfer 1311.2559]
- strong diamagnetism at $T = 0$, high μ_I
⇒ impact on inner core of magnetars [Endrődi 1407.1216]

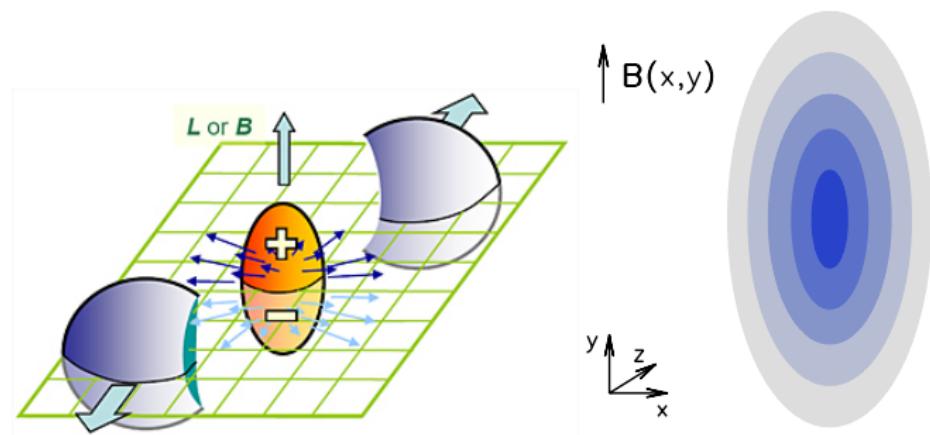
Paramagnetism and inhomogeneous fields



- $-\partial^2 f^r / \partial(eB)^2 = \chi^r > 0$
 \Rightarrow free energy f^r minimized in the region where B is maximal

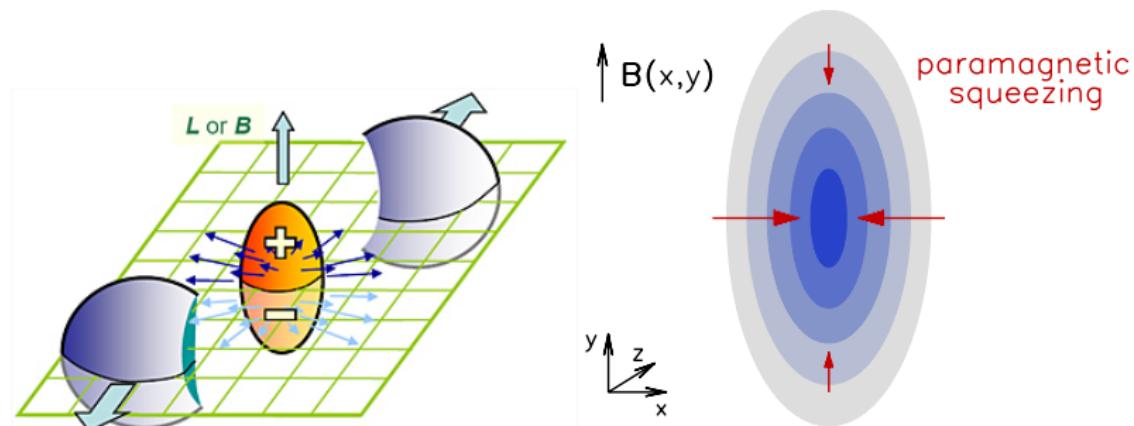
Implication I: heavy ion collisions

- strong paramagnetism at high T
→ free energy minimal where B is *maximal*
- ▶ non-uniform magnetic fields in HIC [Deng et al '12]



Implication I: heavy ion collisions

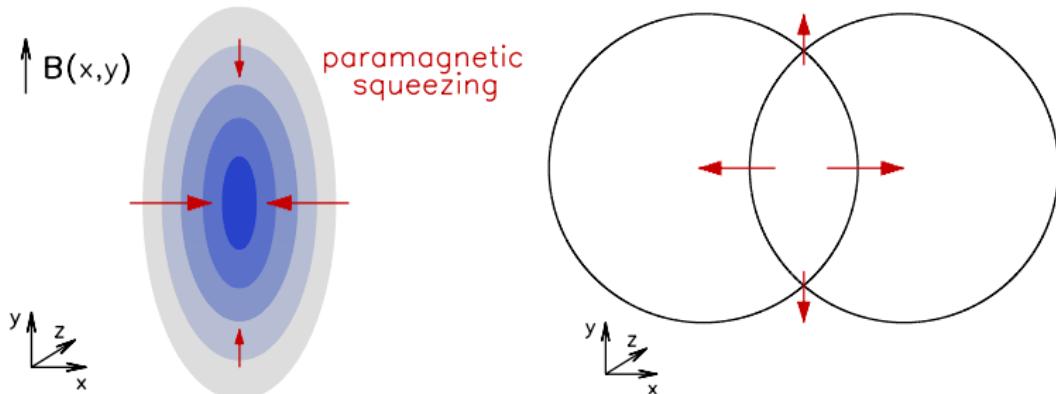
- strong paramagnetism at high T
→ free energy minimal where B is *maximal*
- ▶ non-uniform magnetic fields in HIC [Deng et al '12]



- free energy minimization squeezes QCD matter anisotropically
[Bali, Bruckmann, Endrődi, Schäfer 1311.2559]

Squeezing versus elliptic flow

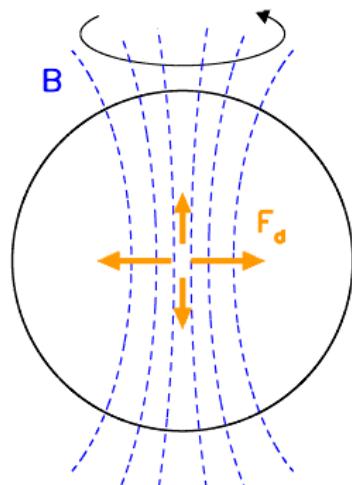
- elliptic flow: anisotropic pressure gradients due to initial geometry



- ▶ competition between squeezing and elliptic flow
- ▶ crude estimate: squeezing contributes 5 – 50%, depending on beam energy [Bali, Bruckmann, Endrődi, Schäfer 1311.2559]
- ▶ need more sophisticated models for realistic comparison, ongoing work

Implication II: magnetized neutron stars

- strong diamagnetism at high μ_I
→ free energy minimal where B is *minimal*
- ▶ in magnetars: outward force



- ▶ poloidal field configuration
[Bocquet et al '95]:
component towards equator is
larger
- ▶ consider typical pressure profile
estimate [Glendenning]
- ▶ F_d can be 10% of the pressure
gradient [Endrődi 1407.1216]
impact on e.g. convective
processes in the core

Implication II: magnetized neutron stars

- strong diamagnetism at high μ_I
→ free energy minimal where B is *minimal*
- ▶ in magnetars: outward force

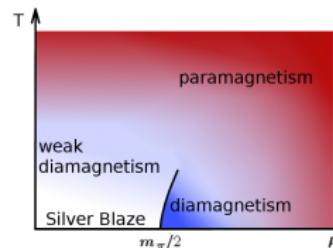


- ▶ poloidal field configuration
[Bocquet et al '95]:
component towards equator is larger
- ▶ consider typical pressure profile estimate [Glendenning]
- ▶ F_d can be 10% of the pressure gradient [Endrődi 1407.1216]
impact on e.g. convective processes in the core

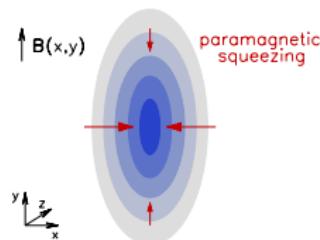
Summary

- B significantly affects the thermal/dense QCD medium

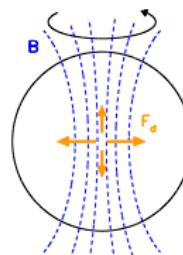
- ▶ 'magnetic phase diagram'



- ▶ possible implication for heavy-ion collisions: paramagnetic squeezing



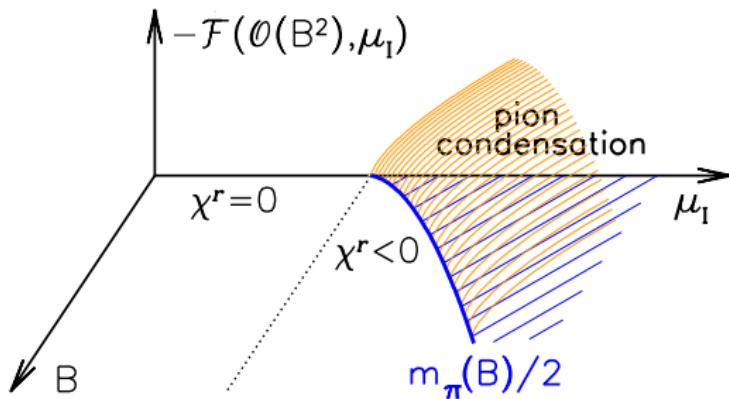
- ▶ possible implication for neutron stars: anisotropic outward force



Backup

Susceptibility and BEC

- qualitative understanding of strong diamagnetism from a different point of view:
 - ▶ pion mass in magnetic field $m_\pi(B) = \sqrt{m_\pi^2 + eB}$
 - ▶ expect condensation threshold $\mu_{l,crit} = m_\pi(B)/2$
 - ▶ automatically ensures a large negative χ_r



Magnetic field and magnetic induction

- distinguish between external field and induction

$$B = H + \mathcal{M} \cdot e$$

- here we work with a field B traversing the medium

$$\mathcal{M} \approx \chi_r \cdot (eB)$$

- ▶ finding out H for small fields

$$H = (1 - e^2 \chi_r) \cdot B \quad \rightarrow \quad \frac{B}{H} = \frac{1}{1 - (4\pi\alpha)\chi_r}$$

(then complete Meissner effect $\leftrightarrow \chi_r = -\infty$)