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Experimental Relevance

Heavy Ion Collisions at RHIC will stop in a few years.
If there is a future for RHIC it will be eRHIC/EIC. JLab
(ELIC/EIC) wants it too.
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EIC has 3 selling points:
(“understanding the glue that binds us all”)

spin-dependent and -independent PDFs and GPDs – e.g.
∆G (x ,Q2)
Single Spin Asymmetries and TMDs – Effects of gauge links
e+A and saturation
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The fundamental difference between TMDs and GPD: GPDs
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has a simple interpretation:
S iεijbj coupling of proton spin to quark angular momentum
s iεijbj coupling of quark spin to quark angular momentum
s iS i coupling of quark spin and proton spin
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The pion first and second moment
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The matrix element contains in principle a gauge link

〈P2| q̄(−1

2
z) Γ U[−1

2
z ,

1

2
z ] q(

1

2
z) |P1〉

which is unity, however, in light-cone gauge. This is no longer true
for non-zero k⊥

gauge links for SIDIS and DY

ξ −

ξ T

ξ −

ξ T

for a pseudo T-odd quantity this leads to a minus sign

TMDs and SSAs test the very nature of local gauge theories !!
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C.J. Bomhof, P.J. Mulders and F. Pijlman; EPJ C47 (2006) 147; arXiv

hep-ph/0601171 ’The construction of gauge-links in arbitrary hard

processes’
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The gauge links result in single spin asymmetries (SSAs) in SIDIS
HERMES 0906.3918
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The experimental situation is complicated by strong evolution
effects also from non-perturbative kinematics. Lattice input is
urgently needed.
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gauge links correspond to infinitely many soft gluons ⇒ soft factors

S
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For the eikonal lines one needs the eikonal Feynman rules
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ℓ
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Lets assume that factorization proofs etc. will come along
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J. Collins: Foundations of Perturbative QCD

S̃(b2; . . .) =

√√√√ S̃(0)(~bT ,+∞,−∞) S̃(0)(~bT , ys ,−∞)

S̃(0)(~bT ,+∞, ys)

⇒ cancellation of rapidity divergences
Off-light-cone vector vµ

Analysis within SCET: Echevarria, Idilbi and Scimemi
1111.4996

J. C. Collins and T. C. Rogers,
“Equality of Two Definitions for Transverse Momentum
Dependent Parton Distribution Functions”, 1210.2100
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Lattice calculations for TMDs

“We” (i.e. M. Engelhardt, P. Hägler, B. Musch et al.) analyze on
the lattice ratios for which soft factors as well as renormalization
factors cancel

next problem: How to put an infinite gauge link on a finite lattice ?

solution: We study the length dependence of staple-shaped gauge
links and find rapid convergence.
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v
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?
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We simulate for spatial, not light-like separations, but the limit
ζ →∞ of

ζ̂ :=
v · P√
v2
√
P2

reproduces the light-cone behavior.
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So far we always analyzed transverse b, i.e. bT , but we could also
set b · P 6= 0 and get TMDs directly as functions of x .

The potential of this was realized independently by X. Ji, see
1305.1539 with whom we now collaborate on this.
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∫
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∫ 1

x
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Z

(
x

y
,
µ
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)
q(y , µ2)

Who suggests to calculate quasi-PDFs, quasi-DAs, quasi-TMDs
etc.
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Γ = 1, γ5, γu, γµγ5, iσµνγ
5; 32 independent amplitudes

Ã1(b2, b · P, v · b/v · P,−1/(mN ζ̂)2, ηv · P), ..., Ã12(...) ,
B̃1(...), ..., B̃20(...)
many of which are related to known objects. These amplitudes can
be obtained for spatial correlators.

For SIDIS one has to perform the extrapolation ηv · P →∞ for
DY ηv · P → −∞ as well as the limit ζ̂ →∞ in both cases.

Furthermore, to relate the local matrix elements we define
moments and leading terms of a Taylor expansion in ~kT .

f [m](n)(...) =

∫ 1

−1
dx xm−1

∫
d2kT

(
~k2

T

2m2
N

)n

f (x , ~k2
T , ...)
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Thus we obtain for fixed bT !! “generalized shifts” which
correspond for bT → 0 to the Boer Mulders shift which is “known”
from phenomenological models of SSAs.
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∣∣∣∣∣
~S=(1,0)

In leading twist: Average transverse momentum of a transversely
polarized quark in an unpolarized hadron.
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We used LHPC propagators for Nf = 2 + 1 MILC configurations

m̂u,d m̂s L̂3 × T̂ 10/g2 a(fm) mDWF
π (MeV ) mDWF

N (GeV ) #conf. #meas.

0.01 0.05 283 × 64 6.76 0.11967(14)(99) 369.0(09)(35) 1.197(09)(12) 273 2184

0.01 0.05 203 × 64 6.76 0.11967(14)(99) 369.0(09)(35) 1.197(09)(12) 658 5264

0.02 0.05 203 × 64 6.79 0.11849(14)(99) 518.4(07)(49) 1.348(09)(13) 486 3888

B. Musch, Ph. Hägler, M. Engelhardt, J.W. Negele, AS
1111.4249
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η → ±∞
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η → ±∞

SIDIS �� DY

Sivers-Shift, u-d - quarks
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η → ±∞

SIDIS �� DY

Sivers-Shift, u-d - quarks
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η → ±∞

SIDIS �� DY

Sivers-Shift, u-d - quarks
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message: η → ±∞ is no problem
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different bT give additional information
(for bT < 2a probably large cut-off effects.)

Sivers Shift HSIDISL,
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The crucial limit ζ̂ →∞
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�
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different ensembles
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results for the pion; ζ̂ = v ·p
v2m2

π
is larger because mπ is small; also

better statistics
η → ±∞

mπ
˜A4B/

˜A2B (GeV) up-quarks
ζ̂ = 1.01
|b| = 0.36 fm
mπ = 518MeV

η|v| (lattice units)

connected only
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bT dependence

mπ
˜A4B/

˜A2B (GeV) up-quarks
mπ = 518MeV

ζ̂ = 0
ζ̂ = 1.01
ζ̂ = 2.03

|bT | (fm)
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ζ̂ →∞
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ζ̂ →∞
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Double Parton Distributions

DH (double-hard) reactions are important at LHC
CMS 1310.4554: Inclusive charged particle jets
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Krasny and Placzek 1501.04569
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Normally the naive assumption

dσDPS =
dσSPSdσSPS

2σeff

is made which might or might not be a good approximation

ATLAS 4 jets (thesis 2013)

ATLAS W + 2 jets (2013)

CMS W + 2 jets (2013)

D0 J/Ψ + J/Ψ (2014)

D0 γ + 3 jets (2009)

CDF reanalysis, Bahr et al (2013)

CDF γ + 3 jets (1997)

CDF 4 jets (1993)

 0  5  10  15  20  25  30

σeff [mb]
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We have analyzed in detail the simplest case, Double Drell Yan in
p+p.

M. Diehl, D. Ostermeier and A. Schäfer, “Elements of a theory for multiparton interactions in QCD,” JHEP 1203

(2012) 089 [arXiv:1111.0910 [hep-ph]].

A few results for q2
1 , q

2
2 ∼ O(Q2) and q1,T , q2,T ∼ O(qT )� Q .

q2

q1

(a)

k1 − 1
2r

k̄1 − 1
2r̄ k̄1 +

1
2r̄

k1 +
1
2rk2 +

1
2r k2 − 1

2r

k̄2 − 1
2r̄k̄2 +

1
2r̄

p

p̄

A surprisingly rich literature,e.g. Treleani (1982), Mekhfi (1985).
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Double hard interactions

Taking spin and color into account one has to distinguish many
contributions. In the end cross sections are parameterized by the
following four quark correlators (ai = q,∆q, δq):

1Fa1,a2 =
〈〈

(q̄3Γa2q2)(q̄4Γa1q1)
〉〉
, 1F̃a1,a2 =

〈〈
(q̄4Γa2q2)(q̄3Γa1q1)

〉〉

1Fa1,ā2 =
〈〈

(q̄2Γā2q3)(q̄4Γa1q1)
〉〉
, 1F̃a1,ā2 =

〈〈
(q̄4Γā2q3)(q̄2Γa1q1)

〉〉

1Ia1,ā2 =
〈〈

(q̄2Γā2q4)(q̄3Γa1q1)
〉〉
, 1̃Ia1,ā2 =

〈〈
(q̄3Γā2q4)(q̄2Γa1q1)

〉〉

If one inserts a complete set of states
∑ |X 〉〈X | and assumes that

only the hadron in question contributes !?!?, one gets a sum of
convolutions of generalized GPDs (GTMDs) in impact parameter
space, respectively of product in momentum space
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sdσ∏2
i=1 dxi dx̄i d2qi

sdσ∏2
i=1 dxi dx̄i

l

l̄
q1

q2

1
Λ2Q2 1

l2 l′1

l̄1 l̄2 l̄′1

l1 1
Λ2Q2
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Λ2
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Λ4
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Collins-Soper Equation (Sudakov factors)

(Only valid for small transverse separations of parton fields.)
All relevant one-gluon exchange graphs were calculated leading to
a generalized Collins-Soper-Equation

d

d log ζ

(
1F
8F

)
=
[
G (x1ζ, µ) + G (x2ζ, µ) + K (z1, µ) + K (z2, µ)

]
(

1F
8F

)

+ M(z1, z2, y)

(
1F
8F

)

For small distances we have calculated the matrix M explicitly. G
and K are just the usual CS-kernels.
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A general solution can be given

(
1F (xi , zi , y; ζ, µ)
8F (xi , zi , y; ζ, µ)

)
= exp

[
−S(x1ζ, z1, z2, µ0)− S(x2ζ, z1, z2, µ0)

]

× exp

[
M(z1, z2, y) log

√
x1x2 ζ

µ0

] (1Fµ0(xi , zi , y;µ)
8Fµ0(xi , zi , y;µ)

)

ζ2 = (2pv)2/|v2| is in physical processes of order Q
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The problems with TMD factorization

Mulders and Rogers (1001.2977), naive factorization breaks down
when initial and final soft gluon exchange takes place
simultaneously.

This is solved by the generalized TMD-factorization of Collins.

dσ
!

= H⊗ Φ
[n1,(�)]
H1

(x1, k1T )⊗ Φ
[n2,(�)]
H2

(x2, k2T )

⊗ δ(2)(k1T + k2T − k3T − k4T ).
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But:

k2

p2

p1

k1 − l1

k3

k4

k1

k2 − l2

l1

l2

p2

p1

k1 − l1

k3

k4

k1

k2

l1

l2

k2 − l2

violates also generalized factorization. Perhaps a weaker form of
universality might hold ??

No factorization ⇒ lattice simulations make no sense
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For a toy model: DDY with scalar quarks and gluons, factorization
holds (probably)
M. Diehl, D. Ostermeier, AS to be published.
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First preliminary lattice results of the Hamburg-Regensburg
collaboration for DPDs in the pion

M. Diehl, G. Bali, L,. Castagnini, S. Collins, M. Engelhardt,
J. Gaunt, B. Gläßle, J. Najjar

calculated (to be calculated) contributions

π π π (p)  (p)

a)

 (p)  (p)π

c)b)

 (p)  (p)π π

sequential propagator

"one end trick"

d) e)

π (p)π

f)

"one end trick"

all−to−all propagator

 (p)π  (p’)π (p)  (p’)π (p) π
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Summary of Nf = 2 data so far analyzed

β κ mπ Volume correlators Configs momenta
[MeV]

5.29 0.13632 285 323 × 64 4-point fct. 375 (000), (001)
(010), (100)

3-point fct. 1965 (000), (001)
(010), (100)
(011), (101)
(110), (111)

(002)
5.29 0.13632 285 403 × 64 3-point fct. 1995 (000),(001)

(010), (100)
(011), (101)
(110), (111)

(11-1),(1-1-1)
(002)
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preliminary !!
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semi-disc.  |p|=0
semi-disc.  |p|=1

The correlator 〈π+|ūu(~yT )d̄d(~0T )|π+〉.
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preliminary !!
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The difference of correlators SS-PP

We find this to be strongly quark mass dependent
(mud → ms → mc ) !!
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preliminary !!
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〈π+|ūγµγ5u(~yT )d̄γµγ5d(~0T )|π+〉.

45 / 49



preliminary !!
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The vector and tensor correlators.
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preliminary !!
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A_TT  |p|=1

The vector and tensor correlators.
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Next step: Physical interpretation ?!?

The same information can be obtained from the p 6= 0 data.
Works in many cases, but there are still some puzzles.

We have data for mu = md , ms and mc which shows
significant systematic trends ?!?

We have to construct phenomenological models using lattice
input to estimate whether MPIs for pion collisions are
significant

All of this has to be repeated for the nucleon.
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Conclusions

Transverse momentum dependent physics is much, much
more difficult than collinear one

Therefore, the formalism is not yet well established
⇒ If you succeed you will become very well known.

Progress is urgently needed for EIC and LHC
We have calculated Boer Mulders shifts etc. on the lattice for
nucleon and pion.

Early convergence for ζ̂ →∞ !!
All Boer-Mulders functions are in fact looking alike

We have also calculated DPDs for pions with physical quark
masses.

for many channels we get clear correlations for, e.g., the AA
channel it is basically zero
the phenomenological effects if similarly large correlations in
the proton have for LHC physics have to be analyzed.
after the pion DPDs are understood one has to proceed to the
nucleon
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