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Introduction

Proton radius puzzle:

why do ep scattering and muonic hydrogen results disagree so
badly?

Possible explanations:

Pions too heavy
Lattice volumes too small
Excited-state effects

Here: explore how to suppress excited-state effects
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Form Factors

eN scattering cross section parameterized in terms of Sachs
form factors GE , GM via Rosenbluth formula(

dσ

dΩ

)
∝
[
G 2
E + τG 2

M

1 + τ
+ 2τG 2

M tan2

(
θ

2

)]
, τ =

Q2

4m2
N

Matrix element of vector current between nucleon states
decomposed in terms of Dirac and Pauli form factors F1, F2 as

〈N(p′, s ′)|Vµ|N(p, s)〉 = u(p′, s ′)

[
γµF1 + i

σµνqν
2mN

F2

]
u(p, s)

Relationship given by

GE (Q2) = F1(Q2)− Q2

4m2
N

F2(Q2), GM(Q2) = F1(Q2)+F2(Q2)

G.M. von Hippel Excited-State Effects on Nucleon Form Factors



Form Factors

eN scattering cross section parameterized in terms of Sachs
form factors GE , GM via Rosenbluth formula(

dσ

dΩ

)
∝
[
G 2
E + τG 2

M

1 + τ
+ 2τG 2

M tan2

(
θ

2

)]
, τ =

Q2

4m2
N

Matrix element of vector current between nucleon states
decomposed in terms of Dirac and Pauli form factors F1, F2 as

〈N(p′, s ′)|Vµ|N(p, s)〉 = u(p′, s ′)

[
γµF1 + i

σµνqν
2mN

F2

]
u(p, s)

Relationship given by

GE (Q2) = F1(Q2)− Q2

4m2
N

F2(Q2), GM(Q2) = F1(Q2)+F2(Q2)

G.M. von Hippel Excited-State Effects on Nucleon Form Factors



Form Factors

eN scattering cross section parameterized in terms of Sachs
form factors GE , GM via Rosenbluth formula(

dσ

dΩ

)
∝
[
G 2
E + τG 2

M

1 + τ
+ 2τG 2

M tan2

(
θ

2

)]
, τ =

Q2

4m2
N

Matrix element of vector current between nucleon states
decomposed in terms of Dirac and Pauli form factors F1, F2 as

〈N(p′, s ′)|Vµ|N(p, s)〉 = u(p′, s ′)

[
γµF1 + i

σµνqν
2mN

F2

]
u(p, s)

Relationship given by

GE (Q2) = F1(Q2)− Q2

4m2
N

F2(Q2), GM(Q2) = F1(Q2)+F2(Q2)

G.M. von Hippel Excited-State Effects on Nucleon Form Factors



Lattice Setup

0 x, ts

u

u

d

0 x, ts

u, d

d, u

u

u, d
O(y, t)

Measure two-point functions

C2(p, t) =
∑

x

eip·x Γβα 〈Ψα(x, t)Ψ
β

(0)〉

and three-point functions

C3,Vµ
(q, t, ts) =

∑
x,y

eiq·yΓβα〈Ψα(x, ts)Vµ(y, t)Ψ
β

(0)〉

where we use the projection matrix Γ = 1
2 (1 + γ0)(1 + iγ5γ3)

Use extended propagator in the “fixed-sink” method (one additional
inversion per value of ts , but free choice of operator insertion and
momentum transfer)
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Lattice Setup

0 x, ts

u

u

d

0 x, ts

u, d

d, u

u

u, d
O(y, t)

Form ratios

RVµ
(q, t, ts) =

C3,Vµ(q, t, ts)

C2(0, ts)

√
C2(q, ts − t)C2(0, t)C2(0, ts)

C2(0, ts − t)C2(q, t)C2(q, ts)

Extract Sachs form factors from

Re [RV0 ]
t,(ts−t)�0−→

√
mN + Ep

2Ep
GE (Q2)

and

Re [RVi ]i=1,2

t,(ts−t)�0−→ εijpj
1√

2Ep(mN + Ep)
GM(Q2)
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The Problem of Excited States

Correlation functions have spectral decomposition

C2(p, t) =
∞∑
n=1

Zn(p)e−En(p)t

where all states with quantum numbers compatible with a
nucleon of momentum p contribute

In particular,
for p = 0, the Nππ state with two pions in an S-wave
contributes with E ≈ mN + 2mπ ∼ mN

for p 6= 0, the Nπ state with a pion in a P-wave contributes
with E ≈ mN + mπ ∼ mN

Need t � (E2 − E1)−1 to isolate the ground state

For nucleons, the statistical noise grows exponentially like

e(mN− 3
2
mπ)t

Hard to find a region of clean signal and good statistics!
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Data Analysis Methods for Excited States

G eff
X (Q2, t, ts) = GX (Q2)+cX ,1(Q2)e−mπt+cX ,2(Q2)e−2mπ(ts−t)+. . .

Plateau method: Identify plateaux in t

Problem: Need large ts , where signal-to-noise ratio is poor

Observe systematic trend in ts even for ts ∼ 1.4 fm
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Data Analysis Methods for Excited States

G eff
X (Q2, t, ts) = GX (Q2)+cX ,1(Q2)e−mπt+cX ,2(Q2)e−2mπ(ts−t)+. . .

Summation method:

SX (Q2, ts) =
ts∑

t=0

G eff
X (q, t, ts)→ c + tsGX (Q2) +O

(
e−mπts

)
Advantage: Parametrically reduced excited state
contamination – mπts instead of mπt

Disadvantage: Increased statistical errors
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Data Analysis Methods for Excited States

G eff
X (Q2, t, ts) = GX (Q2)+cX ,1(Q2)e−mπt+cX ,2(Q2)e−2mπ(ts−t)+. . .

Excited-state fits: Explicitly fit GX (Q2, t, ts) to leading
excited-state contributions

as a function of t, ts − t at each ts separately, or
as a function of ts , t at all ts simultaneously

Advantage: Fully removes leading excited state contamination

Disadvantage: Somewhat model-dependent, hard to assess
trustworthiness of results
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Excited State Contributions

G eff
X (Q2, t, ts) = GX (Q2)+cX ,1(Q2)e−mπt+cX ,2(Q2)e−2mπ(ts−t)+. . .

ts
2

0.57
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0.66

0.69

0.72

0.75

0.78

G
E

N6, β=5.5, mπ =340 MeV, L=2.4 fm, Q2 =0.25 GeV2

Summation

ts =13

ts =16

ts =19

ts =22
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Excited State Contributions

G eff
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Excited State Contributions

G eff
X (Q2, t, ts) = GX (Q2)+cX ,1(Q2)e−mπt+cX ,2(Q2)e−2mπ(ts−t)+. . .

ameff

t [a]

nucl
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Chiral behaviour
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Plateau fit
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1
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2
)
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A Possible Scenario
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Momentum Dependence – Conventional Approach

Parameterize each Sachs form factor as a dipole

GX (Q2) =
GX (0)(

1 + Q2

M2
X

)2

where GE (0) = 1, GM(0) = µ

Charge radii and anomalous magnetic moment given by

1

M2
E

=
r2
E

12
=

r2
1

12
+

κ

8m2
N

1

M2
M

=
r2
M

12
=

r2
1 + κr2

2

12(1 + κ)

where κ = µ− 1

Given rE ≈ rM , can extract magnetic moment also using

µ = lim
Q2→0

GM(Q2)

GE (Q2)

with a flat extrapolation
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Momentum Dependence – Conventional Approach
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Momentum Dependence – Conventional Approach
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Chiral Extrapolation – Conventional Approach
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Momentum Dependence – Direct Approach in χPT

Simultaneously fit GE (Q2,mπ) and GM(Q2,mπ) to the
corresponding formulae from χPT including the ρ (and
optionally the ∆)

Can include lattice artifacts using

GE (Q2,mπ, a) = Gχ
E (Q2,mπ) + aQ2 G a

E

GE (Q2,mπ, a) = Gχ
M(Q2,mπ) + a G a

M

taking into account that GE (0) is O(a)-inproved already

Use experimental values of chiral limit LECs (leaving 4 fit
parameters)

Alternatively use ensemble values of mN , mρ

Impose cuts on mπ and/or Q2 to check convergence
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Pion-Mass Dependence – Direct Approach in χPT
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Summary

Systematic trend in GE plateau values persists to ts ∼ 1.4 fm

Even with summation method, GE systematically too high

Considering only the largest values of ts brings summation
method closer to experiment at the expense of large statistical
errors

Excited-state fits indicate a possible reason:

with small gap mπ, approach to plateau is very slow
summed ratios still receive sizeable corrections

Serious reduction of noise required for further clarification

Chiral behaviour may be better describable using a direct χPT
fit to the form factor data rather than dipole fits followed by
chiral extrapolations
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The end

Thank you for your attention
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