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Introduction

Simulation with dynamical fermions in a lattice is always a challenging
task.

The famous no-go theorem:Lattice fermion actions with,

locality
chiral symmetry
hermiticity

must produce massless fermions in multiples of two in continuum limit.

There exist lot of fermion prescriptions to avoid fermion doubling
caused by the naive fermions.

Every model has its own advantges and also individual shortcomings.
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Introduction

Lattice fermions and shortcomings

Wilson fermion: No chiral symmetry
Staggered fermion: Doublers not remove totally and rooting needed
Domain wall and Overlap fermion: Complicated simulation algorithms

Another possible way is lattice action with 2 massless species, the
minimum number required by the no-go theorem,
called minimal-doubling fermions.

There are three types of minimally doubled actions,

Karsten-Wilczek
Borici-Creutz
Twisted-ordering types.

These all possess one exact chiral symmetry but lack discrete
symmetries.
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Classi�cation:KW,TO and BC

Naive fermions in momentum space

aDfm(p) = iγµ sin pµa

16 massless fermions in continuum limit (for ap 0 and π) known as
doublers,

Wilson type fermions are,

aDfm(p) = iγµ sin pµa+ (1− cos(apµ))

So now the 15 out of 16 fermions get large mass (O(1/a)) and
decoupled in continum (only for ap=0 remains)

1M.Creutz et. al arxiv :1011.0761
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Classi�cation:KW,TO and BC

Wilson type fermions are,

aDfm(p) = iγµ sin pµa+ (1− cos(apµ))

So now the 15 out of 16 fermions get large mass (O(1/a)) and
decoupled in continum (only for ap=0 remains)

Now if we further modify it by adding a gamma matrix with the
second term,

aDfm(p) = iγµ sin pµa+ iγ4Mf (pµ)

where, Mf (pµ) = (1− cos(apµ)) is �avored mass term. [1]
Karsten-Wilczek fermions.
Has only two zeros,(0, 0, 0, 0) and (π, π, π, π)

Now this type of term preserves the chiral symmetry but breaks the
hypercubic symmetry.
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Classi�cation:KW,TO and BC

Another type is twisted ordering , Lets start by writing instead of a
single gamma matrix sum over all gamma matrices,

aDfm(p) = iγµ sin pµa− iγµMf (pµ)

2M.Creutz et. al PRD 82,074502 (2010)
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Classi�cation:KW,TO and BC

Another type is twisted ordering , Lets start by writing instead of a
single gamma matrix sum over all gamma matrices,

aDfm(p) = iγµ sin pµa− iγµMf (pµ)

So twisting the order of gamma matrices in the second term reduces
the zeros, Similarly in 4D after twist we get only two zeros,

aDfm(p) = iγµ sin pµa+ iγµ−1Mf (pµ)︸ ︷︷ ︸
2 zeros at (0,0,0,0) and (π

2
, π

2
, π

2
, π

2
)

µ− 1 =

{
1, 2, 3, if µ=2,3,4

4 if µ=1
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Figure : Four zeros In 2D
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Figure : Two zeros In 2D after twisting
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Borici-Creutz fermion

Now if instead of twisting we take a di�erent set of gamma matrices
with the cos term,
Then the Dirac operator is (a = 1),[3]

DBC(p) =
∑
µ

[
iγµ sin pµ − i(γ′µ)(1− cos(pµ)

]
︸ ︷︷ ︸

Two zeros at (0,0,0,0) and (π
2
, π

2
, π

2
, π

2
)

.

Important relations:,

γ′µ =
∑
µ

γµΓγµ

Γ =
1

2
(γ1 + γ2 + γ3 + γ4) and Γ2 = 1

{Γ, γµ} = {Γ, γ′µ} = 1.
3M. Creutz JHEP 0804,017(2008),A. Borici PRD 78 017(2010)
J. Goswami (IIT Kanpur) GN model with BC fermion FEB 16,2015 8 / 27



More on BC fermion

Hypercubic symmetry is broken so we can introduce other dimension
counter terms but as long as Mf (pµ) is cubic symmetric, only three
and four dimensional counterterms will be required.

For BC action we here only analyse the dimension three counter
term(c3) and tune the coe�cient of 4 dimension counter terms to zero,

So its look like (a = 1)

DBC(p) =
∑
µ

[
iγµ sin pµ + i(Γ− γµ)cos(pµ)

]
+ i(c3 − 2)Γ

Now the term c3 changes the number and postion of the zeros,

c3 =


0 two zeros (0,0,0,0) and (π2 ,

π
2 ,

π
2 ,

π
2 )

4 two zeros (π, π, π, π) and (π2 ,
π
2 ,

π
2 ,

π
2 )

2 no zeros
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Borici Creutz fermions in 4D
Introduction

Borici Creutz action in 4 dimensional space is written as,

SBC =
∑
n

[1

2

∑
µ

ψ̄nγµ(ψn+µ − ψn−µ)

− ir
2

∑
µ

ψ̄n(Γ− γµ)(2ψn − ψn+µ − ψn−µ)

+ic3ψ̄nΓψn +mψ̄nψn

]
We write this action using the hopping and onsite operators as,

SBC =
∑
n

[∑
µ

(ψ̄nP
+
µ ψn+µ − ψ̄nP−µ ψn−µ) + ψ̄nM̂ψn

]
where the hopping operators are de�ned as
P+
µ =

γµ
2 (1− ir) + irΓ

2 , P
−
µ =

γµ
2 (1 + ir)− irΓ

2 and the onsite

operator M̂ = m+ i(c3 − 2r)Γ.
J. Goswami (IIT Kanpur) GN model with BC fermion FEB 16,2015 10 / 27
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Contd...

In the strong coupling limit the e�ective action is,

Seff =
∑
n

[∑
µ

Tr(M(n)(P+
µ )TM(n+ µ̂)(P−µ )T )

+Tr(M̂M(n))− Tr(logM(n))
]

where M(n) = ψ̄(n)ψ(n)/Nc and the trace is over spinor indices.
The condensate(VEV) of M(n), has both σ and πΓ condensates,

〈M(n)〉 = M0 = σI4 + iΓπΓ.

After putting this into previous equation we get the e�ective action as,

Seff = Nc

[
4σ2(1 + r2) + 2πΓ

2(1 + r2) + 4mσ

−4(c3 − 2r)πΓ − 2 log(σ2 + πΓ
2)
]
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Phase Diagram in 4D
Gap equations

From the saddle point solutions the gap equations are,

2σ(1 + r2) +m− σ

σ2 + πΓ
2

= 0,

πΓ(1 + r2)− (c3 − 2r)− πΓ

σ2 + πΓ
2

= 0.

These equantions can be solved analytically for m = 0. Setting σ → 0,
we get the chiral boundaries for massless Borici-Creutz fermions at,

c3 − 2r = ±
√

1 + r2

2
.

For r = 1 the chiral boundaries are at c̄3 = c3 − 2 = ±1.

We get two solutions for the condensates for m = 0 and r = 1 as

σ = 0, πΓ =
1

4

(
c̄3 ±

√
8 + c̄3

2
)
.
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and σ =

√
1− c̄3

2

2
, πΓ = − c̄3

2
.

0 0.5 1 1.5
0

0.25

0.5

c 3

Σ

Figure : c̄3 vs σ for Borici-Creutz fermions when m=0 and r=1.

[4]
4T. Misumi, JHEP 1208, 068 (2012)[Similar things done for KW fermions]
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Gross Neveu Model in 2 dimensions
Multipicity of the free Dirac operator

The Borici-Creutz action has already been de�ned previously. In 2D,
Γ = 1

2(γ1 + γ2), {Γ, γµ} = 1, and Γ2 = 1
2 .[(2×2) gamma matrices]

The free Dirac operator in momentum space is written as,

DBC(p) =
∑
µ

[iγµ sin pµ + i(Γ− γµ)cos(pµ)] + i(c3 − 2)Γ.

For c3 = 0 and c3 = 4 only one zero of the Dirac operator but
dispersion becomes unphysical.

For 0 < c3 < 0.59 and 3.41 < c3 < 4 the Dirac operator has
only two zeros i.e this is the region of minimal doubling.
And for the rest of the region i.e 0.59 < c3 < 3.41 the Dirac operator
has four zeros. Out of those zeros, we get correct continuum limit of
the Dirac operator only when p1 = p2.

J. Goswami (IIT Kanpur) GN model with BC fermion FEB 16,2015 14 / 27
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Four fermi interaction

The free action (with r = 1) is

SBC =
∑
n

[1

2

∑
µ

ψ̄nγµ(ψn+µ − ψn−µ)

− i
2

∑
µ

ψ̄n(Γ− γµ)(2ψn − ψn+µ − ψn−µ)

+i(c3 − 2)ψ̄nΓψn +mψ̄nψn

]

After including the four fermi interactions,

SBCGN =
∑
n

[
SBC −

g2

2N
[(ψ̄nψn)2 + (ψ̄niΓψn)2]

]
.
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Four fermi interaction

To linearize the four fermion interactions, we introduce two real
auxiliary �elds σ and πΓ:

σ(n) = m− g2

N
(ψ̄nψn)

πΓ(n) = c3 − 2− g2

N
(ψ̄niΓψn).

The e�ective action becomes,

S̃eff = N
[ 1

2g2
[(σ −m)2 + (πΓ − c3 + 2)2

−
∫

d2k

(2π)2
log [σ2 +

π2
Γ

2
+ πΓ(C +D) + C2 +D2]

]

J. Goswami (IIT Kanpur) GN model with BC fermion FEB 16,2015 16 / 27



Then the gap equations are obtained as

(σ −m)

g2
=

∫
d2k

(2π)2

2σ

(σ2 +
π2

Γ
2 + πΓ(C +D) + C2 +D2)

,

(πΓ − c3 + 2)

g2
=

∫
d2k

(2π)2

πΓ + (C +D)

(σ2 +
π2

Γ
2 + πΓ(C +D) + C2 +D2)

;

where,

C = sin(k1)− 1

2
(cos(k1)− cos(k2)),

D = sin(k2)− 1

2
(cos(k2)− cos(k1)).

For exact chiral structure m=0 and at the chiral boundary σ=0,

the mass of σ is zero on the critical line which indicates a second order
phase transition.

mσ ∝ V
δ2 ¯Seff
δσ2

∣∣∣∣∣
(c3)c

= 0
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Phase Diagram in parameter space

BA A

Σ=0 Σ=0Σ"0

#2 0 2 4 6
0

1

2

3

4

5

c3

g
2

Figure : Chiral boundaries in the parametric space i.e. c3 vs g2 for BC fermions
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HMC of the model

For numerical simulation we take c3 = 0 + ε where ε = 10−5

The lattice version of the action is written as,

S = ψ̄iMijψj +
N

2g2
(σ2 + π2

Γ),

Mij = Dij +
1

4

∑
<x,x̃>

(σ + iπΓΓ).

where the auxiliary �elds are de�ned in the dual lattice sites x̃
surrounding the direct lattice site [5] x.

5S. J. Hands, A. Koci¢, J. B. Kogut, Nucl. Phys. B390, 355 (1993), Ann. Phys.
224, 29 (1993).

J. Goswami (IIT Kanpur) GN model with BC fermion FEB 16,2015 19 / 27



HMC of the Model

Where Dij is the BC Dirac operator:

Dij =
1

2
γµ(δj,i+µ − δj,i−µ) +

i

2
(Γ− γµ)(δj,i+µ + δj,i−µ)

−((2− ε)iΓ−m)δi,j .

We take (M †M) to make it real and positive de�nite and integrate
out the fermion �elds.

With psedofermions and Nf = 2N = 4 the action becomes

S = φ†(M †M)−1φ+
1

g2
(σ2 + π2

Γ).

We take the mass values as 0.01,0.02 and 0.03.
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HMC of the model

We simulate our model by hybrid monte carlo (HMC) method and
evaluate the order parameter for the chiral phase transition 〈σ〉 as a
function of coupling constant. We use point sources to estimate the
condensate.

〈ψ̄ψ〉 = −〈TrM−1〉
〈σ〉 = −β〈ψ̄ψ〉

where β =
1

g2
.

The con�gurations are generated by considering stepsize (4t=0.1) in
the leapfrog method and ten steps per trajectory in the molecular
dynamics chain.
First 500 ensembles are rejected for thermalization and data are
collected for next 16000 ensembles.
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Figure : 〈σ〉 vs β of m=0.01,0.02 & 0.03 for Gross-Neveu model with BC
fermions in a 32×32 lattice
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Figure : Finite volume e�ects of 〈σ〉 vs β for m=0.03 of three di�erent lattice
sizes 20× 20, 32× 32, and 40× 40
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Mass Spectrum

Next we �nd the mass spectrum of GN model using this fermion
formulation,

we present some preliminary results of the mass spectrum by
calculating the following correlators,

c1(x, t) = ψ̄(x, t)γ5ψ(x, t)

c2(x, t) = ψ̄(x+ n, t)γ5

[
ψ(x+ n, t) + ψ(x− n, t)

]
c3(x, t) =

[
ψ(x+ n, t)− ψ(x− n, t)

]
γ5

[
ψ(x+ n, t)− ψ(x− n, t)

]
Where, n = 2

then calculate the e�ective mass using,

meff = log
ci(t)

ci(t+ 1)

Where, i = 1, 2, 3
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Preliminary Results
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Figure : corr vs t for m=0.03 and L = 16× 48
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Figure : meff vs t for m=0.03 and L = 16× 48

J. Goswami (IIT Kanpur) GN model with BC fermion FEB 16,2015 25 / 27



Summary

We have studied the Gross-Neveu model with minimally doubled
fermion action which has been proposed by Creutz and Borici.

We have analytically shown a second order phase transition boundary
from symmetric to broken chiral phase.

Then we have studied the model with HMC algorithm. The order
parameter 〈σ〉 is plotted against β = 1/g2 shows chiral phase
transition.

We have calculate the mass spectrum of GN model and present some
preliminary results for that,

Issues(4 D),
Counter terms ?? Renormaization ?? operator mixing issues ??
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