

Phase Transition in Gross Neveu model with Borici Creutz fermions

Jishnu Goswami

IIT Kanpur

Collaborators:

D. Chakrabarti, IIT Kanpur

S. Basak, NISER Bhubaneswar

Ref: J.Goswami,D.Chakrabarti and S.Basak PhysRevD.91.014507(arxiv 1409.7999)

Perspectives and Challenges in Lattice Gauge Theory
TIFR, Mumbai

FEB 16,2015

Outline

1 Introduction

2 Borici-Creutz fermions in 4D

- Action
- Strong coupling analysis
- Gap equation and phase diagram

3 Gross Neveu model in 2D

4 HMC of the Model

5 Summary

Introduction

- Simulation with dynamical fermions in a lattice is always a challenging task.
- The famous no-go theorem: Lattice fermion actions with,
 - locality
 - chiral symmetry
 - hermiticitymust produce massless fermions in multiples of two in continuum limit.
- There exist lot of fermion prescriptions to avoid fermion doubling caused by the naive fermions.
- Every model has its own advantages and also individual shortcomings.

Introduction

- Simulation with dynamical fermions in a lattice is always a challenging task.
- The famous no-go theorem: Lattice fermion actions with,
 - locality
 - chiral symmetry
 - hermiticitymust produce massless fermions in multiples of two in continuum limit.
- There exist lot of fermion prescriptions to avoid fermion doubling caused by the naive fermions.
- Every model has its own advantages and also individual shortcomings.

Introduction

- Simulation with dynamical fermions in a lattice is always a challenging task.
- The famous no-go theorem: Lattice fermion actions with,
 - locality
 - chiral symmetry
 - hermiticitymust produce massless fermions in multiples of two in continuum limit.
- There exist lot of fermion prescriptions to avoid fermion doubling caused by the naive fermions.
- Every model has its own advantages and also individual shortcomings.

Introduction

- Simulation with dynamical fermions in a lattice is always a challenging task.
- The famous no-go theorem: Lattice fermion actions with,
 - locality
 - chiral symmetry
 - hermiticitymust produce massless fermions in multiples of two in continuum limit.
- There exist lot of fermion prescriptions to avoid fermion doubling caused by the naive fermions.
- Every model has its own advantages and also individual shortcomings.

Introduction

- Lattice fermions and shortcomings
 - Wilson fermion: No chiral symmetry
 - Staggered fermion: Doublers not remove totally and rooting needed
 - Domain wall and Overlap fermion: Complicated simulation algorithms
- Another possible way is lattice action with 2 massless species, the minimum number required by the no-go theorem, called **minimal-doubling** fermions.
- There are three types of minimally doubled actions,
 - Karsten-Wilczek
 - Borici-Creutz
 - Twisted-ordering types.
- These all possess one exact chiral symmetry but lack discrete symmetries.

Introduction

- Lattice fermions and shortcomings
 - Wilson fermion: No chiral symmetry
 - Staggered fermion: Doublers not remove totally and rooting needed
 - Domain wall and Overlap fermion: Complicated simulation algorithms
- Another possible way is lattice action with 2 massless species, the minimum number required by the no-go theorem, called **minimal-doubling** fermions.
- There are three types of minimally doubled actions,
 - Karsten-Wilczek
 - Borici-Creutz
 - Twisted-ordering types.
- These all possess one exact chiral symmetry but lack discrete symmetries.

Introduction

- Lattice fermions and shortcomings
 - Wilson fermion: No chiral symmetry
 - Staggered fermion: Doublers not remove totally and rooting needed
 - Domain wall and Overlap fermion: Complicated simulation algorithms
- Another possible way is lattice action with 2 massless species, the minimum number required by the no-go theorem, called **minimal-doubling** fermions.
- There are three types of minimally doubled actions,
 - Karsten-Wilczek
 - Borici-Creutz
 - Twisted-ordering types.
- These all possess one exact chiral symmetry but lack discrete symmetries.

Introduction

- Lattice fermions and shortcomings
 - Wilson fermion: No chiral symmetry
 - Staggered fermion: Doublers not remove totally and rooting needed
 - Domain wall and Overlap fermion: Complicated simulation algorithms
- Another possible way is lattice action with 2 massless species, the minimum number required by the no-go theorem, called **minimal-doubling** fermions.
- There are three types of minimally doubled actions,
 - Karsten-Wilczek
 - **Borici-Creutz**
 - Twisted-ordering types.
- These all possess one exact chiral symmetry but lack discrete symmetries.

Introduction

- Lattice fermions and shortcomings
 - Wilson fermion: No chiral symmetry
 - Staggered fermion: Doublers not remove totally and rooting needed
 - Domain wall and Overlap fermion: Complicated simulation algorithms
- Another possible way is lattice action with 2 massless species, the minimum number required by the no-go theorem, called **minimal-doubling** fermions.
- There are three types of minimally doubled actions,
 - Karsten-Wilczek
 - Borici-Creutz
 - **Twisted-ordering** types.
- These all possess one exact chiral symmetry but lack discrete symmetries.

Introduction

- Lattice fermions and shortcomings
 - Wilson fermion: No chiral symmetry
 - Staggered fermion: Doublers not remove totally and rooting needed
 - Domain wall and Overlap fermion: Complicated simulation algorithms
- Another possible way is lattice action with 2 massless species, the minimum number required by the no-go theorem, called **minimal-doubling** fermions.
- There are three types of minimally doubled actions,
 - Karsten-Wilczek
 - Borici-Creutz
 - Twisted-ordering types.
- These all possess one exact chiral symmetry but lack discrete symmetries.

Classification: KW, TO and BC

- Naive fermions in momentum space

$$aD_{fm}(p) = i\gamma_\mu \sin p_\mu a$$

16 massless fermions in continuum limit (for $ap \approx 0$ and π) known as doublers,

- Wilson type fermions are,

$$aD_{fm}(p) = i\gamma_\mu \sin p_\mu a + (1 - \cos(ap_\mu))$$

So now the 15 out of 16 fermions get large mass ($O(1/a)$) and decoupled in continuum (only for $ap=0$ remains)

¹M.Creutz et. al arxiv :1011.0761

Classification: KW, TO and BC

- Naive fermions in momentum space

$$aD_{fm}(p) = i\gamma_\mu \sin p_\mu a$$

16 massless fermions in continuum limit (for $ap \rightarrow 0$ and π) known as doublers,

- Wilson type fermions are,

$$aD_{fm}(p) = i\gamma_\mu \sin p_\mu a + (1 - \cos(ap_\mu))$$

So now the 15 out of 16 fermions get large mass ($O(1/a)$) and decoupled in continuum (only for $ap=0$ remains)

¹M.Creutz et. al arxiv :1011.0761

Classification: KW, TO and BC

- Wilson type fermions are,

$$aD_{fm}(p) = i\gamma_\mu \sin p_\mu a + (1 - \cos(ap_\mu))$$

So now the 15 out of 16 fermions get large mass ($O(1/a)$) and decoupled in continuum (only for $ap=0$ remains)

- Now if we further modify it by adding a gamma matrix with the second term,

$$aD_{fm}(p) = i\gamma_\mu \sin p_\mu a + i\gamma_4 M_f(p_\mu)$$

where, $M_f(p_\mu) = (1 - \cos(ap_\mu))$ is flavored mass term. [¹]

Karsten-Wilczek fermions.

Has only two zeros, $(0, 0, 0, 0)$ and (π, π, π, π)

- Now this type of term preserves the chiral symmetry but breaks the hypercubic symmetry.

¹M.Creutz et. al arxiv :1011.0761

Classification: KW, TO and BC

- Another type is twisted ordering , Lets start by writing instead of a single gamma matrix sum over all gamma matrices,

$$aD_{fm}(p) = i\gamma_\mu \sin p_\mu a - i\gamma_\mu M_f(p_\mu)$$

²M.Creutz et. al PRD 82,074502 (2010)

Classification: KW, TO and BC

- Another type is twisted ordering , Lets start by writing instead of a single gamma matrix sum over all gamma matrices,

$$aD_{fm}(p) = i\gamma_\mu \sin p_\mu a - i\gamma_\mu M_f(p_\mu)$$

- So in 2D it looks like($a = 1$) ,

$$D(p) = \underbrace{(\sin p_1 + \cos p_1 - 1)i\gamma_1 + (\sin p_2 + \cos p_2 - 1)i\gamma_2}_{4 \text{ zeros for every } p \text{ at } 0 \text{ and } \frac{\pi}{2}}$$

²M.Creutz et. al PRD 82,074502 (2010)

Classification: KW, TO and BC

- Another type is twisted ordering , Lets start by writing instead of a single gamma matrix sum over all gamma matrices,

$$aD_{fm}(p) = i\gamma_\mu \sin p_\mu a - i\gamma_\mu M_f(p_\mu)$$

- So in 2D it looks like($a = 1$) ,

$$D(p) = \underbrace{(\sin p_1 + \cos p_1 - 1)i\gamma_1 + (\sin p_2 + \cos p_2 - 1)i\gamma_2}_{\text{4 zeros for every } p \text{ at } 0 \text{ and } \frac{\pi}{2}}$$

- After twisting p_1 and p_2 of cos terms,^[2]

$$D(p) = \underbrace{(\sin p_1 + \cos p_2 - 1)i\gamma_1 + (\sin p_2 + \cos p_1 - 1)i\gamma_2}_{\text{2 zeros at } (0,0) \text{ and } (\frac{\pi}{2}, \frac{\pi}{2})}$$

²M.Creutz et. al PRD 82,074502 (2010)

Classification: KW, TO and BC

- Another type is twisted ordering , Lets start by writing instead of a single gamma matrix sum over all gamma matrices,

$$aD_{fm}(p) = i\gamma_\mu \sin p_\mu a - i\gamma_\mu M_f(p_\mu)$$

- So twisting the order of gamma matrices in the second term reduces the zeros, Similarly in 4D after twist we get only two zeros,

$$aD_{fm}(p) = \underbrace{i\gamma_\mu \sin p_\mu a + i\gamma_{\mu-1} M_f(p_\mu)}_{\text{2 zeros at } (0,0,0,0) \text{ and } (\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2})}$$

$$\mu - 1 = \begin{cases} 1, 2, 3, & \text{if } \mu = 2, 3, 4 \\ 4 & \text{if } \mu = 1 \end{cases}$$

²M.Creutz et. al PRD 82,074502 (2010)

Figure : Four zeros In 2D

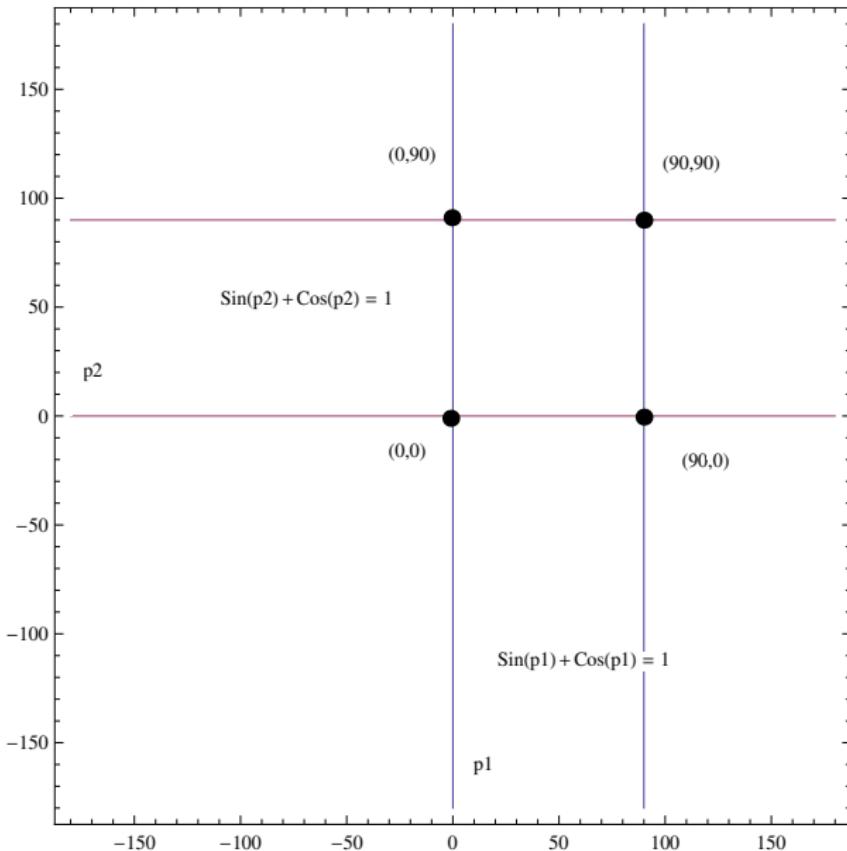
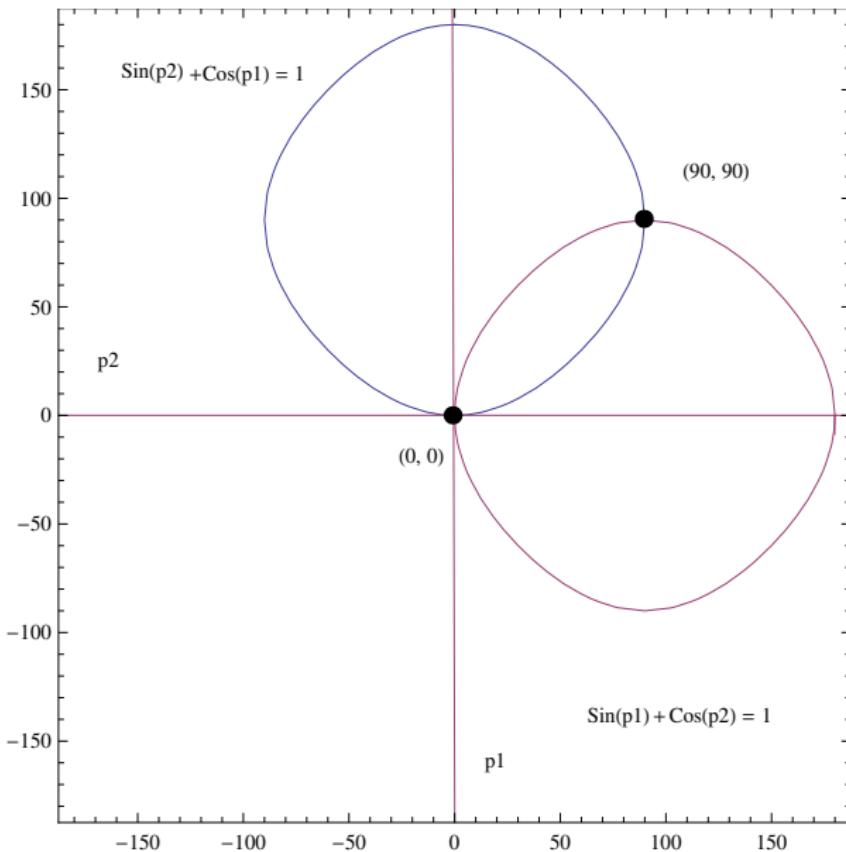


Figure : Two zeros In 2D after twisting



Borici-Creutz fermion

- Now if instead of twisting we take a different set of gamma matrices with the cos term,

Then the Dirac operator is ($a = 1$),³

$$D_{BC}(p) = \underbrace{\sum_{\mu} \left[i\gamma_{\mu} \sin p_{\mu} - i(\gamma'_{\mu})(1 - \cos(p_{\mu})) \right]}_{\text{Two zeros at } (0,0,0,0) \text{ and } (\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2})}.$$

Important relations:

$$\gamma'_{\mu} = \sum_{\mu} \gamma_{\mu} \Gamma \gamma_{\mu}$$

$$\Gamma = \frac{1}{2}(\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4) \text{ and } \Gamma^2 = 1$$

$$\{\Gamma, \gamma_{\mu}\} = \{\Gamma, \gamma'_{\mu}\} = 1.$$

³M. Creutz JHEP 0804,017(2008), A. Borici PRD 78 017(2010)

More on BC fermion

- Hypercubic symmetry is broken so we can introduce other dimension counter terms but as long as $M_f(p_\mu)$ is cubic symmetric, only three and four dimensional counterterms will be required.
- For BC action we here only analyse the dimension three counter term(c_3) and tune the coefficient of 4 dimension counter terms to zero,
- So its look like ($a = 1$)

$$D_{BC}(p) = \sum_{\mu} \left[i\gamma_{\mu} \sin p_{\mu} + i(\Gamma - \gamma_{\mu}) \cos(p_{\mu}) \right] + i(c_3 - 2)\Gamma$$

- Now the term c_3 changes the number and postion of the zeros,

$$c_3 = \begin{cases} 0 & \text{two zeros } (0,0,0,0) \text{ and } (\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}) \\ 4 & \text{two zeros } (\pi, \pi, \pi, \pi) \text{ and } (\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}) \\ 2 & \text{no zeros} \end{cases}$$

More on BC fermion

- Hypercubic symmetry is broken so we can introduce other dimension counter terms but as long as $M_f(p_\mu)$ is cubic symmetric, only three and four dimensional counterterms will be required.
- For BC action we here only analyse the dimension three counter term(c_3) and tune the coefficient of 4 dimension counter terms to zero,
- So its look like ($a = 1$)

$$D_{BC}(p) = \sum_{\mu} \left[i\gamma_{\mu} \sin p_{\mu} + i(\Gamma - \gamma_{\mu}) \cos(p_{\mu}) \right] + i(c_3 - 2)\Gamma$$

- Now the term c_3 changes the number and postion of the zeros,

$$c_3 = \begin{cases} 0 & \text{two zeros } (0,0,0,0) \text{ and } (\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}) \\ 4 & \text{two zeros } (\pi, \pi, \pi, \pi) \text{ and } (\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}) \\ 2 & \text{no zeros} \end{cases}$$

More on BC fermion

- Hypercubic symmetry is broken so we can introduce other dimension counter terms but as long as $M_f(p_\mu)$ is cubic symmetric, only three and four dimensional counterterms will be required.
- For BC action we here only analyse the dimension three counter term(c_3) and tune the coefficient of 4 dimension counter terms to zero,
- So its look like ($a = 1$)

$$D_{BC}(p) = \sum_{\mu} \left[i\gamma_{\mu} \sin p_{\mu} + i(\Gamma - \gamma_{\mu}) \cos(p_{\mu}) \right] + i(c_3 - 2)\Gamma$$

- Now the term c_3 changes the number and postion of the zeros,

$$c_3 = \begin{cases} 0 & \text{two zeros } (0,0,0,0) \text{ and } (\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}) \\ 4 & \text{two zeros } (\pi, \pi, \pi, \pi) \text{ and } (\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}) \\ 2 & \text{no zeros} \end{cases}$$

Borici Creutz fermions in 4D

Introduction

- Borici Creutz action in 4 dimensional space is written as,

$$S_{BC} = \sum_n \left[\frac{1}{2} \sum_{\mu} \bar{\psi}_n \gamma_{\mu} (\psi_{n+\mu} - \psi_{n-\mu}) - \frac{ir}{2} \sum_{\mu} \bar{\psi}_n (\Gamma - \gamma_{\mu}) (2\psi_n - \psi_{n+\mu} - \psi_{n-\mu}) + ic_3 \bar{\psi}_n \Gamma \psi_n + m \bar{\psi}_n \psi_n \right]$$

- We write this action using the hopping and onsite operators as,

$$S_{BC} = \sum_n \left[\sum_{\mu} (\bar{\psi}_n P_{\mu}^+ \psi_{n+\mu} - \bar{\psi}_n P_{\mu}^- \psi_{n-\mu}) + \bar{\psi}_n \hat{M} \psi_n \right]$$

where the hopping operators are defined as

$P_{\mu}^+ = \frac{\gamma_{\mu}}{2} (1 - ir) + \frac{ir\Gamma}{2}$, $P_{\mu}^- = \frac{\gamma_{\mu}}{2} (1 + ir) - \frac{ir\Gamma}{2}$ and the onsite operator $\hat{M} = m + i(c_3 - 2r)\Gamma$.

Borici Creutz fermions in 4D

Introduction

- Borici Creutz action in 4 dimensional space is written as,

$$\begin{aligned} S_{BC} = & \sum_n \left[\frac{1}{2} \sum_{\mu} \bar{\psi}_n \gamma_{\mu} (\psi_{n+\mu} - \psi_{n-\mu}) \right. \\ & - \frac{ir}{2} \sum_{\mu} \bar{\psi}_n (\Gamma - \gamma_{\mu}) (2\psi_n - \psi_{n+\mu} - \psi_{n-\mu}) \\ & \left. + ic_3 \bar{\psi}_n \Gamma \psi_n + m \bar{\psi}_n \psi_n \right] \end{aligned}$$

- We write this action using the hopping and onsite operators as,

$$S_{BC} = \sum_n \left[\sum_{\mu} (\bar{\psi}_n P_{\mu}^+ \psi_{n+\mu} - \bar{\psi}_n P_{\mu}^- \psi_{n-\mu}) + \bar{\psi}_n \hat{M} \psi_n \right]$$

where the hopping operators are defined as

$P_{\mu}^+ = \frac{\gamma_{\mu}}{2} (1 - ir) + \frac{ir\Gamma}{2}$, $P_{\mu}^- = \frac{\gamma_{\mu}}{2} (1 + ir) - \frac{ir\Gamma}{2}$ and the onsite operator $\hat{M} = m + i(c_3 - 2r)\Gamma$.

Contd...

- In the strong coupling limit the effective action is,

$$S_{eff} = \sum_n \left[\sum_{\mu} \text{Tr}(M(n)(P_{\mu}^+)^T M(n + \hat{\mu})(P_{\mu}^-)^T) + \text{Tr}(\hat{M}M(n)) - \text{Tr}(\log M(n)) \right]$$

where $M(n) = \bar{\psi}(n)\psi(n)/N_c$ and the trace is over spinor indices.

- The condensate(VEV) of $M(n)$, has both σ and π_{Γ} condensates,

$$\langle M(n) \rangle = M_0 = \sigma I_4 + i\Gamma\pi_{\Gamma}.$$

- After putting this into previous equation we get the effective action as,

$$S_{eff} = N_c \left[4\sigma^2(1 + r^2) + 2\pi_{\Gamma}^2(1 + r^2) + 4m\sigma - 4(c_3 - 2r)\pi_{\Gamma} - 2\log(\sigma^2 + \pi_{\Gamma}^2) \right]$$

Contd...

- In the strong coupling limit the effective action is,

$$S_{eff} = \sum_n \left[\sum_{\mu} \text{Tr}(M(n)(P_{\mu}^+)^T M(n + \hat{\mu})(P_{\mu}^-)^T) \right. \\ \left. + \text{Tr}(\hat{M}M(n)) - \text{Tr}(\log M(n)) \right]$$

where $M(n) = \bar{\psi}(n)\psi(n)/N_c$ and the trace is over spinor indices.

- The condensate(VEV) of $M(n)$, has both σ and π_{Γ} condensates,

$$\langle M(n) \rangle = M_0 = \sigma I_4 + i\Gamma \pi_{\Gamma}.$$

- After putting this into previous equation we get the effective action as,

$$S_{eff} = N_c \left[4\sigma^2(1 + r^2) + 2\pi_{\Gamma}^2(1 + r^2) + 4m\sigma \right. \\ \left. - 4(c_3 - 2r)\pi_{\Gamma} - 2\log(\sigma^2 + \pi_{\Gamma}^2) \right]$$

Contd...

- In the strong coupling limit the effective action is,

$$S_{eff} = \sum_n \left[\sum_{\mu} \text{Tr}(M(n)(P_{\mu}^+)^T M(n + \hat{\mu})(P_{\mu}^-)^T) + \text{Tr}(\hat{M}M(n)) - \text{Tr}(\log M(n)) \right]$$

where $M(n) = \bar{\psi}(n)\psi(n)/N_c$ and the trace is over spinor indices.

- The condensate(VEV) of $M(n)$, has both σ and π_{Γ} condensates,

$$\langle M(n) \rangle = M_0 = \sigma I_4 + i\Gamma \pi_{\Gamma}.$$

- After putting this into previous equation we get the effective action as,

$$S_{eff} = N_c \left[4\sigma^2(1 + r^2) + 2\pi_{\Gamma}^2(1 + r^2) + 4m\sigma - 4(c_3 - 2r)\pi_{\Gamma} - 2\log(\sigma^2 + \pi_{\Gamma}^2) \right]$$

Phase Diagram in 4D

Gap equations

- From the saddle point solutions the gap equations are,

$$2\sigma(1+r^2) + m - \frac{\sigma}{\sigma^2 + \pi_\Gamma^2} = 0,$$

$$\pi_\Gamma(1+r^2) - (c_3 - 2r) - \frac{\pi_\Gamma}{\sigma^2 + \pi_\Gamma^2} = 0.$$

- These equations can be solved analytically for $m = 0$. Setting $\sigma \rightarrow 0$, we get the chiral boundaries for massless Borici-Creutz fermions at,

$$c_3 - 2r = \pm \sqrt{\frac{1+r^2}{2}}.$$

- For $r = 1$ the chiral boundaries are at $\bar{c}_3 = c_3 - 2 = \pm 1$.
- We get two solutions for the condensates for $m = 0$ and $r = 1$ as

$$\sigma = 0, \pi_\Gamma = \frac{1}{4}(\bar{c}_3 \pm \sqrt{8 + \bar{c}_3^2}).$$

Phase Diagram in 4D

Gap equations

- From the saddle point solutions the gap equations are,

$$2\sigma(1+r^2) + m - \frac{\sigma}{\sigma^2 + \pi_\Gamma^2} = 0,$$

$$\pi_\Gamma(1+r^2) - (c_3 - 2r) - \frac{\pi_\Gamma}{\sigma^2 + \pi_\Gamma^2} = 0.$$

- These equations can be solved analytically for $m = 0$. Setting $\sigma \rightarrow 0$, we get the chiral boundaries for massless Borici-Creutz fermions at,

$$c_3 - 2r = \pm \sqrt{\frac{1+r^2}{2}}.$$

- For $r = 1$ the chiral boundaries are at $\bar{c}_3 = c_3 - 2 = \pm 1$.
- We get two solutions for the condensates for $m = 0$ and $r = 1$ as

$$\sigma = 0, \pi_\Gamma = \frac{1}{4}(\bar{c}_3 \pm \sqrt{8 + \bar{c}_3^2}).$$

Phase Diagram in 4D

Gap equations

- From the saddle point solutions the gap equations are,

$$2\sigma(1+r^2) + m - \frac{\sigma}{\sigma^2 + \pi_\Gamma^2} = 0,$$

$$\pi_\Gamma(1+r^2) - (c_3 - 2r) - \frac{\pi_\Gamma}{\sigma^2 + \pi_\Gamma^2} = 0.$$

- These equations can be solved analytically for $m = 0$. Setting $\sigma \rightarrow 0$, we get the chiral boundaries for massless Borici-Creutz fermions at,

$$c_3 - 2r = \pm \sqrt{\frac{1+r^2}{2}}.$$

- For $r = 1$ the chiral boundaries are at $\bar{c}_3 = c_3 - 2 = \pm 1$.
- We get two solutions for the condensates for $m = 0$ and $r = 1$ as

$$\sigma = 0, \pi_\Gamma = \frac{1}{4}(\bar{c}_3 \pm \sqrt{8 + \bar{c}_3^2}).$$

and $\sigma = \frac{\sqrt{1 - \bar{c}_3^2}}{2}$, $\pi_\Gamma = -\frac{\bar{c}_3}{2}$.

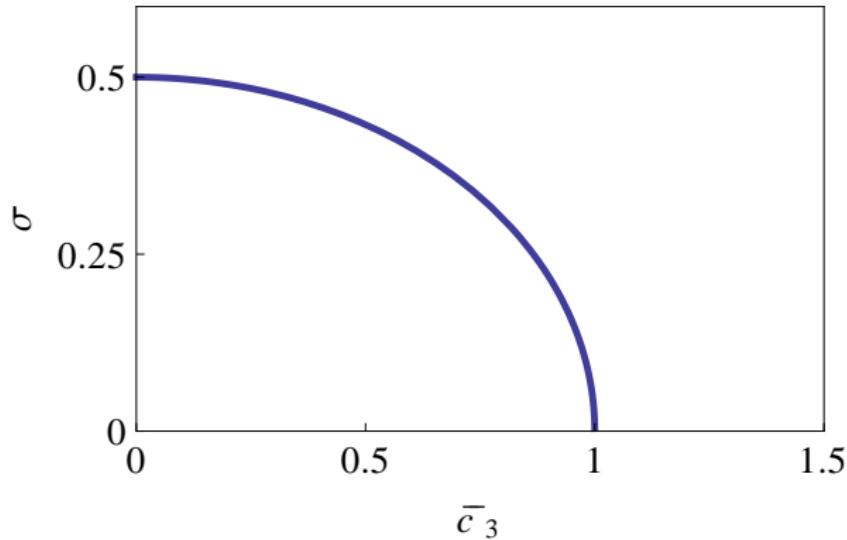


Figure : \bar{c}_3 vs σ for Borici-Creutz fermions when $m=0$ and $r=1$.

[4]

⁴T. Misumi, JHEP **1208**, 068 (2012)[Similar things done for KW fermions]

Gross Neveu Model in 2 dimensions

Multiplicity of the free Dirac operator

- The Borici-Creutz action has already been defined previously. In 2D, $\Gamma = \frac{1}{2}(\gamma_1 + \gamma_2)$, $\{\Gamma, \gamma_\mu\} = 1$, and $\Gamma^2 = \frac{1}{2} \cdot [(2 \times 2) \text{ gamma matrices}]$
- The free Dirac operator in momentum space is written as,

$$D_{BC}(p) = \sum_{\mu} [i\gamma_{\mu} \sin p_{\mu} + i(\Gamma - \gamma_{\mu}) \cos(p_{\mu})] + i(c_3 - 2)\Gamma.$$

- For $c_3 = 0$ and $c_3 = 4$ only one zero of the Dirac operator but dispersion becomes unphysical.
- For $0 < c_3 < 0.59$ and $3.41 < c_3 < 4$ the Dirac operator has only two zeros i.e this is the region of minimal doubling.
- And for the rest of the region i.e $0.59 < c_3 < 3.41$ the Dirac operator has four zeros. Out of those zeros, we get correct continuum limit of the Dirac operator only when $p_1 = p_2$.

Gross Neveu Model in 2 dimensions

Multiplicity of the free Dirac operator

- The Borici-Creutz action has already been defined previously. In 2D, $\Gamma = \frac{1}{2}(\gamma_1 + \gamma_2)$, $\{\Gamma, \gamma_\mu\} = 1$, and $\Gamma^2 = \frac{1}{2} \cdot [(2 \times 2) \text{ gamma matrices}]$
- The free Dirac operator in momentum space is written as,

$$D_{BC}(p) = \sum_{\mu} [i\gamma_{\mu} \sin p_{\mu} + i(\Gamma - \gamma_{\mu}) \cos(p_{\mu})] + i(c_3 - 2)\Gamma.$$

- For $c_3 = 0$ and $c_3 = 4$ only one zero of the Dirac operator but dispersion becomes unphysical.
- For $0 < c_3 < 0.59$ and $3.41 < c_3 < 4$ the Dirac operator has only two zeros i.e this is the region of minimal doubling.
- And for the rest of the region i.e $0.59 < c_3 < 3.41$ the Dirac operator has four zeros. Out of those zeros, we get correct continuum limit of the Dirac operator only when $p_1 = p_2$.

Four fermi interaction

- The free action (with $r = 1$) is

$$\begin{aligned} S_{BC} = & \sum_n \left[\frac{1}{2} \sum_{\mu} \bar{\psi}_n \gamma_{\mu} (\psi_{n+\mu} - \psi_{n-\mu}) \right. \\ & - \frac{i}{2} \sum_{\mu} \bar{\psi}_n (\Gamma - \gamma_{\mu}) (2\psi_n - \psi_{n+\mu} - \psi_{n-\mu}) \\ & \left. + i(c_3 - 2) \bar{\psi}_n \Gamma \psi_n + m \bar{\psi}_n \psi_n \right] \end{aligned}$$

- After including the four fermi interactions,

$$S_{BCGN} = \sum_n \left[S_{BC} - \frac{g^2}{2N} [(\bar{\psi}_n \psi_n)^2 + (\bar{\psi}_n i \Gamma \psi_n)^2] \right].$$

Four fermi interaction

- The free action (with $r = 1$) is

$$\begin{aligned} S_{BC} = & \sum_n \left[\frac{1}{2} \sum_{\mu} \bar{\psi}_n \gamma_{\mu} (\psi_{n+\mu} - \psi_{n-\mu}) \right. \\ & - \frac{i}{2} \sum_{\mu} \bar{\psi}_n (\Gamma - \gamma_{\mu}) (2\psi_n - \psi_{n+\mu} - \psi_{n-\mu}) \\ & \left. + i(c_3 - 2) \bar{\psi}_n \Gamma \psi_n + m \bar{\psi}_n \psi_n \right] \end{aligned}$$

- After including the four fermi interactions,

$$S_{BCGN} = \sum_n \left[S_{BC} - \frac{g^2}{2N} [(\bar{\psi}_n \psi_n)^2 + (\bar{\psi}_n i \Gamma \psi_n)^2] \right].$$

Four fermi interaction

- To linearize the four fermion interactions, we introduce two real auxiliary fields σ and π_Γ :

$$\sigma(n) = m - \frac{g^2}{N}(\bar{\psi}_n \psi_n)$$

$$\pi_\Gamma(n) = c_3 - 2 - \frac{g^2}{N}(\bar{\psi}_n i\Gamma \psi_n).$$

- The effective action becomes,

$$\begin{aligned}\tilde{S}_{eff} &= N \left[\frac{1}{2g^2} [(\sigma - m)^2 + (\pi_\Gamma - c_3 + 2)^2 \right. \\ &\quad \left. - \int \frac{d^2 k}{(2\pi)^2} \log \left[\sigma^2 + \frac{\pi_\Gamma^2}{2} + \pi_\Gamma (C + D) + C^2 + D^2 \right] \right]\end{aligned}$$

- Then the gap equations are obtained as

$$\frac{(\sigma - m)}{g^2} = \int \frac{d^2 k}{(2\pi)^2} \frac{2\sigma}{(\sigma^2 + \frac{\pi_\Gamma^2}{2} + \pi_\Gamma(C + D) + C^2 + D^2)},$$

$$\frac{(\pi_\Gamma - c_3 + 2)}{g^2} = \int \frac{d^2 k}{(2\pi)^2} \frac{\pi_\Gamma + (C + D)}{(\sigma^2 + \frac{\pi_\Gamma^2}{2} + \pi_\Gamma(C + D) + C^2 + D^2)};$$

where,

$$C = \sin(k_1) - \frac{1}{2}(\cos(k_1) - \cos(k_2)),$$

$$D = \sin(k_2) - \frac{1}{2}(\cos(k_2) - \cos(k_1)).$$

- For exact chiral structure $m=0$ and at the chiral boundary $\sigma=0$,
- the mass of σ is zero on the critical line which indicates a second order phase transition.

$$m_\sigma \propto V \frac{\delta^2 S_{eff}^-}{\delta \sigma^2} \bigg|_{(c_3)_c} = 0$$

Phase Diagram in parameter space

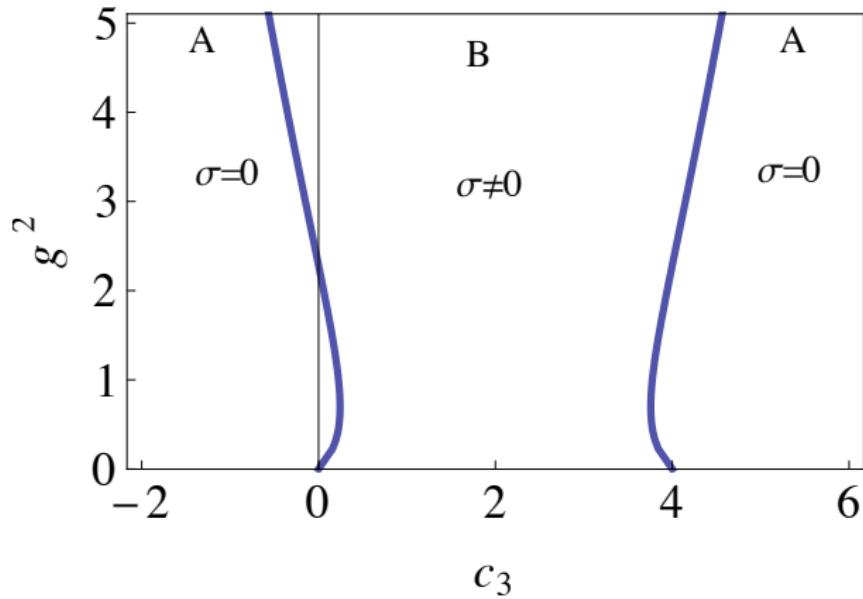


Figure : Chiral boundaries in the parametric space i.e. c_3 vs g^2 for BC fermions

HMC of the model

- For numerical simulation we take $c_3 = 0 + \epsilon$ where $\epsilon = 10^{-5}$
- The lattice version of the action is written as,

$$S = \bar{\psi}_i M_{ij} \psi_j + \frac{N}{2g^2} (\sigma^2 + \pi_\Gamma^2),$$

$$M_{ij} = D_{ij} + \frac{1}{4} \sum_{\langle x, \tilde{x} \rangle} (\sigma + i\pi_\Gamma \Gamma).$$

- where the auxiliary fields are defined in the dual lattice sites \tilde{x} surrounding the direct lattice site [⁵] x .

⁵S. J. Hands, A. Kocić, J. B. Kogut, Nucl. Phys. B390, 355 (1993), Ann. Phys. 224, 29 (1993).

HMC of the Model

- Where D_{ij} is the BC Dirac operator:

$$D_{ij} = \frac{1}{2}\gamma_\mu(\delta_{j,i+\mu} - \delta_{j,i-\mu}) + \frac{i}{2}(\Gamma - \gamma_\mu)(\delta_{j,i+\mu} + \delta_{j,i-\mu}) - ((2 - \epsilon)i\Gamma - m)\delta_{i,j}.$$

- We take $(M^\dagger M)$ to make it real and positive definite and integrate out the fermion fields.
- With psedofermions and $N_f = 2N = 4$ the action becomes

$$S = \phi^\dagger(M^\dagger M)^{-1}\phi + \frac{1}{g^2}(\sigma^2 + \pi_\Gamma^2).$$

- We take the mass values as 0.01, 0.02 and 0.03.

HMC of the Model

- Where D_{ij} is the BC Dirac operator:

$$D_{ij} = \frac{1}{2}\gamma_\mu(\delta_{j,i+\mu} - \delta_{j,i-\mu}) + \frac{i}{2}(\Gamma - \gamma_\mu)(\delta_{j,i+\mu} + \delta_{j,i-\mu}) - ((2 - \epsilon)i\Gamma - m)\delta_{i,j}.$$

- We take $(M^\dagger M)$ to make it real and positive definite and integrate out the fermion fields.
- With pseudofermions and $N_f = 2N = 4$ the action becomes

$$S = \phi^\dagger(M^\dagger M)^{-1}\phi + \frac{1}{g^2}(\sigma^2 + \pi_\Gamma^2).$$

- We take the mass values as 0.01, 0.02 and 0.03.

HMC of the Model

- Where D_{ij} is the BC Dirac operator:

$$D_{ij} = \frac{1}{2}\gamma_\mu(\delta_{j,i+\mu} - \delta_{j,i-\mu}) + \frac{i}{2}(\Gamma - \gamma_\mu)(\delta_{j,i+\mu} + \delta_{j,i-\mu}) - ((2 - \epsilon)i\Gamma - m)\delta_{i,j}.$$

- We take $(M^\dagger M)$ to make it real and positive definite and integrate out the fermion fields.
- With pseudofermions and $N_f = 2N = 4$ the action becomes

$$S = \phi^\dagger(M^\dagger M)^{-1}\phi + \frac{1}{g^2}(\sigma^2 + \pi_\Gamma^2).$$

- We take the mass values as 0.01, 0.02 and 0.03.

HMC of the Model

- Where D_{ij} is the BC Dirac operator:

$$D_{ij} = \frac{1}{2}\gamma_\mu(\delta_{j,i+\mu} - \delta_{j,i-\mu}) + \frac{i}{2}(\Gamma - \gamma_\mu)(\delta_{j,i+\mu} + \delta_{j,i-\mu}) - ((2 - \epsilon)i\Gamma - m)\delta_{i,j}.$$

- We take $(M^\dagger M)$ to make it real and positive definite and integrate out the fermion fields.
- With pseudofermions and $N_f = 2N = 4$ the action becomes

$$S = \phi^\dagger(M^\dagger M)^{-1}\phi + \frac{1}{g^2}(\sigma^2 + \pi_\Gamma^2).$$

- We take the mass values as 0.01, 0.02 and 0.03.

HMC of the model

- We simulate our model by hybrid monte carlo (HMC) method and evaluate the order parameter for the chiral phase transition $\langle\sigma\rangle$ as a function of coupling constant. We use point sources to estimate the condensate.

$$\begin{aligned}\langle\bar{\psi}\psi\rangle &= -\langle TrM^{-1}\rangle \\ \langle\sigma\rangle &= -\beta\langle\bar{\psi}\psi\rangle \\ \text{where } \beta &= \frac{1}{g^2}.\end{aligned}$$

- The configurations are generated by considering stepsize ($\Delta t=0.1$) in the leapfrog method and ten steps per trajectory in the molecular dynamics chain.
First 500 ensembles are rejected for thermalization and data are collected for next 16000 ensembles.

HMC of the model

- We simulate our model by hybrid monte carlo (HMC) method and evaluate the order parameter for the chiral phase transition $\langle \sigma \rangle$ as a function of coupling constant. We use point sources to estimate the condensate.

$$\begin{aligned}\langle \bar{\psi} \psi \rangle &= -\langle \text{Tr} M^{-1} \rangle \\ \langle \sigma \rangle &= -\beta \langle \bar{\psi} \psi \rangle \\ \text{where } \beta &= \frac{1}{g^2}.\end{aligned}$$

- The configurations are generated by considering stepsize ($\Delta t=0.1$) in the leapfrog method and ten steps per trajectory in the molecular dynamics chain.
First 500 ensembles are rejected for thermalization and data are collected for next 16000 ensembles.

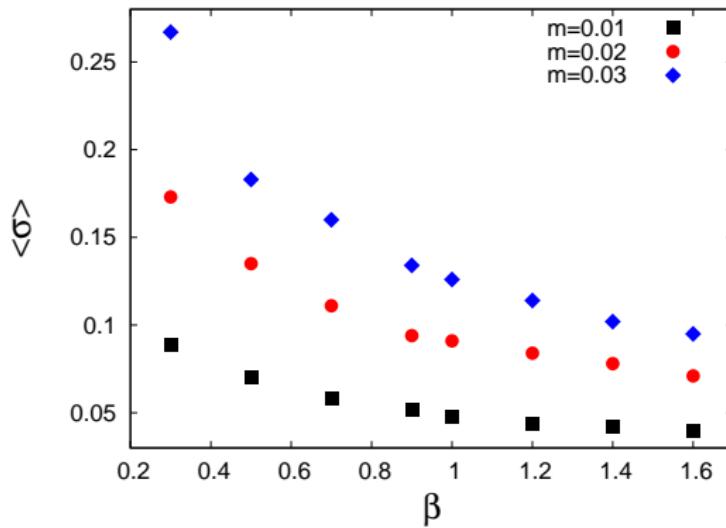


Figure : $\langle \sigma \rangle$ vs β of $m=0.01, 0.02$ & 0.03 for Gross-Neveu model with BC fermions in a 32×32 lattice

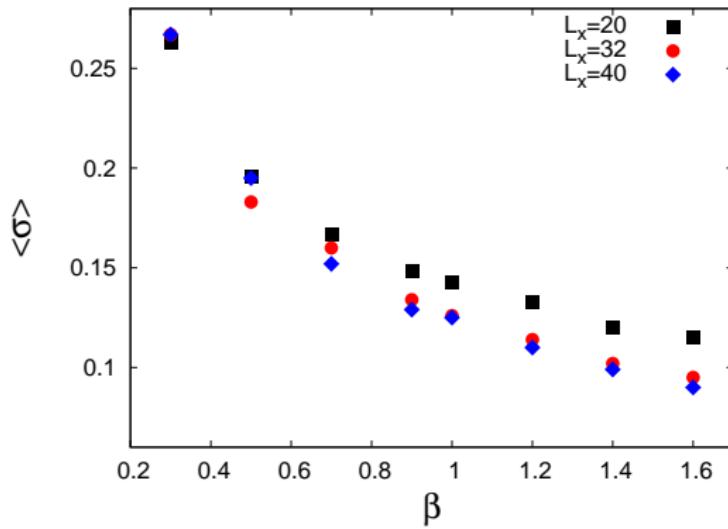


Figure : Finite volume effects of $\langle \sigma \rangle$ vs β for $m=0.03$ of three different lattice sizes 20×20 , 32×32 , and 40×40

Mass Spectrum

- Next we find the mass spectrum of GN model using this fermion formulation,
- we present some preliminary results of the mass spectrum by calculating the following correlators,

$$c1(x, t) = \bar{\psi}(x, t)\gamma_5\psi(x, t)$$

$$c2(x, t) = \bar{\psi}(x + n, t)\gamma_5[\psi(x + n, t) + \psi(x - n, t)]$$

$$c3(x, t) = [\psi(x + n, t) - \psi(x - n, t)]\gamma_5[\psi(x + n, t) - \psi(x - n, t)]$$

Where, $n = 2$

- then calculate the effective mass using,

$$m_{eff} = \log \frac{ci(t)}{ci(t+1)}$$

Where, $i = 1, 2, 3$

Preliminary Results

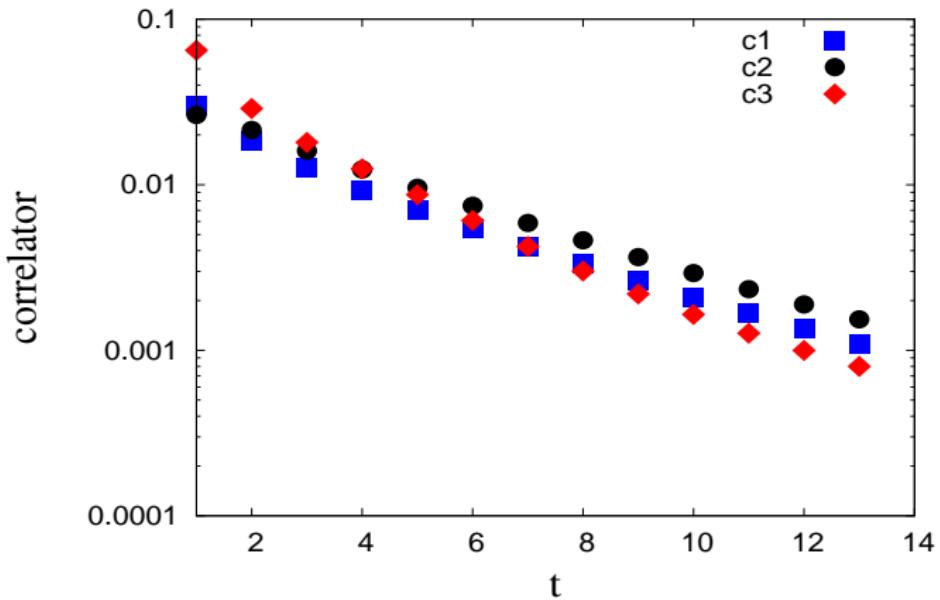


Figure : corr vs t for $m=0.03$ and $L = 16 \times 48$

Preliminary Results

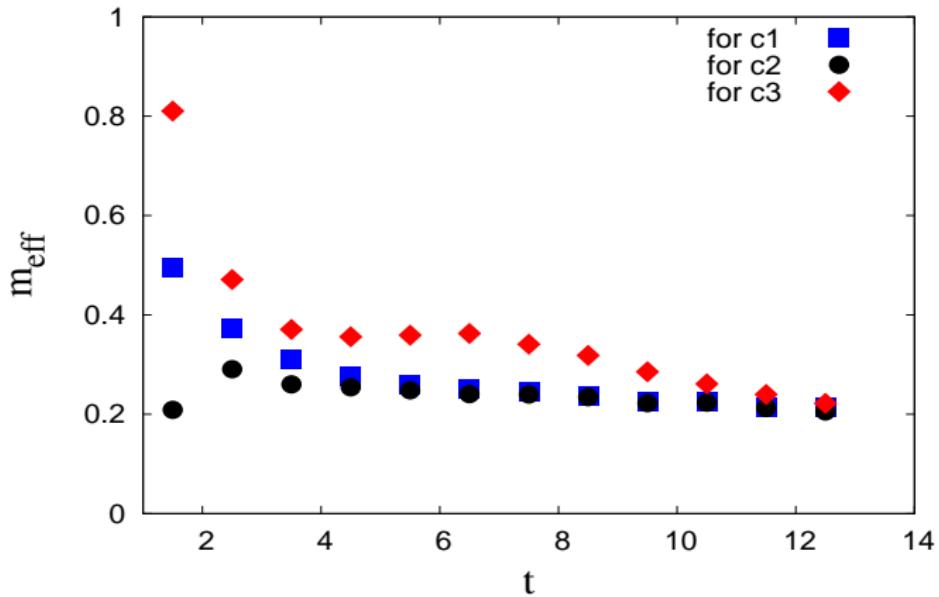


Figure : m_{eff} vs t for $m=0.03$ and $L = 16 \times 48$

Summary

- We have studied the Gross-Neveu model with minimally doubled fermion action which has been proposed by Creutz and Borici.
- We have analytically shown a second order phase transition boundary from symmetric to broken chiral phase.
- Then we have studied the model with HMC algorithm. The order parameter $\langle \sigma \rangle$ is plotted against $\beta = 1/g^2$ shows chiral phase transition.
- We have calculate the mass spectrum of GN model and present some preliminary results for that,
- Issues(4 D),
Counter terms ?? Renormaization ?? operator mixing issues ??

Thank
you