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Introduction

@ Simulation with dynamical fermions in a lattice is always a challenging
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Introduction

@ Simulation with dynamical fermions in a lattice is always a challenging
task.

@ The famous no-go theorem:Lattice fermion actions with,

o locality
e chiral symmetry
o hermiticity

must produce massless fermions in multiples of two in continuum limit.

@ There exist lot of fermion prescriptions to avoid fermion doubling
caused by the naive fermions.

@ Every model has its own advantges and also individual shortcomings.

J. Goswami (IIT Kanpur) GN model with BC fermion FEB 16,2015 3/27



Introduction

@ Lattice fermions and shortcomings

o Wilson fermion: No chiral symmetry
o Staggered fermion: Doublers not remove totally and rooting needed
e Domain wall and Overlap fermion: Complicated simulation algorithms
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Introduction

@ Lattice fermions and shortcomings
o Wilson fermion: No chiral symmetry
o Staggered fermion: Doublers not remove totally and rooting needed
e Domain wall and Overlap fermion: Complicated simulation algorithms
@ Another possible way is lattice action with 2 massless species, the
minimum number required by the no-go theorem,
called minimal-doubling fermions.
@ There are three types of minimally doubled actions,

o Karsten-Wilczek
o Borici-Creutz
o Twisted-ordering types.

@ These all possess one exact chiral symmetry but lack discrete
symmetries.
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Classification:KW,TO and BC

@ Naive fermions in momentum space

aD ¢, (p) = iy, sinpya

16 massless fermions in continuum limit (for ap 0 and 7) known as
doublers,
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Classification:KW,TO and BC

@ Naive fermions in momentum space

aD ¢, (p) = iy, sinpya

16 massless fermions in continuum limit (for ap 0 and 7) known as
doublers,

o Wilson type fermions are,
aDgm(p) = iyusinpua + (1 — cos(apy))

So now the 15 out of 16 fermions get large mass (O(1/a)) and
decoupled in continum (only for ap=0 remains)
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Classification:KW,TO and BC

e Now if we further modify it by adding a gamma matrix with the
second term,

aD pin(p) = i sinpua + ivaMy(py)
where, M(p,) = (1 — cos(ap,)) is flavored mass term. []
Karsten-Wilczek fermions.
Has only two zeros,(0,0,0,0) and (7,7, 7, )
@ Now this type of term preserves the chiral symmetry but breaks the
hypercubic symmetry.

'M.Creutz et. al arxiv :1011.0761
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Classification:KW,TO and BC

@ Another type is twisted ordering , Lets start by writing instead of a
single gamma matrix sum over all gamma matrices,

aDym(p) = iyusinpua — iy, Mg (py)
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Classification:KW,TO and BC

@ Another type is twisted ordering , Lets start by writing instead of a
single gamma matrix sum over all gamma matrices,

aDym(p) = iyusinpua — iy, My (py)

@ Soin 2D it looks like(a = 1) ,

D(p) = (sinpy + cospr — 1)iy1 + (sinpa + cospa — 1)iye

4 zeros for every p at 0 and §

2M.Creutz et. al PRD 82,074502 (2010)
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Classification:KW,TO and BC

@ Soin 2D it looks like(a = 1) ,

D(p) = (sinpy + cospy — 1)iyy + (sinps + cospy — 1)iya

4 zeros for every p at 0 and §
o After twisting p; and po of cos terms,[?]

D(p) = (sinpy + cospa — 1)iyy + (sinps + cospp — 1)iye

2 zeros at (0,0) and (3, 5)

2M.Creutz et. al PRD 82,074502 (2010)
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Classification:KW,TO and BC

@ So twisting the order of gamma matrices in the second term reduces
the zeros, Similarly in 4D after twist we get only two zeros,

aDym(p) = iyusinpya + iy, 1Mg(py)

2 zeros at (0,0,0,0) and (3, 5,5, 5)

(123 ifu=234
A if =1

2M.Creutz et. al PRD 82,074502 (2010)
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Figure : Four zeros In 2D
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Figure : Two zeros In 2D after twisting
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Borici-Creutz fermion

e Now if instead of twisting we take a different set of gamma matrices

with the cos term,
Then the Dirac operator is (a = 1),[?]

Dpo(p) = Y [iusinp, — i(3,)(1 = cos(p,)].

s

Two zeros at (0,0,0,0) and (5, 5, 5, 5)

Important relations:,
= D W
o
1 2
I'= 5(71+72+73+74) and I' =1
{F'/’V,u} - {Fv'V;IL} =1

3M. Creutz JHEP 0804,017(2008),A. Borici PRD 78 017(2010)
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More on BC fermion

@ Hypercubic symmetry is broken so we can introduce other dimension
counter terms but as long as My (p,) is cubic symmetric, only three
and four dimensional counterterms will be required.
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More on BC fermion

@ Hypercubic symmetry is broken so we can introduce other dimension
counter terms but as long as My (p,) is cubic symmetric, only three
and four dimensional counterterms will be required.

@ For BC action we here only analyse the dimension three counter
term(cs) and tune the coefficient of 4 dimension counter terms to zero,

@ So its look like (a = 1)

DBC(p) = Z [7'/7” Sillpu + j(r - 7,11)00‘9(1)/1,) + i(CB - 2)F
1
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More on BC fermion

@ Hypercubic symmetry is broken so we can introduce other dimension
counter terms but as long as My (p,) is cubic symmetric, only three
and four dimensional counterterms will be required.

@ For BC action we here only analyse the dimension three counter
term(cs) and tune the coefficient of 4 dimension counter terms to zero,

@ So its look like (a = 1)
Dpo(p) = Y [ivusinpy + (T = 7)cos(p,)| +iles — 2T

m

@ Now the term c3 changes the number and postion of the zeros,

0 two zeros (0,0,0,0) and (5,5, 7, 5)
5:5:3)

iy

4 two zeros (m,m, 7, 7) and (5

9

ST

C3 =
2  no zeros
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Borici Creutz fermions in 4D

Introduction

@ Borici Creutz action in 4 dimensional space is written as,

SBC = Z [% Z @En'yu(d}n-&-u - wn—u)
n Iz

_% Z QZR(F — ’)/“>(21/1n - ¢n+;L - 1/%—#)
I

+Z‘C3&nrwn + m&nwn}
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Borici Creutz fermions in 4D

Introduction

@ Borici Creutz action in 4 dimensional space is written as,

SBC = Z [% Z @En'm&bn-&-u - wn—u)
o

n

_% D On(T = 1) (20 — Yty — )
o
+iC31§an/zn + m&nwn}

@ We write this action using the hopping and onsite operators as,

Spc = 3 [ S WPty — GnBy n ) + Gu 0]
n w
where the hopping operators are defined as

Pr =201 —ir)+ el Py =%(1+ir) - L and the onsite

operator M =m + 1(03 - QT‘)F.
GN model with BC fermion FEB 16,2015 10 / 27



Contd...

@ In the strong coupling limit the effective action is,

Sers =3 [Z Tr(M(n)(BH) T M(n + 3)(P)T)

—|—Tr(MM(n)) — Tr(log M (n))

where M (n) = (n)y(n)/N, and the trace is over spinor indices.
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Contd...

@ In the strong coupling limit the effective action is,

Sers =3 [Z Tr(M(n)(BH) T M(n + 3)(P)T)

+Tr(MM(n)) — Tr(log M (n))

where M (n) = (n)y(n)/N, and the trace is over spinor indices.
@ The condensate(VEV) of M(n), has both o and nr condensates,

(M(n)) = My=ocly+il'mp.
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Contd...

@ In the strong coupling limit the effective action is,

Sers =3 [Z Tr(M(n)(BH) T M(n + 3)(P)T)

+Tr(MM(n)) — Tr(log M (n))

where M (n) = (n)y(n)/N, and the trace is over spinor indices.
@ The condensate(VEV) of M(n), has both o and nr condensates,

(M(n)) = My=ocly+il'mp.

@ After putting this into previous equation we get the effective action as,

Sers = Ne [402(1 +1r2) + 272 (1 + 12) + dmo

—4(c3 — 2r)mp — 2log(o? + mp?)
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Phase Diagram in 4D

Gap equations

@ From the saddle point solutions the gap equations are,

ag
20(1+7*) +m— ———— =0,
ol+77)+m e —; :
o
1472 —(e3—2r) — —— =0.
(1l +7%) — (e3 — 2r) . —
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Phase Diagram in 4D

Gap equations

@ From the saddle point solutions the gap equations are,

ag
20(1+7%) +m— ——— =0,
o(1+7%)+m e —; :
r
1+7r%) —(c3—2r)— ———= =0.
(1l +7%) — (e3 — 2r) . —

@ These equantions can be solved analytically for m = 0. Setting 0 — 0,
we get the chiral boundaries for massless Borici-Creutz fermions at,
1+r?
5

@ For r = 1 the chiral boundaries are at ¢3 = ¢35 — 2 = £1.

03—27’=:|:
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Phase Diagram in 4D

Gap equations

@ From the saddle point solutions the gap equations are,

o
20 (1 + r? m— ——— =0,
o(l+7r%)+m = :
T
1472) = (e3—2r) — —F .
(1l +7%) — (e3 — 2r) . —

@ These equantions can be solved analytically for m = 0. Setting 0 — 0,
we get the chiral boundaries for massless Borici-Creutz fermions at,
1472
5

@ For r = 1 the chiral boundaries are at ¢3 = ¢35 — 2 = £1.

03—27’=:|:

@ We get two solutions for the condensates for m =0 and r =1 as

1.z 2
oc=0,m =—(c3+v8+c32%).
4
GN model with BC fermion FEB 16,2015 12 /27
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b

0.25+
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Cs

Figure : ¢3 vs o for Borici-Creutz fermions when m=0 and r=1.

)

*T. Misumi, JHEP 1208, 068 (2012)[Similar things done for KW fermions]
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Gross Neveu Model in 2 dimensions
Multipicity of the free Dirac operator

@ The Borici-Creutz action has already been defined previously. In 2D,
I'=21(v+7) {T,%} =1, and I? = £.[(2x2) gamma matrices]
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Gross Neveu Model in 2 dimensions
Multipicity of the free Dirac operator

@ The Borici-Creutz action has already been defined previously. In 2D,
I'=2(v1+72) {7} =1, and I'? = $.[(2x2) gamma matrices]

@ The free Dirac operator in momentum space is written as,

Dpe(p) = Z[’i’m sinp, + (I’ — v,)cos(py)] +i(cz — 2)T.
I

e For ¢3 =0 and ¢c3 =4 only one zero of the Dirac operator but
dispersion becomes unphysical.

e For 0<e¢3<0.59 and 3.41<c3<4 the Dirac operator has
only two zeros i.e this is the region of minimal doubling.

o And for the rest of the region i.e 0.59 < ¢3 < 3.41 the Dirac operator
has four zeros. Out of those zeros, we get correct continuum limit of
the Dirac operator only when p; = ps.
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Four fermi interaction

@ The free action (with r =1) is

Spc = Z|: Z nYu wnJru wnfu)

n I3

> (T = 7u) 280 — Pty — Ynp)
17

[N

1
2

+i(03 - 2)¢nrwn + m&nwn}
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Four fermi interaction

@ The free action (with r =1) is

n

SBC = Z [% Z T/Gn'y,u(@bnﬂt - wnfp)
nw
=5 2 Pn(T =)@ — Ve = Y
I

+i(03 - 2)%1%71 + m&nwn}

@ After including the four fermi interactions,

2 _ . _
SBC’GN = Z [SBC - 297]\7[(1!)71,7/)702 + (@Z}nirl/)n)g]} .

n
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Four fermi interaction

@ To linearize the four fermion interactions, we introduce two real
auxiliary fields o and np:

9 -
O’(TL) = m_ﬁ(wnd)n)
2 —

mr(n) = c3—2 = 5 (nilin).

o The effective action becomes,

geff = N{L

292[(ofm)2+(wvc?,+2)2

d’k 2, T 2 2
- (27r)2log[a +?+7TF(C+D)+C + D7
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@ Then the gap equations are obtained as

(0 —m) / d*k 20
¢ SO T (D) +C2 D)
(tr—es+2) / d*k ar + (C + D) .
g (27)* (62 + & 4 wp(C + D) + C2 + D)
where,

C = sin(ky) — %(cos(kl) — cos(k2)),
D = sin(ke) — %(cos(kg) — cos(kq)).

@ For exact chiral structure m=0 and at the chiral boundary c=0,
o the mass of o is zero on the critical line which indicates a second order

phase transition.
-
0°Setf
do?

My XV
(03)6
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Phase Diagram in parameter space
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Figure : Chiral boundaries in the parametric space i.e. c3 vs g2 for BC fermions
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HMC of the model

e For numerical simulation we take ¢z = 0 + € where € = 107°

@ The lattice version of the action is written as,

S = 4 Mg, + N(o ),

1 .
Mij = Dij + Z Z (0’ +Z7TFF).

<z,T>

@ where the auxiliary fields are defined in the dual lattice sites &
surrounding the direct lattice site [°] z.

®S. J. Hands, A. Koci¢, J. B. Kogut, Nucl. Phys. B390, 355 (1993), Ann. Phys.
224, 29 (1993).
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HMC of the Model

e Where D;; is the BC Dirac operator:

1 7
Dij = ”Yu(‘;j,i-&-u - 5j,i—u) + §(F - ’Yu)((sj,i-ku + 53'72'—#)

2
—((2 — E)ir — m)di,j.
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HMC of the Model

e Where D;; is the BC Dirac operator:

1 ;
Dij = 52u(Gjitn = Gi—n) + 5T =) Ggi4p + 56-4)

2
—((2 — E)ir — m)di,j.

o We take (MTM) to make it real and positive definite and integrate
out the fermion fields.
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HMC of the Model

e Where D;; is the BC Dirac operator:

1 7
“Vu(Ogitp — Oji—p) + 2

Dij:2

(F - ’Yu)(‘sj,i—l—u + 5j7i—u)
—((2 — E)ir — m)di,j.

o We take (MTM) to make it real and positive definite and integrate
out the fermion fields.

e With psedofermions and Ny = 2N = 4 the action becomes

S =@ (MTM) 1o+ 912(02 + 7d).
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HMC of the Model

e Where D;; is the BC Dirac operator:

1 7
“Vu(Ogitp — Oji—p) + 2

Dij:2

(F - ’Yu)(‘sj,i—w + 5j7i—u)
—((2 — E)ir — m)di,j.

o We take (MTM) to make it real and positive definite and integrate
out the fermion fields.

e With psedofermions and Ny = 2N = 4 the action becomes

S =@ (MTM) 1o+ 912(02 + 7d).

o We take the mass values as 0.01,0.02 and 0.03.
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HMC of the model

e We simulate our model by hybrid monte carlo (HMC) method and
evaluate the order parameter for the chiral phase transition (o) as a
function of coupling constant. We use point sources to estimate the

condensate.
(W) = —(TrM™)
(o) = —BWy)
where § = %
g
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HMC of the model

e We simulate our model by hybrid monte carlo (HMC) method and
evaluate the order parameter for the chiral phase transition (o) as a
function of coupling constant. We use point sources to estimate the

condensate.
(W) = —(TrM™)
(o) = —BWy)
where § = %
g

@ The configurations are generated by considering stepsize (At=0.1) in
the leapfrog method and ten steps per trajectory in the molecular
dynamics chain.

First 500 ensembles are rejected for thermalization and data are
collected for next 16000 ensembles.
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Figure : (o) vs 8 of m=0.01,0.02 & 0.03 for Gross-Neveu model with BC
fermions in a 32x32 lattice
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L,=20 ‘
L] (=32 o
0.25 | L=40 o
02 .
N [ ]
e}
v :
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0.1t ®
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Figure : Finite volume effects of (o) vs 3 for m=0.03 of three different lattice
sizes 20 x 20, 32 x 32, and 40 x 40
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Mass Spectrum

@ Next we find the mass spectrum of GN model using this fermion
formulation,

@ we present some preliminary results of the mass spectrum by
calculating the following correlators,

cAa,t) = Bl )y, t)

2(x,t) = Y(x+n,t)ys [’l/)(l‘ +n,t)+Y(x —n, f)}
c3(x,t) = [U(L +n,t) —Y(x —n, t)}’yg {w(w +n,t) —(x —n,t)
Where, n =2

@ then calculate the effective mass using,

ci(t)
Meff = log m
Where, 1 =1,2,3
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Preliminary Results
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Figure : corr vs t for m=0.03 and L = 16 x 48
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Preliminary Results
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Figure : myss vs t for m=0.03 and L = 16 x 48
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Summary

@ We have studied the Gross-Neveu model with minimally doubled
fermion action which has been proposed by Creutz and Borici.

@ We have analytically shown a second order phase transition boundary
from symmetric to broken chiral phase.

@ Then we have studied the model with HMC algorithm. The order
parameter (o) is plotted against 3 = 1/g? shows chiral phase
transition.

@ We have calculate the mass spectrum of GN model and present some
preliminary results for that,

@ Issues(4 D),
Counter terms 77 Renormaization 77 operator mixing issues 77
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