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Chiral Gauge Theory & the Problem of Rough Gauge Fields
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Nielsen-Ninomiya Theorem / Chiral Anomalies / Ginsparg-Wilson

* Explicit chiral symmetry breaking by lattice fermions
Lattice Chiral Gauge Theories break gauge invariance.

One way (Luescher 1999, 2000):
Modify chiral symmetry on lattice in accordance with Ginsparg-Wilson relation

¥5(U) = v5(1 — aDgw (U))

U-dependent fermion measure —> Solve integrability condition on the space of U

 Exact Solution was found for the Abelian case

e For the non-Abelian case, a solution was found only in Perturbation Theory (requiring
an infinite number of irrelevant counter-terms), Nno non-perturbative solution is known.



Rough Gauge Fields

Consider S = Sar + Sn1(U) Uy — 92Uzp glﬂb g €G

For example: Sci may be the plaquette action, and

SN(U) ~ = 3 (U + UL) ~ [ A2(a)

I

z= [DUew(-5) = | DU exp(=Sc1 = Sx1 (V)
— /DU exp(—Sar — SN1(92UzpGeiu))

— /DUD¢€XP(—SG[ = SNI(¢I;U:BM¢3:—|—M))

After integrating both sides by gauge degrees of freedom with qbl — g and /ng =1

The ¢ fields are radially frozen scalar fields, they are random because any point
on the gauge orbit is as likely as any other point, making the gauge fields
effectively rough
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The Reduced Model
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The new action S(¢LU,,¢z1.)
IS now gauge-invariant under the transformations:

Usis = haUsp Bl s ¢w = hots, hy €G

Sometimes the original action without the scalars (longitudinal gauge degrees
of freedom) is described as one in the vector picture, and the action with the
scalars as one in the Higgs picture:

SV(Uw,u) e SH(U:c,u; ¢:1;)‘<b=1

The reduced model is defined by the action on the trivial orbit: ~ Uzp = g2 1 glw

In the Higgs picture, the reduced model is obtained by setting U, , =1

* |n the current example, the reduced model is a pure scalar theory
 |f the non-invariant part is due to chiral fermions, the reduced model would be
a fermion-scalar theory



Lattice Chiral Gauge Theories that broke chiral symmetry

o Wilson-Yukawa / Smit-Swift model
 Domain-wall waveguide model
e Fichten-Preskill model

They were investigated in the reduced model, and in all cases fermion doublers

(dynamically generated through strong interactions between fermions and scalars)
made a back-door entry to make the theory vector-like.

Because of strong interactions between the fermions and the scalars (/gdofs),
neutral fermions were formed:

Supposing, the original theory is written with a charged [L-handed and a neutral
R-handed fermion

\IIL(ZU) == hx\IfL(ac), \IJR(CC) T \IJR(.CC)
the undoubled spectrum contains only neutral free Dirac fermion:
T (2) = ¢l Wy (2) + Up(2)

where the composite field ¢' Wy, is a neutral L-handed field because ¢ — ho¢u



How to decouple the scalars (longitudinal gauge

degrees of freedom)?
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Gauge fix: to remove the redundant degrees of freedom

The standard Fadeev-Popov procedure is restricted
to continuum perturbation theory

det 0,,D,, Is real, but is not guaranteed to be positive in general
|det 8, D,| = |det 0| | det(1 — g0~ 0) The operator C' s linear in 4,
where D =6%0, +ad(A,)*, ad(4,)* = —f“bCAZ

|det | being independent of the gauge field gets cancelled in the functional

integral between the numerator and the denominator

In Perturbation Theory, det(1 — g0~ 'C) > 0 Hence |det 8,D,,| = det 9, D,

and it can be exponentiated in terms of ghost fields (Grassmann)



The gauge-tixed theory:
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7 = /DAM det(0,D,,) 6(F(A,))exp(—Sai)

The linearity of the gauge fixing function, for example F*(A,) = 8,42 — f*(z)
allows to replace the delta function by an exponential

0(F'(Ay)) — exp (— / d*z 215((9”14”)2>

i . 1
L. = Lar+7(0.Du)n + 2—§(F(Au)>2

Introducing an auxiliary field B* = %%AZ (commuting and scalar)

the gauge fixing part can also be written as:

AOLDIn + 5 (B — B F*(A,)

A0 D+ (B — B0, AL

The theory in this form is BRST-invariant
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BRST and Conventions
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Infinitesimal gauge transformation = dg

BRST variation of a physical field is obtained by replacing the local parameter
by the ghost field n @ dg = dg—ys

oA, =Dun op¥ = —in¥ opU = in* w1

0B is nilpotent and anti commutes with Grassmann

SEV =0 = dpgn=—in’ or, equivalently,  dpn° = %f“bcnanb
Then impose: dgn=—tB and ogB =0

« Can one construct a local, gauge-fixed, BRST-invariant lattice formulation of
Yang-Mills theory?

* This will help construct a lattice (non-pert.) formulation of Chiral Gauge Theories

* A BRST-invariant gauge-fixed lattice theory may possibly contain new phases
in addition to the familiar confinement phase.
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The Gribov Problem

Gribov 1978, Singer 1978
Gauge invariant observables remains intact provided the following integral

/ DgDnDnDB exp(—Sar|Af,, 1,17, B))

over an orbit is a non-zero constant.

In Perturbation Theory, which is a saddle-point approximation around the classical
vacuum A, = 0, this condition is satisfied.

Not necessarily true non-perturbatively, because of Gribov copies, i.e., multiple
solutions of the gauge fixing condition, 9,,A7, =0 on the same orbit.

In this situation, the correct condition would be Z sign (det 9,Dy) # 0
Hirschfeld, 1979

To test the condition in a well-defined non-perturbative set-up, one needs to do it
on the lattice regulator.

0AS, =D’ = 0 Usy =i (UspNetn — M2Usyu) :Lattice BRST transformation
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A No-Go Theorem and BRST with Compact Gauge Fields

Neuberger 1987

Start with a manitestly gauge invariant lattice gauge theory, the Wilson way:

Z = [ DU exp(-SalU)

One then inserts, a la Fadeev-Popov: Zar = /Dg DnDi DB exp(—Scr|U?, 1,7, B])

Sap = » 2t[—itr(BF(U)) + tr(népF(U))] + > £g° tr(B?)

=Y "2t [Jptr([FFU))] + > £g° tr(B?)

Zar is required to be independent of U |, so that only a constant was inserted in Z

If this requirement is fulfilled, gauge-invariant correlation functions of the gauge-fixed
theory are identical to those of the unfixed (manifestly gauge invariant) theory.
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Z
Now el /DgDnDnDB p ZQtr F(U)) N
==l
Indeed Zgrli=1 = Zarlt=0  independent of U
But Zarlt=0 =0

because the integrand is then devoid of any Grassmann variables

= ZaF|t=1 = Zgr =0

Expectation value of any gauge-invariant operator has the indeterminate form 0/0

Deeper reason for the zeros is likely to be the Gribov copies Testa 1998

If pure Yang Mills cannot be non-perturbatively gauge fixed, there would be no
hope for non-Abelian Chiral Gauge Theories in the gauge-fixing approach.
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Equivariant BRST

Schaden 1999
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Gauge fixing on a coset space  SU(N)/U(1)" ! Golterman-Shamir 2005

BRST only on a part of the gauge group G leaving unfixed a subgroup H C G

Divide the generators into a sub-algebra 7°* generating the subgroup H

and the rest of them T'“ spanning the coset space G/H

e e s S e S R
Two elements of the subgroup H should again be in H

fiaj f— _faij = _fz'joz =0

Introduce G/H valued ghost fields: e S G s 2 a2

and the auxiliary field: Bo=

12

tr(nT™) = 0



All the ghost sector fields will transform under infinitesimal H gauge
transformations in the same way as adjoint representation field:

o0om = —tlw,n], weH
To check this, we must verify: (w,n] € G/H
Now  [w,n] = iw'n® f*e*T"
S0 the question is where does the index b belong?

We observe that ' = —f9e =

Hence w,n] =iwn*fPTP €G/H asitshould be
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eBRST Transformations
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eBRST transformation rules for the physical fields are the same as before
sV ="Du.(V)n
Now consider G and G/H parts separately:
sWy = [Du(V)nlg/a = Ounlg/a + t\Vu, Mg/ = 0unlg/a + ilAu,nlg/a + ilWu,nlg,/u
=Du(A)n +i(Wy,nlg/u

In the above, we have used (as shown before) [A,,n€G/H =D, (A)necG/H

sA, = (Du(V)n)y = 0l + iV, nla = i[AL, 0]y + (W, ]
A Z[W,uvn]%

W.,n] has, in general, components in both G/H and H
for special cases like G =SU(2), [W,,n elU(l)="H
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Project usual BRST rule for " onto coset space G/H

Require tr(snTa) = tI"((SB??Ta) for- TS eSO,
and tr(snT*)=0 for T" € H

= sn=(-in’)g/p=—i"+X  where X =(in)y =2Ttx(n*T?)

This modification affects the nilpotency of eBRST
s tr(n°T7) = tr(sn*T?) = tr[{(—n° + X)n — n(—in + X)}T7]

(X e 2 T = 2 P (L, B2 =i P i P T
Hence ST
s’n = s[—in® + X| = —isn® + sX = —i[—in® + X|n +in[—in® + X]
= —iXn+inX = —i|X,n] =dxn

It does not vanish, and equals an infinitesimal gauge transformation in H
with (commuting) parameter X
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We take the usual BRST rule for the 7 sn = —iB

We require 520 = 0x7

That gives: —isB=—i[X,7] = sB=[X,q]#0

U e S X YIS o R e SR S S I e

The second eBRST variation of any physical field follows from the fact that the

standard BRST transformation is nilpotent, so that only the X part in sC leads to
a non-vanishing result,

s?4, =D, (4)X =xA,
s*W, = —i[X,W,] = 6xW,
For ¥ in fundamental representation, s¢¥ = —iny

s = —i(smp + in(sy) = —[—in® + X + in[—inyp] = —i X

s* is equivariantly nilpotent
s is H gauge transformation with a commuting parameterX

eBRST is still nilpotent on any H invariant operator
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eBRST-invariant Action Density
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¢g°tr(B?) term of the standard BRST invariant action is no longer eBRST invariant

The action now will have the generic form

S.BrsT = sVYW where W is ‘H invariant

$SeBRST = W = 6xW = 0
SeBrsT = S8 tr(2nF + ifgzﬁB)

The H covariant gauge conditionis:  F(V) = D,(A)W, = 0, W, +i[A,,, W]

Clearly F € G/H

and F has the same H transformations as the ghost sector fields 0w/ = —i|w, F]

VW is indeed H invariant
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However, this is not the most general eBRST action

But, one can already see how the No-Go by Neuberger is evaded

The new term gives rise to, in addition to the B?term, a 4 ghost term, characteristic
of eBRST actions

_ d
It turns out that still %ZGB rer =0 But ZeBrst|t=1 = ZeBRST|t=0 # 0

The formalism can be extended to include anti-eBRST
and the so-called ghost flip symmetry Baulieu & Thierry-Mieg 1982

The most general action density: Ss.s = —s5 tr(W? + £g°fn) = 5s tr(W? + £g°Mn)
This action has eBRST, anti-eBRST, ghost flip, and H-gauge invariance

If the coset structure constants  f,, 3, are all equal to zero, there is no difference
between the two actions.

This happens for G =SU(2), H =U(1)
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Rest of the Program for Chiral Gauge Theory or otherwise
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e The continuum action constructed so far has to be transcribed on to lattice.
This can be done keeping all the symmetries except continuous Euclidean rotation

e The action still has H gauge invariance. This now needs to be gauge fixed, again
in a way so that the No-Go by Neuberger is evaded

* The Abelian gauge fixing proposal (Golterman-Shamir 1997) has been tested reasonably
well both in perturbation theory and in numerical simulations by Bock, Golterman & Shamir

and by Basak & De

 However, the abelian proposal can also be taken as an alternate non-perturbative

definition of the pure gauge theory (NEXT TALK),
just as the non-abelian proposal can be taken as a non-perturbative BRST method

for defining the pure Yang-Mills theory. Work is under progress for a
numerical survey of the phase diagram.
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