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Chiral Gauge Theory & the Problem of Rough Gauge Fields

THEORY

Lattice Chiral Gauge Theories break gauge invariance.

Nielsen-Ninomiya Theorem / Chiral Anomalies / Ginsparg-Wilson  
        

                 Explicit chiral symmetry breaking by lattice fermions

One way (Luescher 1999, 2000):  
Modify chiral symmetry on lattice in accordance with Ginsparg-Wilson relation

U-dependent fermion measure —> Solve integrability condition on the space of U 

• Exact Solution was found for the Abelian case 
• For the non-Abelian case, a solution was found only in Perturbation Theory (requiring 

an infinite number of irrelevant counter-terms), no non-perturbative solution is known.
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Rough Gauge Fields

THEORY

S = SGI + SNI(U)Consider

For example: SGI may be the plaquette action, and 
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After integrating both sides by gauge degrees of freedom with and
Z
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The      fields are radially frozen scalar fields, they are random because any point 
on the gauge orbit is as likely as any other point, making the gauge fields  
effectively rough

�
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The Reduced Model

THEORY

The new action                

is now gauge-invariant under the transformations:
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Sometimes the original action without the scalars (longitudinal gauge degrees 
of freedom) is described as one in the vector picture, and the action with the  
scalars as one in the Higgs picture:

SV(Uxµ

) = SH(Uxµ

; �
x

)|
�=1

The reduced model is defined by the action on the trivial orbit: U
xµ

= g
x

1 g†
x+µ

In the Higgs picture, the reduced model is obtained by setting U
xµ

= 1

• In the current example, the reduced model is a pure scalar theory 
• If the non-invariant part is due to chiral fermions, the reduced model would be 

a fermion-scalar theory
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Lattice Chiral Gauge Theories that broke chiral symmetry

THEORY
• Wilson-Yukawa / Smit-Swift model  
• Domain-wall waveguide model   
• Eichten-Preskill model 

They were investigated in the reduced model, and in all cases fermion doublers 
(dynamically generated through strong interactions between fermions and scalars)  
made a back-door entry to make the theory vector-like.

Because of strong interactions between the fermions and the scalars (lgdofs),  
neutral fermions were formed: 

Supposing, the original theory is written with a charged L-handed and a neutral  
R-handed fermion

 L(x) ! h

x

 L(x),  R(x) !  R(x)

the undoubled spectrum contains only neutral free Dirac fermion:

 (n)(x) = �

†
x

 L(x) + R(x)

where  the composite field           is a neutral L-handed field because�† L �
x

! h
x

�
x
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How to decouple the scalars (longitudinal gauge 
degrees of freedom)?

THEORY

Gauge fix: to remove the redundant degrees of freedom

The standard Fadeev-Popov  procedure is restricted  
to continuum perturbation theory

Dac
µ = �ac@µ + ad(Aµ)

ac, ad(Aµ)
ac = �fabcAb

µ

| det @µDµ| = | det⇤| | det(1� g⇤�1C)|

where

The operator       is linear in C Aµ

| det⇤| being independent of the gauge field gets cancelled in the functional

integral between the numerator and the denominator

det(1� g⇤�1C) > 0In Perturbation Theory, Hence | det @µDµ| = det @µDµ

and it can be exponentiated in terms of ghost fields (Grassmann)

det @µDµ is real, but is not guaranteed to be positive in general
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The gauge-fixed theory: 

Z =

Z
DAµ det(@µDµ) �(F (Aµ)) exp(�SGI)

The linearity of the gauge fixing function, for example 
allows to replace the delta function by an exponential
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Introducing an auxiliary field  

the gauge fixing part can also be written as:

The theory in this form is BRST-invariant 

(commuting and scalar)
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BRST and Conventions
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Infinitesimal gauge transformation ⌘ �✓

BRST variation of a physical field is obtained by replacing the local parameter  
by the ghost field ⌘ : �B ⌘ �✓!⌘

is nilpotent and anti commutes with Grassmann

�BAµ = Dµ⌘ �B = �i⌘ �B ̄ = i⌘a ̄T a

�B

�2B  = 0 ) �B⌘ = �i⌘2 or, equivalently, �B⌘
c =

1

2
fabc⌘a⌘b

�B⌘̄ = �iB and �BB = 0Then impose:

• Can one construct a local, gauge-fixed, BRST-invariant lattice formulation of  
Yang-Mills theory?

• This will help construct a lattice (non-pert.) formulation of Chiral Gauge Theories
• A BRST-invariant gauge-fixed lattice theory may possibly contain new phases  

in addition to the familiar confinement phase.
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The Gribov Problem
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Gauge invariant observables remains intact provided the following integral 
Z

DgD⌘D⌘̄DB exp(�SGF[A
g
µ, ⌘, ⌘̄, B])

over an orbit is a non-zero constant.

In Perturbation Theory, which is a saddle-point approximation around the classical 
vacuum              , this condition is satisfied.Aµ = 0

Not necessarily true non-perturbatively, because of Gribov copies, i.e., multiple 
solutions of the gauge fixing condition,                   on the same orbit.@µA

g
µ = 0

In this situation, the correct condition would be 
X

sign (det @µDµ) 6= 0
Hirschfeld, 1979

To test the condition in a well-defined non-perturbative set-up, one needs to do it  
on the lattice regulator.

Gribov 1978, Singer 1978
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A No-Go Theorem and BRST with Compact Gauge Fields
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Neuberger 1987

Start with a manifestly gauge invariant lattice gauge theory, the Wilson way:

Z =

Z
DU exp(�SGI[U ])

One then inserts, a la Fadeev-Popov: ZGF =

Z
DgD⌘D⌘̄DB exp(�SGF[U

g, ⌘, ⌘̄, B])

is required to be independent of     , so that only a constant was inserted inZGF U Z

If this requirement is fulfilled, gauge-invariant correlation functions of the gauge-fixed 
theory are identical to those of the unfixed (manifestly gauge invariant) theory.
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dt
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#
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Now

But

because the integrand is then devoid of any Grassmann variables

ZGF|t=0 = 0

ZGF|t=1 = ZGF|t=0Indeed independent of U

) ZGF|t=1 = ZGF = 0

Expectation value of any gauge-invariant operator has the indeterminate form 0/0

Deeper reason for the zeros is likely to be the Gribov copies Testa 1998

If pure Yang Mills cannot be non-perturbatively gauge fixed, there would be no 
hope for non-Abelian Chiral Gauge Theories in the gauge-fixing approach.



Equivariant BRST

THEORYSchaden 1999
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Gauge fixing on a coset space SU(N)/U(1)N�1 Golterman-Shamir 2005

BRST only on a part of the gauge group       leaving unfixed a subgroup            G H ⇢ G

Divide the generators into a sub-algebra            generating  the subgroupT i H

and the rest of them          spanning the coset spaceT↵ G/H

Vµ = V a
µ T

a = Ai
µT

i +W↵
µ T

↵

fi↵j = �f↵ij = �fij↵ = 0

Two elements of the subgroup      should again be in H H

Introduce            valued ghost fields:        G/H ⌘ = ⌘↵T↵, ⌘̄ = ⌘̄↵T↵

and the auxiliary field:           B = B↵T↵

tr(⌘T i) = 0
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All the ghost sector fields will transform under infinitesimal H gauge   
transformations in the same way as adjoint representation field:

THEORY

�!⌘ = �i[!, ⌘], ! 2 H

To check this, we must verify: [!, ⌘] 2 G/H

Now [!, ⌘] = i!i⌘↵f i↵bT b

So the question is where does the index         belong?b

We observe that f i↵j = �f ij↵ = 0

Hence [!, ⌘] = i!i⌘↵f i↵�T � 2 G/H as it should be



eBRST Transformations
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eBRST transformation rules for the physical fields are the same as before

sVµ = Dµ(V )⌘

Now consider G and G/H parts separately:
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In the above, we have used  (as shown before) [Aµ, ⌘] 2 G/H ) Dµ(A)⌘ 2 G/H

sAµ = (Dµ(V )⌘)H = @µ⌘|H + i[Vµ, ⌘]H = i[Aµ, ⌘]H + i[Wµ, ⌘]H

sWµ = [Dµ(V )⌘]G/H = @µ⌘|G/H + i[Vµ, ⌘]G/H = @µ⌘|G/H + i[Aµ, ⌘]G/H + i[Wµ, ⌘]G/H

= Dµ(A)⌘ + i[Wµ, ⌘]G/H

= i[Wµ, ⌘]H

[Wµ, ⌘] has, in general, components in both G/H and H

for special cases like G = SU(2), [Wµ, ⌘] 2 U(1) = H
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Project usual BRST rule for onto coset space  ⌘ G/H
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Require tr(s⌘T↵
) = tr(�B⌘T

↵
) for T↵ 2 G/H

and tr(s⌘T i
) = 0 for T i 2 H

) s⌘ = (�i⌘2)G/H ⌘ �i⌘2 +X where X ⌘ (i⌘2)H = 2iT jtr(⌘2T j)

This modification affects the nilpotency of eBRST  
s tr(⌘2T j) = tr(s⌘2T j) = tr[{(�⌘2 +X)⌘ � ⌘(�i⌘2 +X)}T j ]

= tr[(X⌘ � ⌘X)T j ] = Xi⌘↵tr([T i, T↵]T j) = if i↵�Xi⌘↵tr(T �T j) = 0

Hence sX = 0

s2⌘ = s[�i⌘2 +X] = �is⌘2 + sX = �i[�i⌘2 +X]⌘ + i⌘[�i⌘2 +X]

= �iX⌘ + i⌘X = �i[X, ⌘] = �X⌘

It does not vanish, and equals an infinitesimal gauge transformation in H  
with (commuting) parameter X
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We take the usual BRST rule for the ⌘̄ s⌘̄ = �iB

We require s2⌘̄ = �X ⌘̄

That gives:   �isB = �i[X, ⌘̄] ) sB = [X, ⌘̄] 6= 0

s2B = s[X ⌘̄ � ⌘̄X] = X(s⌘̄)� (s⌘̄)X = X(�iB)� (�iB)X = �i[X,B] = �XB

The second eBRST variation of any physical field follows from the fact that the  
standard BRST transformation is nilpotent, so that only the X part in sC leads to  
a non-vanishing result,

s2Aµ = Dµ(A)X = �XAµ

s2Wµ = �i[X,Wµ] = �XWµ

For      in fundamental representation, s = �i⌘ 

s2 = �i(s⌘) + i⌘(s ) = �[�i⌘2 +X] + i⌘[�i⌘ ] = �iX 

s2 is equivariantly nilpotent
s2 is H gauge transformation with a commuting parameterX

eBRST is still nilpotent on any H invariant operator



eBRST-invariant Action Density
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⇠g2tr(B2) term of the standard BRST invariant action is no longer eBRST invariant

The action now will have the generic form
SeBRST = sW where W is H invariant

sSeBRST = s2W = �XW = 0

SeBRST = s tr(2⌘̄F + i⇠g2⌘̄B)

The     covariant gauge condition is : F(V ) = Dµ(A)Wµ ⌘ @µWµ + i[Aµ,Wµ]H

Clearly F 2 G/H

and      has the same      transformations as the ghost sector fieldsF H �!F = �i[!,F ]

W is indeed      invariantH
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However, this is not the most general  eBRST action

But, one can already see how the No-Go by Neuberger is evaded

The new term gives rise to, in addition to the      term, a 4 ghost term, characteristic 
of eBRST actions

B2

It turns out that still d

dt
ZeBRST = 0 But ZeBRST |t=1 = ZeBRST |t=0 6= 0

The formalism can be extended to include anti-eBRST  
and the so-called ghost flip symmetry Baulieu & Thierry-Mieg 1982

The most general action density: Ss,s̄ = �ss̄ tr(W 2 + ⇠g2⌘̄⌘) = s̄s tr(W 2 + ⇠g2⌘̄⌘)

This action has eBRST, anti-eBRST, ghost flip, and H-gauge invariance

If the coset structure constants             are all equal to zero, there is no difference  
between the two actions.

f↵��

This happens for G = SU(2), H = U(1)



Rest of the Program for Chiral Gauge Theory or otherwise

• The continuum action constructed so far has to be transcribed on to lattice. 
This can be done keeping all the symmetries except continuous Euclidean rotation

• The action still has H gauge invariance. This now needs to be gauge fixed, again  
in a way so that the No-Go by Neuberger is evaded

• The Abelian gauge fixing proposal (Golterman-Shamir 1997) has been tested reasonably 
well both in perturbation theory and in numerical simulations by Bock, Golterman & Shamir 
and by Basak & De

THEORY

• However, the abelian proposal can also be taken as an alternate non-perturbative  
definition of the pure gauge theory (NEXT TALK),  
just as the non-abelian proposal can be taken as a non-perturbative BRST method  
for defining the pure Yang-Mills theory. Work is under progress for a 
numerical survey of the phase diagram.

19


