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Introduction

@ Investigate the continuum limit of a compact formulation of the
lattice U(1) gauge theory in 4 dimensions using a novel regularization
originally devised to tame the ‘rough gauge' problem of lattice chiral
gauge theories.

e Compact formulation of U(1) gauge theory with usual Wilson action
has two different phases: weak coupling (with usual QED properties)
and a strong coupling confining phase separated by a first order
transition. To remove the regulator, there ought to be a continuous
transition.

@ Extended parameter space(g, x, &) due to the inclusion of gauge-fixing
term and mass counterterm along with the existing Wilson term.
e Existence of a continuous phase transition (FM-FMD) at which the

lgdof decouple, and the U(1) gauge symmetry is restored (Bock et al
2000).
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The Regularization

@ Action for the compact gauge-fixed U(1) theory, where the ghosts are
free and decoupled:

S[U] = Sg[U] + Sgr[U] + S| U]

1
where S,[U] = — Z (1 —Re Upuux) is usual Wilson plaquette action.

X p<v

@ Golterman and Shamir proposed the gauge fixing term
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The Regularization : Gauge-fixing term

@ The above satisfies the following properties:

e naive continuum limit — Sgr = i(@ALAM)Z—l- irrelevant terms.

o Sgr has unique absolute minimum at Uy, = /.

o ¢ fields decouple and gives the desired features in the phase diagram.
e avoids Neuberger's theorem and Gribov copies.

e “Higgs picture” Spp(¢, U) is equivalent to “vector picture” Sgr(U)
as they are related by a gauge transformation. (Bock et al 1999)
@ In the vector picture Sgr, Vi, reduces to A, = ImUy,.

4] Defining CX = —§ny(u) and £ = 2041g2’

the action can be written as Sgr = kY. Sy,
X

where S, = CIC, — B2.
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The Regularization : Gauge-fixing term

@ Furthermore, C can be broken down into its hermitian and
anti-hermitian parts to obtain S, = S>(<1) + S>(<2), where

2
S _ Cl - G
x 2i
t t
5@ = (CX oy BX> (CX = BX>

° 5>(<1) = ZAZAXPL gives the covariant gauge-fixing term in the naive
o
continuum limit. This gives rise to numerous gauge-field

configurations satisfying the gauge condition on the lattice a.k.a
Gribov copies.

° S)(f) should come to the rescue without any baggage of its own.
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The Regularization : Gauge-fixing term

i i
o (S3% +B.) is positive. With (4% - B,) = 3 (D4 + D)),
n
where
DY) = (1-1 (U +U h.c.))?
X, ( 7 (U + Ux—pp + C)) )
3= 3 (Ul U+ UuUL  + e

its positivity is evident due to construction in the first term and
unitarity of link variables in the latter = 5£2) is a positive definite
quantity.

@ Observe that S)(<2) = 0 when Uy, = I and this is a unique minimum.
As a result, ng now has a unique minimum at Uy, = / thus
bypassing the problem of Gribov copies.

@ Expansion of 5)(<2)
= irrelevant.

° 5)((2) also breaks BRST invariance explicitly, since Sgr cannot be
written as the square of a gauge-fixing condition, thus avoiding
Neuberger's theorem.
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The Regularization : Mass Counterterm

o Validity of weak coupling perturbation theory around g =0 or £ =
together with perturbative renormalizability helps to determine the
form of the counterterms to be present in S.;. (Bock et al 2000)

@ It turns out that the most important gauge counterterm is the gauge
field mass counterterm, given by,

ct——/iZ(ux-i- )

@ It alone leads to a continuous phase transition that recovers gauge
symmetry.
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Constant Field Approximation

@ The classical potential, obtained as leading order term in the
perturbative expansion of U, = exp igA,x with constant field

approximation around U,,x =1, is
vomule i) £ () (24)
M Iz H

@ For k > 0, the gauge boson is massive and V. has a minimum at
A, = 0. A broken phase called FM phase.
For k < 0, the minimum of V shifts to a nonzero value:

¢k
A“_i<3g for all p

implying an unusual phase with broken rotational symmetry in
addition to the broken gauge symmetry — directional ferromagnetic
phase (FMD).

For kK = 0 = K¢, the gauge boson becomes massless with the
minimum of V; still being the same = phase transition at this point.
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Observables

@ We used the following observables (for a L*-lattice):

1
Ep = 6L4<ZReUW>

x,u<v

1
E., = 4L4<ZR€UHX>

X, [

(i (b))

where Ep and E, though not order parameters, signal phase
transitions with sharp changes by varying « for a fixed g and &.

%4

@ V behaves like an order parameter as it takes a non-zero value only in
the FMD phase.
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Numerical Simulations

o Earlier simulations have been done with the above action by Bock et
al and Basak et al but in very small lattice sizes.

@ For small values of g, usual perturbative results have been obtained
at the FM-FMD phase transition like the restoration of gauge
symmetry by the decoupling of Igdofs and zero gauge boson mass.

@ Continuous phase transition has been observed by varying k for even
small values of &.

@ This is a preliminary work to explore interesting regions of the phase
diagram.

@ For large g, a first-order transition has been observed at the FM-FMD
transition for small values of &.

@ This phase transition has to be accessed from the FM phase since the
FMD phase is a phase with broken rotational symmetry.

@ We have used 4-hit Metropolis method to generate configurations for
10%,164,20% 244 28* and 32* lattices.
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Preliminary numerical results : Phase Diagram
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Preliminary numerical results: Continuous transition
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Preliminary numerical results: First order transition
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Identification of tricritical point
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Calculation of Quenched chiral condensate

@ Using quenched staggered fermions, we have measured the chiral
condensates

(XX)mo = % Z<M;<1>

as a function of vanishing fermionic bare mass mg where M is the
fermion matrix. The chiral condensates were computed with the
Gaussian noise estimator method.

@ Measurement is near the phase transition from the FM phase.
@ We observe a chiral phase transition near g ~ 1.1.

@ We need to determine whether this coincides with the tricitical point
at the FM-FMD transition.
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Preliminary results: Quenched chiral condensate
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Preliminary results: Quenched chiral condensate
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Conclusions

@ This regularization scheme allows us to take a continuum limit,
hitherto difficult in pure U(1) theory, which gives us known physics at
weak coupling.

@ Approach to the continuum limit in the strong coupling phase needs
to be looked at carefully.

@ This scheme of abelian gauge-fixing is crucial for the overall success
of the gauge-fixing approach to chiral gauge theories.
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