

Compact $U(1)$ lattice gauge theory with non-perturbative gauge fixing

Mugdha Sarkar

Collaborator : Asit K. De
Saha Institute of Nuclear Physics, Kolkata, India

February 17, 2015

Perspectives and Challenges in Lattice Gauge Theory
Indo-German Workshop
Tata Institute of Fundamental Research, Mumbai

- Investigate the continuum limit of a compact formulation of the lattice $U(1)$ gauge theory in 4 dimensions using a novel regularization originally devised to tame the 'rough gauge' problem of lattice chiral gauge theories.
- Compact formulation of $U(1)$ gauge theory with usual Wilson action has two different phases: weak coupling (with usual QED properties) and a strong coupling confining phase separated by a first order transition. To remove the regulator, there ought to be a continuous transition.
- Extended parameter space $(g, \kappa, \tilde{\kappa})$ due to the inclusion of gauge-fixing term and mass counterterm along with the existing Wilson term.
- Existence of a continuous phase transition (FM-FMD) at which the $lgdof$ decouple, and the $U(1)$ gauge symmetry is restored (Bock et al 2000).

The Regularization

- Action for the compact gauge-fixed $U(1)$ theory, where the ghosts are free and decoupled:

$$S[U] = S_g[U] + S_{gf}[U] + S_{ct}[U].$$

where $S_g[U] = \frac{1}{g^2} \sum_{x \mu < \nu} (1 - \text{Re } U_{\mu\nu x})$ is usual Wilson plaquette action.

- Golterman and Shamir proposed the gauge fixing term

$$S_{gf}(U) \equiv S_{HD}(\phi, U)|_{\phi_x=1}$$

$$S_{HD} = \frac{1}{2\alpha g^2} \left(\sum_{x,y} \phi_y^\dagger \square_{yx}^\dagger \square_{xy} \phi_y - \sum_x B_x B_x \right)$$

$$\square_{xy}(U) = \sum_{\mu} \left(\delta_{y,x+\mu} U_{x\mu} + \delta_{y,x-\mu} U_{x-\mu,\mu}^\dagger - 2\delta_{yx} \right)$$

$$B_x = \sum_{\mu} \left(\frac{V_{x\mu} + V_{x-\mu,\mu}}{2} \right)^2, V_{x\mu} = \frac{1}{2i} (\phi_x^\dagger U_{x\mu} \phi_{x+\mu} - \text{h.c.})$$

The Regularization : Gauge-fixing term

- The above satisfies the following properties:
 - naïve continuum limit $\rightarrow S_{gf} = \frac{1}{2\alpha}(\partial_\mu A_\mu)^2 + \text{irrelevant terms.}$
 - S_{gf} has unique absolute minimum at $U_{x\mu} = I$.
 - ϕ fields decouple and gives the desired features in the phase diagram.
 - avoids Neuberger's theorem and Gribov copies.
- “Higgs picture” $S_{HD}(\phi, U)$ is equivalent to “vector picture” $S_{gf}(U)$ as they are related by a gauge transformation. (Bock et al 1999)
- In the vector picture S_{gf} , $V_{x\mu}$ reduces to $\mathbb{A}_{x\mu} \equiv \text{Im } U_{x\mu}$.
- Defining $C_x \equiv - \sum_y \square_{xy}(U)$ and $\bar{\kappa} \equiv \frac{1}{2\alpha g^2}$,
the action can be written as $S_{gf} = \bar{\kappa} \sum_x S_x$,
where $S_x = C_x^\dagger C_x - B_x^2$.

The Regularization : Gauge-fixing term

- Furthermore, C can be broken down into its hermitian and anti-hermitian parts to obtain $S_x = S_x^{(1)} + S_x^{(2)}$, where

$$S_x^{(1)} = \left(\frac{C_x^\dagger - C_x}{2i} \right)^2$$

$$S_x^{(2)} = \left(\frac{C_x^\dagger + C_x}{2} + B_x \right) \left(\frac{C_x^\dagger + C_x}{2} - B_x \right)$$

- $S_x^{(1)} = \sum_\mu \Delta_\mu^b \mathbb{A}_{x\mu}$ gives the covariant gauge-fixing term in the naïve continuum limit. This gives rise to numerous gauge-field configurations satisfying the gauge condition on the lattice a.k.a Gribov copies.
- $S_x^{(2)}$ should come to the rescue without any baggage of its own.

The Regularization : Gauge-fixing term

- $\left(\frac{C_x^\dagger + C_x}{2} + B_x\right)$ is positive. With $\left(\frac{C_x^\dagger + C_x}{2} - B_x\right) = \sum_\mu \left(D_{x,\mu}^{(1)} + D_{x,\mu}^{(2)}\right)$, where

$$D_{x,\mu}^{(1)} = \left(I - \frac{1}{4}(U_{x\mu} + U_{x-\mu,\mu} + \text{h.c.})\right)^2,$$

$$D_{x,\mu}^{(2)} = \frac{1}{2}I - \frac{1}{8}\left(U_{x\mu}^\dagger U_{x-\mu,\mu} + U_{x\mu} U_{x-\mu,\mu}^\dagger + \text{h.c.}\right),$$

its positivity is evident due to construction in the first term and unitarity of link variables in the latter $\Rightarrow S_x^{(2)}$ is a positive definite quantity.

- Observe that $S_x^{(2)} = 0$ when $U_{x\mu} = I$ and this is a unique minimum. As a result, S_{gf} now has a unique minimum at $U_{x\mu} = I$ thus bypassing the problem of Gribov copies.
- Expansion of $S_x^{(2)}$ gives the lowest order term to be of six dimensions \Rightarrow irrelevant.
- $S_x^{(2)}$ also breaks BRST invariance explicitly, since S_{gf} cannot be written as the square of a gauge-fixing condition, thus avoiding Neuberger's theorem.

The Regularization : Mass Counterterm

- Validity of weak coupling perturbation theory around $g = 0$ or $\tilde{\kappa} = \infty$ together with perturbative renormalizability helps to determine the form of the counterterms to be present in S_{ct} . (Bock et al 2000)
- It turns out that the most important gauge counterterm is the gauge field mass counterterm, given by,

$$S_{ct} = -\kappa \sum_{\mu x} \left(U_{\mu x} + U_{\mu x}^\dagger \right).$$

- It alone leads to a continuous phase transition that recovers gauge symmetry.

Constant Field Approximation

- The classical potential, obtained as leading order term in the perturbative expansion of $U_{\mu x} = \exp igA_{\mu x}$ with constant field approximation around $U_{\mu x} = 1$, is

$$V_{cl} = \kappa \left[g^2 \sum_{\mu} A_{\mu}^2 \right] + \frac{g^4}{2\alpha} \left[\left(\sum_{\mu} A_{\mu}^2 \right) \left(\sum_{\mu} A_{\mu}^4 \right) \right]$$

- For $\kappa > 0$, the gauge boson is massive and V_{cl} has a minimum at $A_{\mu} = 0$. A broken phase called FM phase.

For $\kappa < 0$, the minimum of V_{cl} shifts to a nonzero value:

$$A_{\mu} = \pm \left(\frac{\xi |\kappa|}{3g^2} \right)^{\frac{1}{4}} \quad \text{for all } \mu$$

implying an unusual phase with broken rotational symmetry in addition to the broken gauge symmetry – directional ferromagnetic phase (FMD).

For $\kappa = 0 \equiv \kappa_c$, the gauge boson becomes massless with the minimum of V_{cl} still being the same \Rightarrow phase transition at this point.

Observables

- We used the following observables (for a L^4 -lattice):

$$\begin{aligned}E_P &= \frac{1}{6L^4} \left\langle \sum_{x,\mu < \nu} \operatorname{Re} U_{\mu\nu x} \right\rangle \\E_\kappa &= \frac{1}{4L^4} \left\langle \sum_{x,\mu} \operatorname{Re} U_{\mu x} \right\rangle \\V &= \left\langle \sqrt{\frac{1}{4} \sum_\mu \left(\frac{1}{L^4} \sum_x \operatorname{Im} U_{\mu x} \right)^2} \right\rangle.\end{aligned}$$

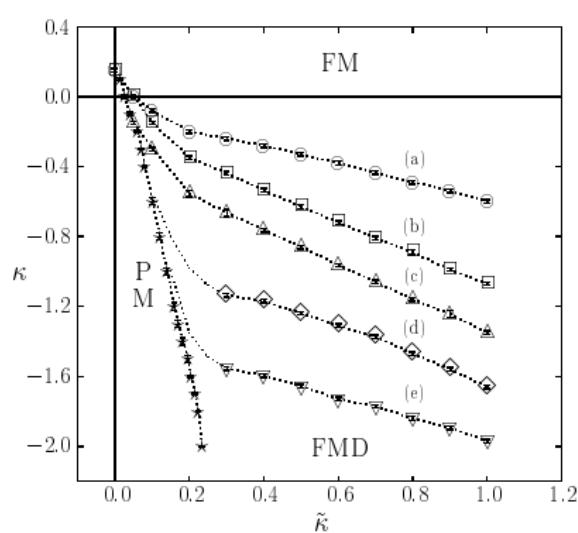
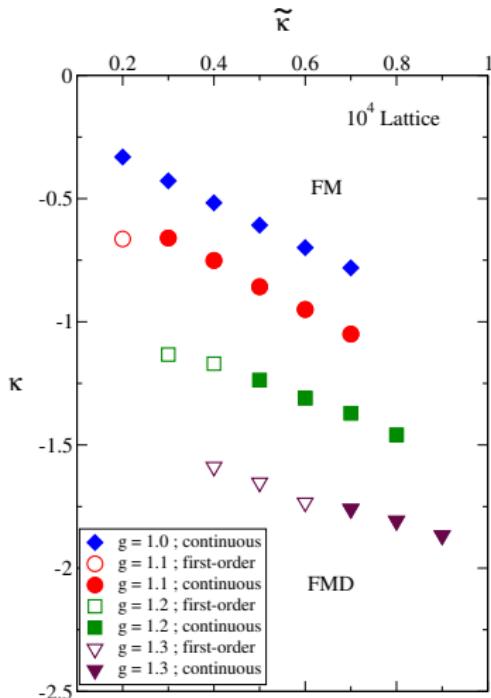
where E_P and E_κ though not order parameters, signal phase transitions with sharp changes by varying κ for a fixed g and $\tilde{\kappa}$.

- V behaves like an order parameter as it takes a non-zero value only in the FMD phase.

Numerical Simulations

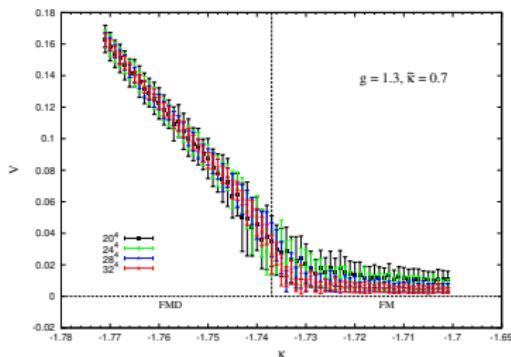
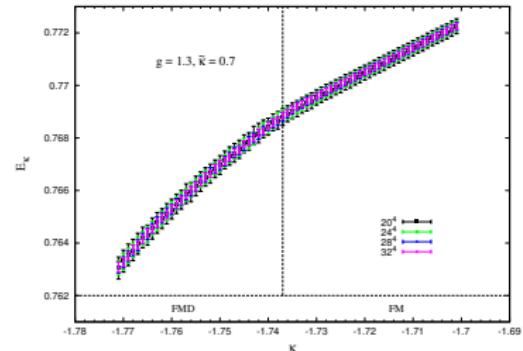
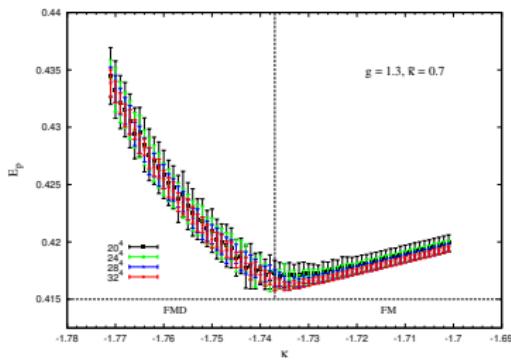
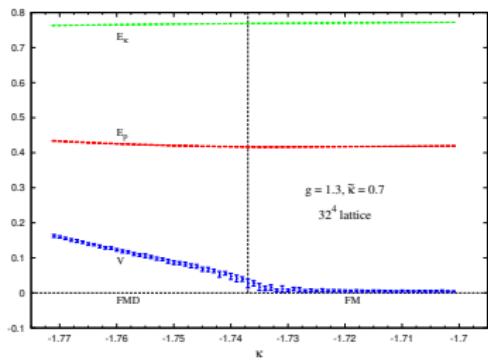
- Earlier simulations have been done with the above action by Bock et al and Basak et al but in very small lattice sizes.
- For small values of g , usual perturbative results have been obtained at the FM-FMD phase transition like the restoration of gauge symmetry by the decoupling of $lgdofs$ and zero gauge boson mass.
- Continuous phase transition has been observed by varying κ for even small values of $\tilde{\kappa}$.
- This is a preliminary work to explore interesting regions of the phase diagram.
- For large g , a first-order transition has been observed at the FM-FMD transition for small values of $\tilde{\kappa}$.
- This phase transition has to be accessed from the FM phase since the FMD phase is a phase with broken rotational symmetry.
- We have used 4-hit Metropolis method to generate configurations for $10^4, 16^4, 20^4, 24^4, 28^4$ and 32^4 lattices.

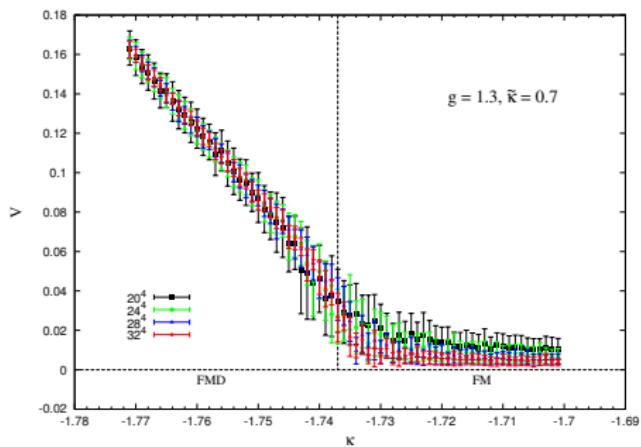
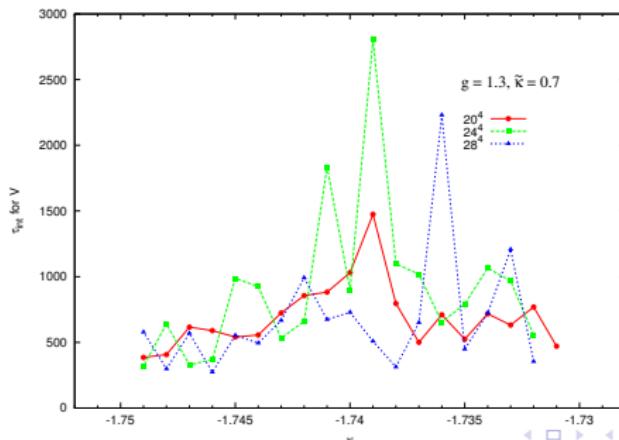
Preliminary numerical results : Phase Diagram



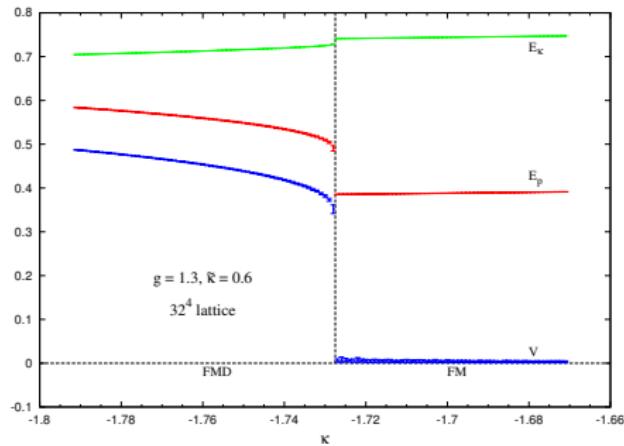
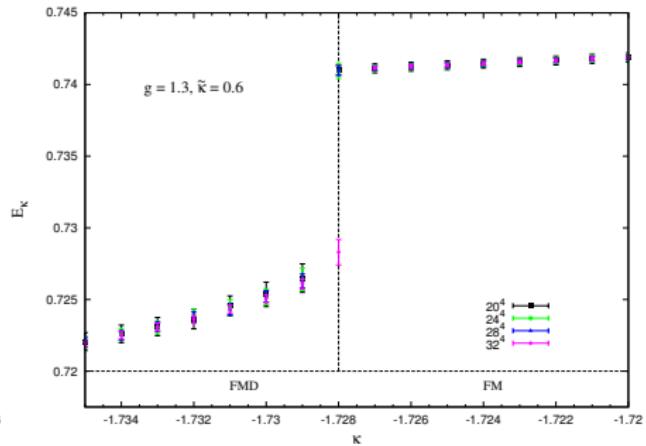
- Ref: S. Basak, A. K. De and T. Sinha, Phys. Lett. B 580 (2004) 209

Preliminary numerical results: Continuous transition



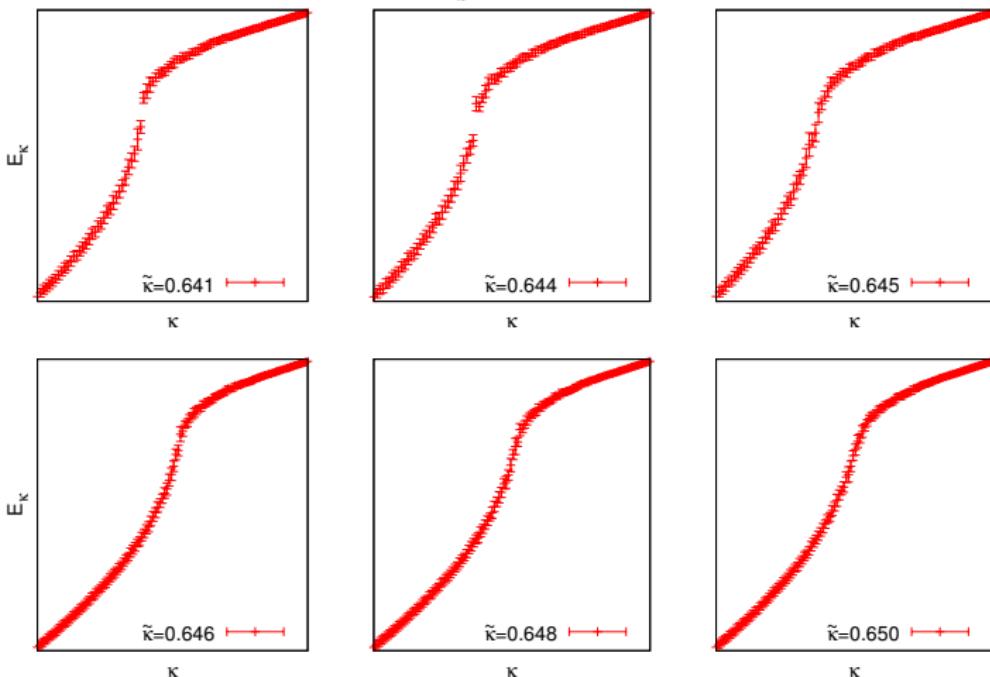


Preliminary numerical results: First order transition



Identification of tricritical point

Variation of E_κ at $g = 1.3$ for 20^4 Lattice



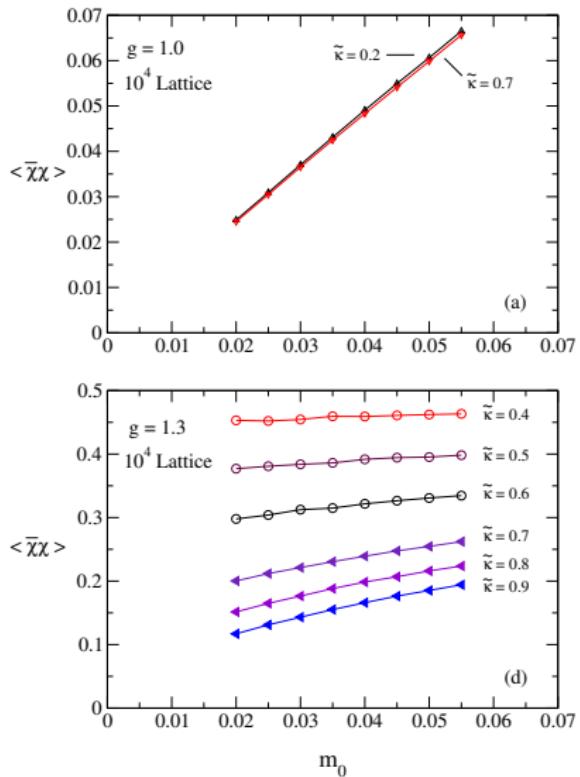
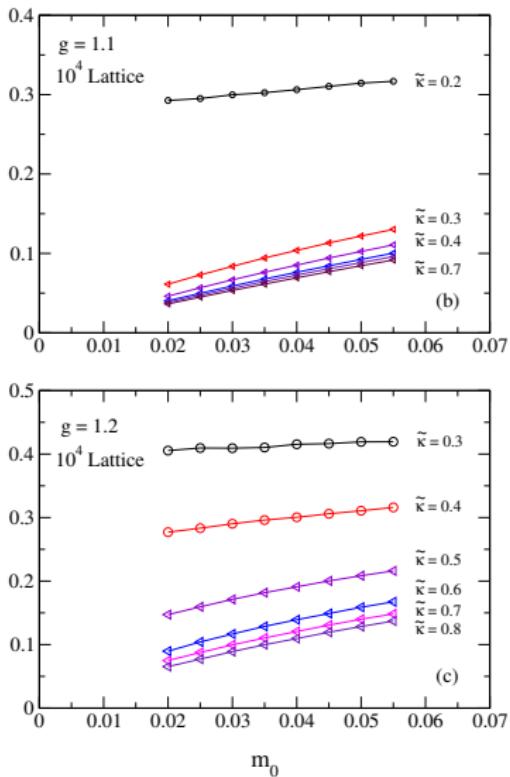
- Using quenched staggered fermions, we have measured the chiral condensates

$$\langle \bar{\chi} \chi \rangle_{m_0} = \frac{1}{L^4} \sum_x \langle M_{xx}^{-1} \rangle$$

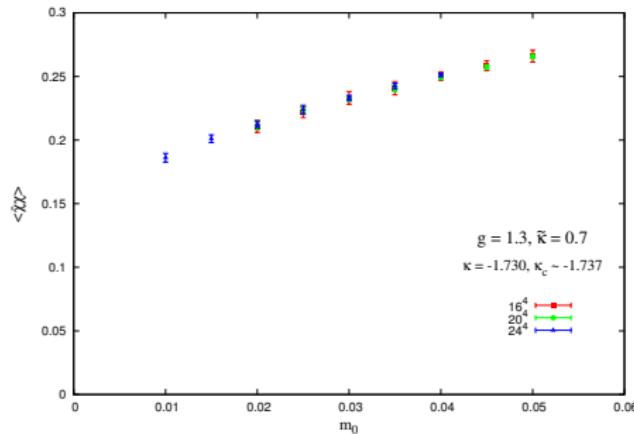
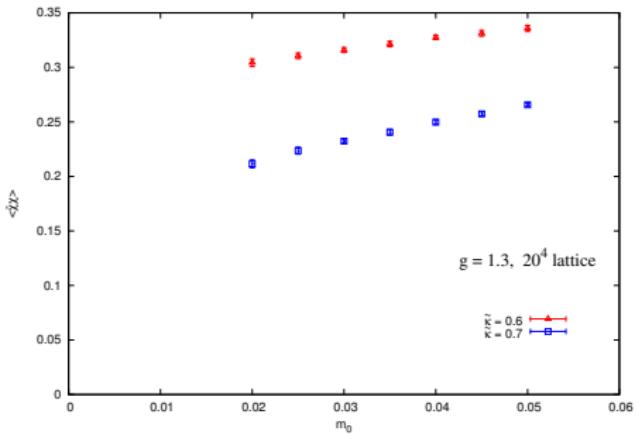
as a function of vanishing fermionic bare mass m_0 where M is the fermion matrix. The chiral condensates were computed with the Gaussian noise estimator method.

- Measurement is near the phase transition from the FM phase.
- We observe a chiral phase transition near $g \sim 1.1$.
- We need to determine whether this coincides with the tricritical point at the FM-FMD transition.

Preliminary results: Quenched chiral condensate



Preliminary results: Quenched chiral condensate



- This regularization scheme allows us to take a continuum limit, hitherto difficult in pure $U(1)$ theory, which gives us known physics at weak coupling.
- Approach to the continuum limit in the strong coupling phase needs to be looked at carefully.
- This scheme of abelian gauge-fixing is crucial for the overall success of the gauge-fixing approach to chiral gauge theories.

Thank You...
