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Energy Efficiency in HPC

The problem:

Costs for power & cooling have risen to more than
half of the costs for new hardware:

year new server power & cooling

2011 48 26
1996 63 8

(Numbers in Billion USD, Source: IDC.com)

Cooling & energy costs become significant.
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Cooling costs

(Taken from crn.com)
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Detour — QPACE 1

Idea: Pair the most efficient processor with a
network that matches our needs and efficient
cooling.

At that time, this meant:

Cell Processor (IBM)

Custom network

indirect water cooling
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Detour — QPACE 1

Custom qpace node card
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Detour — QPACE 1

Indirect water cooling
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Detour — QPACE 1

Installation at Wuppertal and Jülich
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Detour — QPACE 1

Great success! Number 1 in the “Green500” list
twice!

But this comes at a cost:

Very tricky to program

Development process involved a lot of
manpower (but we did learn a lot)
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Detour — iDataCool

Intermediate project with a different aim:

Cold water cooling still costs money

Need standard hardware,

but aim for even higher energy efficiency: use
hot water cooling
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Detour — iDataCool

Joint Project with IBM: remodel standard hardware
for hot water cooling (65°C inlet temperature)
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Detour — iDataCool

Achievements:

Energy reuse w/ adsorption chiller

running stable with high water temperatures
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QPACE 2 — Goals

Our gloas for QPACE 2:

Build the “best” machine for LQCD

Be energy efficient

Keep costs moderate
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QPACE 2 — The Processor

Processor: Intel's Knights Corner (KNC)

16 GBytes memory

clock speed of 1.238 GHz

512 bit wide registers

not bootable

runs Linux

PCIe2 endpoint
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QPACE 2 — The Processor

61 Cores

peak performance of 1.2 TFlop/s (double
precision)

4-way hyperthreading

Need to use at least 2 threads per core to get full

performance, as instructions from a thread can only be

issued every other cycle.
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QPACE 2 — Node Scheme

Main concept for a compute node:

one efficient (weak) host CPU as PCIe root
complex

several KNCs
4 in our case

Infiniband HCA
dual port FDR (2x 56 Gbit)

connect everything with a PCIe switch
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QPACE 2 — Node Scheme

QPACE 2 and Domain Decomposition on the Intel Xeon Phi Tilo Wettig
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Figure 1: Left: QPACE 2 node design, see text for details. Right: Sketch of the two-dimensional hyper-
crossbar network (based on FDR Infiniband) of QPACE 2, here shown for 16⇥8 nodes as an example. Each
dot represents a node with two IB ports that is connected to one IB switch each in the x- and y-directions.
The switches, which here have 32 ports each, are indicated by the red and blue squares, respectively.

project is funded by the German Research Foundation (DFG) and led by the University of Regens-
burg in collaboration with Eurotech (Italy/Japan) and Intel, with additional contributions from the
Jülich Supercomputing Center and the University of Wuppertal.1

2.1 Node design

Like most supercomputers, QPACE 2 consists of many identical nodes connected by a net-
work. The node design is shown in Fig. 1 (left). Four Intel Xeon Phi 7120X processors (a.k.a.
Knights Corner or KNC) are connected to a PCIe switch (PEX 8796 by PLX). Also connected to
the switch are a low-power CPU (Intel Xeon E3-1230L v3) and a dual-port FDR Infiniband card
(Mellanox Connect-IB). The CPU serves as the PCIe root complex. The KNCs as well as the IB
card are PCIe endpoints. Peer-to-peer (P2P) communication between any pair of endpoints can
take place via the switch. The rationale behind this node design is that a high-performance network
is typically quite expensive. A “fat” node with several processing elements and cheap internal
communications (here over PCIe) has a smaller surface-to-volume ratio and thus requires less net-
work bandwidth per floating-point performance, which lowers the relative cost of the network. The
number of KNCs and IB cards on the PCIe switch is determined by the number of lanes supported
by commercially available switches and by the communication requirements within and outside of
the node. We are using the largest available switch, which supports 96 lanes PCIe Gen3. Each
of the KNCs has a 16-lane Gen2 interface (corresponding to a bandwidth of 8 GB/s), while both
the CPU and the IB card have a 16-lane Gen3 interface (i.e., almost 16 GB/s each). The external
IB bandwidth for two FDR ports is 13.6 GB/s. This balance of internal and external bandwidth
is consistent with the communication requirements of Lattice QCD, see also Sec. 3. Each of the
KNCs has 61 cores, a clock speed of 1.238 GHz, a peak performance of 1.2 TFlop/s (double pre-

1The development of QPACE 2 was initially pursued in collaboration with T-Platforms. Unfortunately, this collab-
oration was terminated after T-Platforms was placed on the so-called Entity List of the US Department of Commerce in
March 2013 and no longer had access to US technology, such as Intel Xeon Phi processors. This caused a significant
delay for QPACE 2. Note that T-Platforms was removed from the Entity List in December 2013.

3
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QPACE 2 — Industry

Board design, mechanical design:

Industry partner: Eurotech (Amaro, Italy)

known from QPACE 1

board design

mechanical design

board manufacturing

mechanical manufacturing:
in-house



The QPACE 2 Project

QPACE 2 — Node Pictures — Midplane

Midplane with PCIe switch and connectors
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QPACE 2 — Node Pictures — Host

Host with CPU socket and BMC
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QPACE 2 — Node Pictures — KNC

KNC, interposer and roll-bond heatsink
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QPACE 2 — Node Pictures — roll bond

KNC sandwich (takes time & effort)
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QPACE 2 — Node Pictures — KNC inserted
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QPACE 2 — Node Pictures — Testing!
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QPACE 2 — Node Pictures — housing (front)

A “brick”
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QPACE 2 — Node Pictures — housing (back)
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QPACE 2 — Node Pictures — rack inside
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QPACE 2 — Node Pictures — rack with node
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QPACE 2 — Node Pictures — power
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QPACE 2 — whole system?

Put together one Rack

64 bricks

makes 265 KNCs

≈ 300 TFLOP/S

≈ 80 kW power consumption
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QPACE 2 — Node Pictures — power testing
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QPACE 2 — Node Pictures — High performance camping
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QPACE 2 — Lesson learned
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Lesson leared from
idatacool:
Temperature spread
rather large.

Care for the “weak”
nodes to avoid
throttling.

Lecture Notes in Computer Science Volume 7905, 2013, pp 383-394 iDataCool: HPC with Hot-Water
Cooling and Energy Reuse

arXiv: 1309.4887
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QPACE 2 — Lesson learned
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Lesson leared from
idatacool:

Low temperature
difference between die
and water is hard to
achieve.

Go for warm water
cooling.

Lecture Notes in Computer Science Volume 7905, 2013, pp 383-394 iDataCool: HPC with Hot-Water
Cooling and Energy Reuse

arXiv: 1309.4887
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QPACE 2 — Infrastructure

Cooling Infrastructure
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QPACE 2 — Monitoring

Lesson leared from idatacool: monitor everything!
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QPACE 2 — Monitoring

Collect all sensor data in Cassandra

pH

conductivity

pressure

flow rate

CPU temps

Voltages

. . .
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QPACE 2 — The Network

Network:
Infiniband with Hyper-Crossbar topology

Need 4 × 36 port switches. 4 ports per switch left,
e.g., I/O (Lustre)
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Software — Boot Sequence

System is diskless. Netboot:

PXE boot (syslinux)

syslinux fetches kernel, inital ramdisk

userland via NFS (NFS root filesystem)

KNC specific software via NFS or Lustre
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Coding — Domain Decomposition

QPACE 2 and Domain Decomposition on the Intel
Xeon Phi
Paul Arts, Jacques Bloch, Peter Georg, Benjamin Glaessle, Simon Heybrock,
Yu Komatsubara, Robert Lohmayer, Simon Mages, Bernhard Mendl, Nils,
Meyer Alessio Parcianello, Dirk Pleiter, Florian Rappl, Mauro Rossi, Stefan
Solbrig, Giampietro Tecchiolli, Tilo Wettig, Gianpaolo Zanier

arXiv:1502.04025

Lattice QCD with Domain Decomposition on Intel
Xeon Phi Co-Processors
Simon Heybrock (Regensburg U.), Bálint Joó (Jefferson Lab), Dhiraj D.
Kalamkar (Intel, Bangalore), Mikhail Smelyanskiy (Intel, Santa Clara),
Karthikeyan Vaidyanathan (Intel, Bangalore), Tilo Wettig (Regensburg U.),
Pradeep Dubey (Intel, Santa Clara)

arXiv:1412.2629
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Coding — Site Fusing

Lattice Links
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Coding — On Chip Scaling of DD preconditioner

8 GB memory.4 The nodes are connected with FDR Infini-
band (Mellanox ConnectX-3 host adapters) with a theoretical
peak bandwidth of 7 GB/s. To circumvent hardware issues
unrelated to the KNC that would limit the communication
performance, we use a previously developed proxy [3] that
relays medium and large packets via the host CPU. The
software configuration at the time of our benchmarks was
as follows: MPSS version 2.1.6720-21, KNC flash version
2.1.03.0386, Intel MPI version 4.1.0.030, and Intel compiler
version 13.1.0.

B. Single-node performance

1) Single core: As discussed in Sec. III-B, our code can
optionally use half-precision gauge links and clover matrices
in the preconditioner, while spinors are still stored in single-
precision. Initial tests showed that the use of half-precision
has no noticeable negative impact on the overall solver con-
vergence. For example, in the case of a 483 ⇥ 64 lattice (see
below for details) the norm of the residual as a function of
iteration count differs by less than 0.14% between single- and
half-precision in the preconditioner. Therefore, we use this
mix of single- and half-precision throughout the benchmarks
presented in this paper.

Let us first estimate the upper performance limit. Since the
application of the Wilson-Clover operator A typically takes
more than 50% of the overall time, we only analyze the
theoretical bound on its performance. As we saw in Sec. III-B,
we choose the domain size such that the working set for A

fits into the L2 cache. Therefore, we expect this kernel to
be instruction bound rather than memory-bandwidth bound. In
general, the full compute efficiency of the KNC is obtained if
the application uses only fused multiply-add instructions. The
Wilson-Clover operator, which is the dominant contribution to
the MR iteration, performs 1848 flop/site of which 64% are
fused multiply-adds, giving a maximum achievable efficiency
of 82%. As described in Sec. III-A, the x and y directions
require masking, which causes a 7% loss in SIMD efficiency.
Other instructions such as shuffles and permutes also take
compute-instruction slots. Moreover, even though (1) some
of the SIMD load instructions can be fused into compute
instructions and (2) stores, software prefetches, and most of
the scalar instructions for address calculations can be co-issued
with compute instructions, not all of them find ideal pairing.
Additionally, stack spills and address computation add to the
instruction overhead. Out of all instructions 54% are compute
instructions. Of the remaining 46%, 72% are pairable and the
compiler finds paring for 59%. Thus, the compute efficiency
is 0.82 · 0.93 · 0.54/(1 � 0.59 · 0.46) = 56%. This gives
(16 + 16) · 0.56 = 18 flop/cycle/core = 20 Gflop/s/core.

For the MR iteration itself we observe a performance
of about 12 Gflop/s on a single core. This is 40% below
the theoretical bound. The Intel R� VTune

TM
performance tool

shows that the cause is stalls due to outstanding L1 prefetches
(which occur despite aggressive software prefetches).

If we consider the overall time-to-solution, the optimal
number of MR iterations is typically small — for our domain
size usually 4 or 5. Other parts in the Schwarz method will thus

4For our benchmarks we use only 60 cores and stay away from the 61st
core where the Linux kernel runs.

MR iteration DD method
single half single half

no software prefetching 5.4 7.9 4.1 5.9

L1 prefetches 9.2 11.8 5.8 7.7

L1+L2 prefetches 9.1 11.8 6.3 8.4

TABLE II. SINGLE-CORE PERFORMANCE IN GFLOP/S. SEE TEXT FOR
DETAILS.
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Fig. 5. On-chip strong-scaling of the DD preconditioner (ISchwarz = 16,
Idomain = 5). The volumes 16⇥ 8⇥ 20⇥ 24 and 32⇥ 32⇥ 20⇥ 24 result
in a number of domains that is divisible by 60, so we have 100% load for
60 cores. The 48⇥ 12⇥ 12⇥ 16 volume corresponds to scaling a 483 ⇥ 64
lattice on 64 KNCs, as in Sec. IV-C, with a load average of 90% for 60 cores.

contribute significantly. In particular, this involves extraction
and insertion of boundary data, computation of hopping terms
between domains, and updating the solution and residual
vectors. For the Schwarz method altogether we typically obtain
around 8 Gflop/s on a single core. Table II gives an overview
of the impact of some of the optimizations discussed in Sec. III,
namely the performance of the block inversion (MR iteration)
and the Schwarz preconditioner (DD method, ISchwarz = 16,
Idomain = 5) with and without prefetching and for single- and
half-precision gauge links and clover matrices.

2) Many cores and load balancing: As long as a sufficient
local volume — and thus a sufficient number of domains —
is available, the DD method has a very good scaling behavior
from 1 core to all 60 cores on a KNC. In Fig. 5 we show
the preconditioner performance as we vary the number of
cores.5 Apart from steps due to load imbalance for certain
numbers of cores, the preconditioner scales almost linearly
with the number of cores. There are two reasons for this, (1)
as discussed in Sec. III-D all cores can work independently,
apart from barriers between Schwarz iterations, and (2) since a
significant part of the DD preconditioner (the MR inversion of
the blocks) runs from cache we do not strongly depend on the
memory bandwidth, so even with 60 cores the memory access

5These results were obtained with disabled load balancing (set via the cpuset
pseudo-filesystem, by setting the flag cpuset.sched_load_balance to
zero). Load balancing by the Linux kernel causes load on a random core and
thus a slowdown of our code by nearly 10%. Synchronization among cores
then propagates this slowdown to all cores, yielding an overall 10% loss. For
these single-KNC tests we were able to control this, but for our multi-KNC
tests on Stampede (where load balancing is enabled) we were not.

from arXiv:1412.2629
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Coding — Hard Scaling of DD preconditioner
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Fig. 6. Strong-scaling: relative speed of the DD and non-DD solvers normalized to the smallest time-to-solution of the non-DD solver.

percent of total time Gflop/s/KNC Tflop/s Tflop/s
KNCs ndomain load A M GS other A M GS other iterations M total [s] #global-sums comm./KNC

48

3 ⇥ 64, DD, parameters m = 16, k = 6, ISchwarz = 16, Idomain = 5

24 288 96% 4.3 85.8 7.8 2.1 66 299 56 143 198 7.0 6.3 35.4 423 15593
32 216 90% 4.0 86.5 7.3 2.2 67 276 55 127 198 8.6 7.8 28.6 423 13156
64 108 90% 4.5 85.9 6.8 2.7 52 250 53 92 198 15.6 14.0 15.9 423 8040
128 54 90% 5.3 83.4 7.0 4.4 35 199 40 42 198 24.9 21.6 10.3 423 5116

64

3 ⇥ 128, DD, parameters m = 5, k = 0, ISchwarz = 16, Idomain = 5

64 512 95% 4.7 89.4 3.5 2.3 64 300 29 24 10 18.8 17.1 3.34 27 488
128 256 85% 4.4 90.0 4.0 1.5 50 221 19 27 10 27.6 25.3 2.3 27 293
256 128 71% 4.5 90.2 3.8 1.5 45 204 19 26 10 51.0 46.8 1.22 27 171

*320 112/64 85% 4.8 89.5 4.0 1.7 48/27 230/131 20/11 26/15 10 67.3 59.9 0.95 27 152/98
512 64 53% 3.9 91.1 3.6 1.4 35 135 13 18 10 67.5 62.7 0.91 27 98

*640 56/32 85% 4.7 88.5 5.0 1.8 33/19 158/90 11/6 17/10 10 92.4 81.4 0.70 27 98/61
1024 32 53% 5.9 86.7 4.5 2.8 16 100 7 6 10 100.0 88.4 0.65 27 61

48

3 ⇥ 64, non-DD: double-precision BiCGstab, SOA-length = 8 (performs better than mixed-precision solver, since half limited to SOA = 8)
12 - - - - - - entire solver: 70 4781 - 0.82 168.5 23,907 188,272
24 - - - - - - entire solver: 58 4777 - 1.36 101.4 23,887 115,556
36 - - - - - - entire solver: 50 4802 - 1.77 78.4 24,012 91,848
72 - - - - - - entire solver: 35 4760 - 2.46 55.9 23,802 48,200
144 - - - - - - entire solver: 19 4728 - 2.66 51.4 23,642 26,598

64

3 ⇥ 128, non-DD: mixed-precision Richardson inverter — outer solver: double (SOA = 8) — inner solver BiCGstab: residual 0.1, single stored as half (SOA = 16)
64 - - - - - - entire solver: 101 ⇡ 12 · 23 - 6.3 6.1 1408 2500
128 - - - - - - entire solver: 94 ⇡ 12 · 22 - 11.7 3.2 1353 1314
256 - - - - - - entire solver: 56 ⇡ 12 · 24 - 14.1 2.9 1473 948

TABLE III. STRONG-SCALING DETAILS. A: WILSON-CLOVER, M : SCHWARZ DD, GS: GRAM-SCHMIDT, OTHER: OTHER LINEAR-ALGEBRA IN OUTER
SOLVER, COMM./KNC: TOTAL DATA SENT VIA THE NETWORK FOR FULL SOLVE (IN MB). LINES MARKED WITH (*) INDICATE PRELIMINARY RESULTS

BASED ON A NON-UNIFORM PARTITIONING AS EXPLAINED IN THE TEXT. IN THAT CASE, ONE OUT OF FIVE KNCS HAS FEWER DOMAINS, AND WE GIVE
NUMBERS FOR BOTH CASES.

With increasing number of KNCs it becomes harder to overlap
communication with computation, while at the same time
the shrinking packet size diminishes the achievable network
bandwidth.

We can also observe a slight decrease in performance
when going to a larger problem size. Consider for example
the strong-scaling limit of the 483 ⇥ 64 and the 643 ⇥ 128
lattices with 128 and 640 KNCs, respectively.11 The problem
size (and node count) increases by a factor of 5, and the
performance of the preconditioner M decreases by 20%. Apart
from suboptimal tuning of our proxy, this 20% drop may in
part be due to the network topology of the Stampede cluster.12

We plan to test our solver on machines with a torus network,
which is better suited for nearest-neighbor communication.

11Both have similar average load, so a comparison makes sense.
12A 2-level Clos fat tree topology. We have no influence on which nodes

are assigned to a job, but our results are reproducible over many runs without
large fluctuations, so we believe this has no strong impact.

As the number of KNCs increases, the local sub-volume
size and hence the number of domains decreases, so that
eventually the latter becomes significantly smaller than the
number of KNC cores. This results in a loss of scalability due
to decreasing utilization of the KNC resources. The scalability
limit due to underutilization is at 64, 128, and 1024 KNCs for
the 323 ⇥ 64, 483 ⇥ 64, and 643 ⇥ 128 lattices, respectively,
beyond which the utilization would drop below 50%. The
scalability could be improved by using smaller domains — at
the expense of increased overhead and most likely a decreased
single-KNC performance. Choosing an optimal domain size is
application-specific and is part of our future research.

The low average load (see Table III) for certain volumes
(53% for the 323 ⇥ 64 and 643 ⇥ 128 lattices in the strong-
scaling limit) is mostly an artifact of the uniform distribution
of the full lattice to the individual KNCs (done by the QDP++
framework [19] in our implementation). We can improve upon
this with a non-uniform partitioning. Let us consider the

from arXiv:1412.2629
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Coding - Others and outlook

Code

Chroma runs

Multigrid runs satisfactory (S.Heybrock).

QDP threaded (J.Bloch)

Rewrite of other parts would offer speedup
compared to the one in QDP e.g., Wuppertal
smearing.

use SLURM as queueing system
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Thank you!

Thank you for your
attention!
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