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Iterative solvers

Generic description for Dψ = η:

I current iterate ψk

I current residual ρk = η −Dψk

I approximately solve Dδk = ρk: δk =Mρk

I next iterate: ψk+1 = ψk + δk

Summary: one iteration

ψk+1 = (I −MD)ψk +Mη, ψk+1 − ψ︸ ︷︷ ︸
error k + 1

= (I −MD)(ψk − ψ︸ ︷︷ ︸
error k

)

Error propagation matrix: E = I −MD
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Idea: Adaptive Algebraic Multigrid Approach

Two-grid error propagator for ν steps of post-smoothing

E
(ν)
2g = (I −MD)ν︸ ︷︷ ︸

smoother

(I − PD−1c PHD)︸ ︷︷ ︸
coarse grid correction

, Dc := PHDP︸ ︷︷ ︸
coarse operator

I low accuracy for D−1c and M is sufficient

I introduce recursive construction for Dc → multigrid

To Do: Define interpolation P and smoother M

DD-αAMG[ArXiv:1303.1377,1307.6101]

M : Schwarz Alternating Procedure (SAP)
[Hermann Schwarz 1870; Martin Lüscher 2003]

P : Aggregation Based Interpolation
[Brannick, Clark et al. 2010]
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The Algebraic Multigrid Principle

Smoother: I −MD

I Effective on “large” eigenvectors

I “small” eigenvectors remain

SAP
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The Algebraic Multigrid Principle

Coarse-grid correction: I − PD−1c P †D

I small eigenvectors built into interpolation P

⇒ Effective on small eigenvectors

SAP
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Aggregation + Low Modes
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The Algebraic Multigrid Principle

Two-grid method: E2g = (I −MD)ν(I − PD−1c P †D)

I Complementarity of smoother and coarse-grid correction

I Effective on all eigenvectors!

DD-αAMG
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SAP: Schwarz Alternating Procedure

Two color decomposition of L

L2 L3

L1 L4

I canonical injections
ILi

: Li → L

I block restrictions
DLi

= I†
Li
DILi

I block inverses
BLi

= ILi
D−1

Li
I†

Li

1: in: ψ, η, ν – out: ψ
2: for k = 1 to ν do
3: r ← η −Dψ
4: for all green Li do
5: ψ ← ψ +BLi

r
6: end for
7: r ← η −Dψ
8: for all white Li do
9: ψ ← ψ +BLi

r
10: end for
11: end for

A. Frommer, Multilevel solvers for the discrete Dirac equation in lattice QCD 7/32



Algebraic multigrid Overlap operator

Aggregation Based Interpolation

Construction:

I Define aggregates: domain decomposition A1, ...,As

A2

A1

A4

A3

P

P †

I Calculate test vectors w1, ..., wN [ArXiv:1303.1377,1307.6101]

I Decompose test vectors over aggregates A1, ...,As

(v(1), . . . , v(k)) = =
A2

A1

As

→ P =

A1

A2

As
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Setup Procedure: How to Obtain Test Vectors

Bootstrapping process

yes

no

build P and Dc

stop

satisfied?

η times
smooth all vi

test vectors {v1, . . . , vn}
start with random

systems Dψi = vi

apply method itself to all

set all vi = ψi/||ψi||
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Krylov acceleration

Recall:

ψk − ψ = (I −MD)(ψk−1 − ψ) = (I −MD)k(ψ0 − ψ)
⇒ ψk − ψ = pk(MD)(ψ0 − ψ), pk(t) = (1− t)k

Note: limk→∞ ψ
k − ψ = 0 for any ψ0 ⇔ ρ(I −MD) < 1.

Krylov acceleration

Krylov method “chooses” ploynomial pk better than (1− t)k:

I CG: minimizes 〈pk(MD)(ψ0 − ψ) |D | pk(MD)(ψ0 − ψ)〉
I GMRES minimizes ‖MD

(
pk(MD)(ψ0 − ψ)

)
‖2

I BiCG, QMR, BiCGStab

Terminology: M preconditioner
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Some history

I Adaptive algebraic multigrid αAMG: Brezina, Falgout,
Manteuffel, MacLachlan, McCormick, Ruge 2004

I Inexact deflation method: Lüscher 2007.
Solves

D(I − PD−1c P †D)ψ = η

using SAP as a preconditioner.

I αAMG for lattice QCD: Babich, Brannick, Brower, Clark,
Manteuffel, McCormick, Osborn, Rebbi 2010.

I DD-αAMG: F., Kahl, Leder, Krieg, Rottmann 2013

I 2013: “Inexact deflation with inexact projection”

I QPACE2: Targeted implementation of DD-αAMG

I Targeted implementations within BMWc
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Current AMG solvers for DW

QOPQDP OpenQCD DD-αAMG

clover term included included included
mixed precision yes yes yes
smoother GMRES SAP SAP
aggregation γ5-comp. arbitrary γ5-comp.
setup 1) 2) 3)
typ. # test vecs (N) 20 30 20
# vars / coarse site 2N N 2N
cycling K-cycle n.a. K-cycle

1) inverse iterations with GMRES on sequence of test vecs

2) repeated inverse iteration with emerging solver
on all test vecs at once

3) modification of 2)
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Snapshots on performance: configurations

id lattice size pion mass CGNR shift clover provided by
Nt ×N3

s mπ [MeV] iterations m0 term csw

1 48× 163 250 7,055 −0.095300 1.00000 BMW-c
2 48× 243 250 11,664 −0.095300 1.00000 BMW-c
3 48× 323 250 15,872 −0.095300 1.00000 BMW-c
4 48× 483 135 53,932 −0.099330 1.00000 BMW-c
5 64× 643 135 84,207 −0.052940 1.00000 BMW-c
6 128× 643 270 45,804 −0.342623 1.75150 CLS

Table : Ensembles used.
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Snapshots on performance: setup time vs solve time

number of average average lowest highest average average
setup setup iteration iteration iteration solver total

steps ninv timing count count count timing timing

1 2.08 149 144 154 6.42 8.50
2 3.06 59.5 58 61 3.42 6.48
3 4.69 34.5 33 36 2.37 7.06
4 7.39 27.2 27 28 1.95 9.34
5 10.8 24.1 24 25 1.82 12.6
6 14.1 23.0 23 23 1.89 16.0
8 19.5 22.0 22 22 2.02 21.5
10 24.3 22.5 22 23 2.31 26.6

Table : Evaluation of DD-αAMG-setup(ninv , 2), 484 lattice,
configuration id 4), 2,592 cores, averaged over 20 runs.
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Snapshots on performance: oe-BiCGStab vs DD-αAMG

BiCGStab DD-αAMG speed-up factor coarse grid

setup time 22.9s

solve iter 13,450 21 3,716(∗)

solve time 91.2s 3.15s 29.0 2.43s
total time 91.2s 26.1s 3.50

Table : BiCGStab vs. DD-αAMG with default parameters, configuration
id 5, 8,192 cores, (∗) : coarse grid iterations summed up over all
iterations on the fine grid.
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Snapshots on performance: mass scaling and levels
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Figure : Mass scaling of 2, 3 and 4 level DD-αAMG, 644 lattice,
configuration id 5, restart length nkv = 10, 128 cores

A. Frommer, Multilevel solvers for the discrete Dirac equation in lattice QCD 16/32



Algebraic multigrid Overlap operator

Snapshots on performance: mass scaling and levels
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2 & 3 Level DD-αAMG, Inexact Deflation

Configuration 5: 64× 643, 128 cores
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I 32 test vectors for inex. defl. w. inex. proj.[OpenQCD 1.2]

I Inex. defl. w. inex. proj. scales better than ordinary
inex. defl.[DD-HMC 1.2.2] and 2 level DD-αAMG

I 3 level DD-αAMG shows best scaling behavior
I 3 levels perform best in range of mu and md
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Wuppertal and its region: home of the tools industry

We want many nails!
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The overlap operator

DN = I + ργ5 sign(γ5DW︸ ︷︷ ︸
:=Q

)
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Solving DNψ = η

DN = I + ρ · γ5 · sign(Q(mk))

Generic Krylov subspace iteration for DNψ = η

1: while error too large do
2: compute next basis vector (involves computation DNv)
3: update current iterate
4: end while

Challenges:

i) Evaluating sign(Q(mk))v is quite costly within DNv

ii) Iteration counts of O(1000) → preconditioning

A. Frommer, Multilevel solvers for the discrete Dirac equation in lattice QCD 22/32



Algebraic multigrid Overlap operator

Solving DNψ = η

DN = I + ρ · γ5 · sign(Q(mk))

Generic Krylov subspace iteration for DNψ = η

1: while error too large do
2: compute next basis vector (involves computation DNv)
3: update current iterate
4: end while

Challenges:

i) Evaluating sign(Q(mk))v is quite costly within DNv

ii) Iteration counts of O(1000) → preconditioning

A. Frommer, Multilevel solvers for the discrete Dirac equation in lattice QCD 22/32



Algebraic multigrid Overlap operator

Current approach: recursive preconditioning

Idea: Preconditioner = “inner” iteration with GMRES for DN

Consequences:

I inner iteration requires low accuracy only

I needs ‘flexible” outer iteration (FGMRES, GCR)

I requires low accuracy for sign(Q(mk))c only

I accury for sign in outer iteration can be decreased as iteration
proceeds
[Simoncini, Szyld [03], van den Eshof, Sleijpen [04]

Cundy, van den Eshof, F., Krieg, Schäfer 2005

A. Frommer, Multilevel solvers for the discrete Dirac equation in lattice QCD 23/32



Algebraic multigrid Overlap operator

New approach: use multigrid solver for DW

Definition: DW is normal if D†WDw = DWD
†
W

Equivalently: DW admits an orthonormal basis of eigenvectors

Proposition

Assume DW (0) is normal. Then

DW (0)x = λx

⇐⇒
DN (mk)x =

(
ρ+ csign(λ+mk)

)
x

0 2 4 6 8 10 12 14
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0

1

2

3

4

I adapt α,m0 s.t.small evs of αDW (m0) and DN match.

Brannick, Frommer, Kahl, Leder, Rottmann, Strebel arXiv:1410.7170
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Spectra
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Smearing drives towards normality I

Fact 1: We have

‖DH
WDW −DWD

H
W ‖F = 16NQ(3−Qavg)
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Smearing drives towards normality II

Fact 2

If D is normal, its field of values

F(D) = {〈x,Dx〉
〈x, x〉

, x 6== 0}

is the convex hull of the spectrum.
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Numerical results

Configurations

ID lattice size kernel mass default smearing provided by
Nt ×N3

s mker
0 overlap mass µ s

1 32× 323 −1− 3
4σmin 0.0150000 {0, . . . , 6}-stout J. Finkenrath

2 32× 323 −1.3 0.0135778 3HEX BMW-c 2013

I We used 1024 processors of Juropa@FZ-Jülich

I ρ =
−µ/2+mker

0

µ/2+mker
0
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Comparison of iterations
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Comparison of time to solution
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Comparison of time to solution, play every trick
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Conclusions

I Adaptivity is the key to success in AMG for LQCD

I Setup in AMG is expensive

I More levels require coarse grain parallelism

I AMG outperforms other solvers, especially for multiple sources

I AMG allows to use DW as a preconditioner for DN

I Performance gains increase as DW gets more normal through
smearing
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