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Algebraic multigrid

Iterative solvers

Generic description for D) = 1:
> current iterate )*
» current residual p* =1 — Dy
» approximately solve D% = pF: 6F = M p*
> next iterate: T = pF 4 ok

PFH = (I — MD)Y* + Mn, ¢*' —y = (I — MD)(p* — )
— ~—
error k + 1 error k

N
N

2\

Error propagation matrix: ¥ =1 — MD
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Algebraic multigrid

Idea: Adaptive Algebraic Multigrid Approach

Two-grid error propagator for v steps of post-smoothing

Eég) = (I - MD)" (I - PD;'PHD), D.:= P*DP

smoother coarse grid correction coarse operator

» low accuracy for D' and M is sufficient

» introduce recursive construction for D. — multigrid
To Do: Define interpolation P and smoother M

o [ArXiv:1303.1377,1307.6101]

M: Schwarz Alternating Procedure (SAP)

[Hermann Schwarz 1870; Martin Liischer 2003] ///‘ —

P: Aggregation Based Interpolation /7//_5
: | | p

[Br%'%ick,gclark et al. 2010] //ﬂ=

N
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The Algebraic Multigrid Principle

Smoother: I—MD

> Effective on “large” eigenvectors

b " - .
> “small” eigenvectors remain

. i 1
g 0.8 F J
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The Algebraic Multigrid Principle

Coarse-grid correction: [ — PD_'PID

» small eigenvectors built into interpolation P

= Effective on small eigenvectors

if ] s
E 0.8 + 1 %
= 5
=06} | ]
S .
[ lo
‘ 0.4 f 9 Q E
o % < :
= 02| % 4 | 2 &
= =2
= -
0 . . ) | | | 0 . . . . . . ///‘=
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 /9_—-
number i of eigenvalue \; number i of eigenvalue ); //_

X

Duv; = \;jv; with ‘)\1| <...< |)\3072|
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The Algebraic Multigrid Principle

Two-grid method:  Fy, = (I — MD)"(I — PD;'PID)

» Complementarity of smoother and coarse-grid correction

» Effective on all eigenvectors!

[1B2g vill/lvill

00 560 10‘00 15;00 20‘00 25‘00 3(;00 ////‘_i
number i of eigenvalue \; P

/y i —

P~

Duv; = \jv;  with ‘)\1| <...< |)\3072| /j:
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Algebraic multigrid

SAP: Schwarz Alternating Procedure

51%@

» canonical injections

Ici : [:1 — L
» block restrictions
Dc,- = II.DILi

» block inverses
BLI_ = Iﬂi D;_lIl_

1. in: ¢, n, v —out: ¥

2: for k=1tor do

33 r<n—Dy

for all green L; do
Y+ B, r

end for

r<n—Dy

for all white L; do
Y+ B, r

10: end for

11: end for

LN TR
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Algebraic multigrid

Aggregation Based Interpolation

» Define aggregates: domain decomposition Ay, ..., A

.Al B .A3

» Calculate test vectors w1, ..., WN [ArXiv:1303.1377,1307.6101]

A;

» Decompose test vectors over aggregates Ay, ..., A
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Algebraic multigrid

Setup Procedure: How to Obtain Test Vectors

[

start with random

test vectors {vy,...,v,}

)

smooth all v;
1) times

|

set all v; = /|||

T

apply method itself to all
systems D, = v;

l

| build Pand D, |
v

satisfied?

foe Y=
/=
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Algebraic multigrid

Krylov acceleration

Recall:

WF —p = (I — MD)(* ' —y) = (I - MD)*(¥° — v)
= PP~ =p (MD)W — ),  pu(t) = (1—t)*

Note: limy_,oo 1% — 1) =0 for any ¢ < p(I — M D) < 1.

Krylov method “chooses” ploynomial p;, better than (1 — ¢):
» CG: minimizes (pp(MD)(¢° — ) | D | pp(MD)()° — )

» GMRES minimizes || M D (pr(MD) (4" — 1))|l2 Y-=
> BiCG, QMR, BiCGStab =

Terminology: ) preconditioner
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Algebraic multigrid

Some history

» Adaptive algebraic multigrid «AMG: Brezina, Falgout,
Manteuffel, MacLachlan, McCormick, Ruge 2004

» Inexact deflation method: Lischer 2007.
Solves

D(I — PD;'PTD)y =7
using SAP as a preconditioner.

» o«AMG for lattice QCD: Babich, Brannick, Brower, Clark,
Manteuffel, McCormick, Osborn, Rebbi 2010.

» DD-aAMG: F., Kahl, Leder, Krieg, Rottmann 2013
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Algebraic multigrid Overlap operator

Some history

» Adaptive algebraic multigrid «AMG: Brezina, Falgout,
Manteuffel, MacLachlan, McCormick, Ruge 2004

» Inexact deflation method: Lischer 2007.
Solves

D(I — PD;'PTD)y =7
using SAP as a preconditioner.

» o«AMG for lattice QCD: Babich, Brannick, Brower, Clark,
Manteuffel, McCormick, Osborn, Rebbi 2010.

» DD-aAMG: F., Kahl, Leder, Krieg, Rottmann 2013

» 2013: “Inexact deflation with inexact projection” ///4//_—:
» QPACE2: Targeted implementation of DD-cAMG /y/",/:g
» Targeted implementations within BMWc //%é
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Current AMG solvers for Dy

QOPQDP OpenQCD DD-aAMG
clover term included included included
mixed precision yes yes yes
smoother GMRES SAP SAP
aggregation ys-comp.  arbitrary Ys5-comp.
setup 1) 2) 3)
typ. # test vecs (V) 20 30 20
# vars / coarse site 2N N 2N
cycling K-cycle n.a. K-cycle

1) inverse iterations with GMRES on sequence of test vecs

2) repeated inverse iteration with emerging solver ///;=‘
on all test vecs at once //'//,_E
L —

3) modification of 2)
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Algebraic multigrid

Snapshots on performance: configurations

id lattice size  pion mass CGNR shift clover provided by
Ny x N2 m, [MeV] iterations mo term cgy
1 48 x 163 250 7,055 —0.095300  1.00000 BMW-c
2 48 x 243 250 11,664 —0.095300  1.00000 BMW-c
3 48 x 323 250 15,872 —0.095300  1.00000 BMW-c
4 48 x 48° 135 53,932 —0.099330  1.00000 BMW-c
5 64 x 643 135 84,207 —0.052940  1.00000 BMW-c
6 128 x 643 270 45,804 —0.342623  1.75150 CLS
Table : Ensembles used. L, =a
%=
Y =
// e
P~
W
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Algebraic multigrid

Snapshots on performance: setup time vs solve time

number of average average  lowest highest average average
setup setup  iteration iteration iteration  solver total
steps nin,  timing count count count timing  timing
1 2.08 149 144 154 6.42 8.50
2 3.06 59.5 58 61 3.42 6.48
3 4.69 34.5 33 36 2.37 7.06
4 7.39 27.2 27 28 1.95 9.34
5 10.8 24.1 24 25 1.82 12.6
6 14.1 23.0 23 23 1.89 16.0
8 19.5 22.0 22 22 2.02 21.5
10 24.3 22.5 22 23 2.31 26.6 -a
Table : Evaluation of DD-cAMG-setup(n,,, 2), 48* lattice, y///:
configuration id 4), 2,592 cores, averaged over 20 runs. //7‘5
W
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Snapshots on performance: oe-BiCGStab vs DD-cAMG

BiCGStab DD-aAMG  speed-up factor coarse grid

setup time 22.9s

solve iter 13,450 21 3,716
solve time 91.2s 3.15s 29.0 2.43s
total time 91.2s 26.1s 3.50

Table : BiCGStab vs. DD-cAMG with default parameters, configuration
id 5, 8,192 cores, (x) : coarse grid iterations summed up over all
iterations on the fine grid.

A. Frommer, Multilevel solvers for the discrete Dirac equation in lattice QCD 15/32



Algebraic multigrid

Snapshots on performance: mass scaling and levels

Mud
10000 F 5 two-level DD-0AMG - ]
3 three-level DD-aAMG ——
’_g " four-level DD-ocAMG ——
< X mp oe BiCGStab --=--
g “u
£ 1000 | e E
§ f e :
E 400 } e ]
& 200 1
2 . R
g 100 el A
= o b \\‘ ................................................... ]
a0 L ‘ e — -
Merit My Mg —0.05 —0.04 —0.03 —0.02
mo

Figure : Mass scaling of 2, 3 and 4 level DD-aAMG, 64% lattice,
configuration id 5, restart length ny, = 10, 128 cores
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Algebraic multigrid

Snapshots on performance: mass scaling and levels

Muyd
Lo inexact deflation ---r--m-: i
400 b inexact deflation with inexact projection ----- |
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Figure : Mass scaling of 2, 3 and 4 level DD-aAMG, 64% lattice,
configuration id 5, restart length ny, = 10, 128 cores
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2 & 3 Level DD-aAMG, Inexact Deflation

Configuration 5: 64 x 647, 128 cores

Myd
Loy ' inexact deflation - 4
— 400 F Y inexact deflation with inexact projection - ]
» Y two-level DD-0AMG
'g L 3 three-level DD-0cAMG —— -
.2 oo | 4
Z 10 [ : 1
§
§ 100
2 7]
§ 50 |
30 L ‘ ‘ ‘ s
Mepit My Mg —0.05 —0.04 —0.03 —0.02
mo
» 32 test vectors for inex. defl. w. inex. proj.[0penQcP 12l -
> Inex. defl. w. inex. proj. scales better than ordinary ///,//—::
inex. defl.PD-HMC1221 3nd 2 |evel DD-aAMG Y=
. . Y=
> 3 level DD-aAMG shows best scaling behavior ///;é
; 7
> 3 levels perform best in range of m,, and my i
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Algebraic multigrid

Wouppertal and its region: home of the tools industry

Aktuell - Zuverlassig - Kompetent - Vielseitig
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Algebraic multigrid

Wouppertal and its region: home of the tools industry

Aktuell - Zuverlassig - Kompetent - Vielseitig

We want many nails!
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The overlap operator

Dy = I+ pyssign(ysDw)
——
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Overlap operator

Solving Dy =1

Dy =TI+ p- s -sign(Q(my))

1: while error too large do

2:  compute next basis vector (involves computation Dyv)
3:  update current iterate

4: end while
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Overlap operator

Solving Dy =1

Dy=1I+p-vs- 51gn(Q(mk))

1: while error too large do

2:  compute next basis vector (involves computation Dyv)
3:  update current iterate

4: end while

Challenges: -
i) Evaluating sign(Q(my))v is quite costly within Dyv /9/’5
ii) Iteration counts of O(1000) — preconditioning //;=__
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Overlap operator

Current approach: recursive preconditioning

Idea: Preconditioner = “inner” iteration with GMRES for Dy
Consequences:

> inner iteration requires low accuracy only

> needs ‘flexible” outer iteration (FGMRES, GCR)

> requires low accuracy for sign(Q(my,))c only

> accury for sign in outer iteration can be decreased as iteration

proceeds
[Simoncini, Szyld [03], van den Eshof, Sleijpen [04]
Cundy, van den Eshof, F., Krieg, Schafer 2005 // ;_::
%2
o=
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Overlap operator

New approach: use multigrid solver for Dy

Definition: Dy is normal if DIT/VDw = DWD‘T,V

Equivalently: Dy admits an orthonormal basis of eigenvectors

Assume Dy (0) is normal. Then

Dy (0)z = Az
<~
Dy (mi)z = (p+ csign(A + my) )z
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Overlap operator

New approach: use multigrid solver for Dy

Definition: Dy is normal if DIT/VDw = DWD‘T,V

Equivalently: Dy admits an orthonormal basis of eigenvectors

Assume Dy (0) is normal. Then

Dy (0)z = Az
<~
Dy (mi)z = (p+ csign(A + my) )z

» adapt o, mg s.t.small evs of aDyy(mg) and Dy match. 9,:‘

Brannick, Frommer, Kahl, Leder, Rottmann, Strebel arXiv:1410.7170 //77}
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Spectra

spec(Dy) x
9| spec(D;
spec(Dy W

on

imaginary axis
=)
.

-1 0 1 2 3 4 5 6 7
real axis
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Overlap operator

Smearing drives towards normality |

||DI€IVDW — DWD{?II/“F - 16NQ(3 - Qavg)

3.5

2

%3 BT

(8]

w5l &

(0]

a0 i

S |/

o i

& A ///‘;é
1.5 =

0 1L 2 3 4 5 6.
number of stout smearing iterations
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Overlap operator

Smearing drives towards normality |l

If D is normal, its field of values

FD) = (2P ;4

(z, )

is the convex hull of the spectrum.

b

-
bivs x v g
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Overlap operator

Numerical results

Configurations
ID lattice size kernel mass default smearing provided by
Ny x N2 mker overlap mass / s
1 32x32% —1—20,; 00150000  {0,...,6}-stout J. Finkenrath
2 32x 328 -1.3 0.0135778 3HEX BMW-c 2013

» We used 1024 processors of Juropa@FZ-Jiilich

_ —p/24mber Y=
> p - 2+mker /9E
w/ 0 y///;’;
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Overlap operator

Comparison of iterations

Configuration 1

number of stout smearing iterations
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1 ‘ ‘ 10000 ‘ ;
0000 GMRES A 000 GMRES A
FGMRES+DD-0AMG --@-- FGMRES+DD-0AMG --©--
A A
g 10007 A A At Ao Ao ;Ag 1000 AT
[} Q
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Overlap operator

Comparison of time to solution

Configuration 1

" GMRES A GMRES A~
FGMRES+DD-0AMG --@-- FGMRES+DD-0AMG --@-- 4

1000 £ 1 1000 |
/

N
Vv

solve time (in seconds)
oD
&

solve time (in seconds)

100 O-e

100 ¢ A E

A
A

10 - - - 10 - - -
0 1 2 3 4 272 273 274 975 9276
number of stout smearing iterations

overlap mass p
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Overlap operator

Comparison of time to solution, play every trick

T 1000 T

"GMRESR with 100 deflated eigenpairs - " "GMRESR A
1000 £ GMRESR with 20 deflated eiﬁnpairs A FGMRESR+DD-0AMG --©)--
GMRESR —&—
— FGMRESR with 100 deflated eigenpairs - - —
3 FGMRESR with 20 deflated eigenpairs - - 3
< FGMRESR —a— £
2 [ ] 2 100 b
£ -} £
o @
E E
E 2 AT .
8 al 5 104 o9 |
a GO0
0 1 2 3 4 5 6 ConfID 2 272 273 274 275 276 -7 2-F
number of stout smearing iterations overlap mass /1
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Overlap operator

Conclusions

» Adaptivity is the key to success in AMG for LQCD

> Setup in AMG is expensive

> More levels require coarse grain parallelism

» AMG outperforms other solvers, especially for multiple sources
» AMG allows to use Dyy as a preconditioner for Dy

» Performance gains increase as Dy gets more normal through
smearing

N
Iir

R
i

X
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