

Multilevel solvers for the discrete Dirac equation in lattice QCD

Andreas Frommer

Bergische Universität Wuppertal

February 17, 2015

- ▶ Karsten Kahl, Stefan Krieg, Björn Leder
- ▶ James Brannick
- ▶ Matthias Rottmann, Artur Strelbel

Outline

Algebraic Multigrid for the Wilson-Dirac Operator

- Algebraic multigrid

- Domain decomposition and aggregation

- Krylov acceleration

- Snapshots on performance

Methods for the Overlap Operator

- Preconditioning

- Normality

- Numerical results

Algebraic Multigrid for the Wilson-Dirac Operator

- Algebraic multigrid

- Domain decomposition and aggregation

- Krylov acceleration

- Snapshots on performance

Methods for the Overlap Operator

- Preconditioning

- Normality

- Numerical results

Iterative solvers

Generic description for $D\psi = \eta$:

- ▶ current iterate ψ^k
- ▶ current residual $\rho^k = \eta - D\psi^k$
- ▶ approximately solve $D\delta^k = \rho^k$: $\delta^k = M\rho^k$
- ▶ next iterate: $\psi^{k+1} = \psi^k + \delta^k$

Summary: one iteration

$$\psi^{k+1} = (I - MD)\psi^k + M\eta, \quad \underbrace{\psi^{k+1} - \psi^k}_{\text{error } k+1} = (I - MD)(\underbrace{\psi^k - \psi^k}_{\text{error } k})$$

Error propagation matrix: $E = I - MD$

Idea: Adaptive Algebraic Multigrid ApproachTwo-grid error propagator for ν steps of post-smoothing

$$E_{2g}^{(\nu)} = \underbrace{(I - MD)}_{\text{smoother}}^{\nu} \underbrace{(I - PD_c^{-1}P^H D)}_{\text{coarse grid correction}}, \underbrace{D_c := P^H D P}_{\text{coarse operator}}$$

- ▶ low accuracy for D_c^{-1} and M is sufficient
- ▶ introduce recursive construction for $D_c \rightarrow$ multigrid

To Do: Define interpolation P and smoother M DD- α AMG [ArXiv:1303.1377, 1307.6101] M : Schwarz Alternating Procedure (SAP)

[Hermann Schwarz 1870; Martin Lüscher 2003]

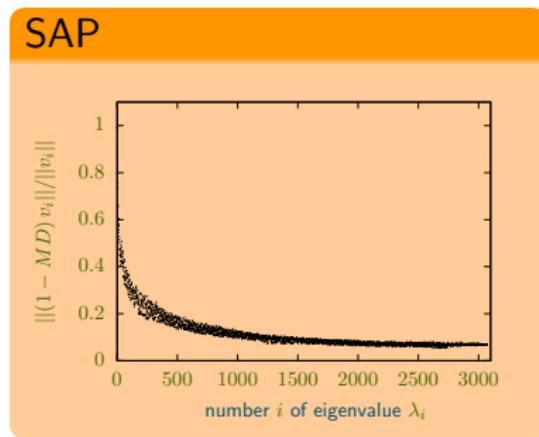
 P : Aggregation Based Interpolation

[Brannick, Clark et al. 2010]

The Algebraic Multigrid Principle

Smoother: $I - MD$

- ▶ Effective on “large” eigenvectors
- ▶ “small” eigenvectors remain



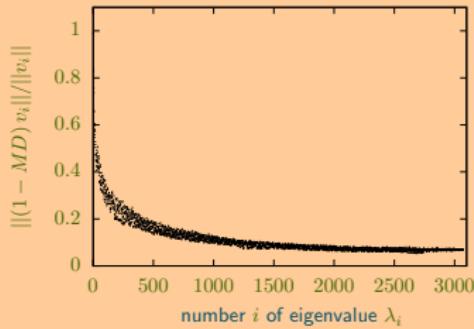
$$Dv_i = \lambda_i v_i \quad \text{with} \quad |\lambda_1| \leq \dots \leq |\lambda_{3072}|$$

The Algebraic Multigrid Principle

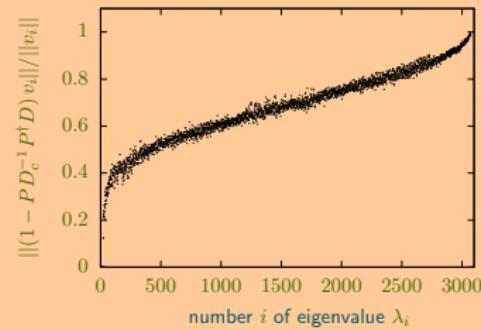
Coarse-grid correction: $I - PD_c^{-1}P^\dagger D$

- ▶ **small eigenvectors** built into interpolation P
- ⇒ Effective on **small eigenvectors**

SAP



Aggregation + Low Modes



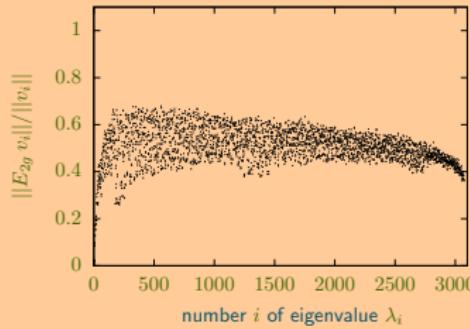
$$Dv_i = \lambda_i v_i \quad \text{with} \quad |\lambda_1| \leq \dots \leq |\lambda_{3072}|$$

The Algebraic Multigrid Principle

Two-grid method: $E_{2g} = (I - MD)^\nu(I - PD_c^{-1}P^\dagger D)$

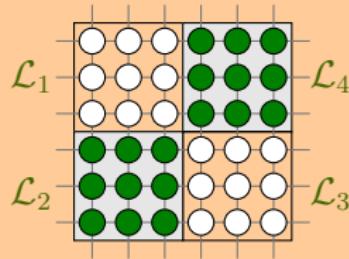
- ▶ Complementarity of smoother and coarse-grid correction
- ▶ Effective on **all eigenvectors!**

DD- α AMG



$$Dv_i = \lambda_i v_i \quad \text{with} \quad |\lambda_1| \leq \dots \leq |\lambda_{3072}|$$

SAP: Schwarz Alternating Procedure

Two color decomposition of \mathcal{L} 

▶ canonical injections

$$\mathcal{I}_{\mathcal{L}_i} : \mathcal{L}_i \rightarrow \mathcal{L}$$

▶ block restrictions

$$D_{\mathcal{L}_i} = \mathcal{I}_{\mathcal{L}_i}^\dagger D \mathcal{I}_{\mathcal{L}_i}$$

▶ block inverses

$$B_{\mathcal{L}_i} = \mathcal{I}_{\mathcal{L}_i} D_{\mathcal{L}_i}^{-1} \mathcal{I}_{\mathcal{L}_i}^\dagger$$

```

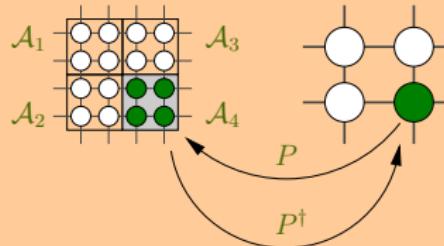
1: in:  $\psi, \eta, \nu$  – out:  $\psi$ 
2: for  $k = 1$  to  $\nu$  do
3:    $r \leftarrow \eta - D\psi$ 
4:   for all green  $\mathcal{L}_i$  do
5:      $\psi \leftarrow \psi + B_{\mathcal{L}_i} r$ 
6:   end for
7:    $r \leftarrow \eta - D\psi$ 
8:   for all white  $\mathcal{L}_i$  do
9:      $\psi \leftarrow \psi + B_{\mathcal{L}_i} r$ 
10:  end for
11: end for

```


Aggregation Based Interpolation

Construction:

- ▶ Define aggregates: domain decomposition $\mathcal{A}_1, \dots, \mathcal{A}_s$

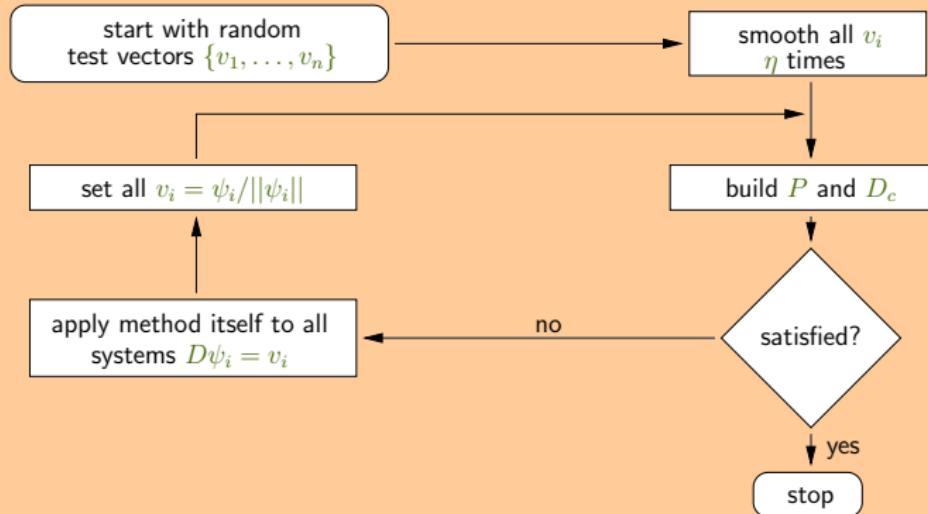


- ▶ Calculate test vectors w_1, \dots, w_N [ArXiv:1303.1377, 1307.6101]
- ▶ Decompose test vectors over aggregates $\mathcal{A}_1, \dots, \mathcal{A}_s$

$$(v^{(1)}, \dots, v^{(k)}) = \begin{pmatrix} \text{vertical bar} \end{pmatrix} = \begin{pmatrix} \mathcal{A}_1 \\ \mathcal{A}_2 \\ \vdots \\ \mathcal{A}_s \end{pmatrix} \rightarrow P = \begin{pmatrix} \mathcal{A}_1 & & & \\ & \mathcal{A}_2 & & \\ & & \ddots & \\ & & & \mathcal{A}_s \end{pmatrix}$$

Setup Procedure: How to Obtain Test Vectors

Bootstrapping process



Krylov acceleration

Recall:

$$\begin{aligned} \psi^k - \psi &= (I - MD)(\psi^{k-1} - \psi) = (I - MD)^k(\psi^0 - \psi) \\ \Rightarrow \psi^k - \psi &= p_k(MD)(\psi^0 - \psi), \quad p_k(t) = (1-t)^k \end{aligned}$$

Note: $\lim_{k \rightarrow \infty} \psi^k - \psi = 0$ for any $\psi^0 \Leftrightarrow \rho(I - MD) < 1$.

Krylov acceleration

Krylov method “chooses” polynomial p_k better than $(1-t)^k$:

- ▶ CG: minimizes $\langle p_k(MD)(\psi^0 - \psi) | D | p_k(MD)(\psi^0 - \psi) \rangle$
- ▶ GMRES minimizes $\|MD(p_k(MD)(\psi^0 - \psi))\|_2$
- ▶ BiCG, QMR, BiCGStab

Terminology: M preconditioner

Some history

- ▶ **Adaptive algebraic multigrid α AMG:** Brezina, Falgout, Manteuffel, MacLachlan, McCormick, Ruge 2004
- ▶ **Inexact deflation method:** Lüscher 2007.
Solves

$$D(I - PD_c^{-1}P^\dagger D)\psi = \eta$$

using SAP as a preconditioner.

- ▶ **α AMG for lattice QCD:** Babich, Brannick, Brower, Clark, Manteuffel, McCormick, Osborn, Rebbi 2010.
- ▶ **DD- α AMG:** F., Kahl, Leder, Krieg, Rottmann 2013

Some history

- ▶ **Adaptive algebraic multigrid α AMG:** Brezina, Falgout, Manteuffel, MacLachlan, McCormick, Ruge 2004
- ▶ **Inexact deflation method:** Lüscher 2007.
Solves

$$D(I - PD_c^{-1}P^\dagger D)\psi = \eta$$

using SAP as a preconditioner.

- ▶ **α AMG for lattice QCD:** Babich, Brannick, Brower, Clark, Manteuffel, McCormick, Osborn, Rebbi 2010.
- ▶ **DD- α AMG:** F., Kahl, Leder, Krieg, Rottmann 2013

- ▶ 2013: “Inexact deflation with inexact projection”
- ▶ QPACE2: Targeted implementation of DD- α AMG
- ▶ Targeted implementations within BMWc

Current AMG solvers for D_W

	QOPQDP	OpenQCD	DD- α AMG
clover term	included	included	included
mixed precision	yes	yes	yes
smoother	GMRES	SAP	SAP
aggregation	γ_5 -comp.	arbitrary	γ_5 -comp.
setup	1)	2)	3)
typ. # test vecs (N)	20	30	20
# vars / coarse site	$2N$	N	$2N$
cycling	K-cycle	n.a.	K-cycle

- 1) inverse iterations with GMRES on sequence of test vecs
- 2) repeated inverse iteration with emerging solver
on all test vecs at once
- 3) modification of 2)

Snapshots on performance: configurations

id	lattice size $N_t \times N_s^3$	pion mass m_π [MeV]	CGNR iterations	shift m_0	clover term c_{sw}	provided by
1	48×16^3	250	7,055	-0.095300	1.00000	BMW-c
2	48×24^3	250	11,664	-0.095300	1.00000	BMW-c
3	48×32^3	250	15,872	-0.095300	1.00000	BMW-c
4	48×48^3	135	53,932	-0.099330	1.00000	BMW-c
5	64×64^3	135	84,207	-0.052940	1.00000	BMW-c
6	128×64^3	270	45,804	-0.342623	1.75150	CLS

Table : Ensembles used.

S snapshots on performance: setup time vs solve time

number of setup steps n_{inv}	average setup timing	average iteration count	lowest iteration count	highest iteration count	average solver timing	average total timing
1	2.08	149	144	154	6.42	8.50
2	3.06	59.5	58	61	3.42	6.48
3	4.69	34.5	33	36	2.37	7.06
4	7.39	27.2	27	28	1.95	9.34
5	10.8	24.1	24	25	1.82	12.6
6	14.1	23.0	23	23	1.89	16.0
8	19.5	22.0	22	22	2.02	21.5
10	24.3	22.5	22	23	2.31	26.6

Table : Evaluation of DD- α AMG-setup($n_{inv}, 2$), 48^4 lattice, configuration id 4), 2,592 cores, averaged over 20 runs.

Snapshots on performance: oe-BiCGStab vs DD- α AMG

	BiCGStab	DD- α AMG	speed-up factor	coarse grid
setup time		22.9s		
solve iter	13,450	21		3,716 ^(*)
solve time	91.2s	3.15s	29.0	2.43s
total time	91.2s	26.1s	3.50	

Table : BiCGStab vs. DD- α AMG with default parameters, configuration id 5, 8,192 cores, ^(*) : coarse grid iterations summed up over all iterations on the fine grid.

Snapshots on performance: mass scaling and levels

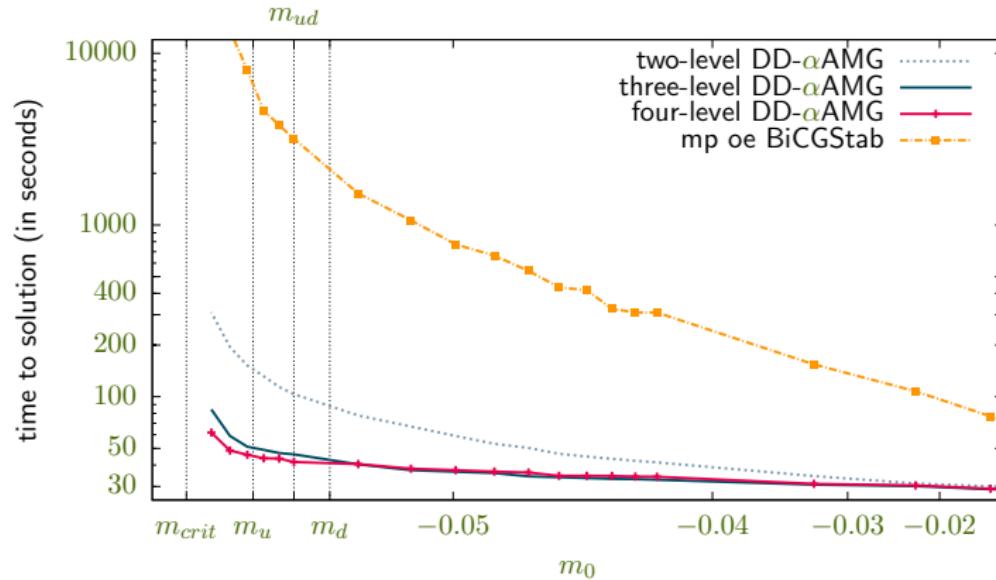


Figure : Mass scaling of 2, 3 and 4 level DD- α AMG, 64^4 lattice, configuration id 5, restart length $n_{kv} = 10$, 128 cores

Snapshots on performance: mass scaling and levels

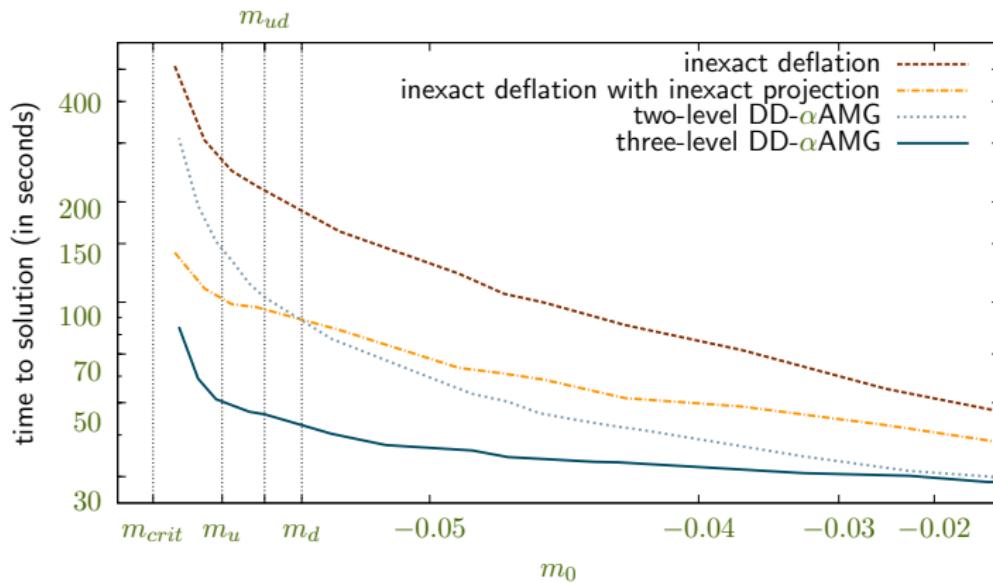
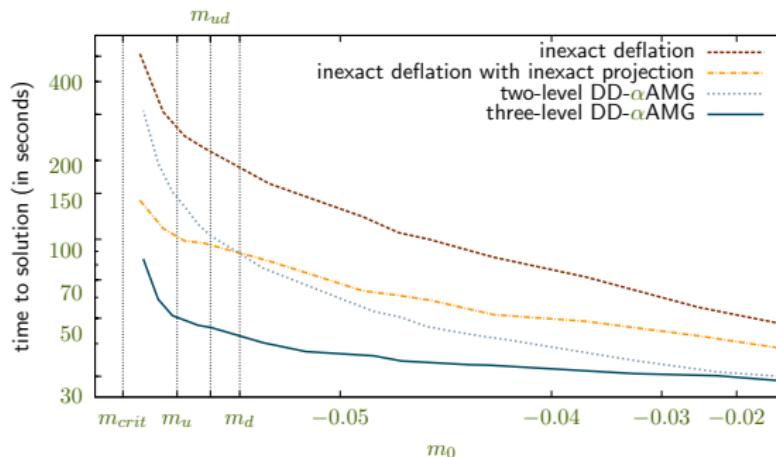


Figure : Mass scaling of 2, 3 and 4 level DD- α AMG, 64^4 lattice, configuration id 5, restart length $n_{kv} = 10$, 128 cores

2 & 3 Level DD- α AMG, Inexact DeflationConfiguration 5: 64×64^3 , 128 cores

- 32 test vectors for inex. defl. w. inex. proj. ^[OpenQCD 1.2]
- Inex. defl. w. inex. proj. scales better than ordinary inex. defl. ^[DD-HMC 1.2.2] and 2 level DD- α AMG
- 3 level DD- α AMG shows best scaling behavior
- 3 levels perform best in range of m_u and m_d

Wuppertal and its region: home of the tools industry

Wuppertal and its region: home of the tools industry

We want many nails!

Algebraic Multigrid for the Wilson-Dirac Operator

Algebraic multigrid

Domain decomposition and aggregation

Krylov acceleration

Snapshots on performance

Methods for the Overlap Operator

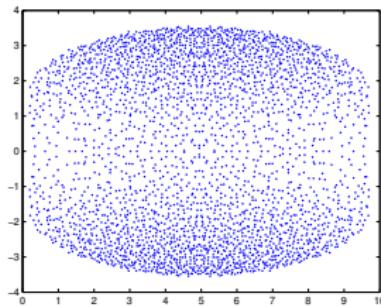
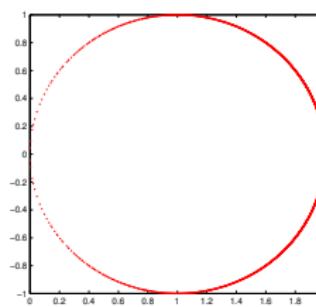
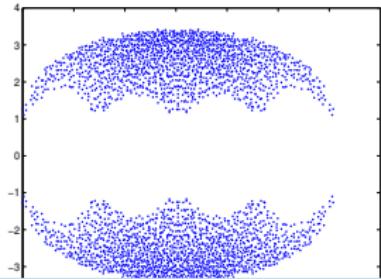
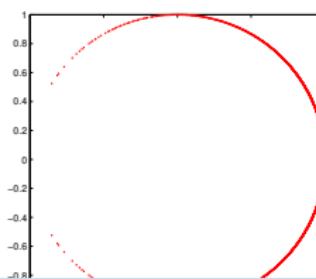
Preconditioning

Normality

Numerical results

The overlap operator

$$D_N = I + \rho \gamma_5 \underbrace{\text{sign}(\gamma_5 D_W)}_{:=Q}$$



Solving $D_N\psi = \eta$

$$D_N = I + \rho \cdot \gamma_5 \cdot \text{sign}(Q(m_k))$$

Generic Krylov subspace iteration for $D_N\psi = \eta$

- 1: **while** error too large **do**
- 2: compute next basis vector (involves computation D_Nv)
- 3: update current iterate
- 4: **end while**

Solving $D_N\psi = \eta$

$$D_N = I + \rho \cdot \gamma_5 \cdot \text{sign}(Q(m_k))$$

Generic Krylov subspace iteration for $D_N\psi = \eta$

- 1: **while** error too large **do**
- 2: compute next basis vector (involves computation D_Nv)
- 3: update current iterate
- 4: **end while**

Challenges:

- i) Evaluating $\text{sign}(Q(m_k))v$ is quite costly within D_Nv
- ii) Iteration counts of $\mathcal{O}(1000)$ → preconditioning

Current approach: recursive preconditioning

Idea: Preconditioner = “inner” iteration with GMRES for D_N

Consequences:

- ▶ inner iteration requires **low accuracy** only
- ▶ needs ‘flexible’ outer iteration (FGMRES, GCR)
- ▶ requires low accuracy for $\text{sign}(Q(m_k))c$ only
- ▶ accuracy for **sign** in outer iteration can be decreased as iteration proceeds

[Simoncini, Szyld [03], van den Eshof, Sleijpen [04]]

Cundy, van den Eshof, F., Krieg, Schäfer 2005

New approach: use multigrid solver for D_W

Definition: D_W is **normal** if $D_W^\dagger D_w = D_W D_W^\dagger$

Equivalently: D_W admits an orthonormal basis of eigenvectors

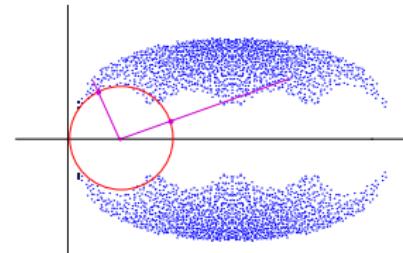
Proposition

Assume $D_W(0)$ is normal. Then

$$D_W(0)x = \lambda x$$

$$\iff$$

$$D_N(m_k)x = (\rho + \text{csign}(\lambda + m_k))x$$



New approach: use multigrid solver for D_W

Definition: D_W is **normal** if $D_W^\dagger D_W = D_W D_W^\dagger$

Equivalently: D_W admits an orthonormal basis of eigenvectors

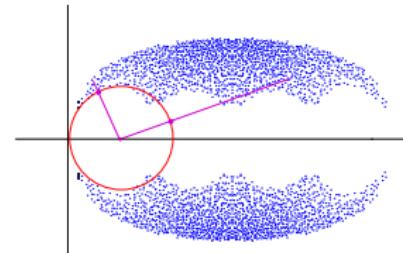
Proposition

Assume $D_W(0)$ is normal. Then

$$D_W(0)x = \lambda x$$

$$\iff$$

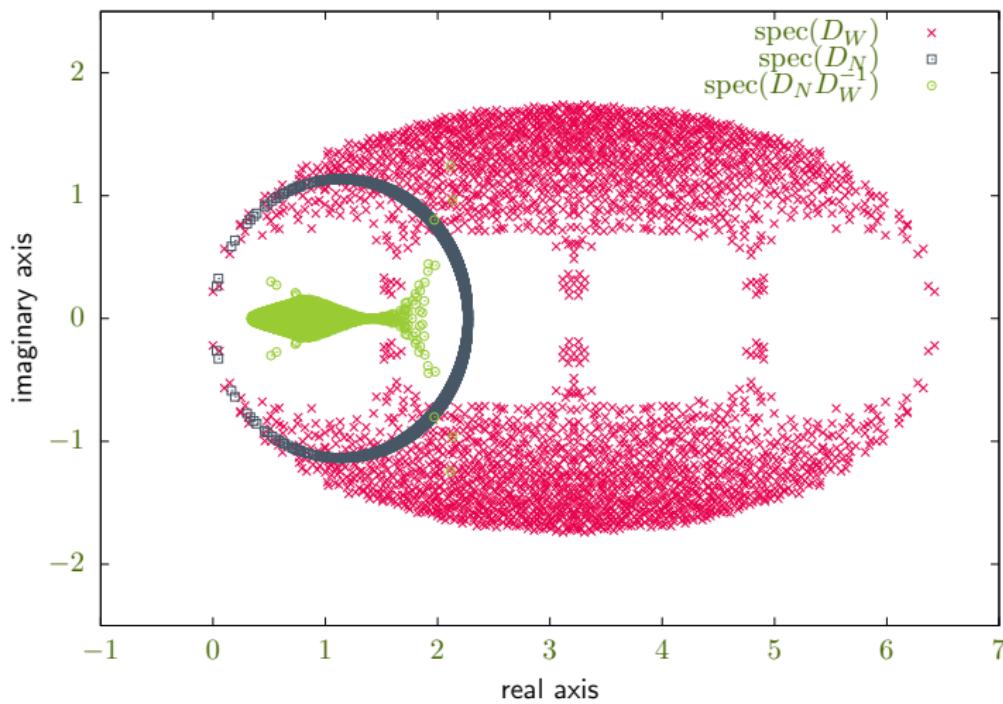
$$D_N(m_k)x = (\rho + \text{csign}(\lambda + m_k))x$$



- adapt α, m_0 s.t. small evs of $\alpha D_W(m_0)$ and D_N match.

Brannick, Frommer, Kahl, Leder, Rottmann, Strebel arXiv:1410.7170

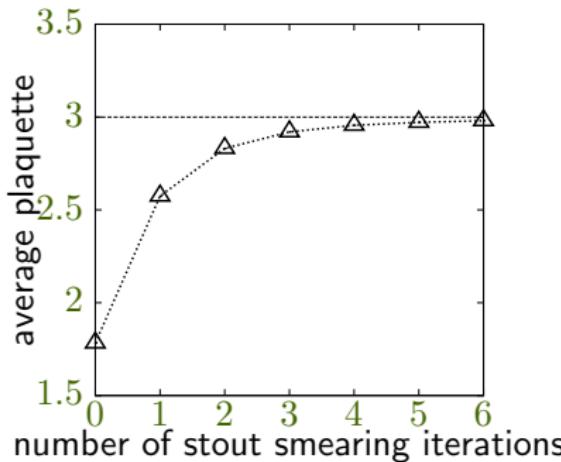
Spectra



Smearing drives towards normality I

Fact 1: We have

$$\|D_W^H D_W - D_W D_W^H\|_F = 16N_Q(3 - Q_{avg})$$



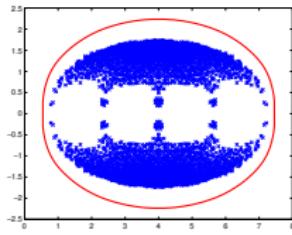
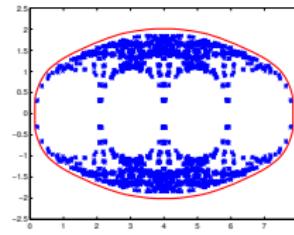
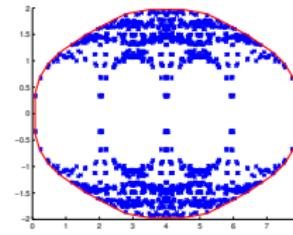
Smearing drives towards normality II

Fact 2

If D is normal, its field of values

$$\mathcal{F}(D) = \left\{ \frac{\langle x, Dx \rangle}{\langle x, x \rangle}, x \neq 0 \right\}$$

is the convex hull of the spectrum.



Numerical results

Configurations

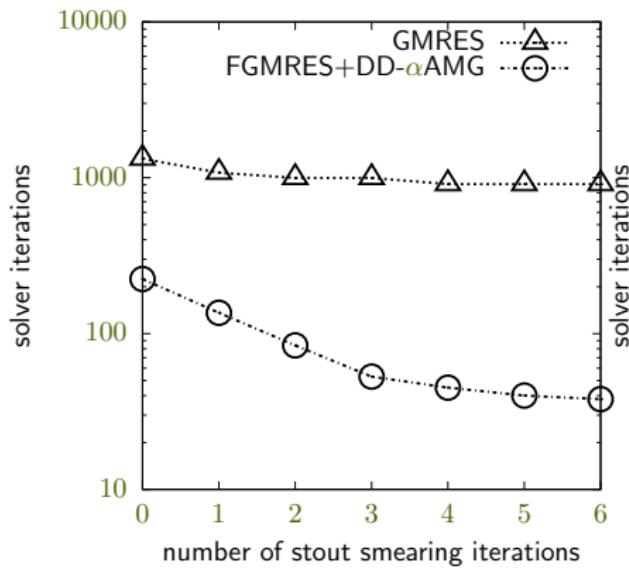
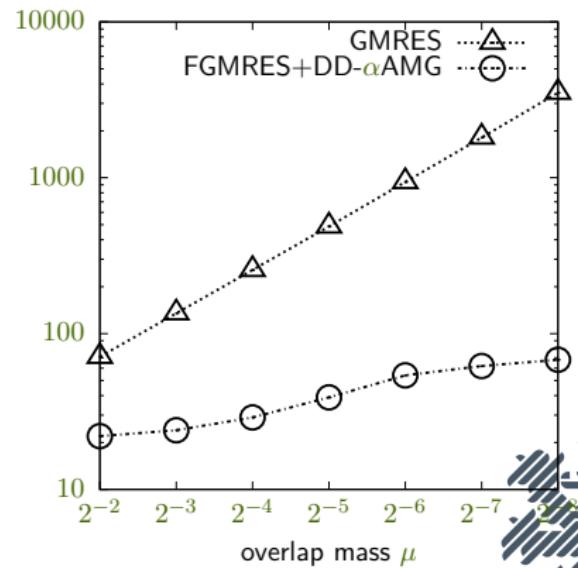
ID	lattice size $N_t \times N_s^3$	kernel mass m_0^{ker}	default overlap mass μ	smearing s	provided by
1	32×32^3	$-1 - \frac{3}{4}\sigma_{\min}$	0.0150000	$\{0, \dots, 6\}$ -stout	J. Finkenrath
2	32×32^3	-1.3	0.0135778	3HEX	BMW-c 2013

- We used 1024 processors of Juropa@FZ-Jülich

$$\rho = \frac{-\mu/2 + m_0^{ker}}{\mu/2 + m_0^{ker}}$$

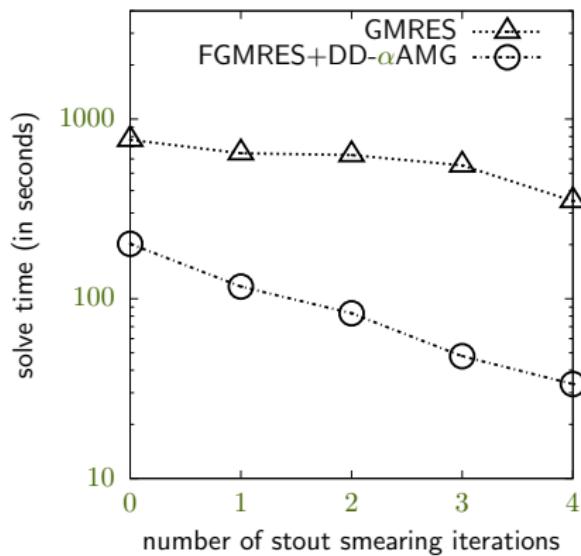
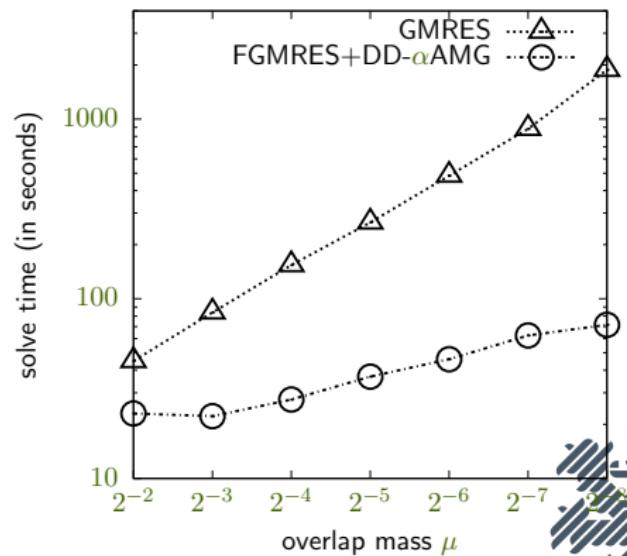
Comparison of iterations

Configuration 1

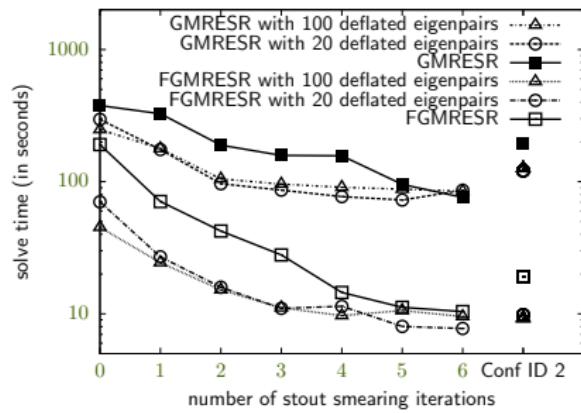
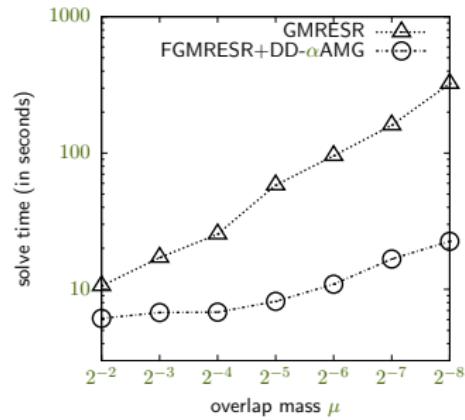


Comparison of time to solution

Configuration 1



Comparison of time to solution, play every trick



Conclusions

- ▶ Adaptivity is the key to success in AMG for LQCD
- ▶ Setup in AMG is expensive
- ▶ More levels require coarse grain parallelism
- ▶ AMG outperforms other solvers, especially for multiple sources
- ▶ AMG allows to use D_W as a preconditioner for D_N
- ▶ Performance gains increase as D_W gets more normal through smearing

