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Introduction

• What are Glueballs ?

◦ Stable low lying states in pure Yang-Mills theory are called glueballs.
They are not elementary particles but composites.

• Glueball masses can be computed in lattice gauge theory
simulations.
◦ Monte-Carlo technique is used to evaluate the finite dimensional

path-integral on the lattice.

• Masses obtained from correlators between gauge invariant sources

◦ Sources are constructed by applying gauge invariant operators on the
lattice gauge theory vacuum.
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• Correlation functions of operators at a time separation ∆t (in
terms of the transfer matrix T) is

C (∆t) = 〈O(∆t)O(0)〉 =
Tr(TT−∆tO(∆t)T∆tO(0))

Tr(TT )
(1)

=
∑

n>0|〈0|O(0)|n〉|2exp(−mn∆t)

in large ∆t limit

C (∆t) ∼ exp(−m1∆t). (2)

Also T = exp(−aH) T : temporal extent of lattice.
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• Ground state glueball masses in a given symmetry channel can be
extracted from the previous relation.

◦ Glueballs are heavy (> 1 GeV). Correlators are strongly suppressed by
the heavy mass.

◦ Extraction of glueball masses at large temporal separation is extremely
difficult, as the statistical noise dominates the signal.

◦ Alternative : Estimate effective masses from the correlators at short
temporal separations

ameff = ln
〈C (∆t)〉

〈C (∆t + 1)〉
(3)

• The above alternative coupled with a finer lattice spacing in the
temporal direction has been used by a lot of groups for computing
the glueball spectrum.
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Current Status

• Y. Chen, N. Mathur et al. used anisotropic lattices in which the
temporal spacing is much smaller than that in the spatial
directions. Exploiting the enhanced signal-to-noise ratio of the
correlation functions at smaller temporal separations they obtained
: arXiv:hep-lat/0510074

 0

 2

 4

 6

 8

 10

 12

--+--+++
 0

 1

 2

 3

 4

 5

r 0
 M

G

M
G

 (
G

eV
)

0++

2++

3++

0-+

2-+

0+-

1+-

2+-

3+- 1--2--3--

6 of 28



• They could follow the correlator up to a physical distance of about
0.6 fm.

• They also used variational techniques to construct glueball
operators using different basis sets of Wilson loops, which have
better ground state projection.

• Various groups used smearing methods to improve Signal-to-Noise
ratio.

• We used improved methods to get better signal at larger physical
distance.
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Operators

• On lattice formulation rotational SO(3) symmetry is broken down
to cubic Oh symmetry with 24 elements.

• In discrete symmetry notation irreps. of Oh are
A1(1),A2(1),E (2),T1(3),T2(3)

• In continuum limit these representations corresponds to irreps DJ

corresponding to spin J. Glueballs are identified with that spin (J)
quantum number. Other quantum numbers for the glueballs are
parity P and charge conjugation C .

• Wilson loops form the basis of irreducible representations of Oh.

• Linear combinations of the members of the basis span the
irreducible representations of the symmetry channels.

8 of 28



• A1
++ and E++ representations can be constructed using square

Wilson loops in following way

◦ A1
++

:

A = Re(Pxy + Pxz + Pyz)

◦ E++ :

E1 = Re(Pxz − Pyz ) E2 = Re(Pxz + Pyz − 2Pxy )

Pab : Wilson loops in plane ab ∈ {x , y , z}

◦ Irreducible representations of Oh can be constructed using large basis
sets of Wilson loops of different sizes and shapes.

◦ In simplest case plaquettes in three spatial planes form the basis.
◦ We choose large square Wilson loops to construct scalar and tensor

glueball operators.
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• Zero momentum operators at time slice t is

Oi (t) = 1/L3/2
∑

x Oi (x , t) x : points on a time-slice

O(t) = 1/L3/2
∑

x

O(x , t) (4)

where O(x , t) = W[U]− 〈W[U]〉

W[U] : Wilson loops on time-slice t.
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Strategies

• R. Gupta et al. showed that optimal size of Wilson loops for
computing glueball correlators was r0 × r0 (where r0 = 0.5fm).

Phys. Rev. D 43 (1991) 2301

• To reduce excited state contamination and improve Signal-to-Noise
ratio at large temporal separation

◦ We constructed glueball operators from large Wilson loops of
dimension r0 × r0.

◦ Extracted masses from correlators with fit range between 0.5 - 1.0

fm.

◦ We used improved algorithm to get signals at these physical distances.
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Algorithm

• We used Cabibbo-Marinary heatbath for SU(3):
3 Over-relaxation steps for every heatbath steps.

◦ Heatbath algorithm updates single link at a time, keeping all other
field variables fixed.

◦ This is something like bringing the chosen link variable in touch with
an infinite heatbath.

◦ Over-relaxation is used to minimize the autocorrelation between
consecutive measurements.

• The method we have used is particularly useful in theories with
mass gap, where the distant regions of the theory are uncorrelated
as the correlation length is finite.
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Multilevel Technique

time

A B C

sub−lattice

Figure: Multilevel Scheme

• Slice lattice along temporal direction by fixing spatial links (A,B &
C in fig.) and compute intermediate expectation values of Glueball
operators by performing sub-lattice updates.

• Intermediate values are first constructed by averaging over
sub-lattices with boundaries. Full expectation values − by
averaging over the intermediate values with different boundaries.
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• This method uses the locality property of the Wilson gauge action.

• On top of the Multilevel algorithm we used Multihit technique

◦ Variance reduction technique, replacing link variables with the
averaged link:

U =

∫

dU exp[( β
N
)ReTr(US)]U

∫

dU exp[( β
N
)ReTr(US)]

(5)

◦ This averaging can be done using Monte-Carlo method.
We used semi-analytic method due to de Forcrand and Roiesnel,
which is order of magnitude faster than Monte-Carlo method.

Phys. Lett. B 151 (1985) 77.
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Simulation Parameters

• Parameters for the Scalar Channel :

Lattice Size β (r0/a)
sub−lattice

thickness
iupd loop size

103 × 18 5.7 2.922(9) 3 30 2× 2

123 × 18 5.8 3.673(5) 3 25 3× 3

163 × 20 5.95 4.898(12) 4 50 5× 5

• Parameters for the Tensor Channel :

Lattice Size β (r0/at)
sub−lattice

thickness
iupd loop size

123 × 18 5.8 3.673(5) 3 70 3× 3

123 × 20 5.95 4.898(12) 5 100 5× 5

123 × 20 6.07 6.033(17) 5 100 5× 5
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Results
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Figure: Scalar Glueball Correlators
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Effective Mass plots
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Figure: Effective mass plots for scalar glueballs
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Figure: Effective mass plots for tensor glueballs
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Fits

• We used 10 sweeps over entire lattice for each measurement to
remove autocorrelation.

• We have fitted the correlators to the form :

◦
C (∆t) = A

(

e−m∆t + e−m(T−∆t)
)

(6)

m : glueball mass T : temporal extent of lattice
Fits to data folded about T/2. (We used periodic b.c on lattice)
Routine : “non-linear model fit” of Mathematica.

• We computed the effective mass from the correlator as

ameff = − log
〈C (∆t + 1)〉

〈C (∆t)〉
(7)
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Mass

• Mass and range in scalar channel :

Lattice β fit-range ma χ2/d .o.f

103 × 18 5.7 5-9 0.952(11) 0.066

123 × 18 5.8 6-9 0.906(8) 0.03

163 × 20 5.95 5-10 0.7510(15) 0.02

• Mass and range in tensor channel :

Lattice β fit-range ma χ2/d .o.f

123 × 18 5.8 4-7 1.585(54) 1.64

123 × 20 5.95 6-10 0.938(17) 0.12

123 × 20 6.07 6-10 0.885(16) 1.6
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• We cross-check our data with existing data by M. Teper et al. :
(JHEP 0406 (2004) 067)

• Scalar channel:

β 5.7 5.8 5.95

am
0.941(25) 0.909(15)

0.743(12)
0.969(18) 0.945(21)

am
(

this

work

)

0.952(11) 0.906(8) 0.7510(15)

• Tensor channel :

β 5.8 5.95 6.07

am 1.52(5) / 1.57(6) 1.148(19) 0.913(13)

am
(

this

work

)

1.585(54) 0.938(17) 0.885(16)

22 of 28



Algorithmic Gain

• We compared the performance of our algorithm with naive method
◦ runs for the same computer time using both methods:

◦ Scalar Channel :

Lattice run-time (mins) error naive
errormultilevel

gain(time)

103 × 18 3850 5.7 32

63 × 18 1000 5.5 30

83 × 24 1100 18 324

◦ Tensor Channel :

Lattice run-time (mins) error naive
errormultilevel

gain(time)

63 × 18 12000 27 729

83 × 30 5775 20 400

103 × 30 15000 - -
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Systematic Error

• Error reduction techniques only reduce statistical error.

• There are systematic errors as well .

• Most important among them are finite volume effects.

• In our lattice with small physical volumes we encountered them.

• for β = 5.8 the tensor glueball was lighter than scalar glueball in
small lattice volumes.

• To avoid this finite volume effects we choose our lattice volumes
such that mL > 9 in all cases.
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Discussions

• Glueballs are expected to survive in theory with quarks. In that
case there is a possibility of mixing of glueballs states with mesons
with same quantum numbers.

• Possible mixing of glueball states with mesons of same quantum
numbers, complicates it’s unambiguous identification.

• The Particle Data Group (PDG) has listed few candidate glueball
resonances

Phys. Rev. D 86 (2012) 010001

◦ f0(1370), f0(1500), f0(1710), fJ (2220) etc.
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Conclusions

• Extraction of glueball masses from correlators is a difficult problem
in lattice QCD due to very low signal to noise ratio.

• In this work we presented a new method, based on multilevel
technique.

• The multilevel algorithm is very efficient for calculating quantities
with very small expectation values. Operators in the tensor channel
have zero expectation values and are therefore ideal for direct
evaluation. For scalar operators we have subtracted the non-zero
VEVs from the operators to get the connected correlators directly.

• We improve upon the existing error bars on the masses in the
scalar and tensor channel.
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Future Plans

• In lattice calculation lattice spacing a gives rise to another
systematic error known as lattice discretization error.

• Main purpose of using lattice gauge theory calculation for glueball
is to find glueball masses in continuum limit.

• To minimize the discretization error and to get continuum limit
glueball masses we are continuing our calculations on finer lattices
with large lattice volumes.

Thank You!

27 of 28



Backups

• Candidate resonances

Name Mass[MeV/c2] Width[MeV/c2] Decays

f0(1370) 1200-1500 200-500 ππ,KK , ηη

f0(1500) 1500-1510 100-110 ππ,KK , ηη

f0(1710) 1700-1730 125-140 ωω,KK , ππ, ηη
fJ(2220) 2225-2235 15-30 γππ, ηη′

• Spin contents of different representations

irreps. Spin contents

A1 0, 4, 6, 8 ...
A2 3, 6, 7, 9 ...
E 2, 4, 5, 6 ...
T1 1, 3, 4, 5 ...
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