QCD on GPUs

Pushan Majumdar
(Department of Theoretical Physics, IACS, Kolkata)

Perspectives and challenges in lattice gauge theory
TIFR 2015, Mumbai

Outline

Introduction

OpenACC standard & code samples

Performance : Speed-up

Observations

Wishlist for GPU computing

Introduction

With single core CPU performance being stagnant, efficient
parallelization has become important for lattice QCD com-
putations. Fortunately lattice QCD codes can be parallelized
relatively easily.

Parallelization between different nodes using MPI like plat-
forms have been around for a long time. New thing is paral-
lelization among large number of cores on the same chip.

Architectures under consideration are

Multicore CPUs ~ 15 cores on a chip ~ 2GB / core
Xeon-PHIs ~ 60 cores on a chip ~ 250 MB / core
GPUs ~ 500 or 1000 cores on a chip ~ 12 MB / core

Same OpenMP code can run on multi-core CPUs and Xeon-
PHIs in the native mode. GPUs require more effort.

Peak Figating Ponl Opevations per Wait, Ssngio Precsion

Faf 1 Fat Fal.lc) i a0 el &N
Erai ol Wear

e [he first attempts to run lattice simulations on GPUs was
around 2005
Lattice QCD as a video game
G. I. Egri, Z. Fodor, C. Hoelbling, S. D. Katz, D. Nogradi, K. K. Szabo
Comput.Phys.Commun.177:631-639,2007

e A more systematic resource is maintained by M. A. Clark et.
al. at https://github.com/lattice/quda :
Solving Lattice QCD systems of equations using mixed precision solvers
on GPUs
M. A. Clark, R. Babich, K. Barros, R. Brower, and C. Rebbi
Comput. Phys. Commun. 181, 1517 (2010) [arXiv:0911.3191 [hep-lat]].

e Later pure gauge theory codes were also ported to GPUs by
Bicudo et. al.

Memory considerations for GPUs

Size of cache

fa|l =l =(fs

- nEE

GPU

Register memory is larger than
cache in GPUs.

CUDA puts arrays into the main
memory while scalar variables
are put in registers.

Code generators can automati-
cally convert arrays into lots of
scalar variables.

This can increase the perfor-
mance of a CUDA code by a sev-
eral factors.

GPUs are programmed primarily with CUDA which is a C like
language.

It takes a reasonable effort to port existing codes to CUDA
and run them efficiently.

A lot of existing lattice QCD codes are written in FORTRAN.

CUDA FORTRAN exists but is not very useful. It only uses
wrappers around the CUDA C functions for interfacing with
FORTRAN routines.

For smaller groups a much more viable option is to use di-
rectives based programming such as OpenACC.

The OpenACC standard

OpenACC is a programming standard for parallel computing de-
veloped by Cray, CAPS, Nvidia and PGI. The standard is desighed
to simplify parallel programming of heterogeneous CPU/GPU
systems. from Wikipedia

The OpenACC Application Program Interface describes a collec-
tion of compiler directives to specify loops and regions of code in
standard C, C++4 and Fortran to be offloaded from a host CPU
to an attached accelerator, providing portability across operating
systems, host CPUs and accelerators. from openacc.org

The directives and programming model defined in this docu-
ment allow programmers to create high-level host-taccelerator
programs without the need to explicitly initialize the accelerator,
manage data or program transfers between the host and accel-
erator, or initiate accelerator startup and shutdown.

from openacc.org

Programs I have had some experience with :

1. Staggered fermions with wilson gauge action on
(a) single GPU — in some detail
(b) multi GPU — preliminary

2. Wilson fermions with Wilson gauge action on
single GPU — preliminary

Main bottlenecks is slow data movement between CPU & GPU.
Speed is about 5 GB/s or 8 GB/s depending on whether it PCI

2.0 or 3.0.

Impossible to avoid CPU completely as I/O , if-then clause is

evaluated on CPU.
BLAS functions are launched from CPU and MPI calls (at least

for Fermi GPUs) are launched from CPUSs.

Hybrid Monte Carlo - Parallelization Considerations

Langevin step: Requires between 10° and 1019 random num-
bers at each step. Still generating on CPU and copying to
GPU.

Molecular dynamics step: Involves a conjugate gradient.
Expensive. Takes up 85-90% of simulation time. Target for
parallelization via OpenACC.

Metropolis Accept/Reject step : Intrinsically serial step.

T he basic matrix vector operation requires 66 Flops and 120
bytes of data movement. Thus lattice QCD computations
are bandwidth limited.

e CPU to main memory bandwidth is around 25 GB/s, the
maximum performance without reusing data is about 13
GFlops. A similar calculation for the GPU would yield figures
around 90 GFlops for a X2090 or 144 GFlops for a K40M.

e T he main challenge in GPU programming for lattice QCD
codes is how to get around these bottlenecks.

e [0 get any reasonable speed-up, at least the entire conjugate
gradient must be on the GPU. Data must be copied from
CPU to GPU at the start of the routine and the result copied
back at the end of the routine.

Single GPU code

subroutine congrad(nitcg)
... All kinds of definitions and declarations . . .
I$ACC data copy(nitcg,alpha,betad,betan)
'$ACC+ copyin(nx,iup,idn,u,r)
I$ACC+ copyout(x,y)
I$ACC+ create(ud,ap,atap,p)
*
call linkc_acc
I 1$OMP parallel do default(shared)
I$ACC parallel loop collapse(2) reduction(+:betan) present(p,r,x)
do 1 =1, mvd2
do ic=1,nc
p(l,ic) = r(1,ic) ; x(1,ic) = (0.,0.)
betan=betan+conjg(r(l,ic))*r(1l,ic)
end do

end do

1$ACC

1$ACC

1$ACC

betan=real (zdotc (mv3d2,r,1,r,1))
update host(betan)

if (betan.lt.delit) go to 30

parallel present(beta,betan,betad,alphan)
beta=betan/betad ; betad=betan ; alphan=betan
end parallel

do nx = 1, nitrc Main loop of conjugate gradient begins
nitcg < nitcg+l ; ap = 0

call fmv(0,mvd2,ap,p) — (Matrix-vector multiplication)

alphad=(ap,ap) + (p,p) ; alpha=alphan/alphad
atap < p : X <— X -+ alpha * p

1$ACC

30

1$ACC

call fmtv(atap,ap) — (Matrix-vector multiplication)

r < r - alpha * atap

betan=(r,)

update host(betan) EXxit condition evaluated on CPU
if (betan .1lt. delit) go to 30

beta=betan/betad ; betad=betan ; alphan=betan

p < r + beta * p

end do Main loop of conjugate gradient ends
continue
y =0 Solution on the second half lattice

call fmv(mvd2,mv,y,x) —(Matrix-vector multiplication)

end data
return

Matrix-vector multiplication routine

subroutine fmv(noff,nsz,v,w)
... All kinds of definitions and declarations . ..
I 1$0OMP parallel do default(shared)
1 $0MP+ private (nnu,pxl,px2,px3,px4,px5,px6)
'1$0MP~ private(vl,v2,v3)
I'$ACC parallel loop present(u,ud,v,w,iup,idn)
I'$ACC+ private(nnu,pxl,px2,px3,px4,px5,px6,vl,v2,v3)
I'$ACC+ vector_length(32)

do 1 = noff+l, noff+mvd2

Routine identical to CPU version

enddo

return

Time in seconds

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

Cluster with intel fortran compiler

X2090 GPU with Cray OpenACC compiler

Cray XE6 with cray compiler

3273 x 8 lattice
Staggered fermions with
even—odd decomposition

100 200 300 400 500 600 700
Number of threads

800

900

1000

1100

Multi-GPU code

ap_loc <— O
'$ACC parallel loop present(u,ud,ap_loc,p,iup,idn)
do 1 = base+l, base+nvd2

vl = ap_loc(1,1l-base)
L ines identical to scalar version

ap_loc(3,1-base) = v3
enddo
'$ACC update host(ap_loc)
call MPI_ALLGATHER(ap_loc,3*nvd2,MPI_DOUBLE_COMPLEX,
+ ap,3*nvd2,MPI_DOUBLE_COMPLEX,MPI_COMM_WORLD,ierr)
I'$ACC update device (ap)

Worry about async compiler options.

time (secs)

time (secs)

Performance comparison intel vs cray vs openacc

lattice size : 164

700 T T T T T
intel compiler on 16C opteron @ 2.3 GHz ——
600 | cray compiler on 16C opteron @ 2.1 GHz |
\ cray openacc compiler on 16C opteron @ 2.1 GHz + X2090 GPU —x—
500 g
400 e
300 + g
200 + g
100 + g
0 1 1 1 1 1 1
0 5 10 15 20 25 30 35
of threads
lattice size : 2474
3500 T ‘ T T ‘
intel compiler on 16C opteron @ 2.3 GHz ——
3000 L | cray compiler on 16C opteron @ 2.1 GHz ——
cray openacc compiler on 16C opteron @ 2.1 GHz + X2090 GPU —x— |
2500 | | 1
|
2000 + g
1500 - i
1000 - g
500 E
0 I I I I I I
0 5 10 15 20 25 30 35
of threads

time (secs)

time (secs)

1600

lattice size : 20"4

1400 -

1200 | +

1000 + |

800 -

600 -

400 +

200 -

intel compiler on 16C opteron @ 2.3 GHz ——
cray compiler on 16C opteron @ 2.1 GHz —«—
cray openacc compiler on 16C opteron @ 2.1 GHz + X2090 GPU —x—

12000

15 20
of threads

lattice size : 3274

35

10000 +

8000

6000 |

4000

2000

intel com

dray comB lIer oh %88 °B¥8FSH @aig

‘cray openacc compiler on 16C opteron @ 2.1 GHz + X2090 GPU —x—

15 20
of threads

35

relative time

relative time

1.2

11+

09}

0.8

0.7

0.6

05+¢

0.4

11

1k

09+

0.8

0.7

0.6

05+¢

0.4

latfice size : 164 ———
lattice size : 204
lattice size : 24" —x— 7
lattice size : 324 —=—
N
N — 0@
0 5 10 15 20 25 30 35
of threads
lattice size : 16" —+—
lattice size : 20—
lattice size : 24" —x—
lattice size : 32" —=—
C/ - 4
0 2 4 6 10 12 14 16

8
of threads

=
[N

latfice size : 16" ———
lattice size : 204
lattice size : 24" —x—
lattice size : 32"4 —a— |

[any
T

o
©

relative time
o
©

=

o
o

o
~
T . ;
\
X
X
X

\

\

\

)

I

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

u]

8 e
5 10 15 20 35 -]
of threads

0.5
0

Performance of the different
compilers as data size increases.
Timings have been scaled using
the scaling of HMC :

time oc (vector size)®/4.

LLarger data is beneficial.

Top left : intel compiler;

Top right : cray compiler;
Bottom : cray openacc compiler

Global memory access in GPU is

of | wrong | right slow. Therefore correct ordering
threads | order | order of array index is essential for ar-
é 222615 ggégg rays being declargd on the GPU.
415227 | 32520 There is a 3.5 times difference
8|474.5 | 2432 in speed of the conjugate gradi-

16 | 447.7 | 194.7 ent depending how the array is

array(3,4,nsite) or array(nsite,3,4)

defined.
nsite ~ 160000.

The first is faster on the CPU while the second is faster on the
GPU.

While the conjugate gradient speeded up another routine got
slowed down by a factor 2. Try to put most of the program on
the GPU or maintain copies of arrays and synchronize them.

Observations

GPUs provide affordable (in terms of both money and power)
computing resources.

OpenACC : Easy path to go from the CPU to the GPU.

Coding effort is only marginally higher than OpenMP. Almost
each OpenMP directive can be replaced with a OpenACC
directive. Only additional directive is the creation of a data
region.

Real gain comes only when a large chunk of the program
such as the whole conjugate gradient routine is on the GPU.

Performance of single GPU is roughly equivalent to 128 cores
of cluster with QDR infiniband interconnect.

For the programs analyzed, the advantage of the GPU in-
creases with increasing data size.

There can be a huge penalty in performance (several times)
for data access on the GPU if the data is not optimally or-
ganized.

Comparing between an optimized pure CPU MPI code and
an OpenACC code on a single Cray node, the MPI code
is faster for lattice sizes of about 20%. Beyond that the
OpenACC code is faster.

e Further performance gains can be obtained by using mixed-
precision routines and improved storage schemes.

e PGI compiler does not have support for double precision com-
plex multiplication support in its OpenACC compiler. Imple-
mentation in next release.

Wishlist for the future

For data already on GPU, launch BLAS & LAPACK routines
from GPU.

For subroutine calls from within an OpenACC region, local
variables defined in the subroutines have to be copied to the
GPU at the beginning of the OpenACC region. This is a bit
awkward.

Currently the fortran functions dot_product and matmul are
not supported on the GPU. Add support for that.

Support for array handling features of Fortran90.

e GCC 5 has introduced support for openACC but there are
issues still.

e IBM working in conjunction with NVIDIA to remove the PCI
bottle-neck. Accelerator to connect to high bandwidth bus
(like QPI or Hypertransport) - NVLINK.

e Mellanox has come out with a 100 Gbps Infiniband switch.

Acknowlegdments

ILGTI-TIFR for funding the GPU portion of the Cray on which
these studies were carried out. IACS for funding the rest of the
Cray without which the GPU portion wouldn't run.

Cray India team for help at various stages during the development
of the OpenACC codes.

Thank You

