
QCD on GPUs

Pushan Majumdar

(Department of Theoretical Physics, IACS, Kolkata)

Perspectives and challenges in lattice gauge theory

TIFR 2015, Mumbai

Outline

• Introduction

• OpenACC standard & code samples

• Performance : Speed-up

• Observations

• Wishlist for GPU computing

Introduction

• With single core CPU performance being stagnant, efficient

parallelization has become important for lattice QCD com-

putations. Fortunately lattice QCD codes can be parallelized

relatively easily.

• Parallelization between different nodes using MPI like plat-

forms have been around for a long time. New thing is paral-

lelization among large number of cores on the same chip.

• Architectures under consideration are

Multicore CPUs ∼ 15 cores on a chip ∼ 2GB / core

Xeon-PHIs ∼ 60 cores on a chip ∼ 250 MB / core

GPUs ∼ 500 or 1000 cores on a chip ∼ 12 MB / core

• Same OpenMP code can run on multi-core CPUs and Xeon-

PHIs in the native mode. GPUs require more effort.

• The first attempts to run lattice simulations on GPUs was
around 2005 :
Lattice QCD as a video game

G. I. Egri, Z. Fodor, C. Hoelbling, S. D. Katz, D. Nogradi, K. K. Szabo

Comput.Phys.Commun.177:631-639,2007

• A more systematic resource is maintained by M. A. Clark et.
al. at https://github.com/lattice/quda :
Solving Lattice QCD systems of equations using mixed precision solvers

on GPUs

M. A. Clark, R. Babich, K. Barros, R. Brower, and C. Rebbi

Comput. Phys. Commun. 181, 1517 (2010) [arXiv:0911.3191 [hep-lat]].

• Later pure gauge theory codes were also ported to GPUs by
Bicudo et. al.

Memory considerations for GPUs

Register memory is larger than

cache in GPUs.

CUDA puts arrays into the main

memory while scalar variables

are put in registers.

Code generators can automati-

cally convert arrays into lots of

scalar variables.

This can increase the perfor-

mance of a CUDA code by a sev-

eral factors.

• GPUs are programmed primarily with CUDA which is a C like
language.

• It takes a reasonable effort to port existing codes to CUDA
and run them efficiently.

• A lot of existing lattice QCD codes are written in FORTRAN.

• CUDA FORTRAN exists but is not very useful. It only uses
wrappers around the CUDA C functions for interfacing with
FORTRAN routines.

• For smaller groups a much more viable option is to use di-
rectives based programming such as OpenACC.

The OpenACC standard

OpenACC is a programming standard for parallel computing de-
veloped by Cray, CAPS, Nvidia and PGI. The standard is designed
to simplify parallel programming of heterogeneous CPU/GPU
systems. from Wikipedia

The OpenACC Application Program Interface describes a collec-
tion of compiler directives to specify loops and regions of code in
standard C, C++ and Fortran to be offloaded from a host CPU
to an attached accelerator, providing portability across operating
systems, host CPUs and accelerators. from openacc.org

The directives and programming model defined in this docu-
ment allow programmers to create high-level host+accelerator
programs without the need to explicitly initialize the accelerator,
manage data or program transfers between the host and accel-
erator, or initiate accelerator startup and shutdown.

from openacc.org

Programs I have had some experience with :

1. Staggered fermions with wilson gauge action on
(a) single GPU – in some detail
(b) multi GPU – preliminary

2. Wilson fermions with Wilson gauge action on
single GPU – preliminary

Main bottlenecks is slow data movement between CPU & GPU.
Speed is about 5 GB/s or 8 GB/s depending on whether it PCI
2.0 or 3.0.

Impossible to avoid CPU completely as I/O , if-then clause is
evaluated on CPU.
BLAS functions are launched from CPU and MPI calls (at least
for Fermi GPUs) are launched from CPUs.

Hybrid Monte Carlo - Parallelization Considerations

• Langevin step: Requires between 106 and 1010 random num-
bers at each step. Still generating on CPU and copying to
GPU.

• Molecular dynamics step: Involves a conjugate gradient.
Expensive. Takes up 85-90% of simulation time. Target for
parallelization via OpenACC.

• Metropolis Accept/Reject step : Intrinsically serial step.

• The basic matrix vector operation requires 66 Flops and 120
bytes of data movement. Thus lattice QCD computations
are bandwidth limited.

• CPU to main memory bandwidth is around 25 GB/s, the

maximum performance without reusing data is about 13

GFlops. A similar calculation for the GPU would yield figures

around 90 GFlops for a X2090 or 144 GFlops for a K40M.

• The main challenge in GPU programming for lattice QCD

codes is how to get around these bottlenecks.

• To get any reasonable speed-up, at least the entire conjugate

gradient must be on the GPU. Data must be copied from

CPU to GPU at the start of the routine and the result copied

back at the end of the routine.

Single GPU code

subroutine congrad(nitcg)

. . . All kinds of definitions and declarations . . .

!$ACC data copy(nitcg,alpha,betad,betan)

!$ACC+ copyin(nx,iup,idn,u,r)

!$ACC+ copyout(x,y)

!$ACC+ create(ud,ap,atap,p)

*

call linkc_acc

!!$OMP parallel do default(shared)

!$ACC parallel loop collapse(2) reduction(+:betan) present(p,r,x)

do l = 1, mvd2

do ic=1,nc

p(l,ic) = r(l,ic) ; x(l,ic) = (0.,0.)

betan=betan+conjg(r(l,ic))*r(l,ic)

end do

end do

! betan=real(zdotc(mv3d2,r,1,r,1))

!$ACC update host(betan)

if (betan.lt.delit) go to 30

!$ACC parallel present(beta,betan,betad,alphan)

beta=betan/betad ; betad=betan ; alphan=betan

!$ACC end parallel

do nx = 1, nitrc Main loop of conjugate gradient begins

nitcg ← nitcg+1 ; ap = 0

call fmv(0,mvd2,ap,p) →(Matrix-vector multiplication)

alphad=〈ap,ap〉 + 〈p,p〉 ; alpha=alphan/alphad

atap ← p ; x ← x + alpha * p

call fmtv(atap,ap) →(Matrix-vector multiplication)

r ← r - alpha * atap

betan=〈r, r〉
!$ACC update host(betan) Exit condition evaluated on CPU

if (betan .lt. delit) go to 30

beta=betan/betad ; betad=betan ; alphan=betan

p ← r + beta * p

end do Main loop of conjugate gradient ends
30 continue

*

y = 0 Solution on the second half lattice
call fmv(mvd2,mv,y,x) →(Matrix-vector multiplication)

*

!$ACC end data

return

Matrix-vector multiplication routine

subroutine fmv(noff,nsz,v,w)

. . . All kinds of definitions and declarations . . .

!!$OMP parallel do default(shared)

!!$OMP+ private(nnu,px1,px2,px3,px4,px5,px6)

!!$OMP^ private(v1,v2,v3)

!$ACC parallel loop present(u,ud,v,w,iup,idn)

!$ACC+ private(nnu,px1,px2,px3,px4,px5,px6,v1,v2,v3)

!$ACC+ vector_length(32)

do l = noff+1, noff+mvd2
...

Routine identical to CPU version
...

enddo

return

32^3 x 8 lattice

Staggered fermions with

even−odd decomposition

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 100 200 300 400 500 600 700 800 900 1000 1100

T
im

e
 i
n
 s

e
c
o
n
d
s

Number of threads

Cray XE6 with cray compiler

Cluster with intel fortran compiler

X2090 GPU with Cray OpenACC compiler

Multi-GPU code
...

ap_loc ← 0

!$ACC parallel loop present(u,ud,ap_loc,p,iup,idn)

do l = base+1, base+nvd2

v1 = ap_loc(1,l-base)
...

Lines identical to scalar version
...

ap_loc(3,l-base) = v3

enddo

!$ACC update host(ap_loc)

call MPI_ALLGATHER(ap_loc,3*nvd2,MPI_DOUBLE_COMPLEX,

+ ap,3*nvd2,MPI_DOUBLE_COMPLEX,MPI_COMM_WORLD,ierr)

!$ACC update device (ap)

Worry about async compiler options.

Performance comparison intel vs cray vs openacc

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

tim
e

(s
ec

s)

of threads

lattice size : 16^4

intel compiler on 16C opteron @ 2.3 GHz
cray compiler on 16C opteron @ 2.1 GHz

cray openacc compiler on 16C opteron @ 2.1 GHz + X2090 GPU

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30 35

tim
e

(s
ec

s)

of threads

lattice size : 20^4

intel compiler on 16C opteron @ 2.3 GHz
cray compiler on 16C opteron @ 2.1 GHz

cray openacc compiler on 16C opteron @ 2.1 GHz + X2090 GPU

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35

tim
e

(s
ec

s)

of threads

lattice size : 24^4

intel compiler on 16C opteron @ 2.3 GHz
cray compiler on 16C opteron @ 2.1 GHz

cray openacc compiler on 16C opteron @ 2.1 GHz + X2090 GPU

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35

tim
e

(s
ec

s)

of threads

lattice size : 32^4

intel compiler on 16C opteron @ 2.3 GHz
cray compiler on 16C opteron @ 2.1 GHz

cray openacc compiler on 16C opteron @ 2.1 GHz + X2090 GPU

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 5 10 15 20 25 30 35

re
la

tiv
e

tim
e

of threads

lattice size : 16^4
lattice size : 20^4
lattice size : 24^4
lattice size : 32^4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 5 10 15 20 25 30 35

re
la

tiv
e

tim
e

of threads

lattice size : 16^4
lattice size : 20^4
lattice size : 24^4
lattice size : 32^4

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 2 4 6 8 10 12 14 16

re
la

tiv
e

tim
e

of threads

lattice size : 16^4
lattice size : 20^4

lattice size : 24^4
lattice size : 32^4

Performance of the different

compilers as data size increases.

Timings have been scaled using

the scaling of HMC :

time ∝ (vector size)5/4.

Larger data is beneficial.

Top left : intel compiler;

Top right : cray compiler;

Bottom : cray openacc compiler

of wrong right
threads order order

1 673.6 651.69
2 623.1 505.92
4 522.7 325.22
8 474.5 243.2

16 447.7 194.7

Global memory access in GPU is

slow. Therefore correct ordering

of array index is essential for ar-

rays being declared on the GPU.

There is a 3.5 times difference

in speed of the conjugate gradi-

ent depending how the array is

defined.

array(3,4,nsite) or array(nsite,3,4) nsite ∼ 160000.

The first is faster on the CPU while the second is faster on the
GPU.

While the conjugate gradient speeded up another routine got
slowed down by a factor 2. Try to put most of the program on
the GPU or maintain copies of arrays and synchronize them.

Observations

• GPUs provide affordable (in terms of both money and power)

computing resources.

• OpenACC : Easy path to go from the CPU to the GPU.

• Coding effort is only marginally higher than OpenMP. Almost

each OpenMP directive can be replaced with a OpenACC

directive. Only additional directive is the creation of a data

region.

• Real gain comes only when a large chunk of the program

such as the whole conjugate gradient routine is on the GPU.

• Performance of single GPU is roughly equivalent to 128 cores
of cluster with QDR infiniband interconnect.

• For the programs analyzed, the advantage of the GPU in-
creases with increasing data size.

• There can be a huge penalty in performance (several times)
for data access on the GPU if the data is not optimally or-
ganized.

• Comparing between an optimized pure CPU MPI code and
an OpenACC code on a single Cray node, the MPI code
is faster for lattice sizes of about 204. Beyond that the
OpenACC code is faster.

• Further performance gains can be obtained by using mixed-

precision routines and improved storage schemes.

• PGI compiler does not have support for double precision com-

plex multiplication support in its OpenACC compiler. Imple-

mentation in next release.

Wishlist for the future

• For data already on GPU, launch BLAS & LAPACK routines

from GPU.

• For subroutine calls from within an OpenACC region, local

variables defined in the subroutines have to be copied to the

GPU at the beginning of the OpenACC region. This is a bit

awkward.

• Currently the fortran functions dot product and matmul are

not supported on the GPU. Add support for that.

• Support for array handling features of Fortran90.

• GCC 5 has introduced support for openACC but there are

issues still.

• IBM working in conjunction with NVIDIA to remove the PCI

bottle-neck. Accelerator to connect to high bandwidth bus

(like QPI or Hypertransport) - NVLINK.

• Mellanox has come out with a 100 Gbps Infiniband switch.

Acknowlegdments

ILGTI-TIFR for funding the GPU portion of the Cray on which

these studies were carried out. IACS for funding the rest of the

Cray without which the GPU portion wouldn’t run.

Cray India team for help at various stages during the development

of the OpenACC codes.

Thank You

