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Extraction of glueball masses
@ Computations need to be done at smaller lattice spacings to reduce
cut-off effects as low lying glueball masses are much higher than
masses of hadronic ground states
9 Large vacuum fluctuations present in the correlators of gluonic
observables makes it much more difficult compared to hadronic mass
extractions.

Long history of calculations:

Bali et al, '93

Vaccarino and Weingarten, '99
Morningstar and Peardon, '97 and '99

Chen et al, '06
A recent one: Majumdar, Mathur and Mondal, '14

@ So far a—! have been pushed upto 3.73 GeV. Calculations at even
higher lattice scale face the difficulty of efficient spanning of the
space of gauge configurations.



Motivation contd.

@ To preserve translational invariance, lattice theories usually employ
periodic boundary conditions in all space-time direction
= topological sectors become disconnected in continuum limit

@ On lattice, statistical weight of gauge fields “between the sectors”
diminishes with high power of lattice spacing
= transitions between sectors suppressed in simulations
= autocorrelation times of physical quantities grow rapidly

@ A possible way out: open boundary condition in time direction
Lischer and Schaefer, '11 and '13
= no barriers between different topological sectors.

@ Two fold task:

@ reproduction of results obtained from periodic lattices
o extention to even smaller lattice spacings.



Gradient flow

@ Consider free scalar field theory in Euclidean space

]

1 1
Sel¢] = /d"x [5 9ué Oud+ 5’"2¢2] with x = (%, )
For field variation ¢ — ¢+ ¢

5Se = Se[p+6¢] — Se[¢] = /d“x (6¢) [—0,0, b+ m¢]

Field can be varied through gradient flow in some ‘fictitious time' t
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S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds, Oxford University
Press, USA (1997).

Solution:
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So, the flow is a continuous smoothing operation with r.m.s. radius of smoothing to be /8t



Gradient flow contd.

@ Flow of SU(N) gauge fields
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@ Properties:

@ Gauge invariant operators remain UV finite for t > 0, proven to all
orders in perturbation theory for YM theory Liischer and Weisz, '11
= quantities get renormalized at scale u = 1/\/@ in continuum limit
= continuum limit to be taken at fixed t

@ excellent numerical precision

@ Example: Energy density in 1-loop
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= automatically renormalized at t > 0 at scale u =1/+/8t



Gradient flow contd.
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@ t2(E) dimensionless
@ Numerical observation: t2(E) ~ kt for t = O (rg)
= to be exploited to set scale

o Ideal candidate: to defined through t3(E(to)) = 0.3 Luscher, '10
Alternative quantity: wy Borsanyi, Diirr et al, '12



Numerics

Simulation details:

@ Worked with Wilson gauge action (Gradient flow to be called
Wilson flow)

@ publicly available openQCD code used

| Lattice size | 5 [ a[fm] |
243 x 48 | 6.21 | 0.0667(5)
32564 | 6.42 | 0.0500(4)
287596 | 6.59 | 0.0402(3)
245548 | 6.21 | 0.0667(5)
(4)
(3)
4)

323 x 64 6.42 | 0.0500
483 x 96 6.59 | 0.0402
643%x 128 | 6.71 | 0.0345




Numerics contd.

@ Probe to study topology of gauge fields: Topological charge
@ We employ clover leaf construction for field tensor G, to define the
topological charge density g(x) to compute Q@ = [ g(x)dx

@ Expected to give result same as that from geometrical construction
in continuum limit
Reason: fields generated by Wilson flow are smooth at scale of

lattice spacing Lischer, '10
— numerically shown to give result agreeing with that from
geometrical ones for periodic lattices Lischer and Palombi, '10



ry of topological charge

0 ' 5000 ' 10000 ' 15000 ' 20000 ' 25000
simulation time
a=0.04 fm (8 = 6.59) with flow time /8t = 0.16 fm.

Observations:

@ It is evident that with open boundary condition, thermalization is reached very fast
compared to periodic boundary condition.

@ Also after thermalization, successive configurations are much more correlated for the later
than the former.

@ We have checked that for larger lattice spacings difference is not so marked.



Distribution of Q
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Observations:

@ As expected, Q-values are not general integers for open boundary whereas they are closed to
integers for periodic lattices

@ Even at this not so small lattice spacing open boundary gives much better spanning over Q
than periodic for same number of configurations.



@ To investigate the effect of open boundary in the temporal direction on topological charge
density g(x), we study the distribution of Q(xp) = Z q(X,x0) at different time slices xo.

0 1000 2000 3000

N

cnfg

B = 6.42 and lattice volume 323 x 64

@ Observations: As we move from the boundary towards deep inside the bulk, spanning of
Q(xo0) steadily improves before getting settled there.
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@ To investigate the effect of open boundary on topological susceptibility x = (QZ)/V we
_ @

study the behaviour of subvolume susceptibility X (Axo) = = with temporal width Axg
where @ = Z Q(x0) and subvolume V= Vipace Axo de Forcrand et al, '99
T_Ax
=72

15605 4 + + +

o Observation: slight dip close to

i i temporal boundary consistent with the
behavior of Q(xo) but overall, the
effect on X (Axp) is within statistical
uncertainties.
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Stability of y with flow time
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@ Observations: non-monotonous behaviour for both open and
periodic boundary at early flow times but converging later on
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@ Results for open and periodic lattices are very close to each other at a given physical volume.

@ \!/* = 184.7(1.7) MeV from fit to data for open boundary.
A. Chowdhury, A. Harindranath, JM, P. Majumdar, JHEP 02,045 (2014)

@ This compares well with CERN result 187.4(3.9) MeV from periodic lattices.
Liischer, Palombi, '10



@ To extract the mass of lowest scalar glueball (071) we compute the correlator of
= 3 > . . . .
E(xo) = = g E(X,xo) using again clover leaf construction of field tensor
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@ Effect of breaking of translational invariance is clearly visible.
@ Easy way to prevent boundary artifacts from affecting the correlator is to pick both sink and
source points deep inside the bulk = need to work with large temporal extent.



@ Averaging over source points done for periodic lattices = improved statistics compared to
open boundary
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@ Effective mass is sensitive to flow time for small temporal differences xp but becomes
independent of flow times in plateau region within statistical error.
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@ Unlike for periodic lattices, we can not average over all source points
to improve statistics due to lack of translational invariance

@ Nevertheless, averaging over few source points chosen far away from
boundary is done
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@ Effective masses agree for two choices of boundary conditions but as
expected statistical error is larger for open boundary data.
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@ no significant scaling violation
= a constant fit to combined data gives continuum value of 07"
mass to be 1534(36) MeV.

A. Chowdhury, A. Harindranath and JM, JHEP 06,067 (2014)



Scalar glueball mass from (E(xp))

@ Open boundary acts like a wall source
(E(x0)) ~ cosh mxp

private communication with Liischer
@ Behavior can be understood as follows

1, _
Spec = SopEN + L3—(E(Xo =0) + E(x = 7—,1))

where E(x) = 2 L3 Z Z tr[1 —Re U(x,x0)] .

x 1<p,r<4

[ DU E(x) e~ SorEN

= <E(XO)>OPEN fDU e—SOPEN

- <E(X0)>PBC+ L; <E(xo)(E(xo =0) + E(xo = T71))>°“°d T

PBC

= <E(Xo)> o + Const. coshm(;(gfxo) o



05

0.4

03

am,(0

0.2

0.1

B=6.59
I — ‘ \ ‘ ]
© Vgt=039fm |
° Var=036fm -
o V8t=0.34fm T 4
. T}[

(] Y = b e I A SR S S B
gl = i o > __ ... % % 8 & 1 ___1____ ]
T s ¢ ¥ ¥ ¢ L

T - =
- i
| | | | | | |
10 12 14 16 18 20 22
X
0
OLIrMOoy Viaitl T EXPIOring the spectrum ol SU(o) Y



2400
2000~ -
—~ 1600+ -
3
g r |
€ 12001 -
800 o <E(x)E(0)> -
o <E(xy)>
| | | |
4000 0.001 0.002 0.003 0.004 0.005

a (fm°)



Lowest pseudoscalar glueball mass

@ Tail of radial correlator of g(x) can be approximated by negative of
scalar propagator

m
= a2y Ka(mr)

(6(x)e(y))

@ Fit is done with asymptotic form of Ki(z)

- [T 3
Kl(z) large z € 2z |:1+82:|

Chen et al, '06; Bazavov et al, '06
@ Wilson flow helps to get proper scaling
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Comparison with HYP smearing
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Comparison between periodic and open
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A. Chowdhury, A. Harindranath and JM, arXiv:1409.6459



Concluding remarks

@ With open boundary in temporal direction, we are able to overcome,
to a large extent, the problem of trapping during simulation.
Simulation becomes cheaper.

@ Usage of Wilson flow enables to calculate and compare quantities at
fixed lattice scale with ease.

@ Quantities studied: topological susceptibility, lowest scalar and
pseudoscalar glueball masses

@ Results agree with the same for periodic lattices.

@ But with open boundary computations have been extended to lower
lattice spacings

THANK YOU



