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Motivation

Extraction of glueball masses

Computations need to be done at smaller lattice spacings to reduce
cut-off effects as low lying glueball masses are much higher than
masses of hadronic ground states

Large vacuum fluctuations present in the correlators of gluonic
observables makes it much more difficult compared to hadronic mass
extractions.

Long history of calculations:
Bali et al, ’93
Vaccarino and Weingarten, ’99
Morningstar and Peardon, ’97 and ’99
Chen et al, ’06
A recent one: Majumdar, Mathur and Mondal, ’14

So far a−1 have been pushed upto 3.73 GeV. Calculations at even
higher lattice scale face the difficulty of efficient spanning of the
space of gauge configurations.
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Motivation contd.

To preserve translational invariance, lattice theories usually employ
periodic boundary conditions in all space-time direction
⇒ topological sectors become disconnected in continuum limit

On lattice, statistical weight of gauge fields “between the sectors”
diminishes with high power of lattice spacing
⇒ transitions between sectors suppressed in simulations
⇒ autocorrelation times of physical quantities grow rapidly

A possible way out: open boundary condition in time direction
Lüscher and Schaefer, ’11 and ’13
⇒ no barriers between different topological sectors.

Two fold task:

reproduction of results obtained from periodic lattices

extention to even smaller lattice spacings.
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Gradient flow

Consider free scalar field theory in Euclidean space

SE [φ] =

∫

d
4
x [

1

2
∂µφ ∂µφ+

1

2
m

2φ2] with x = (~x, x0)

For field variation φ → φ+δφ

δSE = SE [φ+δφ]− SE [φ] =

∫

d
4
x (δφ) [−∂µ∂µφ+m

2φ]

Field can be varied through gradient flow in some ‘fictitious time’ t

∂ξ(x, t)

∂t
= ∇2

ξ(x, t)− m
2
ξ(x, t) with ξ(x, t = 0) = φ(x)

S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds, Oxford University
Press, USA (1997).

Solution:

ξ(x, t) =

∫

d
4
y Kt(x − y)φ(y) where Kt(z) =

e(−z2/4t)

(4πt)2
e

−m2t

So, the flow is a continuous smoothing operation with r.m.s. radius of smoothing to be
√

8t
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Gradient flow contd.

Flow of SU(N) gauge fields

Ḃµ(x ,t) = DνGνµ(x ,t) ∼ −δSYM [B]

δBµ

Gµν = ∂µBν − ∂νBµ +[Bµ,Bν ] , Dµ = ∂µ +[Bµ, ·]
Bµ(t,x)|

t=0 = Aµ(x) : initial condition

Properties:

Gauge invariant operators remain UV finite for t > 0, proven to all

orders in perturbation theory for YM theory Lüscher and Weisz, ’11

⇒ quantities get renormalized at scale µ = 1/
√

8t in continuum limit

⇒ continuum limit to be taken at fixed t

excellent numerical precision

Example: Energy density in 1-loop

〈E (t)〉 ≡ 1

4
〈Gc

µν(t)G
c
µν(t)〉 =

3
(

N2 − 1
)

128π2t2
ḡ2 (µ)

[

1+ c1ḡ2 +O
(

ḡ4
)]

⇒ automatically renormalized at t > 0 at scale µ = 1/
√

8t
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Gradient flow contd.
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t2〈E 〉 dimensionless

Numerical observation: t2〈E 〉 ≈ kt for t = O
(

r2
0

)

⇒ to be exploited to set scale

Ideal candidate: t0 defined through t2
0 〈E (t0)〉 = 0.3 Lüscher, ’10

Alternative quantity: w0 Borsanyi, Dürr et al, ’12
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Numerics

Simulation details:

Worked with Wilson gauge action (Gradient flow to be called
Wilson flow)

publicly available openQCD code used

Lattice size β a[fm]

243 × 48 6.21 0.0667(5)
323 × 64 6.42 0.0500(4)

483 × 96 6.59 0.0402(3)

243 × 48 6.21 0.0667(5)
323 × 64 6.42 0.0500(4)

483 × 96 6.59 0.0402(3)
643 × 128 6.71 0.0345(4)
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Numerics contd.

Probe to study topology of gauge fields: Topological charge

We employ clover leaf construction for field tensor Gµν to define the
topological charge density q(x) to compute Q =

∫

q(x)dx

Expected to give result same as that from geometrical construction
in continuum limit
Reason: fields generated by Wilson flow are smooth at scale of
lattice spacing Lüscher, ’10
→ numerically shown to give result agreeing with that from
geometrical ones for periodic lattices Lüscher and Palombi, ’10
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Trajectory history of topological charge
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a = 0.04 fm (β = 6.59) with flow time
√

8t = 0.16 fm.

Observations:

It is evident that with open boundary condition, thermalization is reached very fast
compared to periodic boundary condition.

Also after thermalization, successive configurations are much more correlated for the later
than the former.

We have checked that for larger lattice spacings difference is not so marked.
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Distribution of Q
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Observations:

As expected, Q-values are not general integers for open boundary whereas they are closed to
integers for periodic lattices

Even at this not so small lattice spacing open boundary gives much better spanning over Q

than periodic for same number of configurations.
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To investigate the effect of open boundary in the temporal direction on topological charge

density q(x), we study the distribution of Q(x0) =
∑

~x

q(~x, x0) at different time slices x0.
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β = 6.42 and lattice volume 323 × 64

Observations: As we move from the boundary towards deep inside the bulk, spanning of
Q(x0) steadily improves before getting settled there.
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To investigate the effect of open boundary on topological susceptibility χ = 〈Q2〉/V we

study the behaviour of subvolume susceptibility χ (∆x0) =
〈Q̃2〉

Ṽ
with temporal width ∆x0

where Q̃ =

T
2
+

∆x0
2

−1
∑

x0=
T
2

−
∆x0

2

Q(x0) and subvolume Ṽ = Vspace ∆x0 de Forcrand et al, ’99
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Observation: slight dip close to
temporal boundary consistent with the
behavior of Q(x0) but overall, the
effect on χ (∆x0) is within statistical
uncertainties.
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Stability of χ with flow time
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Observations: non-monotonous behaviour for both open and
periodic boundary at early flow times but converging later on
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Results for open and periodic lattices are very close to each other at a given physical volume.

χ1/4 = 184.7(1.7) MeV from fit to data for open boundary.
A. Chowdhury, A. Harindranath, JM, P. Majumdar, JHEP 02,045 (2014)

This compares well with CERN result 187.4(3.9) MeV from periodic lattices.
Lüscher, Palombi, ’10
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To extract the mass of lowest scalar glueball (0++) we compute the correlator of

E(x0) =
a3

L3

∑

~x

E(~x, x0) using again clover leaf construction of field tensor
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Effect of breaking of translational invariance is clearly visible.

Easy way to prevent boundary artifacts from affecting the correlator is to pick both sink and
source points deep inside the bulk ⇒ need to work with large temporal extent.
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Averaging over source points done for periodic lattices ⇒ improved statistics compared to
open boundary
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Effective mass is sensitive to flow time for small temporal differences x0 but becomes
independent of flow times in plateau region within statistical error.

Jyotirmoy Maiti Exploring the spectrum of SU(3) Yang-Mills



Unlike for periodic lattices, we can not average over all source points
to improve statistics due to lack of translational invariance

Nevertheless, averaging over few source points chosen far away from
boundary is done
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Effective masses agree for two choices of boundary conditions but as
expected statistical error is larger for open boundary data.
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no significant scaling violation
⇒ a constant fit to combined data gives continuum value of 0++

mass to be 1534(36) MeV.
A. Chowdhury, A. Harindranath and JM, JHEP 06,067 (2014)
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Scalar glueball mass from 〈E (x0)〉

Open boundary acts like a wall source

〈E(x0)〉 ∼ cosh mx0

private communication with Lüscher

Behavior can be understood as follows

SPBC = SOPEN + L
3 1

2

(

E(x0 = 0) + E(x0 = T − 1)
)

where E(x0) =
1

g2

1

L3

∑

x

∑

1≤µ,ν≤4

tr [1 − Re U(x, x0)] .

⇒
〈

E(x0)
〉

OPEN
=

∫

DU E(x0) e−SOPEN

∫

DU e−SOPEN

=
〈

E(x0)
〉

PBC
+

L3

4

〈

E(x0)
(

E(x0 = 0) + E(x0 = T − 1)
)〉cntd

PBC
+ . . .

=
〈

E(x0)
〉

PBC
+ Const. coshmG

( T

2
− x0

)

+ . . .
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Lowest pseudoscalar glueball mass

Tail of radial correlator of q(x) can be approximated by negative of
scalar propagator

〈φ(x)φ(y)〉 = m

4π2r
K1(mr)

Fit is done with asymptotic form of K1(z)

K1(z) ∼
large z

e−z

√

π

2z

[

1+
3

8z

]

.

Chen et al, ’06; Bazavov et al, ’06

Wilson flow helps to get proper scaling
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Comparison with HYP smearing
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Comparison between periodic and open
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A. Chowdhury, A. Harindranath and JM, arXiv:1409.6459
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Concluding remarks

With open boundary in temporal direction, we are able to overcome,
to a large extent, the problem of trapping during simulation.
Simulation becomes cheaper.

Usage of Wilson flow enables to calculate and compare quantities at
fixed lattice scale with ease.

Quantities studied: topological susceptibility, lowest scalar and
pseudoscalar glueball masses

Results agree with the same for periodic lattices.

But with open boundary computations have been extended to lower
lattice spacings

THANK YOU
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