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What is theory?
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Theory

“Theory is a contemplative and rational type abstract ... thinking, or .... .”
- Wikipedia

Example 1.1

Scientific and economic theories

I Newton’s theory of Gravity

I Theory of evolution

I Theory of marginal utility
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Conspiracy theories

Example 1.2

I 9/11 is an inside job

I Trump is a Russian mole

I N + L = J

They may sound silly.

However, they are still theories.
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FOL has no knowledge

First-order logic(FOL) provides a grammar for rational abstract thinking.

However, FOL carries no knowledge of any subject matter.

It was not obvious. 16th century philosopher René Descartes tried to prove

Inherent structure of logic ⇒ God exists.
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Theory crafting needs something more than logic

Theory = Subject knowledge + FOL

Now we will formally define theories in logic.
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Topic 1.1

Theories
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Defining theories

The subject knowledge can be expressed in the following two ways

I the set of acceptable models

I the set of valid sentences in the subject

Example 1.3

Model m with Dm = N is the only model we consider for the theory of
natural numbers.

We can also define the theory using the set of valid sentences over natural
numbers. e.g. ∀x . x + 1 6≈ 0.

Now let us define this formally.
≈ is equality within the
logical syntax.
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Definabiblity of a set of models

Definition 1.1
For a set Σ of sentences in signature S, let Mod(Σ) be a set of models such
that

Mod(Σ) = {m | for all F ∈ Σ. m |= F}.

Σ

Sentences

Fm
|=

|=
Mod(Σ)

Models
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Theories

Definition 1.2
A theory T is a set of sentences closed under implication, i.e.,

if T |= F then F ∈ T .

T

Sentences

|= F∈ T

Abuse of notation, |= is
also used for implication
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Theory of Models

Definition 1.3
For a set M of models for signature S, let Th(M) be the set of S-sentences
that are true in every model in Σ,i.e.,

Th(M) = {F | for all m ∈M. m |= F}

M

Models

m F
|=

|=
Th(M)

Sentences
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Theory and models

Theorem 1.1
Th(M) is a theory

Proof.
Consider F such that Th(M) |= F .

Therefore, F is true in every model in M.

Therefore,F ∈ Th(M).

Th(M) is closed under implication.
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Consequences

Definition 1.4
For a set Σ of sentences, let Cn(Σ) be the set of consequences of Σ, i.e.,

Cn(Σ) = Th(Mod(Σ)).

Σ

Sentences

Mod(Σ)

Models

Th(Mod(Σ))

Exercise 1.1
Show for a theory T , T = Cn(T ).
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Example: theory of lists

Example 1.4

Let us suppose our subject of interest is lists.

First we need to fix our signature.

We should be interested in the following functions and predicates

I :: - constructor for extending a list

I head - function to pick head of a list

I tail - function to pick tail of a list

I atom - predicate that checks if something is constructed using :: or not

The signature is

S = ({:: /2, head/1, tail/1}, {atom/1})

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example: theory of lists

Let Σ consists of

1. ∀x , y . head(x :: y) ≈ x

2. ∀x , y . tail(x :: y) ≈ y

3. ∀x . atom(x) ∨ head(x) :: tail(x) ≈ x

4. ∀x , y . ¬atom(x :: y)

Tlist = Th(Mod(Σ)) is the set of valid sentences over lists.

The sentences in Tlist may not be true on the non-list models.

Exercise 1.2
Why empty list is not explicitly encoded?
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Complete theory

Definition 1.5
A theory T is complete if for every sentence F , either F ∈ T or ¬F ∈ T .

Exercise 1.3
When a theory is not complete?

Exercise 1.4
Can a theory have both F and ¬F for some sentence F ?

Exercise 1.5
Prove: if Mod(T ) is singleton then T is complete.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna SAT+SMT 2016 Ashutosh Gupta TIFR, India 17

A condition for complete theory

Theorem 1.2
If for each m1,m2 ∈ Mod(T ) and sentence F ,

m1 |= F iff m2 |= F

then T is complete.

Proof.
If F is true in one model in Mod(T ) then F is true in all models.

Therefore, F is complete.

No sentence can distinguish models of T .
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Axiomatizable

Definition 1.6
A theory T is axiomatizable if there is a decidable set Σ s.t. T = Cn(Σ).

Definition 1.7
A theory T is finitely axiomatizable if there is a finite set Σ s.t. T = Cn(Σ).

Theorem 1.3
If Cn(Σ) is finitely axiomatizable, there is a finite Σ′ ⊆ Σ s.t. Cn(Σ′) = Cn(Σ)

Proof.
Let Σ′′ be a finite axiomatization of Cn(Σ).
Therefore, Σ |= Σ′′.
Due to the compactness of FOL, there is a finite Σ′ ⊆ Σ s.t. Σ′ |= Σ′′.
Therefore, Cn(Σ′′) ⊆ Cn(Σ′) ⊆ Cn(Σ).
Therefore, Cn(Σ′) = Cn(Σ).
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T -satisfiability,validity

Definition 1.8
A formula F T -satisfiable if there is model m s.t. m |= T ∪ {F}.
T -satisfiability is usually written as m |=T F .

Definition 1.9
A formula F is T -valid if T |= F .
T -validity is usually written as |=T F .
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Topic 1.2

Decidability
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Decidable theories

Definition 1.10
Let T = Th(Mod(Σ)). T is decidable if there is an algorithm that, for each
sentence F , can decide (in finite time) whether F ∈ T or not.

Definition 1.11 (Equivalent to 1.10 )

There is an algorithm that, for each sentence F , can decide (in finite time)
whether Σ⇒ F or not.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna SAT+SMT 2016 Ashutosh Gupta TIFR, India 22

Axiomatizable vs. Decidable

We assume that theories consists of countably many symbols.

Theorem 1.4
An axiomatizable theory T is effectively enumerable.

Proof.
Let decidable set Σ′ s.t. Cn(Σ′) = T .
Therefore for each F ∈ T , there is finite subset Σ0 s.t. Σ0 |= F .

We enumerate triples (F ,Σ0,Pr) such that

I F ∈ S-sentences,

I finite Σ0 ⊆ Σ′, and

I Pr is a FO-proof (sequence of formulas with consequence relation).

Since the three sets are enumerable, the triple is also enumerable. If Pr is
proof of Σ0 |= F , we report F . Therefore, T is effectively enumerable.
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Axiomatizable vs. Decidable

Theorem 1.5
A complete axiomatizable theory is decidable.

Proof.
Since for each S-formula F , either F or ¬F is in Σ.

The previous enumeration will eventually generate proof for F or ¬F .

Therefore, complete axiomatizable theory is decidable.
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Decidability via completeness

We can show decidability of a theory via completeness.

We may show completeness as follows.

I there are no finite models

I all countable models are isomorphic (No sentence can distinguish them)

In the previous proof, we enumerate all proofs to look for the members of T .

The method does not tell us about the hardness of the decision problem.

So, we will skip this approach in this lecture.
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Complexity of decidability

However, a given theory have axioms that are structured in a way such that
we can search for the proof more efficiently.

Such dedicated procedures are called decision procedures.

We often show decidability of a theory by providing a decision procedure.
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Example decidable and undecidable theories

Example 1.5

Two arithmetics over natural numbers.

P
resb

u
rg
er

[3
E
X
P
T
IM

E
]

D
ecid

ab
le

∀x¬(x + 1 ≈ 0)

∀x∀y(x + 1 ≈ y + 1⇒ x ≈ y)

F (0) ∧ (∀x(F (x)⇒ F (x + 1))⇒ ∀xF (x))

∀x(x + 0 ≈ x)

∀x∀y(x + (y + 1) ≈ (x + y) + 1)

∀x , y(x · 0 ≈ 0)

∀(x · (y + 1) ≈ x · y + x)

P
ean

o

U
n

d
ecid

ab
le

The third axiom is a schema.(It will be explained shortly!)
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Topic 1.3

Theory Examples
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Defining theory

A theory may be expressed in two ways.

1. By giving a set Σ of axioms

2. By giving a set M of acceptable models

There are theories that can not be expressed by one of the above two ways.

For example,

I Number theory can only be defined using the model. There is no
complete axiomatization. (Due to Gödel’s incompleteness theorem)

I Set theory has no ”natural model”. We understand set theory via its
axioms.
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Example: theory of equality TE

We have treated equality as part of FOL syntax and added special proof rules
for it.

We can also treat equality as yet another predicate.

We can encode the behavior of equality as the set of following axioms.

1. ∀x .x ≈ x

2. ∀x , y .x ≈ y ⇒ y ≈ x

3. ∀x , y , z . x ≈ y ∧ y ≈ z ⇒ x ≈ z

4. for each f /n ∈ F
∀x1, .., xn, y1, .., yn. x1 ≈ y1 ∧ .. ∧ xn ≈ yn ⇒ f (x1, .., xn) ≈ f (y1, .., yn)

5. for each P/n ∈ R
∀x1, .., xn, y1, .., yn. x1 ≈ y1 ∧ .. ∧ xn ≈ ynP(x1, .., xn)⇒ P(y1, .., yn)

The last two axioms are called schema, because they define a set of axioms
using a pattern.
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Topic 1.4

Number theory
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Number theory mN

Number theory has signature S = ({0/0, s/1,+/2, ·/2, e/2}, {< /2})

Number theory is defined by the standard model.

mN = (N; 0, s,+, ·, e, <)

There is no axiomatization of the theory. (Due to Gödel’s incompleteness)

But, we may consider a sub-theories of mN that have axiomatization.
For example,

1. ms = (N; 0, s)

2. m< = (N; 0, s, <)

3. m+ = (N; 0, s,+, <)

Let us consider ms for now.

We may use same symbols
for both function symbols
and their models.
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ms is axiomatizable
Let S = ({0/0, s/1}, ∅)
Consider the following axiomatization Σs of ms

1. ∀x . s(x) 6≈ 0

2. ∀x , y . s(x) ≈ s(y)⇒ x ≈ y

3. ∀x . x 6≈ 0⇒ ∃y . x ≈ s(y)

4. ∀x . s(..s(︸ ︷︷ ︸
n>0

x)..) 6≈ x

Clearly,Ts = Cn(Σs) ⊆ Th(ms)

Theorem 1.6
Ts = Th(ms).

Proof sketch.
There is an algorithm that obtains an equivalent quantifier free formula for a
given formula using axioms of Σs .
Proving the validity of quantifier free S-sentence is simplification in
proportional logic. Therefore, the equality holds.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna SAT+SMT 2016 Ashutosh Gupta TIFR, India 33

Quantifer elimination in Ts

Algorithm 1.1: Q ELEM( ∃x .`1 ∧ .. ∧ `k )

Input: `i is a literal (atom or its negation) and x occurs in `i
Output: an equivalent quantifier-free formula

1 if ∃i . `i = (sn(x) ≈ sm(x)) for m 6= n or `i = (sn(x) 6≈ sn(x)) then
2 return ⊥;

3 if ∃i . `i = (sn(x) ≈ sm(u)) for u 6= x then
4 // ./∈ {≈, 6≈};
5 for `j = (sp(x) ./ sq(u′)) do
6 `′j := (sm+p(u) ./ sq+n(u′))

7 return sm(u) 6≈ s0(0) ∧ .. ∧ sm(u) 6≈ sn−1(0) ∧ `′1 ∧ ... ∧ `′k ;

8 else
9 return >;
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Example: Quantifer elimination in Ts

Example 1.6

Consider ∃x . s(y) ≈ s(s(x)) ∧ s(x) ≈ z

Let us choose s(y) ≈ s(s(x)) atom for substitution.

s(y) has to be greater than 1. We need to add: s(y) 6≈ 0 ∧ s(y) 6≈ s(0).

After the substitution, the first term will be trivially true.

Let us apply the substitution on the second atom.

I s(x) ≈ z

I s(s(s(x))) ≈ s(s(z)) // add enough s

I s(y) ≈ s(s(z)) // apply substitution

Final output: s(y) 6≈ 0 ∧ s(y) 6≈ s(0) ∧ s(y) ≈ s(s(z))
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Non standard models for Ts

The previous theorem does not say that Mod(Ts) = {ms}.

In fact, there are many models in Mod(Ts).

Example 1.7

Consider the following model

0 1 2

a a1 a2a2a−1a−2

called Z-chains

A model in Mod(Ts) may have any number of Z-chains.
There are no axioms in S-sentence that excludes Z-chains.

Exercise 1.6
Can we extend language of S such that we can express exclusion of Z-chains?
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Gödel’s incompleteness theorem

Theorem 1.7
mN can not be axiomatized.

Proof structure.

1. Choose a set AD of valid sentences in mN s.t. that TD = Cn(AD) can
encode the proofs in any subtheory of mN

2. This allows us to construct a sentence G for a theory T of any given
axiomatization such that mN |= G but G /∈ T .

3. Therefore, no axiomatization of mN

TN

T G

Exercise 1.7
What if we add G as an axiom in T ?
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Topic 1.5

Fragments/Logics
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Fragments

We may restrict F syntactically to achieve decidablity or low complexity.

Definition 1.12
Let T be a theory and L be a set of S-sentences. L wrt T is decidable if
there is an algorithm that takes F ∈ L as input and returns if F ∈ T or not.

T

Sentences

L
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Example : fragments

Example 1.8 (Horn clauses)

L = {∀x . A1(x) ∧ · · · ∧ An(x)⇒ B(x)|Ai and B are atomic}

Example 1.9 (Integer difference logic)

L = linear arithmetic formulas that contain atoms with only two variables
and with opposite signs [quadratic complexity].
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Quantifier-free fragments

Quantifier-free(QF) fragment has free variables that are assumed to be
existentially quantified.(unlike FOL clauses!!)

Often, the quantifier-free fragments of theories have efficient decision
procedures.

Example 1.10

The following is a QF formula in the theory of equality

f (x) ≈ y ∧ (x ≈ g(a, z) ∨ h(x) ≈ g(b))

QF of T of equality has an efficient decision procedure.
Otherwise, the theory is undecidable.
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Example of logics

Some times the fragments are also referred as logics.

I quantifier-free theory of equality and uninterpreted function symbols
(QF EUF)

I quantifier-free theory of linear rational arithmetic (QF LRA)

I quantifier-free theory of uninterpreted function and linear integer
arithmetic (QF UFLIA)
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