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Specialized algorithm for theories!

A decision procedure is a specialized algorithms to decide a sentence under a
theory.

=7 F

For a given theory, we can know if there is a decision procedure.

Once we have it, we know it exists! Otherwise, the theory is called
undecidable.
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Example decision procedures

In this session, we will see a series of decision procedures.
» Ackermann’s reduction for QF_EUF
» Cooper’'s method for integers

» Procedures for rationals.

> Difference bound matrices(DBM) for difference logic
» DBM for Octagonal constraints
» Simplex for linear rational arithmetic
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Topic 2.1

Ackermann'’s reduction
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Reminder: Theory of equality and function symbols (EUF)

EUF syntax: first order formulas with signature S = (F, (),
i.e., countably many function symbols and no predicates.

The theory axioms include
1. Vx. x = x
2.Vx,y. xmRy=>y~rXx
3.V, y,zxmRyANyrRz=>x~2Z
4. for each f/n € F,

VX1, ey Xny Y1y ooy Yne XL R Y1 A o A X & Y = (X1, .0, %n) = F(y1, .., Yn)

Since the axioms are valid in FOL with equality, the theory is sometimes
referred as the base theory.

Note: Predicates can be easily added if desired
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Proofs in quantifier-free fragment of Tgyr(QF_EUF)
Proof rules of Teyr

= y5ymmetry
y =~ X

X & Nz .y

XEY Y=z Transitivity
X~z

X1=Yyr .. Xn=Yn

(X1, %n) = F(y1, .y ¥n)

Congruence

Example 2.1
Consider: y =~ x Ny =~ z A f(x,u) % f(z,u)

~ Z

(z,u) f(x,u)#%f(z,u)
1
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Ackermann’s Reduction
The insight: the rules needed to be applied only finitely many possible ways.

Algorithm: eagerly apply the rules and get a formula needing only Boolean
reasoning.

Algorithm 2.1: QF_EUF_Sat(F)

Input: F formula QF_EUF
Output: SAT/UNSAT
Let Ts be subterms of F;

Let en be a function from Ts to fresh constants; ;
G := en(F); <[en is naturally extended on formulas

e.g., en(t; = tp) = (en(t1) =~ en(tp))
G =GAen(x1 R y1 N . AXn & Yo = F(X1,..,%) = F(¥1,..,¥n))

foreach f(x1,..,xa), f(y1,.,¥n) € Ts do

foreach ti,t,t; € Ts do
| G=Gren(hxbAbrtz=t 1)

Let G’ be obtained by substituting each atom by a fresh Boolean variable in G.
return checkBooleanSAT(G’)

Eager approach may produce too many consequences, tomorrow you will see
a_not so eager approach.
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Example: Ackermann’s Reduction

Example 2.2
Consider formula F = f(f(x)) % x A f(x) =~ x

Ts .= {f(f(x)), f(x), x}.

Boolean encoding:

en = {f(f(x)) = A, F(x) — f,x — B} {hi =B ph~f=p,
fi ~ f3 — p3}

G=en(F)=A#%hKEANh~H
G':==-p1Ap2

Adding congruence consequences:
G=GAN(h=xfi=f~h).

G =G N(p2= p3).
Adding transitivity consequences:

G=GAN(hx=hNh~rf=FhH~H).
G' =G N(ps AN p2= p1).

Since G’ is UNSAT, F is UNSAT.
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Topic 2.2

Cooper’'s method
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Reminder: Presburger arithmetic

Let us the following theory for arithmetic 7.
VX—|(X + 1~ 0)

VxVy(x+1lxy+1=x=xy)

F(0) A (Yx(F(x) = F(x + 1)) = ¥xF(x))
Vx(x +0 =~ x)

VxVy(x+ (y+ 1)~ (x+y)+1)

Note that the theory does not have multiplication.

However, one can simulate multiplication by constants in the theory.
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Cooper’'s method

Cooper's method is one of the well known decision procedure for Presburger
arithmetic.

This method proceeds by quantifier elimination.

However, the arithmetic does not allow quantifier elimination as it is.

Example 2.3
The following formula states that y is odd.

Ix2x+ 1~y

This can not be stated in the arithmetic.
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Adding | operator to enable quantifier elimination
We need to introduce modulo operator | that expresses divisibility.

k|y means k divides y, where k € Z*

We also need to add the following axiom about | in 7.

Vy. kly < 3x. kx =y

Example 2.4

Now we can eliminate existential quantifier

W t writ
(E|X.2x+ 1~ y) = 2‘(y+ 1) € may not wri e]

) the parenthesis
Exercise 2.1 P

Give an x that satisfies the following constraints

2[x +1A3|x+5A5x —2
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Cooper’'s method

Input: F1 := 3Ix.A1 A ... A A, where A; is a literal.

The method proceeds in fours steps

» Normalize literals

v

Separate out x

v

Scale up coefficients of x
Replace x with x’ such that no coefficient to x’

v

Eliminate x’

v

In some notation, we will use formulas like F; as set of literals.

@080 SAT+SMT 2016 Ashutosh Gupta TIFR, India


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

Cooper’'s method : Normalize literals

The literals must be in one of the following forms
> s <t
> k|t
> —(k|t)

We may normalize literals as follows and obtain F;,
Ps=t=s<t+1lIAt<s+1
> sEEt=s<tVE<s
> s<t=t<s+1

Example 2.5
Consider F1 := 3x =~ 6y + 3

After normalization we obtain, F; =3x <6y +3+1A3x+1>6y+3
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Cooper’'s method : separate out x

For h € Z™ and t does not contain x, write terms in literals in F, until they
are in one of the following forms.

> hx <t

> t < hx

> klhx +t

—(k|hx + t)

We obtain F3 after this transformation.

v

Example 2.6
Consider Fy :=2x +3y <6 AN —2x+3y <6 A 3| —5x+2.

F3:=2x <6 —3y A—6+3y < 2x A 3|5x — 2.

@O0 SAT+SMT 2016 Ashutosh Gupta TIFR, India
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Cooper’'s method : scale up coefficients of x

Let
A = lem{h|h is coefficient of x in some literal }

We scale up all literals in F3 as follows and obtain F4.

» hx <t=Ax <\t » klhx +t = Nkldx+ Nt

>t < hx =Nt < Ax » —(klhx + t) = =(Nk|Ax + N't)
where N'h = \.
Example 2.7

Consider F3 =2x <z+ 1Ay —3 <3xA4/5x+ 1.
A = lem{2,3.5} = 30.

Therefore, F4 = 30x < 15z + 15 A 10y — 30 < 30x A 24|30x + 6.

@O0 SAT+SMT 2016 Ashutosh Gupta TIFR, India
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Cooper’'s method : replace x to remove coefficient
We aim to remove coefficients of x.
We substitute A\x by x’ in the formula
We also need to say that x’ is divisible by .
We obtain
Fs := Fa[Ax — X] A A[X.
Example 2.8

F4 = 30x < 15z + 15 A 10y — 30 < 30x A 24|30x + 6.

After replacement:
Fs =x" <1524+ 15 A 10y — 30 < x' A 24|x" + 6 A 30|x'.

@O0 SAT+SMT 2016 Ashutosh Gupta TIFR, India
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Cooper’s method : eliminate x’

v

M:={A€ Fs| A= (k|t) or A= —(k|t)}.
UB:={x' < t|x' <teFs},

LB :={t < X'|t < x" € Fs}, and

d := lem{k| (k|t) or =(k|t) in M}.

v

v

v

Now we have two cases.
» LB = @
» LB+
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case LB = ()

» §:= lem{k| (k|t) or = (k|t) in M},

Since there are no lower bounds in Fs, there is some x’ that satisfies the
upper bounds in Fs.

We only need to check that the mod literals are mutually satisfiable.
In every 0 interval there must be a satisfying assignment.

Therefore, the following is an equivalent and quantifier-free formula.

§
Fe := \/ M[x" s ]
i=1
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Example : LB =10

Example 2.9

Consider the following formula with no lower bound:
Fs =x" <1524+ 15A6|x" —y +6 A 9|X.

Since we can always choose small enough x' to satisfy x' < 15z + 15, we can
ignore the literal.

§ = lem{6,9} = 18.
In every interval of 18, one value of x' must satisfy the mod literals.

Therefore, the following is an equivalent and quantifier-free formula.

18
\6li—y+6A9]i
i=1

Exercise 2.2

Simplify the above formula
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case LB # ()
» & := lem{k| (k|t) or —(k|t) in Fs},

Let us suppose x’ = m satisfies F5 then m is larger than the largest lower
bound.

Let x' < t € LB be the largest lower bound.
» LB[x' — t+ 1] is true
» Since there is a satisfying assignment, UB[x' — t + 1] is true.
Furthermore, there is m such that
» UB[x' — t+i]istruefor1 <i<m
» UB[x — t+i]is false for i > m
» One of M[x' — t+1],.., M[x" > t 4 6] must be true (same argument as previous case)

Therefore, one of the disjuncts in the following formula must be true.

5
For="\/ \/Folt+]]

t<x'eLB i=1
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Example : LB # ()

Example 2.10
Consider the following formula with lower bounds:

Fs =x" <152+ 15 A 10y — 30 < x’ A 24|x" + 6 A 30|x.
§ = lem(24,30) = 120

Since LB := {10y — 30 < x'}

Fo:=V\;2310y —30+i <15z +15A 10y — 30 < 10y — 30 + i
A 24|10y — 30 4 i + 6 A 30[10y — 30 + i

After simplification,
Fo :=\/;2 10y — 45 + i < 152 A 24/10y — 24 + i A 30|10y — 30 + i
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Topic 2.3

Theory of linear rational arithmetic
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Theory of rational numbers Tg
Signature S = ({0/0,1/1,+/2,—/1,},{> /2}) (no multiplication.)

A axiomatization of Tg is

Vx,y,z. (x+y)+z=x+(y+2)
VX, y. x+yxy+x

Vx. x+0~x

Vx. x + (—x) =0

1>0

10

VX, y. X2y Ay>2x=x~rYy
VX, ¥, Z.X>YyANy>z=>x2>2z

© o N R WD

VX, y. x> yVy>x

VX, ¥,z x>y=>x+z>y+z

. Forevery n, Vx,y,z.x=y+..+y
——

[EET Y
= O

n

_'Ehe_aboue_theog_is_ﬁeridn ble
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Solvers for Tg

We will present decision procedures for the increasingly wider fragments of

To-
» Quantifier-free difference logic
» Quantifier-free octagonal constraints

» Quantifier-free linear arithmetic
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Topic 2.4

Difference logic
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Difference Logic

Difference Logic over the integers(QF_IDL):
Boolean combinations of inequalities of the form x — y < b, where x and y
are integer variables and b is an integer constant.

Difference Logic over the rationals(QF_RDL):
Boolean combinations of inequalities of the form x — y < b, where x and y
are rational variables and b is an rational constant.

Widely used in analysis of timed systems for comparing clocks.

We will present an O(n®) method to decide conjunction of literals in
QF_RDL and QF_IDL.
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Difference Graph

We may view an atom x — y < b as a weighted directed edge between two
nodes x and y with weight b in graph over variables. This graph is called
difference graph.

Theorem 2.1

A conjunction of difference inequalities is unsatisfiable iff the corresponding
difference graph has negative cycles.

Example 2.11

X—y<1IANy—z<3ANz—x< -7
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Difference bound matrix

Another view of difference graph.

Definition 2.1
Let F be conjunction of difference inequalities over rational variables
{x1,...,%n}. The difference bound matrix(DBM) A is defined as follows.

0 i=j
A,'j: b X,'—XJ'SbEF

00 otherwise

Let FIA] £ Nijer.nXi — X < Ajj.

N
Let Aio...im = ka:]_ Aik—lik'
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Example: DBM

Example 2.12
Consider:
X0 —X1<A4AXT—%<-1Ax3—x1<3Ax31—x3<—-1Ax—x3<1

Constraints has three variables x1, x>, and x3.

The corresponding DBM is

0 -1 -1
4 0 ___
3 .- 0

Exercise 2.3
Fill the blanks
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Shortest path closure

Definition 2.2
The shortest path closure A® of A is defined as follows.

(A% = min A

L. min 10+ im
i=ig,i,...,im=j and m<n

Theorem 2.2
F is unsatisfiable iff 3i € 1..n. A5, <0

Exercise 2.4 If F is sat, A}, < A..
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Implication checking and canonical form

Definition 2.3
A set of objects R represents a class of formulas ¥ canonically if for each
F,F' € X if F=F' and o € R represents F then o represents F’.

Theorem 2.3
The set of shortest path closed DBMs canonically represents difference logic
formulas.

Exercise 2.5
Give an efficient method of checking equisatisfiablity and implication using
DBMs.
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Floyd-Warshall Algorithm for shortest closure

We can compute A® using the following iterations generating A°, . ..

A0 = A

Al = min(AfTT, AS)
Theorem 2.4
A® = A"
Exercise 2.6

a. Extend the above algorithm to support strict inequalities
b. Does the above algorithm also works for 7.7

A",

@O0 SAT+SMT 2016 Ashutosh Gupta TIFR, India
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Example: DBM

Example 2.13 0 -1 -1
Consider DBM: A=14 0 1
3 c0o O

Apply first iteration:

A%y Adp Adrs 0-— 0 -1 -1

A311 A312 A313 32 2 3 2 0
Apply second iteration:

A%zl A%zz A%23 3-10 0 -1 -1

| A321 A3pn A3ps ] 16 2 2] 3 2 0
Apply third iteration:

Als1 Alz Afss 21-1 0 -1 —1

| A331 A3z A3zs] 32 0 | 3 2 0
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Topic 2.5

Octagonal constraints
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Octagonal constraints

Definition 2.4
Octagonal constraints are boolean combinations of inequalities of the form

+x+ty < bor+tx < b where x and y are 7 /Q variables and b is an 7, /Q
constant.

We can always translate octagonal constraints into equisatisfiable difference
constraints.
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Octagon to difference logic encoding (contd.)

Consider conjunction of octagonal atoms F over variables V = {xy, ...

We construct a difference logic formula F’ over variables V' = {x],

. / /
In the encoding, x5, ; represents x; and x;; represents —x;.
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Octagon to difference logic encoding

F’ is constructed as follows

F> xi <b
F> —x; <b
F> xi—x;i < b
F> X,'+Xj§b
F> —xi—x;<b

Xhi_ 4 — xb; < 2b eF
—xbi_ 1 <2b eF

/
X2i i
/ / / / !
Xpi_1 — Xpj_1 < b, Xpj = X <b eF
/ / / / !
Xpi_1 — X -<b X2J-1—x2i§b €F

!
Xp = Xg;_ 1<b Xy — X1 <b €F

I

Definition 2.5
The DBM corresponding to F' are called octagonal DBMs(ODBMs).

Theorem 2.5
F and F' are equisatisfiable.
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Example: octagonal DBM

Exercise 2.7

Consider:

X1+X <4AXx—x1<HAX—x<3A—x—x<1Axp<2AN—x <7
Corresponding ODBM

0 o 3 4
o~ 0 1 5
5 4 0 4
1 3 14 0

x1+x2 <4~ xp—x4 <4, x3—x2<4

Xp—x1 <5~ x3—x1 <5, x0—x4 <5

x1—x2 <3~ x3 —x3<3,x4—x2<3

—X1—X2§1M—>X1—X4§1,X3—X231
x2 <2~ x3—x4 <4

—x2 <7~ x3—x4 <14
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Unsatisfiability

For Q, the method of checking unsatisfiability of difference constraints will
work on ODBMs.

Floyd-Warshall Algorithm on ODBM of F with n variables will let us know in
2n steps if F is sat.
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Topic 2.6

Simplex
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Incremental simplex as solver for Tg

We will present simplex algorithm that is a solver for quantifier-free fragment
of 7o (QF_LRA).

Similar to the Cooper’'s method, we assume that the input formula is
conjunction of literals.

We further restrict our presentation by only considering formulas of the
following form.

atixy + ....a1nXn < b A A amiXt + o.@mnXn < b
We may write the above formula in matrix notation
Ax < b,

where A is a m X n matrix.
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Simplex - notation
Consider constraints
Ax < b.

By introducing fresh variables, we transform the above into
s
[—I A] [ ] =0and s <bh.
X

s are called slack variables. Since there is no reason to distinguish x and s in
simplex, A will refer to [—1 A] and x will refer to [f(]

The above constraints will be denoted by

m-+n
Ax =0 and /\ I < x; < u;.
i=1
l; and u; are 400 and —oo if there is no lower and upper bound, respectively.

@080 SAT+SMT 2016 Ashutosh Gupta TIFR, India 43


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

Simplex - notation (contd.)

m—+-n
Ax =0 and /\ I < x; < u
i=1
» Ais m x (m+ n) matrix.
» Since Ax = 0 defines an n-dim subspace in (m + n)-dim space, if we
choose values of n variables then we fix values of the other m variables.

> We will refer to ith column of A as the column corresponding to x;.

Example 2.14
Consider: —x+y < —-2Ax <3
We have slack variables s; and s». In matrix form,

S1
-1 0:—11 S _0 51 <=2
0 -1, 10 x | <3
' y
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Simplex - basic and nonbasic variables

Definition 2.6

Simplex assumes all the columns of —I occur in A.The variables
corresponding to the columns are called basic variables. Others are called
nonbasic variables.

Note: the assumption is true about initial A

Definition 2.7
Let B be the set of indexes for basic variables and NB = 1..n — B.
For j € B, let k; be a row s.t. Ag; = —1.

Example 2.15
51
-1 0 -11 S> 51§—2
0-1 10 x |0 %<3
y

Currently, sy and s, are basic and x and y are nonbasic.
B={1,2}, NB=1{3,4}, ks =1, and ky = 2.
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Simplex - current assignment

Definition 2.8

Simplex maintains current assignment v : x = Q s.t.
» Av =0,

» nonbasic variables satisfy their bounds, and,

Explained later
why “at most” one

» consequently values for basic variables in v are fixed
and v may violate a bound of at most one basic variable.

Example 2.16
51 [Currently violated ]
-1 0:1-11 2 |_, s< 27
0 -1, 10 x | 5 <3
' y

Initially, v = {x — 0,y — 0,51 — 0,5, — 0}

Choose values for nonbasic variables, others follow!
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Simplex - state

For variable i € NB, v(x;) is equal to one of the existing bounds of x; and if
no bounds exists for x; then v(x;) = 0.

Definition 2.9
A bound on x; is called active if v(x;) is equal to the bound.
We will mark the active bounds by *.

Definition 2.10
The NB set and bound activity defines the current state of simplex.

Example 2.17
S1
-1 0 —-11 So 51 < —2
0-1 10 x |0 5 <3
y

Since all nonbasic variables have no bounds, no bound is marked active.
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Simplex - pivot operation

If v violates a bound constraint of some basic variable, then simplex correct
it by applying pivot operation

Definition 2.11

Let us suppose x; is basic, column j has —1 at row k, and x; is nonbasic.
A pivot operation between i and j exchanges the roll between x; and x;.
The pivot operation applies row operations until column i has —1 at row k
and all other entries in the column are zero.

j i After pivot operation between i and j
. AN
0 c £ 0
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Simplex - choosing non-basic column for pivot

Wilog, let 1 € B, k1 =1, and v(x;) violates u;. We need to decrease v(xy).
We call v(x1) — uy violation difference.

Since x; = Z a1ix;, we need to change v(x;) of some x; s.t. aj;x; decreases
ieNB
Definition 2.12
A column i € NB is suitable if
> X; Is unbounded,
» x; = u; and a1; > 0, or
» x; = I; and a1; < 0.

i is selected suitable column if i is the smallest suitable column.

Example 2.18 s
-1 0 -11 ) s1 < —2 Exercise 2.8
=0 .
0 -1 10 X sy <3  Write other cases that are
y ignored due to “wlog”

Column 3 and 4 are suitable.
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Simplex - choosing basic column for pivot

v satisfies all bounds except u;. Change in v(x;) may lead to violations,
because x; appears in the definitions of basic variables.

Wiog, let x; is unbounded and a;; < 0. Therefore, we need to increase v(x;).

=
Definition 2.13 (What are the other cases? )

We need to find the maximum allowed change.

/:
ch := min U{ uj|ak,<0}U{L\ak.;>0}
€B kj akJ’
Let j be the smallest index for which the above min is attained.

Example 2.19

We change x(selected suitable column) to reduce violation difference.
Since v(y) = 0 and we are varying x, s; = —x and s; = x. " ISI

We have s1 < =2, and s, < 0. Isz
Therefore, s1 allows 2 < x and s; allows x < 3.

Clearly, ch =3 and j = 2. 0
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Simplex - pivoting operation to reduce violation difference
We carry ch and j from the last slide. Wlog, ch = %
Now there are three possibilities '
> If ch = u;j = 400, pivot between i and 1 and activate u;
» If ch > (uj — I;), we assign v(x;) = I; update values of basic variables
and no pivoting
» Otherwise, we choose j for the basic variable for pivoting and apply
pivoting between / and j. We activate u; bound on variable x;.

If violation still persists then look for further pivot operations.

Theorem 2.6
Pivoting operation never increases violation difference
Example 2.20
After pivoting between 3 and 2.
S1
-1 -1 01 Cy) S1 S -2
0 1-10 x |70 s < 3
y

Now v is satisfying.
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Incremental simplex and single violation assumption

Before adding next atom, incremental simplex finds a solution of atoms
added so far.

New atom ax < b is added in the following steps.
> A fresh slack variable s is introduced
» s = ax is added as a row in A and s < b is added in the bounds
» The new row may have non-zeros in basic columns. They are removed
by row operations on the new row.
> s is added to B.
Therefore, current assignment can only violate the bound of s.
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Example: inserting a new atom

Example 2.21

Let us add atom —2x — y < —8 in our running example
We add a new slack variable s3 and a corresponding row.

53
1 0 0 -2 -1 s 53< —8
0 -1 -1 0 1 2 |=0 s1< -2
0 0 1-1 0 x 5 < 3*
y

After remove basic variables ({s1,x}) from the top row

s3
-1 0 -2 0 -1 st s3< -8
0 -1 -1 0 1 s2 |=0 s1 <2
0 0 1 -1 0 X s < 3
y

Exercise 2.9
Now s3 is violated. Pivot if possible.
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Simplex - iterations

Simplex is a sequence of pivot operations

» If simplex fails to find a suitable column for some violation then input is
unsat.

> If a state is reached without violation then v is a satisfying assignment.

Example 2.22
s3 is still in violation.
s3
-1 -1 -3 0 0 S1 53 < -8
0 1 1 0 -1 2 |=0 s < =27
0 0 1 -1 0 X s < 3*
y

Now, we can not
find a suitable column.
Therefore, the constraints are unsat.
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Example 2.23
Run simplex on x1 <5 A4xy +x0 <25 A —2x1 — xp < =25

After push of the first atom

[ 11 ” 2 ]—0 51 <5 v ={x 0,51+ 0}
After push of the second atom
_ S2
_ <5
L oalg s o o= v={ 0}
0-110 X1 sp <25
L X
After push of the last atom s ]
-1 0 0 -2 -1 S 51 <5b
0-1 0 4 1 s1 [=0 <25 v={_—0}
0 0-1 1 o0 X1 s3< =25
L X

Exercise 2.10
Finish the run
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