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Specialized algorithm for theories!

A decision procedure is a specialized algorithms to decide a sentence under a
theory.

|=T F

For a given theory, we can know if there is a decision procedure.

Once we have it, we know it exists! Otherwise, the theory is called
undecidable.
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Example decision procedures

In this session, we will see a series of decision procedures.

I Ackermann’s reduction for QF EUF

I Cooper’s method for integers
I Procedures for rationals.

I Difference bound matrices(DBM) for difference logic
I DBM for Octagonal constraints
I Simplex for linear rational arithmetic
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Topic 2.1

Ackermann’s reduction
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Reminder: Theory of equality and function symbols (EUF)

EUF syntax: first order formulas with signature S = (F, ∅),
i.e., countably many function symbols and no predicates.

The theory axioms include

1. ∀x . x ≈ x

2. ∀x , y . x ≈ y ⇒ y ≈ x

3. ∀x , y , z . x ≈ y ∧ y ≈ z ⇒ x ≈ z

4. for each f /n ∈ F,

∀x1, .., xn, y1, .., yn. x1 ≈ y1 ∧ .. ∧ xn ≈ yn ⇒ f (x1, .., xn) ≈ f (y1, .., yn)

Since the axioms are valid in FOL with equality, the theory is sometimes
referred as the base theory.

Note: Predicates can be easily added if desired
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Proofs in quantifier-free fragment of TEUF (QF EUF)

Proof rules of TEUF
x ≈ y

y ≈ x
Symmetry

x ≈ y y ≈ z

x ≈ z
Transitivity

x1 ≈ y1 .. xn ≈ yn
f (x1, .., xn) ≈ f (y1, .., yn)

Congruence

Example 2.1

Consider: y ≈ x ∧ y ≈ z ∧ f (x , u) 6≈ f (z , u)

y ≈ x

x ≈ y y ≈ z

x ≈ z
f (x , u) ≈ f (z , u) f (x , u) 6≈ f (z , u)

⊥
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Ackermann’s Reduction
The insight: the rules needed to be applied only finitely many possible ways.

Algorithm: eagerly apply the rules and get a formula needing only Boolean
reasoning.

Algorithm 2.1: QF EUF Sat(F )

Input: F formula QF EUF
Output: SAT/UNSAT

1 Let Ts be subterms of F ;
2 Let en be a function from Ts to fresh constants;
3 G := en(F );
4 foreach f (x1, .., xn), f (y1, .., yn) ∈ Ts do

5 G := G ∧ en(x1 ≈ y1 ∧ .. ∧ xn ≈ yn ⇒ f (x1, .., xn) ≈ f (y1, .., yn))

6 foreach t1, t2, t3 ∈ Ts do
7 G := G ∧ en(t1 ≈ t2 ∧ t2 ≈ t3 ⇒ t1 ≈ t3)

8 Let G ′ be obtained by substituting each atom by a fresh Boolean variable in G .
9 return checkBooleanSAT(G’)

Eager approach may produce too many consequences, tomorrow you will see
a not so eager approach.

en is naturally extended on formulas,
e.g., en(t1 ≈ t2) = (en(t1) ≈ en(t2))

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example: Ackermann’s Reduction

Example 2.2

Consider formula F = f (f (x)) 6≈ x ∧ f (x) ≈ x

Ts := {f (f (x)), f (x), x}.

en := {f (f (x)) 7→ f1, f (x) 7→ f2, x 7→ f3}

G := en(F ) := f1 6≈ f3 ∧ f2 ≈ f3

Adding congruence consequences:
G := G ∧ (f2 ≈ f3 ⇒ f1 ≈ f2).

Adding transitivity consequences:
G := G ∧ (f1 ≈ f2 ∧ f2 ≈ f3 ⇒ f1 ≈ f3).

Boolean encoding:
{f1 ≈ f3 7→ p1, f2 ≈ f3 7→ p2,
f1 ≈ f3 7→ p3}

G ′ := ¬p1 ∧ p2

G ′ := G ′ ∧ (p2 ⇒ p3).

G ′ := G ′ ∧ (p3 ∧ p2 ⇒ p1).

Since G ′ is UNSAT, F is UNSAT.
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Topic 2.2

Cooper’s method
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Reminder: Presburger arithmetic

Let us the following theory for arithmetic TZ.

∀x¬(x + 1 ≈ 0)

∀x∀y(x + 1 ≈ y + 1⇒ x ≈ y)

F (0) ∧ (∀x(F (x)⇒ F (x + 1))⇒ ∀xF (x))

∀x(x + 0 ≈ x)

∀x∀y(x + (y + 1) ≈ (x + y) + 1)

Note that the theory does not have multiplication.

However, one can simulate multiplication by constants in the theory.
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Cooper’s method

Cooper’s method is one of the well known decision procedure for Presburger
arithmetic.

This method proceeds by quantifier elimination.

However, the arithmetic does not allow quantifier elimination as it is.

Example 2.3

The following formula states that y is odd.

∃x .2x + 1 ≈ y

This can not be stated in the arithmetic.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Adding | operator to enable quantifier elimination
We need to introduce modulo operator | that expresses divisibility.

k |y means k divides y , where k ∈ Z+

We also need to add the following axiom about | in TZ.

∀y . k |y ⇔ ∃x . kx ≈ y

Example 2.4

Now we can eliminate existential quantifier

(∃x .2x + 1 ≈ y) ≡ 2|(y + 1)

Exercise 2.1
Give an x that satisfies the following constraints

2|x + 1 ∧ 3|x + 5 ∧ ¬5|x − 2

We may not write
the parenthesis

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Cooper’s method

Input: F1 := ∃x .A1 ∧ ... ∧ An, where Ai is a literal.

The method proceeds in fours steps

I Normalize literals

I Separate out x

I Scale up coefficients of x

I Replace x with x ′ such that no coefficient to x ′

I Eliminate x ′

In some notation, we will use formulas like F1 as set of literals.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Cooper’s method : Normalize literals

The literals must be in one of the following forms

I s < t

I k|t
I ¬(k|t)

We may normalize literals as follows and obtain F2

I s = t ≡ s < t + 1 ∧ t < s + 1

I s 6= t ≡ s < t ∨ t < s

I ¬s < t ≡ t < s + 1

Example 2.5

Consider F1 := 3x ≈ 6y + 3

After normalization we obtain, F2 = 3x < 6y + 3 + 1 ∧ 3x + 1 > 6y + 3

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Cooper’s method : separate out x

For h ∈ Z+ and t does not contain x , write terms in literals in F2 until they
are in one of the following forms.

I hx < t

I t < hx

I k|hx + t

I ¬(k|hx + t)

We obtain F3 after this transformation.

Example 2.6

Consider F2 := 2x + 3y < 6 ∧ −2x + 3y < 6 ∧ 3| − 5x + 2.

F3 := 2x < 6− 3y ∧ −6 + 3y < 2x ∧ 3|5x − 2.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Cooper’s method : scale up coefficients of x

Let
λ = lcm{h|h is coefficient of x in some literal }

We scale up all literals in F3 as follows and obtain F4.

I hx < t ≡ λx < λ′t

I t < hx ≡ λ′t < λx

I k |hx + t ≡ λ′k |λx + λ′t

I ¬(k |hx + t) ≡ ¬(λ′k|λx + λ′t)

where λ′h = λ.

Example 2.7

Consider F3 = 2x < z + 1 ∧ y − 3 < 3x ∧ 4|5x + 1.

λ = lcm{2, 3, 5} = 30.

Therefore, F4 = 30x < 15z + 15 ∧ 10y − 30 < 30x ∧ 24|30x + 6.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Cooper’s method : replace x to remove coefficient

We aim to remove coefficients of x .

We substitute λx by x ′ in the formula

We also need to say that x ′ is divisible by λ.

We obtain
F5 := F4[λx 7→ x ′] ∧ λ|x ′.

Example 2.8

F4 = 30x < 15z + 15 ∧ 10y − 30 < 30x ∧ 24|30x + 6.

After replacement:
F5 = x ′ < 15z + 15 ∧ 10y − 30 < x ′ ∧ 24|x ′ + 6 ∧ 30|x ′.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Cooper’s method : eliminate x ′

I M := {A ∈ F5| A = (k|t) or A = ¬(k|t)}.
I UB := {x ′ < t|x ′ < t ∈ F5},
I LB := {t < x ′|t < x ′ ∈ F5}, and

I δ := lcm{k | (k |t) or ¬(k|t) in M}.

Now we have two cases.

I LB = ∅
I LB 6= ∅

http://creativecommons.org/licenses/by-nc-sa/4.0/
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case LB = ∅

I δ := lcm{k | (k |t) or ¬(k|t) in M},

Since there are no lower bounds in F5, there is some x ′ that satisfies the
upper bounds in F5.

We only need to check that the mod literals are mutually satisfiable.

In every δ interval there must be a satisfying assignment.

Therefore, the following is an equivalent and quantifier-free formula.

F6 :=
δ∨

i=1

M[x ′ 7→ i ]

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example : LB = ∅
Example 2.9

Consider the following formula with no lower bound:
F5 = x ′ < 15z + 15 ∧ 6|x ′ − y + 6 ∧ 9|x ′.

Since we can always choose small enough x ′ to satisfy x ′ < 15z + 15, we can
ignore the literal.

δ = lcm{6, 9} = 18.
In every interval of 18, one value of x ′ must satisfy the mod literals.

Therefore, the following is an equivalent and quantifier-free formula.

18∨
i=1

6|i − y + 6 ∧ 9|i

Exercise 2.2
Simplify the above formula
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case LB 6= ∅
I δ := lcm{k | (k |t) or ¬(k|t) in F5},

Let us suppose x ′ = m satisfies F5 then m is larger than the largest lower
bound.

Let x ′ < t ∈ LB be the largest lower bound.
I LB[x ′ 7→ t + 1] is true
I Since there is a satisfying assignment, UB[x ′ 7→ t + 1] is true.

Furthermore, there is m such that
I UB[x ′ 7→ t + i ] is true for 1 ≤ i ≤ m
I UB[x ′ 7→ t + i ] is false for i > m

I One of M[x ′ 7→ t + 1], ..,M[x ′ 7→ t + δ] must be true (same argument as previous case)

Therefore, one of the disjuncts in the following formula must be true.

F6 :=
∨

t<x ′∈LB

δ∨
i=1

F5[t + j ]

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example : LB 6= ∅

Example 2.10

Consider the following formula with lower bounds:
F5 = x ′ < 15z + 15 ∧ 10y − 30 < x ′ ∧ 24|x ′ + 6 ∧ 30|x ′.

δ = lcm(24, 30) = 120

Since LB := {10y − 30 < x ′}

F6 :=
∨120

i=1 10y − 30 + i < 15z + 15 ∧ 10y − 30 < 10y − 30 + i
∧ 24|10y − 30 + i + 6 ∧ 30|10y − 30 + i

After simplification,
F6 :=

∨120
i=1 10y − 45 + i < 15z ∧ 24|10y − 24 + i ∧ 30|10y − 30 + i

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Topic 2.3

Theory of linear rational arithmetic
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Theory of rational numbers TQ
Signature S = ({0/0, 1/1,+/2,−/1, }, {≥ /2}) (no multiplication.)

A axiomatization of TQ is

1. ∀x , y , z . (x + y) + z ≈ x + (y + z)

2. ∀x , y . x + y ≈ y + x

3. ∀x . x + 0 ≈ x

4. ∀x . x + (−x) ≈ 0

5. 1 ≥ 0

6. 1 6≈ 0

7. ∀x , y . x ≥ y ∧ y ≥ x ⇒ x ≈ y

8. ∀x , y , z . x ≥ y ∧ y ≥ z ⇒ x ≥ z

9. ∀x , y . x ≥ y ∨ y ≥ x

10. ∀x , y , z . x ≥ y ⇒ x + z ≥ y + z

11. For every n, ∀x , y , z . x = y + ...+ y︸ ︷︷ ︸
n

The above theory is decidable.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Solvers for TQ

We will present decision procedures for the increasingly wider fragments of
TQ.

I Quantifier-free difference logic

I Quantifier-free octagonal constraints

I Quantifier-free linear arithmetic

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Topic 2.4

Difference logic
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Difference Logic

Difference Logic over the integers(QF IDL):
Boolean combinations of inequalities of the form x − y ≤ b, where x and y
are integer variables and b is an integer constant.

Difference Logic over the rationals(QF RDL):
Boolean combinations of inequalities of the form x − y ≤ b, where x and y
are rational variables and b is an rational constant.

Widely used in analysis of timed systems for comparing clocks.

We will present an O(n3) method to decide conjunction of literals in
QF RDL and QF IDL.
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Difference Graph

We may view an atom x − y ≤ b as a weighted directed edge between two
nodes x and y with weight b in graph over variables. This graph is called
difference graph.

Theorem 2.1
A conjunction of difference inequalities is unsatisfiable iff the corresponding
difference graph has negative cycles.

Example 2.11

x − y ≤ 1 ∧ y − z ≤ 3 ∧ z − x ≤ −7

x

yz

1

3

−7

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Difference bound matrix

Another view of difference graph.

Definition 2.1
Let F be conjunction of difference inequalities over rational variables
{x1, . . . , xn}. The difference bound matrix(DBM) A is defined as follows.

Aij =


0 i = j

b xi − xj ≤ b ∈ F

∞ otherwise

Let F [A] ,
∧

i ,j∈1..n xi − xj ≤ Aij .

Let Ai0...im ,
∑m

k=1 Aik−1ik .

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example: DBM

Example 2.12

Consider:
x2 − x1 ≤ 4 ∧ x1 − x2 ≤ −1 ∧ x3 − x1 ≤ 3 ∧ x1 − x3 ≤ −1 ∧ x2 − x3 ≤ 1

Constraints has three variables x1, x2, and x3.

The corresponding DBM is

0 −1 −1

4 0

3 0




Exercise 2.3
Fill the blanks
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Shortest path closure

Definition 2.2
The shortest path closure A• of A is defined as follows.

(A•)ij = min
i=i0,i1,...,im=j and m≤n

Ai0...im

Theorem 2.2
F is unsatisfiable iff ∃i ∈ 1..n. A•ii < 0

Exercise 2.4 If F is sat, A•ij ≤ A•ikj .

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Implication checking and canonical form

Definition 2.3
A set of objects R represents a class of formulas Σ canonically if for each
F ,F ′ ∈ Σ if F ≡ F ′ and o ∈ R represents F then o represents F ′.

Theorem 2.3
The set of shortest path closed DBMs canonically represents difference logic
formulas.

Exercise 2.5
Give an efficient method of checking equisatisfiablity and implication using
DBMs.
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Floyd-Warshall Algorithm for shortest closure

We can compute A• using the following iterations generating A0, . . . ,An.

A0 = A

Ak
ij = min(Ak−1

ij ,Ak−1
ikj )

Theorem 2.4
A• = An

Exercise 2.6
a. Extend the above algorithm to support strict inequalities
b. Does the above algorithm also works for Z?
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Example: DBM

Example 2.13

Consider DBM: A0 =

 0 −1 −1
4 0 1
3 ∞ 0


Apply first iteration:

A1 = min(A0,

A0
111 A0

112 A0
113

A0
211 A0

212 A0
213

A0
311 A0

312 A0
313

) = min(A0,

0 −1 −1
4 3 3
3 2 2

) =

0 −1 −1
4 0 1
3 2 0


Apply second iteration:

A2 = min(A1,

A1
121 A1

122 A1
123

A1
221 A1

222 A1
223

A1
321 A1

322 A1
323

) = min(A1,

3 −1 0
4 0 1
6 2 2

) =

0 −1 −1
4 0 1
3 2 0


Apply third iteration:

A3 = min(A2,

A2
131 A2

132 A2
133

A2
231 A2

232 A2
233

A2
331 A2

332 A2
333

) = min(A2,

2 1 −1
4 3 1
3 2 0

) =

0 −1 −1
4 0 1
3 2 0


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Topic 2.5

Octagonal constraints
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Octagonal constraints

Definition 2.4
Octagonal constraints are boolean combinations of inequalities of the form
±x ± y ≤ b or ±x ≤ b where x and y are Z/Q variables and b is an Z/Q
constant.

We can always translate octagonal constraints into equisatisfiable difference
constraints.
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Octagon to difference logic encoding (contd.)

Consider conjunction of octagonal atoms F over variables V = {x1, . . . , xn}.

We construct a difference logic formula F ′ over variables V ′ = {x ′1, . . . , x ′2n}.

In the encoding, x ′2i−1 represents xi and x ′2i represents −xi .
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Octagon to difference logic encoding

F ′ is constructed as follows

F 3 xi ≤ b  x ′2i−1 − x ′2i ≤ 2b ∈ F ′

F 3 −xi ≤ b  x ′2i − x ′2i−1 ≤ 2b ∈ F ′

F 3 xi − xj ≤ b  x ′2i−1 − x ′2j−1 ≤ b, x ′2j − x ′2i ≤ b ∈ F ′

F 3 xi + xj ≤ b  x ′2i−1 − x ′2j ≤ b, x ′2j−1 − x ′2i ≤ b ∈ F ′

F 3 −xi − xj ≤ b  x ′2i − x ′2j−1 ≤ b, x ′2j − x ′2i−1 ≤ b ∈ F ′

Definition 2.5
The DBM corresponding to F ′ are called octagonal DBMs(ODBMs).

Theorem 2.5
F and F ′ are equisatisfiable.
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Example: octagonal DBM

Exercise 2.7
Consider:
x1 + x2 ≤ 4 ∧ x2 − x1 ≤ 5 ∧ x1 − x2 ≤ 3 ∧ −x1 − x2 ≤ 1 ∧ x2 ≤ 2 ∧ −x2 ≤ 7
Corresponding ODBM 

0 ∞ 3 4
∞ 0 1 5
5 4 0 4
1 3 14 0


x1 + x2 ≤ 4 x1 − x4 ≤ 4, x3 − x2 ≤ 4
x2 − x1 ≤ 5 x3 − x1 ≤ 5, x2 − x4 ≤ 5
x1 − x2 ≤ 3 x1 − x3 ≤ 3, x4 − x2 ≤ 3
−x1 − x2 ≤ 1 x1 − x4 ≤ 1, x3 − x2 ≤ 1
x2 ≤ 2 x3 − x4 ≤ 4
−x2 ≤ 7 x3 − x4 ≤ 14
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Unsatisfiability

For Q, the method of checking unsatisfiability of difference constraints will
work on ODBMs.

Floyd-Warshall Algorithm on ODBM of F with n variables will let us know in
2n steps if F is sat.
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Topic 2.6

Simplex
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Incremental simplex as solver for TQ

We will present simplex algorithm that is a solver for quantifier-free fragment
of TQ (QF LRA).

Similar to the Cooper’s method, we assume that the input formula is
conjunction of literals.

We further restrict our presentation by only considering formulas of the
following form.

a11x1 + ....a1nxn ≤ bi ∧ .. ∧ am1x1 + ....amnxn ≤ bm

We may write the above formula in matrix notation

Ax ≤ b,

where A is a m × n matrix.
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Simplex - notation

Consider constraints
Ax ≤ b.

By introducing fresh variables, we transform the above into

[
−I A

] [s
x

]
= 0 and s ≤ b.

s are called slack variables. Since there is no reason to distinguish x and s in
simplex, A will refer to

[
−I A

]
and x will refer to

[
s
x

]
.

The above constraints will be denoted by

Ax = 0 and
m+n∧
i=1

li ≤ xi ≤ ui .

li and ui are +∞ and −∞ if there is no lower and upper bound, respectively.
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Simplex - notation (contd.)

Ax = 0 and
m+n∧
i=1

li ≤ xi ≤ ui

I A is m × (m + n) matrix.

I Since Ax = 0 defines an n-dim subspace in (m + n)-dim space, if we
choose values of n variables then we fix values of the other m variables.

I We will refer to ith column of A as the column corresponding to xi .

Example 2.14

Consider: −x + y ≤ −2 ∧ x ≤ 3

We have slack variables s1 and s2. In matrix form,

−1 0 −1 1

0 −1 1 0

  s1
s2
x
y


= 0

s1 ≤ −2

s2 ≤ 3
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Simplex - basic and nonbasic variables

Definition 2.6
Simplex assumes all the columns of −I occur in A.The variables
corresponding to the columns are called basic variables. Others are called
nonbasic variables.

Note: the assumption is true about initial A

Definition 2.7
Let B be the set of indexes for basic variables and NB , 1..n − B.
For j ∈ B, let kj be a row s.t. Akj j = −1.

Example 2.15

−1 0 −1 1

0 −1 1 0

  s1
s2
x
y


= 0

s1 ≤ −2

s2 ≤ 3

Currently, s1 and s2 are basic and x and y are nonbasic.
B = {1, 2}, NB = {3, 4}, k1 = 1, and k2 = 2.
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Simplex - current assignment

Definition 2.8
Simplex maintains current assignment v : x → Q s.t.

I Av = 0,

I nonbasic variables satisfy their bounds, and,

I consequently values for basic variables in v are fixed
and v may violate a bound of at most one basic variable.

Example 2.16

−1 0 −1 1

0 −1 1 0

  s1
s2
x
y


= 0

s1 ≤ −2

s2 ≤ 3

Initially, v = {x 7→ 0, y 7→ 0︸ ︷︷ ︸
Choose values for nonbasic variables, others follow!

, s1 7→ 0, s2 7→ 0}

Explained later
why “at most” one

Currently violated
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Simplex - state
For variable i ∈ NB, v(xi ) is equal to one of the existing bounds of xi and if
no bounds exists for xi then v(xi ) = 0.

Definition 2.9
A bound on xi is called active if v(xi ) is equal to the bound.
We will mark the active bounds by ∗.

Definition 2.10
The NB set and bound activity defines the current state of simplex.

Example 2.17

−1 0 −1 1

0 −1 1 0

  s1
s2
x
y


= 0

s1 ≤ −2

s2 ≤ 3

Since all nonbasic variables have no bounds, no bound is marked active.
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Simplex - pivot operation

If v violates a bound constraint of some basic variable, then simplex correct
it by applying pivot operation

Definition 2.11
Let us suppose xj is basic, column j has −1 at row k, and xi is nonbasic.
A pivot operation between i and j exchanges the roll between xi and xj .
The pivot operation applies row operations until column i has −1 at row k
and all other entries in the column are zero.

ij

k

... 0
... a

...

. . . −1 . . . b . . .

... 0
... c

...


 =>

... a
b

... 0
...

. . . 1
b . . . −1 . . .

... c
b

... 0
...





After pivot operation between i and j
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Simplex - choosing non-basic column for pivot
Wlog, let 1 ∈ B , k1 = 1, and v(x1) violates u1. We need to decrease v(x1).
We call v(x1)− u1 violation difference.

Since x1 =
∑
i∈NB

a1ixi , we need to change v(xi ) of some xi s.t. a1ixi decreases

Definition 2.12
A column i ∈ NB is suitable if

I xi is unbounded,

I xi = ui and a1i > 0, or

I xi = li and a1i < 0.

i is selected suitable column if i is the smallest suitable column.

Example 2.18

−1 0 −1 1

0 −1 1 0

  s1
s2
x
y


= 0

s1 ≤ −2

s2 ≤ 3

Column 3 and 4 are suitable.

Exercise 2.8
Write other cases that are
ignored due to “wlog”

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna SAT+SMT 2016 Ashutosh Gupta TIFR, India 50

Simplex - choosing basic column for pivot
v satisfies all bounds except u1. Change in v(xi ) may lead to violations,
because xi appears in the definitions of basic variables.

Wlog, let xi is unbounded and a1i < 0. Therefore, we need to increase v(xi ).

Definition 2.13
We need to find the maximum allowed change.

ch := min
⋃
j∈B
{

v(xj)− uj

akj i
|akj i < 0} ∪ {

v(xj)− lj
akj i

|akj i > 0}

Let j be the smallest index for which the above min is attained.

Example 2.19

We change x(selected suitable column) to reduce violation difference.

Since v(y) = 0 and we are varying x, s1 = −x and s2 = x.
We have s1 ≤ −2, and s2 ≤ 0.
Therefore, s1 allows 2 ≤ x and s2 allows x ≤ 3.
Clearly, ch = 3 and j = 2. 0

x
s1

s2

What are the other cases?
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Simplex - pivoting operation to reduce violation difference
We carry ch and j from the last slide. Wlog, ch =

v(xj )−uj
akj i

.

Now there are three possibilities
I If ch = ui = +∞, pivot between i and 1 and activate u1

I If ch > (ui − li ), we assign v(xi ) = li update values of basic variables
and no pivoting

I Otherwise, we choose j for the basic variable for pivoting and apply
pivoting between i and j . We activate uj bound on variable xj .

If violation still persists then look for further pivot operations.

Theorem 2.6
Pivoting operation never increases violation difference

Example 2.20
After pivoting between 3 and 2.

−1 −1 0 1

0 1 −1 0

  s1
s2
x
y


= 0

s1 ≤ −2

s2 ≤ 3∗

Now v is satisfying.
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Incremental simplex and single violation assumption

Before adding next atom, incremental simplex finds a solution of atoms
added so far.

New atom ax ≤ b is added in the following steps.

I A fresh slack variable s is introduced

I s = ax is added as a row in A and s ≤ b is added in the bounds

I The new row may have non-zeros in basic columns. They are removed
by row operations on the new row.

I s is added to B.

Therefore, current assignment can only violate the bound of s.
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Example: inserting a new atom

Example 2.21

Let us add atom −2x − y ≤ −8 in our running example
We add a new slack variable s3 and a corresponding row.

−1 0 0 −2 −1

0 −1 −1 0 1

0 0 1 −1 0




s3
s1
s2
x
y



= 0

s3 ≤ −8

s1 ≤ −2

s2 ≤ 3∗

After remove basic variables ({s1, x}) from the top row

−1 0 −2 0 −1

0 −1 −1 0 1

0 0 1 −1 0




s3
s1
s2
x
y



= 0

s3 ≤ −8

s1 ≤ −2

s2 ≤ 3∗

Exercise 2.9
Now s3 is violated. Pivot if possible.
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Simplex - iterations

Simplex is a sequence of pivot operations

I If simplex fails to find a suitable column for some violation then input is
unsat.

I If a state is reached without violation then v is a satisfying assignment.

Example 2.22

s3 is still in violation.

−1 −1 −3 0 0

0 1 1 0 −1

0 0 1 −1 0




s3
s1
s2
x
y



= 0

s3 ≤ −8

s1 ≤ −2∗

s2 ≤ 3∗

Now, we can not
find a suitable column.
Therefore, the constraints are unsat.
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Example 2.23

Run simplex on x1 ≤ 5 ∧ 4x1 + x2 ≤ 25 ∧ −2x1 − x2 ≤ −25

After push of the first atom

−1 1

[ ]
s1
x1

[ ]
= 0 s1 ≤ 5 v = {x1 7→ 0, s1 7→ 0}

After push of the second atom

−1 0 4 1

0 −1 1 0

  s2
s1
x1
x2


= 0

s1 ≤ 5

s2 ≤ 25
v = { 7→ 0}

After push of the last atom

−1 0 0 −2 −1

0 −1 0 4 1

0 0 −1 1 0




s3
s2
s1
x1
x2



= 0

s1 ≤ 5

s2 ≤ 25

s3 ≤ −25

v = { 7→ 0}

Exercise 2.10
Finish the run
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