Formal Inductive Synthesis
-- Theory and Applications

Sanjit A. Seshia

Professor
EECS Department
UC Berkeley

Acknowledgments to several Ph.D. students, postdoctoral
researchers, and collaborators, and to
the students of EECS 219C, Spring 2015/16, UC Berkeley

SAT/SMT Winter School @ TIFR
December 8, 2016

Connections In this Lecture

SAT/SMT Solving

Formal
Synthesis Machine Learning

Examples of Synthesis

Program Synthesis: Example 1

Compute the MAX of two 32-bit integers without using
conditional statements!

int max(int x, inty) { int max_no_cond(int x, int y) {
if (x>=vy) t1=x"y;
return x; t2=-(x<y),
else t3 =11 & t2;
return vy; return t3 " x;

} }

Program Synthesis: Example 2

Turn off rightmost contiguous 1 bits
10110 - 10000, 11010 - 11000

Naive implementation:

Bit-wise implementation:

i = length(x) — 1;
while(x[i] == 0 { t1=x-1;

i--; if (i < 0) return x; t2 = x| t1;
oo t3=12 +1;
X[i] = 0; 1 return t3 & X

while(x[i]==1 A
X[i] = 0; i--; if (i < 0) return x;

}

return Xx;

Program Synthesis problem

e Given a reference implementation R, and a
restricted program space S, find a program P in S
that is equivalent to the reference R.

e Reference: S.Jha et al., Oracle-Guided
Component-Based Program Synthesis, ICSE 2010.

S. A. Seshia

Example Verification Problem

e Transition System
— Init: |
X=1Ay=1 X,yelZ
— Transition Relation: o
X' =X+y A Y =y+X
e Temporal Logic Property: ¥ = G (y = 1)
— “always,y >1”
e Attempted Proof by Induction:
— BaseCase:x=1Ay=1= y=>1
— Inductive Step:

Y2IAX =Xty A Y =y+X = y 21

Example Verification Problem

e Transition System

— Init: |

X=1Ay=1
— Transition Relation:
X' =X+y A Y =y+X
e Property: ¥ = G (y=>1)
e Attempted Proof by Induction Fails:
Y2IA X =Xty A Y =y+HX = y 21

» Need to Strengthen Invariant: Find ¢ s.t.

DAYZIA X =Xty A Y =YX =0 Ay 21
e Safety Verification - Invariant Synthesis

Safety Verification as Invariant Synthesis

e Transition System

— Init: |

X=1Ay=1
— Transition Relation:
X' =X+y A Y =y+X

e Property: ¥ = G (y=>1)
» Following Strengthened Invariant works: ¢ =x>1

XZIAYZIA X =Xty A Y =yHX = X 21Ay 21

e How can we automate this process?

Another (Fun) Synthesis Problem: Inventing Card
Tricks [S. Jha, V. Raman, and S. A. Seshia, FMCAD 2016]

Transformations such as
Moving card to front/back,
Flipping card over,
audience choice),

Repeating some number
of times (audience chosen)

J —audience card Configuration where only
front-facing card is the one
chosen initially by audience

d sequence of transformations V audience choices
(we reach the desired final configuration)

Similar format for problems in Al planning
S. A. Seshia 10

Formal Synthesis and

Machine Learning

Formal Synthesis

m Glven:
— Class of Artifacts C
— Formal (mathematical) Specification ¢

m Find f € C that satisfies ¢

m Example:
— C: all affine functions f of x € R
— ¢: VX.f(X)=>2x +42

Induction vs. Deduction

m Induction: Inferring general rules (functions)
from specific examples (observations)

— Generalization

m Deduction: Applying general rules to derive
conclusions about specific instances

— (generally) Specialization

m Learning/Synthesis can be Inductive or
Deductive or a combination of the two

Inductive Synthesis

m Given
— Class of Artifacts C
— Set of (labeled) Examples E (or source of E)

— A stopping criterion ¥
= May or may not be formally described

m Find, using only E, an f € C that meets ¥

m Example:
— C: all affine functions fof x e R
— E ={(0,42), (1, 43), (2, 44)}
— ¥ -- find consistent f

Inductive Synthesis

m Given
— Class of Artifacts C
— Set of Examples E (or source of E)
— A stopping criterion ¥

m Find using only E an f € C that meets ¥

m Example:
— C: all affine functions fof x e R
— E={(0,42), (1, 43), (2, 45)}
— ¥ -- find consistent f

Inductive Synthesis

Example:

— C: all predicates of the form ax + by >c
— E ={(0,42), (1, 43), (2, 45)}

— ¥ -- find consistent f

One such: -x +y >42
Another: -x +y >0
Which one to pick: need to augment ¥?

Machine Learning

"A computer program is said to
learn from experience E with
respect to some class of tasks T
and performance measure P, if
its performance at tasks in T, as

measured by P, improves with
experience E.”

- Tom Mitchell [1998]

Machine Learning: Typical Setup

Given:
m Domain of Examples D

m Concept class C
— Conceptis a subset of D
— Cis set of all concepts

m Criterion ¥ (“performance measure”)

Find using only examples from D, f € C meeting ¥

“Inductive bias is the set of
assumptions required to
deductively infer a concept
from the inputs to the learning
algorithm.”

Example:
C: all predicates of the form ax + by > c
E ={(0,42), (1, 43), (2, 45)}
Y -- find consistent f

Which one to pick: -x+y>42 or -x+y=>0
Inductive Bias resolves this choice
« E.g., pick the “simplest one” (Occam’s razor)

Formal Inductive Synthesis
mitial Defn)

m Glven:
— Class of Artifacts C
— Formal specification ¢
— Domain of examples D

m Find f e C that satisfies ¢ using only elements of D

— 1.e. no direct access to ¢, only to elements of D
representing ¢

m Example:
— C: all affine functions f of X € R
- D=R?
— ¢: VUX.f(X) =2 X +42

Importance

Formal Inductive Synthesis is Everywhere!

— Many problems can be solved effectively
when viewed as synthesis

Particularly effective in various tasks in
Formal Methods

For the rest of this lecture series, for brevity we will
often use “Inductive Synthesis” to mean “Formal
Inductive Synthesis”

— 21—

Formal Methods ~ Computational Proof
Methods

m Formal Methods is about Provable Guarantees

— Specification/Modeling = Statement of
Conjecture/Theorem

— Verification = Proving/Disproving the Conjecture
— Synthesis = Generating (parts of) Conjecture/Proof

s Formal Methods ~ Computational Proof methods
— Temporal logic / Assertions

— Boolean reasoning: SAT solving & Binary Decision
Diagrams

— Equivalence checking
— Model checking
— Automated theorem proving, SMT solving

Inductive Synthesis for Formal
‘Methods

m Modeling / Specification
— Generating environment/component models
— Inferring (likely) specifications/requirements

m Verification

— Synthesizing verification/proof artifacts such as
Inductive invariants, abstractions, interpolants,
environment assumptions, etc.

m Synthesis (of course)

Questions of Interest for this Tutorial

m How can inductive synthesis be used to solve
other (non-synthesis) problems?

m What is a core computational problem for formal
synthesis (aka SAT or SMT)?

m Is there a theory of formal inductive synthesis
distinct from (traditional) machine learning?

m Is there a complexity/computability theory for
formal inductive synthesis?

Questions of Interest for this Tutorial

How can inductive synthesis be used to solve
other (non-synthesis) problems?

Reducing a Problem to Synthesis

What is a core computational problem for formal
synthesis (aka SAT or SMT)?

Syntax-Guided Synthesis (SyGuS)

Is there a theory of formal inductive synthesis
distinct from (traditional) machine learning?

Oracle-Guided Inductive Synthesis (OGIS)

Is there a complexity/computability theory for
formal inductive synthesis?

Yes! Can compare different oracles/learners

Outline for this Lecture Sequence

m Examples of Reduction to Synthesis
— Specification
— Verification

Demo: Requirement Mining for Cyber-Physical
Systems

Differences between Inductive Synthesis and
Machine Learning

Oracle-Guided Inductive Synthesis
— Examples, CEGIS

Theoretical Analysis of CEGIS
— Properties of Learner
— Properties of Verifier

Further Reading

m S. A Seshia, “Combining Induction, Deduction,
and Structure for Verification and Synthesis.”,
Proc. IEEE 2015, DAC 2012

http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-seshia-
dac12.nhtml

http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-seshia-
pieee15.html

m S. Jhaand S. A. Seshia, “A Theory of Formal
Synthesis via Inductive Learning”

http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-jha-
arxiv15.html

m Lecture notes of EECS 219C: “Computer-Aided
Verification” class at UC Berkeley, available at:

http://www.eecs.berkeley.edu/~sseshia/219c/ el

Reductions to Synthesis

Artifacts Synthesized in Verification

Inductive invariants
Abstraction functions / abstract models

Auxiliary specifications (e.g., pre/post-conditions,
function summaries)

Environment assumptions / Env model / interface
specifications

Interpolants

Ranking functions

Intermediate lemmas for compositional proofs
Theory lemma instances in SMT solving
Patterns for Quantifier Instantiation

Recall: Example Verification Problem

m Transition System
— Init: |
X=1aAy=1
— Transition Relation: ¢
X' =X+y A Y =y+X
Property: ¥ = G (y=21)
Attempted Proof by Induction:
V2IA X =Xty AY =ytX = Yy 21
> Fails. Need to Strengthen Invariant: Find ¢ s.t.
XZ1IAYZIA X =Xty AY =yHX = X 21AYy 21
Safety Verification = Invariant Synthesis

One Reduction from Verification to
glnthesis

NOTATION
Transition system M = (l, o)
Safety property ¥ = G(vy)

VERIFICATION PROBLEM
Does M satisfy W?

|

SYNTHESIS PROBLEM
Synthesize ¢ s.t.

| = oAy
DAYAI=SO AY

Two Reductions from Verification to
glnthesis

NOTATION
Transition system M = (I, 9), S = set of states
Safety property ¥ = G(y)

VERIFICATION PROBLEM
Does M satisfy W7
\ SYNTHESIS PROBLEM #2
l Synthesize o : S — S where
a(M) = (I, 5)
SYNTHESIS PROBLEM #1 s.t.
Synthesize ¢ s.t. o(M) satisfies ¥
| = ¢ Ay iff

DAYAI=O AY M satisfies ¥

Common Approach for both:
Inductive Synthesis

Synthesis of:-

m Inductive Invariants
— Choose templates for invariants
— Infer likely invariants from tests (examples)

— Check if any are true inductive invariants, possibly
iterate

m Abstraction Functions
— Choose an abstract domain

— Use Counter-Example Guided Abstraction
Refinement (CEGAR)

Counterexample-Guided Abstraction
Refinement is Inductive Synthesis

System Initial Abstract
—> Abstraction < Domain
Function
SYNTHESIS & % VERIFICATION [

Abstract Model : Invoke
Generate [ammmeelll . property o Model

[Anubhav Gupta, ‘06]

Abstraction - Checker

: Counter-

. . ; : example
New Abstraction Function B -

Check

Refine i :
Spurious il Counterexample:
Abstraction (_ Counterexample - Spurious?

Function

CEGAR = Counterexample-Guided
Inductive Synthesis (of Abstractions)

INITIAL IZE Structure Hypothesis (“Syntax-Guidance”),
Initial Examples

l Candidate

Artifact

>

SYNTHESIZE VERIFY
<€

Counterexample

! |

Synthesis Fails Verification Succeeds
— 35—

Lazy SMT Solving performs
Inductive Synthesis (of Lemmas)

‘ Initial
- R
Abstraction
SYNTHESIS & M VERIFICATION [

4 SAT Formula : Invoke UNSAT :
Generate — __) e [:’;one

SAT Solver

Formula _ :
A i SAT l (“Counter-

E = : (model ;
Al Blocking Clause/Lemma [: (model) example”)

Proof “Spurious NSA'E' Invoke Theory SAT
Analysis Model” : Solver —)Pone

R 436—

Reducing Specification to Synthesis

m Formal Specifications difficult for non-experts
m Tricky for even experts to get right!
m Yet we need them!

“*A design without specification cannot be right or
wrong, it can only be surprising! ”

— paraphrased from [Young et al., 1985]

m Specifications are crucial for effective testing,
verification, synthesis, ...

Reduction of Specification to
Synthesis

m VERIFICATION: Given (closed) system M, and
specification ¢, does M satisfy ¢7?

m Suppose we don’t have (a good enough) ¢.

s SYNTHESIS PROBLEM: Given (closed) system
M, find specification ¢ such that M satisfies ¢.

— Is this enough?

Example

Let a and b be atomic propositions.

What linear temporal logic formulas does the above system
satisfy?

Reduction of Specification to
Synthesis

m VERIFICATION: Given (closed) system M, and
specification ¢, does M satisfy ¢7?

m SYNTHESIS PROBLEM: Given (closed) system M
and class of specifications C, find specification ¢

In C such that M satisfies ¢.

— C can be defined syntactically (e.g. with a
template)

- Eg. G(_ = X))

Reduction of Specification to
Synthesis

s VERIFICATION: Given (closed) system M, and
specification ¢, does M satisfy ¢?

s SYNTHESIS PROBLEM: Given (closed) system M and
class of specifications C, find “tightest” specification
¢ in C such that M satisfies ¢.

— Industrial Tech. Transfer Story: Requirement Synthesis for

Automotive Control Systems [Jin, Donze, Deshmukh, Seshia,
HSCC 2013, TCAD 2015]

http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-jin-tcad15.html

— Based on Counterexample-Guided Inductive Synthesis
(CEGIS)

— Implemented in Breach toolbox by A. Donze

— An enabler for Toyota to apply formal verification to software

In a cyber-physical system [see Yamaguchi et al., FMCAD 2016] »

Specification Mining

m Inductive Synthesis of Specifications

See survey of the topic in recent Ph.D.
dissertation by Wenchao Li: “Specification
Mining: New Formalisms, Algorithms and

Applications”

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/

EECS-2014-20.html

— Environment Assumptions for Reactive Synthesis
(with application to planning in robotics)

Summary of Part 1

m Basic Terminology
— Formal Synthesis
— Inductive Synthesis
— Formal Inductive Synthesis (basic intro)
— Notions from Machine Learning

m Reductions to Synthesis
— Verification artifacts
— Specifications

— Industry tech transfer: requirement mining for
closed-loop automotive control systems

Syntax-Guided Synthesis

Formal Synthesis (recap)

m Glven:
— Formal Specification ¢
— Class of Artifacts C

m Find f € C that satisfies ¢

Syntax-Guided Synthesis (SyGuS)

s Given:

— An SMT formula ¢ in UF + T (where T Is some
combination of theories)

— Typed uninterpreted function symbols f,,...f, In ¢
— Grammars G, one for each function symbol f;

m Generate expressions e,,...e, from G s.t.
O [f,...fy €., Isvalid Iin T

SyGuS Example 1

+ Theory QF-LIA
— Types: Integers and Booleans
— Logical connectives, Conditionals, and Linear arithmetic
— Quantifier-free formulas

Function to be synthesized f(int x,int y): int

Specification:
x<f,y) AN ysfly) A(fly)=xV f(x,y)=y)

Grammar
LinExp := x| y| Const | LinExp + LinExp | LinExp - LinExp

Is there a solution?

SyGuS Example 2

+ Theory QF-LIA
— Types: Integers and Booleans
— Logical connectives, Conditionals, and Linear arithmetic
— Quantifier-free formulas

Function to be synthesized f(int x,int y): int

Specification:
x<f,y) AN ysfly) A(fly)=xV f(x,y)=y)

Grammar

Term := x| y| Const | If-Then-Else (Cond, Term, Term)
Cond :=Term <=Term | Cond & Cond | ~Cond | (Cond)

Is there a solution?

From SMT-LIB to SYNTH-LIB

(set-logic LIA)
(synth-fun max2 ((x Int) (y Int)) Int
((Start Int (x y O 1 (+ Start Start)(- Start Start)
(ite StartBool Start Start)))
(StartBool Bool ((and StartBool StartBool)
(or StartBool StartBool)
(not StartBool)

(<= Start Start)))))
(declare-var x Int)
(declare-var y Int)
(constraint (>= (max2 X y) X))
(constraint (>= (max2 xy) y))
(constraint (or (=x (max2 xy)) (=Fy (max2 x y))))
(check-synth)

Invariant Synthesis via SyGuS
TFind b S.t.

X=1Ay=1= ¢Ay21

DAYZIA X =Xty A Y ZYyHX = o Ay 21

Syntax-Guidance: Grammar expressing simple
linear predicates of the form S>0 where S is an
expression defined as:

S:=0|1|x|y|S+S|S-S

Homework: Try encoding this in SyGuS and
solve it using one of the reference solvers
available at sygus.org

Recall Program Synthesis Example 2

Turn off rightmost contiguous 1 bits
10110 - 10000, 11010 - 11000

Naive implementation:

i = length(x) — 1: Bit-wise implementation:
while(x[i] == 0){ t1=x-1;
i--; if (i < 0) return x; t2 = x| t1;
} t3 =12 + 1;

X[i] = 0; i--; |
while(x[i] == 1 X return t3 & x;

X[i] = 0; i--; if (i < 0) return x;

}

return Xx;

More Demos (time permitting)

m Impact of Grammar definition

— Small changes to grammar can affect the run time
In unpredictable ways!

m Visit http://www.sygus.org for publications,
benchmarks and sample solvers

SyGuS =# 1V SMT

m Exists-Forall SMT
3f V x ¢(f,x)

O SyGuS (abusing notation slightly)
1f e GV x ¢(f,x)

m Sometimes SyGuS is solved by reduction
to EF-SMT

Other Considerations

m Let-Expressions (for common sub-expressions)
— Example:
S:=let[t:=T]Iint*t
T:=x|y|O|1| T+T|T-T

m Cost constraints/functions (for “optimality” of
synthesized function)

SyGusS vs. CEGIS

m SyGusS --- problem classes

m CEGIS --- solution classes

Example: CEGIS for SyGuS

Specification:

x<f,y) AN y<fl,y) A(fly)=xV f(x,y) =Y)
Grammar

Term:=x |y |0|1]|If-Then-Else (Cond, Term, Term)

Cond :=Term <=Term | Cond & Cond | ~Cond | (Cond)

Examples: {}

l Candidate
f(x,y) = x

>

SYNTHESIZE VERIFY
<€

Counterexample
(x=0, y=1)

Example: CEGIS for SyGuS

Specification:

x<f,y) AN y<fl,y) A(fly)=xV f(x,y) =Y)
Grammar

Term:=x |y |0|1]|If-Then-Else (Cond, Term, Term)

Cond :=Term <=Term | Cond & Cond | ~Cond | (Cond)

Examples: {(0,1)}

l Candidate
f(x,y) =y
>

SYNTHESIZE VERIFY
<€

Counterexample
(x=1, y=0)

Example: CEGIS for SyGuS

Specification:

x<f,y) AN y<fl,y) A(fly)=xV f(x,y) =Y)
Grammar

Term:=x |y |0|1]|If-Then-Else (Cond, Term, Term)

Cond :=Term <=Term | Cond & Cond | ~Cond | (Cond)

Examples:

{(0’1)’(1’0)}l Candidate
f(x,y) = 1

>

SYNTHESIZE VERIFY
<€

Counterexample
(x=0, y=0)

Example: CEGIS for SyGuS

Specification:

x<f,y) AN y<fl,y) A(fly)=xV f(x,y) =Y)
Grammar

Term:=x |y |0|1]|If-Then-Else (Cond, Term, Term)

Cond :=Term <=Term | Cond & Cond | ~Cond | (Cond)

Examples:

{(051)’(170)’l Candidate
f(

(0,0)} x,y) = ITE(Xx <, Y, X)

>
SYNTHESIZE VERIFY

Verification Succeeds! - 59 -

Three Flavors of SyGuS Solvers

m All use CEGIS, differ in implementation of
“*Synthesis” step
m Enumerative [Udupa et al., PLDI 2013]
— Enumerate expressions in increasing order of
“syntactic simplicity” with heuristic optimizations
m Symbolic [Jhaet al., ICSE 2010, PLDI 2011]
— Encode search for expressions as SMT problem
— Similar approach used in SKETCH [Solar-Lezama’08]

m Stochastic [Schkufza et al., ASPLOS 2013]

— Markov Chain Monte Carlo search method over
space of expressions

m See [Alur et al., FMCAD 2013] paper for more details

Decidability of SyGuS Problems

Theory \ Grammar Class

Regular Tree

Context-free

Finite-Domain

U

Bit-Vectors

Arrays

EUF

Regular-EUF

U
U
U
?

[B. Caulfield, M. Rabe, S. A. Seshia, S. Tripakis,
“What's Decidable about Syntax-Guided Synthesis, 2016]

An Industrial Application of Inductive
Synthesis of Specifications

Requirements Mining for Closed-Loop Automotive
Control Systems

Used internally by Toyota production groups

Challenges for Verification of Automotive

Control Systems

» Closed-loop setting very complex
software + physical artifacts
nonlinear dynamics
large look-up tables
large amounts of switching

» Requirements Incomplete/Informal

Specifications often created concurrently
with the design!

Designers often only have informal
intuition about what is “good behavior”

“shape recognition”

TOYOTA

TOYOTA MOTOR ENGINEERING &
MANUFACTURING NORTH AMERICA

Experimental Engine
Control Model

63

Solution: Requirements Mining

Requirements Expressed in Signal Temporal Logic

(STL) [Maler & Nickovic, ‘04]

Value added by mining:

» Mined Requirements become useful

documentation
» Use for code maintenance and revision

» Use during tuning and testing

It’s working, but | don’t
understand why!

64

Control Designer’s Viewpoint of the Method

» Tool extracts properties of closed-loop design

“Settling time is 6.25 ms”
“Overshoot is 100 units”

Expressed in Signal 6.25ms

Temporal Logic [Maler & Nickovic, ‘04]

OKAY, LET'S START
BY DOCUMENTING
YOUR MARKET
REQUIREMENTS .

NO, LET'S START BY
YOU TELLING ME ALL
THE THINGS YOU CAN
DESIGN. THEN TLL
TELL YOU (JHICH ONE
T LIKE.

Adaras

I a |

65

SCOTTADAME® ADL.COM

E-mmillz

3

Signal Temporal Logic (STL)

e Extension of Linear Temporal Logic (LTL) and Variant
of Metric Temporal Logic (MTL)

— Quantitative semantics: satisfaction of a property over a
trace given real-valued interpretation

— Greater value = more easily satisfied
— Non-negative satisfaction value = Boolean satisfaction

e Example: “For all time points between 60 and 100,
the absolute value of X is below 0.1”

Oi60,100 (|| < 0.1))

+0.1 7N\ 2\
0.1 N o/

60
o
\' % 100

66

CounterExample Guided Inductive Synthesis
[Jin, Donze, Deshmukh, Seshia, HSCC 2013]

TOYOTA

TOYOTA MOTOR ENGINEERING &
MANUFACTURING NORTH AMERICA

. . 4sssm—) Are there behaviors
Experimental Engine

that do NOT satisfy
these
requirements?

Control Model

Find “Tightest” Settling Time is 5 ms
Overshoot is S KPa

Properties Upper Bound on x is 3.6

Settling Time is
Overshoot is
Upper Bound on x is

67

CounterExample Guided Inductive Synthesis

TOYOTA

TOYOTA MOTOR ENGINEERING &
MANUFACTURING NORTH AMERICA

. . $m—) Are there behaviors
Experimental Engine

that do NOT satisfy

Control Model
these

requirements?

1. o
[)
[)
n. joenoa
lCounterexampIes
A RS I

Properties

Settling Time is ... ms
Overshoot is ... KPa
Upper Bound on x is ...

Settling Time is
Overshoot is
Upper Bound on x is

68

CounterExample Guided Inductive Synthesis

Optimization-based
Falsification

TOYOTA

TOYOTA MOTOR ENGINEERING &
MANUFACTURING NORTH AMERICA

_ Are there behaviors
that do NOT satisfy
these
requirements?

Parameter
Synthesis (exploits

monotonicity) Jpa~n
o .

B TORRONI B e

) lCounterexampIes

Find "Tightest" Settling Time is 6.3 ms
Properties — Overshoot is 5.6 KPa
P Upper Bound on x is 4.1

Parametric Signal

Settling Time is Temporal Logic
Overshoot is (PSTL)

Upper Bound on x is

Mined
Requirement . nis 6.3 ms

versioot is 5.6 KPa
Upper Bound on x is 4.1

69

Find "Tightest"

Parameter Synthesis = Find O-tight rproperties
values of params (for suitably small §)

A
000 000
S Too loose

%

SO P §=0.1

2.9

(x <)

1(0 X 100’

Want the value of &t corresponding to the “tightest”
satisfaction over a set of traces

70

Find "Tightest"

Satisfaction Monotonicity Properties

Satisfaction function monotonic in parameter value

Example: gz < 7)

If upper bound of all signals is 3,
any number > 3 is also an upper

|

p(m, X) = inf, (7 - X(t))
For all X, p(m, X) is @ monotonic function of &

Advantage: If monotonic, use binary search over
param space, otherwise exhaustive search

71

idi i : . - Find "Tightest"
Deciding Satisfaction Monotonicity - poperties

use SMT solving!

e Need to decide whether:
For all X, p(m, X) is @ monotonic function of &

e Theorem: Deciding monotonicity of a PSTL formula is
undecidable

* Use an encoding to satisfiability modulo theories
(SMT) solving
— Quantified formulas involving uninterpreted functions,

and arithmetic over reals = linear arithmetic if predicates
are linear

72

Experimental Results on Industrial Airpath
Controller [Jin, Donze, Deshmukh, Seshia, HSCC 2013]

TOYOTA

TOYOTA MOTOR ENGINEERING &
MANUFACTURING HORTH AMERICA

Experimental Engine
Control Model

Found max overshoot with 7000+ simulations in 13 hours

Attempt to mine maximum observed settling time:
— stops after 4 iterations
— gives answer t

= simulation time horizon (shown in trace below)

M

settle

Ill' T .H.\E i |
.“iiv\ \\\ !

RARRR

o

-
— el

Pressure diff. (x)

/3

Mining can expose deep bugs

TOYOTA

TOYOTA MOTOR ENGINEERING &
MAHNUFACTURING NORTH AMERIC A

o

1 /\ / j\ i

Pressure diff. (x)

Experimental Engine
Control Model

e Uncovered a tricky bug

— Discussion with control designer revealed it to be a real bug

— Root cause identified as wrong value in a look-up table, bug
was fixed

e Duality between spec mining and bug-finding:
— Synthesizing “tightest” spec could uncover corner-case bugs
— Looking for bugs ~ Mine for negation of bug

74

Toyota Unit’ s Experience with Model Checking

[FMCAD’ 16]
Revising property

Making property Executing

model checking

Making model

Revising model

-
—-—
fam)
—-—

Total
Work hour

H60min

T trails sounterexample

P
—3
Making/revising property: 110 min =

Mapping counterexample: 280 min for just 1 module

Overview of FMCAD’16 methodology

Breach
1. Pre—condition

mining

Pre—condition for
software module
SLDV/

2. Software CBMC
model checking

Module level
counterexample

3. Simulation—Based]
Verification Breach

System level
counterexample

5
4
.
0

———————————————————————————————————————

‘, — |

controller plant

module

!
module » module

a

y
3
o

o

1<
)
b

N o o e o e o o o o o o o e o = = =

— o o o o e o

Requirement Mining In Toyota Case Study [FMCAD’16]

100 '
Z Z g
3 13 s
£ 15 E oo
L L e A
—
100
\,_‘ BO
o
| ‘—E‘_ 60
sensor 2 40
a0
I 0 v
modutesl= controller .
4
module *module V¥ Founded false case
1 I—
L I...cdule < B Violation area of post—condition
actuator

\\/

s

Find system level violation
actuator output < 150

target

il '] 10 15 N]
time[sec]

Demo: Requirement Mining for a Helicopter
Control Model

An Example: Modeling Helicopter Dynamics
(taken from textbook available at
http://LeeSeshia.org, Chapter 2)

M-‘r]lll'l Holor

Orive Shalt — .
= Tail
S Rolor
ackpil —_
Tall Boom

T Engine, Transmission,

S = Fuel, eic.

Landing Skids
The Fundamental Parts of any Helicopter

Go to Breach webpage for this example:
http://www.eecs.berkeley.edu/~donze/mining_example.html

Modeling Physical Motion

Six degrees of freedom:
O Position: x, vy, z
O Orientation: pitch, yaw, roll

X axis

Feedback Control Problem

o

A helicopter without a tail rotor, like the one
below, will spin uncontrollably due to the
torque induced by friction in the rotor shaft.

Control system problem:
Apply torque using the talil
rotor to counterbalance
the torque of the top rotor.

Model of the helicopter

Helicopter
Input is the net torque of 7 0
: Y:, yy Y
the tail rotor and the top et p—
rotor. Output is the angular 0,(0)

velocity around the y axis.

Parameters of the

model are shown In . 1

the box. The mput | Qy(t) _ Qy(O) I - /Ty(fr)d'r
and output relation is Yy

given by the equation

to the right.

Proportional controller

Controller Helicopter
v ¢ L I LS
¢ 6,(0)

desired error net
angular signal torque

velocity e(t) =y(t) —6,(1) Ty(t) = Ke(t)

How long does it take for theta_dot to reach desired psi?

Summary of Part 2

m Syntax-Guided Synthesis
— Problem Definition
— Examples
— CEGIS
— Decidability
m Requirement Mining for Closed-Loop Control
Systems
— Use of CEGIS, but for synthesis of STL properties

— SMT solving used to determine satisfaction
monotonicity

Theoretical Aspects of
Formal Inductive Synthesis

CEGIS = Learning from Examples &
Counterexamples

INITIALIZE BRSNS EESE llEIR=] ol[s

l Candidate

Concept

>

LEARNING VERIFICATION
ALGORITHM ORACLE

Counterexample

! |

Learning Fails Learning Succeeds "

How is Formal Inductive Synthesis different
from (traditional) Machine Learning?

Comparison*

[see also, Jha & Seshia, 20195]

Feature FOIEL Indu_ctlve Machine Learning
Synthesis

Concept/Program Programmable,

Classes Complex ~reeel, EmplE

Learning General-Purpose
Algorithms Solvers

Specialized

Exact, w/ Formal Approximate, w/

Learning Criteria Spec Cost Function

Common (can Rare (black-box

racle-Guidan .
OraclesGuidance select/design Oracle) oracles)

* Between typical inductive synthesizer and machine learning algo

Formal Inductive Synthesis

m Glven:
— Class of Artifacts C -- Formal specification ¢
— Domain of examples D
— Oracle Interface O
m Set of (query, response) types
m Find using only O an f € C that satisfies ¢
— 1.e. no direct access to D or ¢

m Example:
— C: all affine functions f of x € R
— ¢: VX.f(X) >2x +42
— O ={(pos-witness, (X, f(x)) satisfying ¢)}

Oracle Interface

m Generalizes the simple model of sampling
positive/negative examples from a corpus
of data

LEARNER ORACLE

m Specifies WHAT the learner and oracle do

m Does not specify HOW the oracle/learner
IS Implemented

Common Oracle Query Types
(for trace property ¢)

Positive Withess
<€ >

X € ¢, if one exists, else L

Negative Witness
<€

X ¢ ¢, if one exists, else L
Membership: Is X € ¢?

Yes / No

Equivalence: Is f = ¢7?
<€ >

Yes / No + x € ¢&Df
< Subsumption/Subset: Is f S ¢? N

Yes/No+x e f\¢
Distinguishing Input: f, X € f

<€ >

L EARNER fst. £ AXCEf, if it exists; ORACLE

o.w. | - 91—

Formal Inductive Synthesis

s Given:
— Class of Artifacts C -- Formal specification ¢
— Domain of examples D

— Oracle Interface O
m Set of (query, response) types

m Find using only O an f € C that satisfies ¢
— 1.e. no direct access to D or ¢

m How do we solve this?

Design/Select:

Oracle-Guided Inductive Synthesis
(OGIS)

m A dialogue Is a sequence of (query, response)
conforming to an oracle interface O

m An OGIS engine is a pair <L, T> where

— L is a learner, a non-deterministic algorithm
mapping a dialogue to a concept ¢ and query ¢

— T is an oracle/teacher, a non-deterministic algorithm
mapping a dialogue and query to aresponse r

m An OGIS engine <L,T> solves an FIS problem if
there exists a dialogue between L and T that
converges in aconcept f € C that satisfies ¢

Language Learning in the Limit

[E.M. Gold, 1967]
m Concept = Formal Language

EMATION AN rTRoL 10, M7=474 I|l'_J-_..__|

ranguege Identificotion in the Limil = Class of languages identifiable
In the limit if there is a learning
procedure that, for each

language in that class, given an

I& Mapr (Gonp®

Infinite stream of strings, will
eventually generate a
representation of the language.
fE el = RcS Ults:
BN — Cannot learn regular languages,

| CFLs, CSLs using just positive
witness queries

— Can learn using both positive &

negative witness queries (assuming

all examples eventually enumerated_)94_

Query-Based Learning

[Queries and Concept Learning, 1988]
[Queries Revisited, 2004]

m First work on learning based on
guerying an oracle

L 4 — Supports witness, equivalence, membership,
i.

subsumption/subset queries
Oracle is BLACK BOX

Dana Angluin Oracle determines correctness: No separate
correctness condition or formal specification

Focus on proving complexity results for
specific concept classes

m Sample results

— Can learn DFAs in poly time from
membership and equivalence queries

— Cannot learn DFAs or DNF formulas in poly
time with just equivalence queries _o5_

Examples of OGIS

m L*algorithm to learn DFAs: counterexample-guided
— Membership + Equivalence queries

CEGAR

CEGIS used in Program Synthesis/SyGuS solvers
— (positive) Witness + Counterexample/Verification

queries

CEGIS for Hybrid Systems
— Requirement Mining [HSCC 2013]
— Reactive Model Predictive Control [HSCC 2015]

Two different examples:

— Learning Programs from Distinguishing Inputs [Jha et
al., ICSE 2010]

— Learning LTL Properties for Synthesis from
Counterstrategies [Li et al., MEMOCODE 2011]

Revisiting the Comparison

Formal Inductive Machine
Synthesis Learning

Feature

What can we prove about

convergence/complexity for:

* General concept classes (e.g.,
recursive languages)

 Different properties of “general-
purpose” learners

 Different properties of (non black-

box) oracles lack-box

les)

Query Types for CEGIS

Positive Withess

LEARNER ° > ORACLE

X € ¢, if one exists, else L

Counterexample to ? N '

£
L
Yes + counterexample x / L O\ ‘\\ﬁ@

* Finite memory vs * Type of counter-
Infinite memory example given

Concept class: Any set of recursive languages

Questions

m Convergence: How do properties of the learner
and oracle impact convergence of CEGIS?
(learning in the limit for infinite-sized concept
classes)

m Sample Complexity: For finite-sized concept
classes, what upper/lower bounds can we derive
on the number of oracle queries, for various
CEGIS variants?

Problem 1: Bounds on

Sample Complexity

Teaching Dimension
[Goldman & Kearns, ‘90, ‘95]

m The minimum number of (labeled) examples a
teacher must reveal to uniquely identify any
concept from a concept class

X
@
an
@©
-
O
7))
-
D
=
7
[Q\|
©
(@)
=
-
O
qv]
D
_I

B

NENI DN [—

—_—— -]

What about N dimensions?

Teaching Dimension

m The minimum number of (labeled) examples a
teacher must reveal to uniquely identify any
concept from a concept class

TD(C):maXCeC minceZ(C) |G|

where
C is a concept class
C Is aconcept
c Is ateaching sequence (uniquely identifies concept c)
> Is the set of all teaching sequences

Theoretical Results: Num. of Queries needed
for Finite Program Classes with CEGIS

= Thm 1: NP-hard to find minimum number of queries
for CEGIS oracle interface

— CEGIS int. = {counterexample, positive witness}

m Thm 2: Teaching Dimension of Program Class is
lower bound on query complexity

— TD: min number of queries needed to uniquely
Identify any program in the class

m Thm 3: Teaching Dimension of Octagons is O(d?)
where d Is the dimension of the space

— Relevant for Synthesis of “Octagon” Invariants

[Jha & Seshia ‘15; Jha, Seshia, Zhu, SYNT'16]

Problem 2:

Convergence of CEGIS for Infinite-
Sized Program Classes

Learning -1 <x<1AMN-1<y<1
(C = Boxes around origin)

Arbitrary Counterexamples may not work
for Arbitrary Learners

=
-
=
5
=
=
®
| -
(T
i
\4
S
x
\4
N
(@)
5
=
®
D
-

@
O
=
M
X
D
| -
()]
=
-
.
@)
O

S (dist from origin)

e

4————'————_-

\/

Types of Counterexamples
Assume there is a function size: D 2> N
— Maps each example x to a natural number
— Imposes total order amongst examples

s CEGIS: Arbitrary counterexamples
— Any element of f @ ¢

m MinCEGIS: Minimal counterexamples
— A least element of f @ ¢ according to size

— Motivated by debugging methods that seek to find
small counterexamples to explain errors & repair

Types of Counterexamples

Assume there is a function size: D > N

m CBCEGIS: Constant-bounded counterexamples
(bound B)

— An element x of f @ ¢ s.t. size(x) < B

— Motivation: Bounded Model Checking, Input
Bounding, Context bounded testing, etc.

m PBCEGIS: Positive-bounded counterexamples

— An element x of f @ ¢ S.t. size(X) Is no larger than
that of any positive example seen so far

— Motivation: bug-finding methods that mutate a

correct execution in order to find buggy behaviors
- 109 —

Summary of Results
[Jha & Seshia, SYNT 14; “135]

N/
e N [

CEGIS= MINCEC:IS\

o / |'LBCEGIS |

I II
h Lbu:‘* "FIH / ‘ /
‘x

-

— «mm Lnotpb \
xwmcsﬁﬁ = cegis B Looteb

- . Lcbnotpb
o - ® Lpb

Finite Memory Inductive Synthesis [nfinite Memory Inductive Synthesis

PBCEGIS | I

&
2 7

Open Problems

m For Finite Domains: Prove results on the speed of
termination of CEGIS

m For Specific Infinite Domains (e.g., Boolean
combinations of linear real arithmetic): Can we
prove termination of CEGIS loop?

m Broaden Program Classes & Properties of
Learner/Verifier considered

Summary

s Formal Synthesis and its Applications
— Reduction to Synthesis
— Solve via Inductive Synthesis

Syntax-Guided Synthesis

Industrial Case Study: Synthesis of Specifications

Formal Inductive Synthesis

— Counterexample-guided inductive synthesis
(CEGIS)

— General framework for solution methods: Oracle-
Guided Inductive Synthesis (OGIS)

— Theoretical analysis
Lots of potential for future work!

