
Formal Inductive Synthesis
-- Theory and Applications
Formal Inductive Synthesis
-- Theory and Applications

Sanjit A. Seshia

Professor
EECS Department

UC Berkeley

SAT/SMT Winter School @ TIFR
December 8, 2016

Acknowledgments to several Ph.D. students, postdoctoral
researchers, and collaborators, and to

the students of EECS 219C, Spring 2015/16, UC Berkeley

– 2 –

SAT/SMT Solving

Machine Learning
Formal

Synthesis

Connections in this LectureConnections in this Lecture

– 3 –

Examples of SynthesisExamples of Synthesis

Program Synthesis: Example 1

Compute the MAX of two 32‐bit integers without using
conditional statements!

int max(int x, int y) {
if (x >= y)
return x;

else
return y;

}

int max_no_cond(int x, int y) {
t1= x ^ y;
t2 = - (x < y);
t3 = t1 & t2;
return t3 ^ x;

}

Program Synthesis: Example 2

Turn off rightmost contiguous 1 bits
10110  10000, 11010  11000

Bit-wise implementation:
t1= x - 1;
t2 = x | t1;
t3 = t2 + 1;
return t3 & x;

Naïve implementation:

i = length(x) – 1;
while(x[i] == 0){
i--; if (i < 0) return x;

}
x[i] = 0; i--;
while(x[i] == 1){
x[i] = 0; i--; if (i < 0) return x;
}
return x;

Program Synthesis problem

• Given a reference implementation R, and a
restricted program space S, find a program P in S
that is equivalent to the reference R.

• Reference: S. Jha et al., Oracle‐Guided
Component‐Based Program Synthesis, ICSE 2010.

S. A. Seshia 6

Example Verification Problem

• Transition System
– Init: I

x = 1  y = 1 x, y  Z
– Transition Relation: 

x’ = x+y  y’ = y+x
• Temporal Logic Property:  = G (y  1)

– “always, y  1”
• Attempted Proof by Induction:

– Base Case: x = 1  y = 1  y  1
– Inductive Step:

y  1  x’ = x+y  y’ = y+x  y’  1

Example Verification Problem

• Transition System
– Init: I

x = 1  y = 1
– Transition Relation: 

x’ = x+y  y’ = y+x
• Property:  = G (y  1)
• Attempted Proof by Induction Fails:

y  1  x’ = x+y  y’ = y+x  y’  1
Need to Strengthen Invariant: Find  s.t.

  y  1  x’ = x+y  y’ = y+x  ’  y’  1
• Safety Verification  Invariant Synthesis

Safety Verification as Invariant Synthesis

• Transition System
– Init: I

x = 1  y = 1
– Transition Relation: 

x’ = x+y  y’ = y+x
• Property:  = G (y  1)
 Following Strengthened Invariant works:  = x  1

x  1  y  1  x’ = x+y  y’ = y+x  x’  1  y’  1

• How can we automate this process?

Another (Fun) Synthesis Problem: Inventing Card
Tricks

S. A. Seshia 10

J – audience card Configuration where only
front‐facing card is the one
chosen initially by audience

Transformations such as
Moving card to front/back,

Flipping card over,
Cutting the deck (with
audience choice),

Repeating some number
of times (audience chosen)

[S. Jha, V. Raman, and S. A. Seshia, FMCAD 2016]

Similar format for problems in AI planning

 sequence of transformations  audience choices
(we reach the desired final configuration)

– 11 –

Formal Synthesis and
Machine Learning
Formal Synthesis and
Machine Learning

– 12 –

Formal SynthesisFormal Synthesis

 Given:
– Class of Artifacts C
– Formal (mathematical) Specification 

 Find f  C that satisfies 

 Example:
– C: all affine functions f of x  R
– : x. f(x)  x + 42

– 13 –

Induction vs. DeductionInduction vs. Deduction

 Induction: Inferring general rules (functions)
from specific examples (observations)
– Generalization

 Deduction: Applying general rules to derive
conclusions about specific instances
– (generally) Specialization

 Learning/Synthesis can be Inductive or
Deductive or a combination of the two

– 14 –

Inductive SynthesisInductive Synthesis

 Given
– Class of Artifacts C
– Set of (labeled) Examples E (or source of E)
– A stopping criterion 

 May or may not be formally described

 Find, using only E, an f  C that meets 

 Example:
– C: all affine functions f of x  R
– E = {(0,42), (1, 43), (2, 44)}
–  -- find consistent f

– 15 –

Inductive SynthesisInductive Synthesis

 Given
– Class of Artifacts C
– Set of Examples E (or source of E)
– A stopping criterion 

 Find using only E an f  C that meets 

 Example:
– C: all affine functions f of x  R
– E = {(0,42), (1, 43), (2, 45)}
–  -- find consistent f

– 16 –

Inductive SynthesisInductive Synthesis

 Example:
– C: all predicates of the form ax + by  c
– E = {(0,42), (1, 43), (2, 45)}
–  -- find consistent f

 One such: -x + y  42
 Another: -x + y  0
 Which one to pick: need to augment ?

– 17 –

Machine LearningMachine Learning

 "A computer program is said to
learn from experience E with
respect to some class of tasks T
and performance measure P, if
its performance at tasks in T, as
measured by P, improves with
experience E.”
- Tom Mitchell [1998]

– 18 –

Machine Learning: Typical Setup Machine Learning: Typical Setup

Given:
 Domain of Examples D
 Concept class C

– Concept is a subset of D
– C is set of all concepts

 Criterion  (“performance measure”)

Find using only examples from D, f  C meeting 

– 19 –

Inductive Bias in Machine Learning Inductive Bias in Machine Learning

“Inductive bias is the set of
assumptions required to
deductively infer a concept
from the inputs to the learning
algorithm.”

Example:
C: all predicates of the form ax + by  c
E = {(0,42), (1, 43), (2, 45)}
 -- find consistent f

Which one to pick: -x + y  42 or -x + y  0
Inductive Bias resolves this choice
• E.g., pick the “simplest one” (Occam’s razor)

– 20 –

Formal Inductive Synthesis
(Initial Defn)
Formal Inductive Synthesis
(Initial Defn)

 Given:
– Class of Artifacts C
– Formal specification 
– Domain of examples D

 Find f  C that satisfies  using only elements of D
– i.e. no direct access to , only to elements of D

representing 

 Example:
– C: all affine functions f of x  R
– D = R2

– : x. f(x)  x + 42

– 21 –

ImportanceImportance

Formal Inductive Synthesis is Everywhere!
– Many problems can be solved effectively

when viewed as synthesis

Particularly effective in various tasks in
Formal Methods

For the rest of this lecture series, for brevity we will
often use “Inductive Synthesis” to mean “Formal
Inductive Synthesis”

– 22 –

Formal Methods  Computational Proof
Methods
Formal Methods  Computational Proof
Methods
 Formal Methods is about Provable Guarantees

– Specification/Modeling  Statement of
Conjecture/Theorem

– Verification  Proving/Disproving the Conjecture
– Synthesis  Generating (parts of) Conjecture/Proof

 Formal Methods  Computational Proof methods
– Temporal logic / Assertions
– Boolean reasoning: SAT solving & Binary Decision

Diagrams
– Equivalence checking
– Model checking
– Automated theorem proving, SMT solving
– …

2

– 23 –

Inductive Synthesis for Formal
Methods
Inductive Synthesis for Formal
Methods

 Modeling / Specification
– Generating environment/component models
– Inferring (likely) specifications/requirements

 Verification
– Synthesizing verification/proof artifacts such as

inductive invariants, abstractions, interpolants,
environment assumptions, etc.

 Synthesis (of course)

– 24 –

Questions of Interest for this TutorialQuestions of Interest for this Tutorial

 How can inductive synthesis be used to solve
other (non-synthesis) problems?

 What is a core computational problem for formal
synthesis (aka SAT or SMT)?

 Is there a theory of formal inductive synthesis
distinct from (traditional) machine learning?

 Is there a complexity/computability theory for
formal inductive synthesis?

– 25 –

Questions of Interest for this TutorialQuestions of Interest for this Tutorial

 How can inductive synthesis be used to solve
other (non-synthesis) problems?

 Reducing a Problem to Synthesis
 What is a core computational problem for formal

synthesis (aka SAT or SMT)?
 Syntax-Guided Synthesis (SyGuS)
 Is there a theory of formal inductive synthesis

distinct from (traditional) machine learning?
 Oracle-Guided Inductive Synthesis (OGIS)
 Is there a complexity/computability theory for

formal inductive synthesis?
 Yes! Can compare different oracles/learners

– 26 –

Outline for this Lecture SequenceOutline for this Lecture Sequence

 Examples of Reduction to Synthesis
– Specification
– Verification

 Demo: Requirement Mining for Cyber-Physical
Systems

 Differences between Inductive Synthesis and
Machine Learning

 Oracle-Guided Inductive Synthesis
– Examples, CEGIS

 Theoretical Analysis of CEGIS
– Properties of Learner
– Properties of Verifier

– 27 –

Further ReadingFurther Reading

 S. A. Seshia, “Combining Induction, Deduction,
and Structure for Verification and Synthesis.”,
Proc. IEEE 2015, DAC 2012
http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-seshia-

dac12.html
http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-seshia-

pieee15.html

 S. Jha and S. A. Seshia, “A Theory of Formal
Synthesis via Inductive Learning”
http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-jha-

arxiv15.html

 Lecture notes of EECS 219C: “Computer-Aided
Verification” class at UC Berkeley, available at:
http://www.eecs.berkeley.edu/~sseshia/219c/

– 28 –

Reductions to SynthesisReductions to Synthesis

– 29 –

Artifacts Synthesized in VerificationArtifacts Synthesized in Verification

 Inductive invariants
 Abstraction functions / abstract models
 Auxiliary specifications (e.g., pre/post-conditions,

function summaries)
 Environment assumptions / Env model / interface

specifications
 Interpolants
 Ranking functions
 Intermediate lemmas for compositional proofs
 Theory lemma instances in SMT solving
 Patterns for Quantifier Instantiation
 …

– 30 –

Recall: Example Verification ProblemRecall: Example Verification Problem

 Transition System
– Init: I

x = 1  y = 1
– Transition Relation: 

x’ = x+y  y’ = y+x
 Property:  = G (y  1)
 Attempted Proof by Induction:

y  1  x’ = x+y  y’ = y+x  y’  1
 Fails. Need to Strengthen Invariant: Find  s.t.

x  1  y  1  x’ = x+y  y’ = y+x  x’  1  y’  1
 Safety Verification  Invariant Synthesis

– 31 –

One Reduction from Verification to
Synthesis
One Reduction from Verification to
Synthesis

SYNTHESIS PROBLEM
Synthesize  s.t.

I    
      ’  ’

VERIFICATION PROBLEM
Does M satisfy ?

NOTATION
Transition system M = (I, )
Safety property  = G()

– 32 –

Two Reductions from Verification to
Synthesis
Two Reductions from Verification to
Synthesis

NOTATION
Transition system M = (I, ), S = set of states
Safety property  = G()

SYNTHESIS PROBLEM #1
Synthesize  s.t.

I    
      ’  ’

VERIFICATION PROBLEM
Does M satisfy ?

SYNTHESIS PROBLEM #2
Synthesize  : S  Ŝ where

(M) = (I, )
s.t.

(M) satisfies 
iff

M satisfies 

ˆ ˆ

– 33 –

Common Approach for both:
Inductive Synthesis
Common Approach for both:
Inductive Synthesis

Synthesis of:-

 Inductive Invariants
– Choose templates for invariants
– Infer likely invariants from tests (examples)
– Check if any are true inductive invariants, possibly

iterate

 Abstraction Functions
– Choose an abstract domain
– Use Counter-Example Guided Abstraction

Refinement (CEGAR)

– 34 –

Counterexample-Guided Abstraction
Refinement is Inductive Synthesis
Counterexample-Guided Abstraction
Refinement is Inductive Synthesis

Invoke
Model

Checker
Done

Valid

Counter-
example

Check
Counterexample:

Spurious?
Spurious

Counterexample

YES

Abstract
Domain

System
+Property

Initial
Abstraction

Function

Done
NO

Generate
Abstraction

Abstract Model
+ Property

Refine
Abstraction

Function

New Abstraction Function

Fail

SYNTHESIS VERIFICATION

[Anubhav Gupta, ‘06]

– 35 –

CEGAR = Counterexample-Guided
Inductive Synthesis (of Abstractions)
CEGAR = Counterexample-Guided
Inductive Synthesis (of Abstractions)

INITIALIZE

SYNTHESIZE VERIFY

Candidate
Artifact

Counterexample

Verification SucceedsSynthesis Fails

Structure Hypothesis (“Syntax-Guidance”),
Initial Examples

– 36 –

Lazy SMT Solving performs
Inductive Synthesis (of Lemmas)
Lazy SMT Solving performs
Inductive Synthesis (of Lemmas)

Invoke
SAT

Solver
Done

UNSAT

SAT
(model)

Invoke Theory
Solver“Spurious

Model”

UNSAT

SMT
Formula

Initial
Boolean

Abstraction

Done
SAT

Generate
SAT

Formula

SAT Formula

Proof
Analysis

Blocking Clause/Lemma

SYNTHESIS VERIFICATION

(“Counter-
example”)

– 37 –

Reducing Specification to SynthesisReducing Specification to Synthesis

 Formal Specifications difficult for non-experts
 Tricky for even experts to get right!
 Yet we need them!

“A design without specification cannot be right or
wrong, it can only be surprising!”

– paraphrased from [Young et al., 1985]

 Specifications are crucial for effective testing,
verification, synthesis, …

– 38 –

Reduction of Specification to
Synthesis
Reduction of Specification to
Synthesis
 VERIFICATION: Given (closed) system M, and

specification , does M satisfy ?

 Suppose we don’t have (a good enough) .

 SYNTHESIS PROBLEM: Given (closed) system
M, find specification  such that M satisfies .
– Is this enough?

– 39 –

ExampleExample

a b

Let a and b be atomic propositions.

What linear temporal logic formulas does the above system
satisfy?

– 40 –

Reduction of Specification to
Synthesis
Reduction of Specification to
Synthesis
 VERIFICATION: Given (closed) system M, and

specification , does M satisfy ?

 SYNTHESIS PROBLEM: Given (closed) system M
and class of specifications C, find specification 
in C such that M satisfies .
– C can be defined syntactically (e.g. with a

template)
– E.g. G(_  X _)

– 41 –

Reduction of Specification to
Synthesis
Reduction of Specification to
Synthesis

 VERIFICATION: Given (closed) system M, and
specification , does M satisfy ?

 SYNTHESIS PROBLEM: Given (closed) system M and
class of specifications C, find “tightest” specification
 in C such that M satisfies .
– Industrial Tech. Transfer Story: Requirement Synthesis for

Automotive Control Systems [Jin, Donze, Deshmukh, Seshia,
HSCC 2013, TCAD 2015]
http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-jin-tcad15.html

– Based on Counterexample-Guided Inductive Synthesis
(CEGIS)

– Implemented in Breach toolbox by A. Donze
– An enabler for Toyota to apply formal verification to software

in a cyber-physical system [see Yamaguchi et al., FMCAD 2016]

– 42 –

Specification MiningSpecification Mining

 Inductive Synthesis of Specifications

 See survey of the topic in recent Ph.D.
dissertation by Wenchao Li: “Specification
Mining: New Formalisms, Algorithms and
Applications”

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/
EECS-2014-20.html

– Environment Assumptions for Reactive Synthesis
(with application to planning in robotics)

– 43 –

Summary of Part 1Summary of Part 1

 Basic Terminology
– Formal Synthesis
– Inductive Synthesis
– Formal Inductive Synthesis (basic intro)
– Notions from Machine Learning

 Reductions to Synthesis
– Verification artifacts
– Specifications
– Industry tech transfer: requirement mining for

closed-loop automotive control systems

– 44 –

Syntax-Guided SynthesisSyntax-Guided Synthesis

– 45 –

Formal Synthesis (recap)Formal Synthesis (recap)

 Given:
– Formal Specification 
– Class of Artifacts C

 Find f  C that satisfies 

– 46 –

Syntax-Guided Synthesis (SyGuS)Syntax-Guided Synthesis (SyGuS)

 Given:
– An SMT formula  in UF + T (where T is some

combination of theories)
– Typed uninterpreted function symbols f1,..,fk in 
– Grammars G, one for each function symbol fi

 Generate expressions e1,..,ek from G s.t.
 [f1,..,fk  e1,..,ek] is valid in T

– 47 –

SyGuS Example 1SyGuS Example 1
 Theory QF-LIA

– Types: Integers and Booleans
– Logical connectives, Conditionals, and Linear arithmetic
– Quantifier-free formulas

 Function to be synthesized 	݂ ,ݔ	ݐ݊݅ ݕ	ݐ݊݅ : ݐ݊݅

 Specification:
ݔ ൑ ݂ ,ݔ ݕ 	∧ ݕ		 ൑ ݂ ,ݔ ݕ 	∧ 	 	݂ ,ݔ ݕ ൌ 	ݔ ∨ 	݂ ,ݔ ݕ ൌ 	ݕ

 Grammar
LinExp :ൌ		x |	y |	Const |	LinExp ൅	LinExp |	LinExp ‐ LinExp

Is there a solution?

– 48 –

SyGuS Example 2SyGuS Example 2
 Theory QF-LIA

– Types: Integers and Booleans
– Logical connectives, Conditionals, and Linear arithmetic
– Quantifier-free formulas

 Function to be synthesized 	݂ ,ݔ	ݐ݊݅ ݕ	ݐ݊݅ : ݐ݊݅

 Specification:
ݔ ൑ ݂ ,ݔ ݕ 	∧ ݕ		 ൑ ݂ ,ݔ ݕ 	∧ 	 	݂ ,ݔ ݕ ൌ 	ݔ ∨ 	݂ ,ݔ ݕ ൌ 	ݕ

 Grammar
Term := x | y | Const | If-Then-Else (Cond, Term, Term)
Cond := Term <= Term | Cond & Cond | ~Cond | (Cond)

Is there a solution?

– 49 –

(set-logic LIA)
(synth-fun max2 ((x Int) (y Int)) Int

((Start Int (x y 0 1 (+ Start Start)(- Start Start)
(ite StartBool Start Start)))

(StartBool Bool ((and StartBool StartBool)
(or StartBool StartBool)
(not StartBool)
(<= Start Start)))))

(declare-var x Int)
(declare-var y Int)
(constraint (>= (max2 x y) x))
(constraint (>= (max2 x y) y))
(constraint (or (= x (max2 x y)) (= y (max2 x y))))
(check-synth)

From SMT-LIB to SYNTH-LIBFrom SMT-LIB to SYNTH-LIB

– 50 –

Invariant Synthesis via SyGuSInvariant Synthesis via SyGuS

 Find  s.t.
x = 1  y = 1    y  1
  y  1  x’ = x+y  y’ = y+x  ’  y’  1

 Syntax-Guidance: Grammar expressing simple
linear predicates of the form S  0 where S is an
expression defined as:

S ::= 0 | 1 | x | y | S + S | S – S

 Homework: Try encoding this in SyGuS and
solve it using one of the reference solvers
available at sygus.org

– 51 –

Recall Program Synthesis Example 2Recall Program Synthesis Example 2

Turn off rightmost contiguous 1 bits
10110  10000, 11010  11000

Bit-wise implementation:
t1= x - 1;
t2 = x | t1;
t3 = t2 + 1;
return t3 & x;

Naïve implementation:

i = length(x) – 1;
while(x[i] == 0){
i--; if (i < 0) return x;

}
x[i] = 0; i--;
while(x[i] == 1){
x[i] = 0; i--; if (i < 0) return x;
}
return x;

– 52 –

More Demos (time permitting)More Demos (time permitting)

 Impact of Grammar definition
– Small changes to grammar can affect the run time

in unpredictable ways!

 Visit http://www.sygus.org for publications,
benchmarks and sample solvers

– 53 –

SyGuS ≠  SMT SyGuS ≠  SMT

 Exists-Forall SMT
 f  x (f,x)

 SyGuS (abusing notation slightly)

 f  G  x (f,x)

 Sometimes SyGuS is solved by reduction
to EF-SMT

– 54 –

Other ConsiderationsOther Considerations

 Let-Expressions (for common sub-expressions)
– Example:

S ::= let [t := T] in t * t
T ::= x | y | 0 | 1 | T + T | T - T

 Cost constraints/functions (for “optimality” of
synthesized function)

– 55 –

SyGuS vs. CEGISSyGuS vs. CEGIS

 SyGuS --- problem classes

 CEGIS --- solution classes

– 56 –

Example: CEGIS for SyGuSExample: CEGIS for SyGuS
 Specification:

ݔ ൑ ݂ ,ݔ ݕ 	∧ ݕ		 ൑ ݂ ,ݔ ݕ 	∧ 	 	݂ ,ݔ ݕ ൌ 	ݔ ∨ 	݂ ,ݔ ݕ ൌ 	ݕ
 Grammar

Term := x	 | y	 | 0 | 1 | If-Then-Else (Cond, Term, Term)
Cond := Term <= Term | Cond & Cond | ~Cond | (Cond)

SYNTHESIZE VERIFY

Candidate
f(x,y) = x

Counterexample
(x=0, y=1)

Examples: { }

– 57 –

Example: CEGIS for SyGuSExample: CEGIS for SyGuS
 Specification:

ݔ ൑ ݂ ,ݔ ݕ 	∧ ݕ		 ൑ ݂ ,ݔ ݕ 	∧ 	 	݂ ,ݔ ݕ ൌ 	ݔ ∨ 	݂ ,ݔ ݕ ൌ 	ݕ
 Grammar

Term := x	 | y	 | 0 | 1 | If-Then-Else (Cond, Term, Term)
Cond := Term <= Term | Cond & Cond | ~Cond | (Cond)

SYNTHESIZE VERIFY

Candidate
f(x,y) = y

Counterexample
(x=1, y=0)

Examples: {(0,1)}

– 58 –

Example: CEGIS for SyGuSExample: CEGIS for SyGuS
 Specification:

ݔ ൑ ݂ ,ݔ ݕ 	∧ ݕ		 ൑ ݂ ,ݔ ݕ 	∧ 	 	݂ ,ݔ ݕ ൌ 	ݔ ∨ 	݂ ,ݔ ݕ ൌ 	ݕ
 Grammar

Term := x	 | y	 | 0 | 1 | If-Then-Else (Cond, Term, Term)
Cond := Term <= Term | Cond & Cond | ~Cond | (Cond)

SYNTHESIZE VERIFY

Candidate
f(x,y) = 1

Counterexample
(x=0, y=0)

Examples:
{(0,1),(1,0)}

– 59 –

Example: CEGIS for SyGuSExample: CEGIS for SyGuS
 Specification:

ݔ ൑ ݂ ,ݔ ݕ 	∧ ݕ		 ൑ ݂ ,ݔ ݕ 	∧ 	 	݂ ,ݔ ݕ ൌ 	ݔ ∨ 	݂ ,ݔ ݕ ൌ 	ݕ
 Grammar

Term := x	 | y	 | 0 | 1 | If-Then-Else (Cond, Term, Term)
Cond := Term <= Term | Cond & Cond | ~Cond | (Cond)

SYNTHESIZE VERIFY

Candidate
f(x,y) = ITE(x ൑	y, y, x)

Examples:
{(0,1),(1,0),

(0,0)}

Verification Succeeds!

– 60 –

Three Flavors of SyGuS SolversThree Flavors of SyGuS Solvers

 All use CEGIS, differ in implementation of
“Synthesis” step

 Enumerative [Udupa et al., PLDI 2013]
– Enumerate expressions in increasing order of

“syntactic simplicity” with heuristic optimizations
 Symbolic [Jha et al., ICSE 2010, PLDI 2011]

– Encode search for expressions as SMT problem
– Similar approach used in SKETCH [Solar-Lezama’08]

 Stochastic [Schkufza et al., ASPLOS 2013]
– Markov Chain Monte Carlo search method over

space of expressions
 See [Alur et al., FMCAD 2013] paper for more details

– 61 –

Decidability of SyGuS ProblemsDecidability of SyGuS Problems

[B. Caulfield, M. Rabe, S. A. Seshia, S. Tripakis,
“What’s Decidable about Syntax-Guided Synthesis, 2016]

– 62 –

An Industrial Application of Inductive
Synthesis of Specifications
An Industrial Application of Inductive
Synthesis of Specifications

Requirements Mining for Closed-Loop Automotive
Control Systems

Used internally by Toyota production groups

Challenges for Verification of Automotive
Control Systems
 Closed‐loop setting very complex
 software + physical artifacts
 nonlinear dynamics
 large look‐up tables
 large amounts of switching

 Requirements Incomplete/Informal
 Specifications often created concurrently
with the design!

 Designers often only have informal
intuition about what is “good behavior”
 “shape recognition”

63

Experimental Engine
Control Model

Solution: Requirements Mining

It’s working, but I don’t
understand why!

Requirements Expressed in Signal Temporal Logic

(STL) [Maler & Nickovic, ‘04]

Value added by mining:

 Mined Requirements become useful

documentation

 Use for code maintenance and revision

 Use during tuning and testing

64

 Designer reviews mined requirements
 “Settling time is 6.25 ms”
 “Overshoot is 100 units”
 Expressed in Signal
Temporal Logic [Maler & Nickovic, ‘04]

 Tool extracts properties of closed‐loop design

Control Designer’s Viewpoint of the Method

6.25ms

100

65

Signal Temporal Logic (STL)
• Extension of Linear Temporal Logic (LTL) and Variant
of Metric Temporal Logic (MTL)
– Quantitative semantics: satisfaction of a property over a
trace given real‐valued interpretation

– Greater value more easily satisfied
– Non‐negative satisfaction value  Boolean satisfaction

• Example: “For all time points between 60 and 100,
the absolute value of x is below 0.1”

66
0 100

1

-0.1
+0.1

60

x

t

CounterExample Guided Inductive Synthesis

Find “Tightest”
Properties

Settling Time is ??
Overshoot is ??
Upper Bound on x is ??

Are there behaviors
that do NOT satisfy
these
requirements?

Settling Time is 5 ms
Overshoot is 5 KPa
Upper Bound on x is 3.6

1.

67

Experimental Engine
Control Model

[Jin, Donze, Deshmukh, Seshia, HSCC 2013]

Settling Time is 5.3 ms
Overshoot is 5.1 KPa
Upper Bound on x is 3.8

Settling Time is … ms
Overshoot is … KPa
Upper Bound on x is …

CounterExample Guided Inductive Synthesis

Find “Tightest”
Properties

Settling Time is ??
Overshoot is ??
Upper Bound on x is ??

Are there behaviors
that do NOT satisfy
these
requirements?

Counterexamples

1.

68

Experimental Engine
Control Model

CounterExample Guided Inductive Synthesis

Find "Tightest"
Properties

Settling Time is ??
Overshoot is ??
Upper Bound on x is ??

Are there behaviors
that do NOT satisfy
these
requirements?

Settling Time is 6.3 ms
Overshoot is 5.6 KPa
Upper Bound on x is 4.1

NO

Settling Time is 6.3 ms
Overshoot is 5.6 KPa
Upper Bound on x is 4.1

Mined
Requirement

Counterexamples

1.

69

Experimental Engine
Control Model

Parametric Signal
Temporal Logic

(PSTL)

Parameter
Synthesis (exploits
monotonicity)

Optimization‐based
Falsification

Parameter Synthesis = Find ‐tight
values of params (for suitably small )

0 100

3

2.9

1 000 000

Find "Tightest"
Properties

Too loose

Want the value of  corresponding to the “tightest”
satisfaction over a set of traces

x

70

If upper bound of all signals is 3,
any number > 3 is also an upper
bound

• Satisfaction function monotonic in parameter value
• Example:

• (, x) = inft ( ‐ x(t))
• For all x, (, x) is a monotonic function of 
• Advantage: If monotonic, use binary search over
param space, otherwise exhaustive search

Satisfaction Monotonicity

0 10050

3
4

Find "Tightest"
Properties

71

• Need to decide whether:
For all x, (, x) is a monotonic function of 

• Theorem: Deciding monotonicity of a PSTL formula is
undecidable

• Use an encoding to satisfiability modulo theories
(SMT) solving
– Quantified formulas involving uninterpreted functions,
and arithmetic over reals  linear arithmetic if predicates
are linear

Deciding Satisfaction Monotonicity ‐‐
use SMT solving!

Find "Tightest"
Properties

72

Experimental Results on Industrial Airpath
Controller

• Found max overshoot with 7000+ simulations in 13 hours
• Attempt to mine maximum observed settling time:

– stops after 4 iterations
– gives answer tsettle = simulation time horizon (shown in trace below)

Experimental Engine
Control Model

73

[Jin, Donze, Deshmukh, Seshia, HSCC 2013]

Mining can expose deep bugs

• Uncovered a tricky bug
– Discussion with control designer revealed it to be a real bug
– Root cause identified as wrong value in a look‐up table, bug
was fixed

• Duality between spec mining and bug‐finding:
– Synthesizing “tightest” spec could uncover corner‐case bugs
– Looking for bugs Mine for negation of bug

Experimental Engine
Control Model

74

Toyota Unit’s Experience with Model Checking
[FMCAD’16]

75

Total
Work hour

560min

1 trial

70min

40min

7 trails

Making model
Making property

Revising property

Revising model

Executing
model checking

Mapping
counterexample

Making/revising property: 110 min
Mapping counterexample: 280 min for just 1 module

76

Overview of FMCAD’16 methodology

in out

1. Pre-condition
mining

Pre-condition for
software module

2. Software
model checking

Module level
counterexample

System level
counterexample

3. Simulation-Based
Verification

Breach

Breach

SLDV/
CBMC

Requirement Mining In Toyota Case Study [FMCAD’16]

77

▼ Founded false case

Violation area of post-condition

▼

▼▼

Find system level violation
actuator output < 150

Demo: Requirement Mining for a Helicopter
Control Model

An Example: Modeling Helicopter Dynamics
(taken from textbook available at
http://LeeSeshia.org, Chapter 2)

Go to Breach webpage for this example:
http://www.eecs.berkeley.edu/~donze/mining_example.html

Modeling Physical Motion

Six degrees of freedom:
Position: x, y, z
Orientation: pitch, yaw, roll

Feedback Control Problem

A helicopter without a tail rotor, like the one
below, will spin uncontrollably due to the
torque induced by friction in the rotor shaft.

Control system problem:
Apply torque using the tail
rotor to counterbalance
the torque of the top rotor.

Model of the helicopter

Input is the net torque of
the tail rotor and the top
rotor. Output is the angular
velocity around the y axis.

Parameters of the
model are shown in
the box. The input
and output relation is
given by the equation
to the right.

Proportional controller

desired
angular
velocity

error
signal

net
torque

How long does it take for theta_dot to reach desired psi?

– 84 –

Summary of Part 2Summary of Part 2

 Syntax-Guided Synthesis
– Problem Definition
– Examples
– CEGIS
– Decidability

 Requirement Mining for Closed-Loop Control
Systems
– Use of CEGIS, but for synthesis of STL properties
– SMT solving used to determine satisfaction

monotonicity

– 85 –

Theoretical Aspects of
Formal Inductive Synthesis
Theoretical Aspects of
Formal Inductive Synthesis

– 86 –

CEGIS = Learning from Examples &
Counterexamples
CEGIS = Learning from Examples &
Counterexamples

INITIALIZE

LEARNING
ALGORITHM

VERIFICATION
ORACLE

Candidate
Concept

Counterexample

Learning SucceedsLearning Fails

“Concept Class”, Initial Examples

– 87 –

How is Formal Inductive Synthesis different
from (traditional) Machine Learning?

– 88 –

Comparison*Comparison*

Feature Formal Inductive
Synthesis Machine Learning

Concept/Program
Classes

Programmable,
Complex Fixed, “Simple”

Learning
Algorithms

General-Purpose
Solvers Specialized

Learning Criteria Exact, w/ Formal
Spec

Approximate, w/
Cost Function

Oracle-Guidance Common (can
select/design Oracle)

Rare (black-box
oracles)

* Between typical inductive synthesizer and machine learning algo

[see also, Jha & Seshia, 2015]

– 89 –

Formal Inductive Synthesis Formal Inductive Synthesis

 Given:
– Class of Artifacts C -- Formal specification 
– Domain of examples D
– Oracle Interface O

 Set of (query, response) types
 Find using only O an f  C that satisfies 

– i.e. no direct access to D or 

 Example:
– C: all affine functions f of x  R
– : x. f(x)  x + 42
– O = {(pos-witness, (x, f(x)) satisfying )}

– 90 –

Oracle InterfaceOracle Interface

 Generalizes the simple model of sampling
positive/negative examples from a corpus
of data

 Specifies WHAT the learner and oracle do
 Does not specify HOW the oracle/learner

is implemented

LEARNER ORACLE

– 91 –

Common Oracle Query Types
(for trace property )
Common Oracle Query Types
(for trace property )

LEARNER ORACLE

Positive Witness
x  , if one exists, else 

Negative Witness
x  , if one exists, else 

Membership: Is x  ?
Yes / No

Equivalence: Is f = ?
Yes / No + x  f

Subsumption/Subset: Is f ⊆ ?
Yes / No + x  f \ 

Distinguishing Input: f, X ⊆ f
f’ s.t. f’ ≠f  X ⊆ f’, if it exists;

o.w. 

– 92 –

Formal Inductive Synthesis Formal Inductive Synthesis

 Given:
– Class of Artifacts C -- Formal specification 
– Domain of examples D
– Oracle Interface O

 Set of (query, response) types
 Find using only O an f  C that satisfies 

– i.e. no direct access to D or 

 How do we solve this?

Design/Select:

– 93 –

Oracle-Guided Inductive Synthesis
(OGIS)
Oracle-Guided Inductive Synthesis
(OGIS)
 A dialogue is a sequence of (query, response)

conforming to an oracle interface O
 An OGIS engine is a pair <L, T> where

– L is a learner, a non-deterministic algorithm
mapping a dialogue to a concept c and query q

– T is an oracle/teacher, a non-deterministic algorithm
mapping a dialogue and query to a response r

 An OGIS engine <L,T> solves an FIS problem if
there exists a dialogue between L and T that
converges in a concept f  C that satisfies 

– 94 –

Language Learning in the LimitLanguage Learning in the Limit
[E.M. Gold, 1967]
 Concept = Formal Language
 Class of languages identifiable

in the limit if there is a learning
procedure that, for each
language in that class, given an
infinite stream of strings, will
eventually generate a
representation of the language.

 Results:
– Cannot learn regular languages,

CFLs, CSLs using just positive
witness queries

– Can learn using both positive &
negative witness queries (assuming
all examples eventually enumerated)

– 95 –

Query-Based LearningQuery-Based Learning
[Queries and Concept Learning, 1988]
[Queries Revisited, 2004]
 First work on learning based on

querying an oracle
– Supports witness, equivalence, membership,

subsumption/subset queries
– Oracle is BLACK BOX
– Oracle determines correctness: No separate

correctness condition or formal specification
– Focus on proving complexity results for

specific concept classes

 Sample results
– Can learn DFAs in poly time from

membership and equivalence queries
– Cannot learn DFAs or DNF formulas in poly

time with just equivalence queries

Dana Angluin

– 96 –

Examples of OGISExamples of OGIS
 L* algorithm to learn DFAs: counterexample-guided

– Membership + Equivalence queries
 CEGAR
 CEGIS used in Program Synthesis/SyGuS solvers

– (positive) Witness + Counterexample/Verification
queries

 CEGIS for Hybrid Systems
– Requirement Mining [HSCC 2013]
– Reactive Model Predictive Control [HSCC 2015]

 Two different examples:
– Learning Programs from Distinguishing Inputs [Jha et

al., ICSE 2010]
– Learning LTL Properties for Synthesis from

Counterstrategies [Li et al., MEMOCODE 2011]

– 97 –

Revisiting the ComparisonRevisiting the Comparison

Feature Formal Inductive
Synthesis

Machine
Learning

Concept/Program
Classes Complex Simple

Learning
Algorithms

General-Purpose
Solvers Specialized

Learning Criteria Exact, w/ Formal
Spec

Approximate, w/
Cost Function

Oracle-Guidance Common (can
control Oracle)

Rare (black-box
oracles)

What can we prove about
convergence/complexity for:
• General concept classes (e.g.,

recursive languages)
• Different properties of “general-

purpose” learners
• Different properties of (non black-

box) oracles

– 98 –

Query Types for CEGISQuery Types for CEGIS

LEARNER ORACLE
Positive Witness

x  , if one exists, else 

• Finite memory vs
Infinite memory

• Type of counter-
example given

Concept class: Any set of recursive languages

Counterexample to f?
Yes + counterexample x / 

– 99 –

QuestionsQuestions

 Convergence: How do properties of the learner
and oracle impact convergence of CEGIS?
(learning in the limit for infinite-sized concept
classes)

 Sample Complexity: For finite-sized concept
classes, what upper/lower bounds can we derive
on the number of oracle queries, for various
CEGIS variants?

– 100 –

Problem 1: Bounds on
Sample Complexity

Problem 1: Bounds on
Sample Complexity

– 101 –

Teaching DimensionTeaching Dimension

 The minimum number of (labeled) examples a
teacher must reveal to uniquely identify any
concept from a concept class

[Goldman & Kearns, ‘90, ‘95]

– 102 –

Teaching a 2-dimensional BoxTeaching a 2-dimensional Box

+

+

-

-

-

-

What about N dimensions?

– 103 –

Teaching DimensionTeaching Dimension

 The minimum number of (labeled) examples a
teacher must reveal to uniquely identify any
concept from a concept class

TD(C) = max c  C min   (c) ||
where

C is a concept class
c is a concept
 is a teaching sequence (uniquely identifies concept c)
 is the set of all teaching sequences

– 104 –

Theoretical Results: Num. of Queries needed
for Finite Program Classes with CEGIS
Theoretical Results: Num. of Queries needed
for Finite Program Classes with CEGIS
 Thm 1: NP-hard to find minimum number of queries

for CEGIS oracle interface
– CEGIS int. = {counterexample, positive witness}

 Thm 2: Teaching Dimension of Program Class is
lower bound on query complexity
– TD: min number of queries needed to uniquely

identify any program in the class

 Thm 3: Teaching Dimension of Octagons is O(d2)
where d is the dimension of the space
– Relevant for Synthesis of “Octagon” Invariants

[Jha & Seshia ‘15; Jha, Seshia, Zhu, SYNT’16]

– 105 –

Problem 2:
Convergence of CEGIS for Infinite-

Sized Program Classes

Problem 2:
Convergence of CEGIS for Infinite-

Sized Program Classes

– 106 –

Learning -1  x  1 /\ -1  y  1
(C = Boxes around origin)
Learning -1  x  1 /\ -1  y  1
(C = Boxes around origin)

(0,0)

Arbitrary Counterexamples may not work
for Arbitrary Learners

– 107 –

Learning -1  x,y  1 from Minimum
Counterexamples (dist from origin)
Learning -1  x,y  1 from Minimum
Counterexamples (dist from origin)

(0,0)

-

-

-

-

– 108 –

Types of CounterexamplesTypes of Counterexamples

Assume there is a function size: D  N
– Maps each example x to a natural number
– Imposes total order amongst examples

 CEGIS: Arbitrary counterexamples
– Any element of f  

 MinCEGIS: Minimal counterexamples
– A least element of f   according to size
– Motivated by debugging methods that seek to find

small counterexamples to explain errors & repair

– 109 –

Types of CounterexamplesTypes of Counterexamples

Assume there is a function size: D  N

 CBCEGIS: Constant-bounded counterexamples
(bound B)
– An element x of f   s.t. size(x) < B
– Motivation: Bounded Model Checking, Input

Bounding, Context bounded testing, etc.

 PBCEGIS: Positive-bounded counterexamples
– An element x of f   s.t. size(x) is no larger than

that of any positive example seen so far
– Motivation: bug-finding methods that mutate a

correct execution in order to find buggy behaviors

– 110 –

Summary of ResultsSummary of Results
[Jha & Seshia, SYNT’14; ‘15]

– 111 –

Open ProblemsOpen Problems

 For Finite Domains: Prove results on the speed of
termination of CEGIS

 For Specific Infinite Domains (e.g., Boolean
combinations of linear real arithmetic): Can we
prove termination of CEGIS loop?

 Broaden Program Classes & Properties of
Learner/Verifier considered

– 112 –

Summary Summary

 Formal Synthesis and its Applications
– Reduction to Synthesis
– Solve via Inductive Synthesis

 Syntax-Guided Synthesis
 Industrial Case Study: Synthesis of Specifications
 Formal Inductive Synthesis

– Counterexample-guided inductive synthesis
(CEGIS)

– General framework for solution methods: Oracle-
Guided Inductive Synthesis (OGIS)

– Theoretical analysis
 Lots of potential for future work!

