

First Order Logic: A Brief Tour (Part I)

Supratik Chakraborty
IIT Bombay

Dec 5, 2016

- Variables: x, y, z, \dots
 - Represent elements of an underlying set
- Constants: a, b, c, \dots
 - Specific elements of underlying set
- Function symbols: f, g, h, \dots
 - Arity of function: # of arguments
 - 0-ary functions: constants
- Relation (predicate) symbols: P, Q, R, \dots
 - Hence, also called “predicate calculus”
 - Arity of predicate: # of arguments
- Fixed symbols:
 - Carried over from prop. logic: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow, (,)$
 - New in FOL: \exists, \forall (“quantifiers”)

- A special binary predicate, used widely in maths
- Represented by special predicate symbol “ $=$ ”
- Semantically, binary identity relation (more on this later ...)
- First-order logic with equality
 - Different expressive power vis-a-vis first-order logic
 - Most of our discussions will assume availability of “ $=$ ”
 - Refer to as “first-order logic” unless the distinction is important

Two classes of syntactic objects: *terms* and *formulas*

Terms

- Every variable is a term
- If f is an m -ary function, t_1, \dots, t_m are terms, then $f(t_1, \dots, t_m)$ is also a term

Atomic formulas

- If R is an n -ary predicate, t_1, \dots, t_n are terms, then $R(t_1, \dots, t_m)$ is an atomic formula
- Special case: $t_1 = t_2$

- *Primitive fixed symbols:* \wedge , \neg , \exists
 - Other choices also possible: E.g., \vee , \neg , \forall

Rules for formulating formulas

- Every atomic formula is a formula
- If φ is a formula, so are $\neg\varphi$ and (φ)
- If φ_1 and φ_2 are formulas, so is $\varphi_1 \wedge \varphi_2$
- If φ is a formula, so is $\exists x \varphi$ for any variable x
- Formulas with other fixed symbols definable in terms of formulas with primitive symbols.
 - $\varphi_1 \vee \varphi_2 \triangleq \neg(\neg\varphi_1 \wedge \neg\varphi_2)$
 - $\varphi_1 \rightarrow \varphi_2 \triangleq \neg\varphi_1 \vee \varphi_2$
 - $\varphi_1 \leftrightarrow \varphi_2 \triangleq (\varphi_1 \rightarrow \varphi_2) \wedge (\varphi_2 \rightarrow \varphi_1)$
 - $\forall x \varphi \triangleq \neg(\exists x \neg\varphi)$

FOL formulas as strings

- Alphabet (over which strings are constructed):
 - Set of variable names, e.g. $\{x_1, x_2, y_1, y_2\}$
 - Set of constants, functions, predicates, e.g. $\{a, b, f, =, P\}$
 - Fixed symbols $\{\neg, \vee, \wedge, \rightarrow, \leftrightarrow, \exists, \forall\}$
- Well-formed formula: string formed according to rules on prev. slide
 - $\forall x_1(\forall x_2 (((x_1 = a) \vee (x_1 = b)) \wedge \neg(f(x_2) = f(x_1))))$ is well-formed
 - $\forall(\forall x_1(x_1 = ab)\neg())x_2$ is not well-formed
- Well-formed formulas can be represented using parse trees
 - Consider the rules on prev. slide as production rules in a context-free grammar

- Alphabet (over which strings are constructed):
 - Set of variable names, e.g. $\{x_1, x_2, y_1, y_2\}$
 - **Set of constants, functions, predicates, e.g. $\{a, b, f, =\}$:**
Vocabulary
 - Fixed symbols $\{\neg, \vee, \wedge, \rightarrow, \leftrightarrow, \exists, \forall\}$

- Alphabet (over which strings are constructed):
 - Set of variable names, e.g. $\{x_1, x_2, y_1, y_2\}$
 - **Set of constants, functions, predicates, e.g. $\{a, b, f, =\}$:**
Vocabulary
 - Fixed symbols $\{\neg, \vee, \wedge, \rightarrow, \leftrightarrow, \exists, \forall\}$
- Smallest vocabulary to generate
 $\forall x_1 (\forall x_2 (((x_1 = a) \vee (x_1 = b)) \wedge \neg(f(x_2) = f(x_1))))?$

- Alphabet (over which strings are constructed):
 - Set of variable names, e.g. $\{x_1, x_2, y_1, y_2\}$
 - **Set of constants, functions, predicates, e.g. $\{a, b, f, =\}$:**
Vocabulary
 - Fixed symbols $\{\neg, \vee, \wedge, \rightarrow, \leftrightarrow, \exists, \forall\}$
- Smallest vocabulary to generate
 $\forall x_1 (\forall x_2 (((x_1 = a) \vee (x_1 = b)) \wedge \neg(f(x_2) = f(x_1))))?$
 - $\{a, b, f, =\}$

Free Variables in a Formula

Free variables are those that are not quantified in a formula.
Let $\text{free}(\varphi)$ denote the set of free variables in φ

- If φ is an atomic formula, $\text{free}(\varphi) = \{x \mid x \text{ occurs in } \varphi\}$
- If $\varphi = \neg\psi$ or $\varphi = (\psi)$, $\text{free}(\varphi) = \text{free}(\psi)$
- If $\varphi = \varphi_1 \wedge \varphi_2$, $\text{free}(\varphi) = \text{free}(\varphi_1) \cup \text{free}(\varphi_2)$
- if $\varphi = \exists x \varphi_1$, $\text{free}(\varphi) = \text{free}(\varphi_1) \setminus \{x\}$

Free Variables in a Formula

Free variables are those that are not quantified in a formula.
Let $\text{free}(\varphi)$ denote the set of free variables in φ

- If φ is an atomic formula, $\text{free}(\varphi) = \{x \mid x \text{ occurs in } \varphi\}$
- If $\varphi = \neg\psi$ or $\varphi = (\psi)$, $\text{free}(\varphi) = \text{free}(\psi)$
- If $\varphi = \varphi_1 \wedge \varphi_2$, $\text{free}(\varphi) = \text{free}(\varphi_1) \cup \text{free}(\varphi_2)$
- If $\varphi = \exists x \varphi_1$, $\text{free}(\varphi) = \text{free}(\varphi_1) \setminus \{x\}$
- What is $\text{free}((\exists x P(x, y)) \wedge (\forall y Q(x, y)))$?

Free Variables in a Formula

Free variables are those that are not quantified in a formula.
Let $\text{free}(\varphi)$ denote the set of free variables in φ

- If φ is an atomic formula, $\text{free}(\varphi) = \{x \mid x \text{ occurs in } \varphi\}$
- If $\varphi = \neg\psi$ or $\varphi = (\psi)$, $\text{free}(\varphi) = \text{free}(\psi)$
- If $\varphi = \varphi_1 \wedge \varphi_2$, $\text{free}(\varphi) = \text{free}(\varphi_1) \cup \text{free}(\varphi_2)$
- If $\varphi = \exists x \varphi_1$, $\text{free}(\varphi) = \text{free}(\varphi_1) \setminus \{x\}$
- What is $\text{free}((\exists x P(x, y)) \wedge (\forall y Q(x, y)))$?
 - $= \text{free}((\exists x P(x, y))) \cup \text{free}(\forall y Q(x, y))$
 - $= \text{free}(P(x, y)) \setminus \{x\} \cup \text{free}(Q(x, y)) \setminus \{y\}$
 - $= \{x, y\} \setminus \{x\} \cup \{x, y\} \setminus \{y\} = \{x, y\}$

Free Variables in a Formula

Free variables are those that are not quantified in a formula.
Let $\text{free}(\varphi)$ denote the set of free variables in φ

- If φ is an atomic formula, $\text{free}(\varphi) = \{x \mid x \text{ occurs in } \varphi\}$
- If $\varphi = \neg\psi$ or $\varphi = (\psi)$, $\text{free}(\varphi) = \text{free}(\psi)$
- If $\varphi = \varphi_1 \wedge \varphi_2$, $\text{free}(\varphi) = \text{free}(\varphi_1) \cup \text{free}(\varphi_2)$
- If $\varphi = \exists x \varphi_1$, $\text{free}(\varphi) = \text{free}(\varphi_1) \setminus \{x\}$
- What is $\text{free}((\exists x P(x, y)) \wedge (\forall y Q(x, y)))$?
 - $= \text{free}((\exists x P(x, y))) \cup \text{free}(\forall y Q(x, y))$
 - $= \text{free}(P(x, y)) \setminus \{x\} \cup \text{free}(Q(x, y)) \setminus \{y\}$
 - $= \{x, y\} \setminus \{x\} \cup \{x, y\} \setminus \{y\} = \{x, y\}$

If φ has free variables $\{x, y\}$, we write $\varphi(x, y)$

A formula with no free variables is a **sentence**, e.g. $\exists x \forall y f(x) = y$

Bound Variables in a Formula

Bound variables are those that are quantified in a formula.
Let $\text{bnd}(\varphi)$ denote the set of bound variables in φ

- If φ is an atomic formula, $\text{bnd}(\varphi) = \emptyset$
- If $\varphi = \neg\psi$ or $\varphi = (\psi)$, $\text{bnd}(\varphi) = \text{bnd}(\psi)$
- If $\varphi = \varphi_1 \wedge \varphi_2$, $\text{bnd}(\varphi) = \text{bnd}(\varphi_1) \cup \text{bnd}(\varphi_2)$
- if $\varphi = \exists x \varphi_1$, $\text{bnd}(\varphi) = \text{bnd}(\varphi_1) \cup \{x\}$

Bound Variables in a Formula

Bound variables are those that are quantified in a formula.
Let $\text{bnd}(\varphi)$ denote the set of bound variables in φ

- If φ is an atomic formula, $\text{bnd}(\varphi) = \emptyset$

- If $\varphi = \neg\psi$ or $\varphi = (\psi)$, $\text{bnd}(\varphi) = \text{bnd}(\psi)$

- If $\varphi = \varphi_1 \wedge \varphi_2$, $\text{bnd}(\varphi) = \text{bnd}(\varphi_1) \cup \text{bnd}(\varphi_2)$

- If $\varphi = \exists x \varphi_1$, $\text{bnd}(\varphi) = \text{bnd}(\varphi_1) \cup \{x\}$

- What is $\text{bnd}((\exists x P(x, y)) \wedge (\forall y Q(x, y)))$?

Bound Variables in a Formula

Bound variables are those that are quantified in a formula.
Let $\text{bnd}(\varphi)$ denote the set of bound variables in φ

- If φ is an atomic formula, $\text{bnd}(\varphi) = \emptyset$
- If $\varphi = \neg\psi$ or $\varphi = (\psi)$, $\text{bnd}(\varphi) = \text{bnd}(\psi)$
- If $\varphi = \varphi_1 \wedge \varphi_2$, $\text{bnd}(\varphi) = \text{bnd}(\varphi_1) \cup \text{bnd}(\varphi_2)$
- If $\varphi = \exists x \varphi_1$, $\text{bnd}(\varphi) = \text{bnd}(\varphi_1) \cup \{x\}$
- What is $\text{bnd}((\exists x P(x, y)) \wedge (\forall y Q(x, y)))$?
 - $= \text{bnd}((\exists x P(x, y))) \cup \text{bnd}(\forall y Q(x, y))$
 - $= \text{bnd}(P(x, y)) \cup \{x\} \cup \text{bnd}(Q(x, y)) \cup \{y\}$
 - $= \emptyset \cup \{x\} \cup \emptyset \cup \{y\}$
 - $= \{x\} \cup \{y\} = \{x, y\}$!!!
- $\text{free}(\varphi)$ and $\text{bnd}(\varphi)$ are not complements!

Substitution in FOL

Suppose $x \in \text{free}(\varphi)$ and t is any term.

We wish to replace every free occurrence of x in φ with t , such that free variables in t stay free in the resulting formula.

Term t is free for x in φ if no free occurrence of x in φ is in the scope of $\forall y$ or $\exists y$ for any variable y occurring in t .

- $\varphi \triangleq \exists y R(x, y) \vee \forall x R(z, x)$, and t is $f(z, x)$
- $f(z, x)$ is free for x in φ , but $f(y, x)$ is not

$\varphi[t/x]$: Formula obtained by replacing each free occurrence of x in φ by t , if t is free for x in φ

- For φ defined above,

$$\varphi[f(z, x)/x] \triangleq \exists y R(f(z, x), y) \vee \forall x R(z, x)$$

Semantics of FOL: Some Intuition

$$\varphi \triangleq \forall x \forall y (P(x, y) \rightarrow \exists z (\neg(z = x) \wedge \neg(z = y) \wedge P(x, z) \wedge P(z, y)))$$

$$\varphi \triangleq \forall x \forall y (P(x, y) \rightarrow \exists z (\neg(z = x) \wedge \neg(z = y) \wedge P(x, z) \wedge P(z, y)))$$

English reading: For every x and y , if $P(x, y)$ holds, we can find z distinct from x and y such that both $P(x, z)$ and $P(z, y)$ hold.

$$\varphi \triangleq \forall x \forall y (P(x, y) \rightarrow \exists z (\neg(z = x) \wedge \neg(z = y) \wedge P(x, z) \wedge P(z, y)))$$

English reading: For every x and y , if $P(x, y)$ holds, we can find z distinct from x and y such that both $P(x, z)$ and $P(z, y)$ hold.

Case 1:

- Variables take values from **real numbers**
- $P(x, y)$ represents $x < y$
- English reading simply states “real numbers are dense”
- φ is **true**

$$\varphi \triangleq \forall x \forall y (P(x, y) \rightarrow \exists z (\neg(z = x) \wedge \neg(z = y) \wedge P(x, z) \wedge P(z, y)))$$

Case 2:

- Variables take values from **real numbers**
- $P(x, y)$ represents $x \leq y$
- English reading requires the following to be true
 - If $x = y$, there is a z such that $z \neq x$, $x \leq z$ and $z \leq x$
 - Thus, $z \neq x$ and $z = x$
- φ is **false**

$$\varphi \triangleq \forall x \forall y (P(x, y) \rightarrow \exists z (\neg(z = x) \wedge \neg(z = y) \wedge P(x, z) \wedge P(z, y)))$$

Case 3:

- Variables take values from **natural numbers**
- $P(x, y)$ represents $x < y$
- English reading states that “natural numbers are dense”
- φ is **false**

$$\varphi \triangleq \forall x \forall y (P(x, y) \rightarrow \exists z (\neg(z = x) \wedge \neg(z = y) \wedge P(x, z) \wedge P(z, y)))$$

Case 3:

- Variables take values from **natural numbers**
- $P(x, y)$ represents $x < y$
- English reading states that “natural numbers are dense”
- φ is **false**

Truth of φ depends on the underlying set from which variables take values, and on how constants, functions, predicates are interpreted

Semantics of FOL: Formalizing the intuition

Vocabulary \mathcal{V} : E.g. $\mathcal{V} : \{a, f, =, R\}$

Semantics of FOL: Formalizing the intuition

Vocabulary \mathcal{V} : E.g. $\mathcal{V} : \{a, f, =, R\}$

\mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$
 $\text{free}(\varphi) = \{y\}$

Semantics of FOL: Formalizing the intuition

Vocabulary \mathcal{V} : E.g. $\mathcal{V} : \{a, f, =, R\}$

\mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$
 $\text{free}(\varphi) = \{y\}$

Truth of φ depends on

Semantics of FOL: Formalizing the intuition

Vocabulary \mathcal{V} : E.g. $\mathcal{V} : \{a, f, =, R\}$

\mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$
 $\text{free}(\varphi) = \{y\}$

Truth of φ depends on

- 1 Universe U from which variables take values, e.g. \mathbb{N}

Semantics of FOL: Formalizing the intuition

Vocabulary \mathcal{V} : E.g. $\mathcal{V} : \{a, f, =, R\}$

\mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$
 $\text{free}(\varphi) = \{y\}$

Truth of φ depends on

- 1 Universe U from which variables take values, e.g. \mathbb{N}
- 2 Interpretation of vocabulary \mathcal{V} on U

Semantics of FOL: Formalizing the intuition

Vocabulary \mathcal{V} : E.g. $\mathcal{V} : \{a, f, =, R\}$

\mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$
 $\text{free}(\varphi) = \{y\}$

Truth of φ depends on

- ① Universe U from which variables take values, e.g. \mathbb{N}
- ② Interpretation of vocabulary \mathcal{V} on U
 - Map each constant symbol to an element of U , e.g. $a \mapsto 0$

Semantics of FOL: Formalizing the intuition

Vocabulary \mathcal{V} : E.g. $\mathcal{V} : \{a, f, =, R\}$

\mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$
 $\text{free}(\varphi) = \{y\}$

Truth of φ depends on

- 1 Universe U from which variables take values, e.g. \mathbb{N}
- 2 Interpretation of vocabulary \mathcal{V} on U
 - Map each constant symbol to an element of U , e.g. $a \mapsto 0$
 - Map each n -ary function symbol to a function from U^n to U ,
e.g. $f(u, v) = u + v$

Semantics of FOL: Formalizing the intuition

Vocabulary \mathcal{V} : E.g. $\mathcal{V} : \{a, f, =, R\}$

\mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$
 $\text{free}(\varphi) = \{y\}$

Truth of φ depends on

- 1 Universe U from which variables take values, e.g. \mathbb{N}
- 2 Interpretation of vocabulary \mathcal{V} on U
 - Map each constant symbol to an element of U , e.g. $a \mapsto 0$
 - Map each n -ary function symbol to a function from U^n to U , e.g. $f(u, v) = u + v$
 - Map each m -ary predicate symbol to a subset of U^m
e.g. Interp. for $=$: $\{(c, c) \mid c \in \mathbb{N}\}$ – fixed interpretation
Interp. for R : $\{(c, d) \mid c, d \in U, c < d\}$

Semantics of FOL: Formalizing the intuition

Vocabulary \mathcal{V} : E.g. $\mathcal{V} : \{a, f, =, R\}$

\mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$
 $\text{free}(\varphi) = \{y\}$

Truth of φ depends on

- 1 Universe U from which variables take values, e.g. \mathbb{N}
- 2 Interpretation of vocabulary \mathcal{V} on U
 - Map each constant symbol to an element of U , e.g. $a \mapsto 0$
 - Map each n -ary function symbol to a function from U^n to U , e.g. $f(u, v) = u + v$
 - Map each m -ary predicate symbol to a subset of U^m
e.g. Interp. for $=$: $\{(c, c) \mid c \in \mathbb{N}\}$ – fixed interpretation
Interp. for R : $\{(c, d) \mid c, d \in U, c < d\}$

1 and 2 define a \mathcal{V} -structure $M = (U^M, (a^M, f^M, R^M))$

Semantics of FOL: Formalizing the intuition

Vocabulary \mathcal{V} : E.g. $\mathcal{V} : \{a, f, =, R\}$

\mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$
 $\text{free}(\varphi) = \{y\}$

Truth of φ depends on

- 1 Universe U from which variables take values, e.g. \mathbb{N}
- 2 Interpretation of vocabulary \mathcal{V} on U
 - Map each constant symbol to an element of U , e.g. $a \mapsto 0$
 - Map each n -ary function symbol to a function from U^n to U , e.g. $f(u, v) = u + v$
 - Map each m -ary predicate symbol to a subset of U^m
e.g. Interp. for $=$: $\{(c, c) \mid c \in \mathbb{N}\}$ – fixed interpretation
Interp. for R : $\{(c, d) \mid c, d \in U, c < d\}$

1 and 2 define a \mathcal{V} -structure $M = (U^M, (a^M, f^M, R^M))$

- 3 Binding (aka environment) $\alpha : \text{free}(\varphi) \rightarrow U$
e.g. $\alpha(y) = 2$

Semantics of FOL: Formalizing the intuition

Given structure M and binding α , does φ evaluate to **true**?

Notationally, does $\mathbf{M}, \alpha \models \varphi$?

Semantics of FOL: Formalizing the intuition

Given structure M and binding α , does φ evaluate to **true**?

Notationally, does $\mathbf{M}, \alpha \models \varphi$?

- Extend $\alpha : \text{free}(\varphi) \rightarrow U^M$ to $\bar{\alpha} : \text{Terms}(\varphi) \rightarrow U^M$
 - If t is a variable x , $\bar{\alpha}(t) = \alpha(x)$
 - If t is $f(t_1, \dots, t_m)$, $\bar{\alpha}(t) = f^M(\bar{\alpha}(t_1), \dots, \bar{\alpha}(t_m))$

Semantics of FOL: Formalizing the intuition

Given structure M and binding α , does φ evaluate to **true**?

Notationally, does $\mathbf{M}, \alpha \models \varphi$?

- Extend $\alpha : \text{free}(\varphi) \rightarrow U^M$ to $\bar{\alpha} : \text{Terms}(\varphi) \rightarrow U^M$
 - If t is a variable x , $\bar{\alpha}(t) = \alpha(x)$
 - If t is $f(t_1, \dots, t_m)$, $\bar{\alpha}(t) = f^M(\bar{\alpha}(t_1), \dots, \bar{\alpha}(t_m))$
 - In prev. example, $\bar{\alpha}(f(y, a)) = f^M(\alpha(y), a^M) = 2 + 0 = 2$

Semantics of FOL: Formalizing the intuition

Given structure M and binding α , does φ evaluate to **true**?

Notationally, does $\mathbf{M}, \alpha \models \varphi$?

- Extend $\alpha : \text{free}(\varphi) \rightarrow U^M$ to $\bar{\alpha} : \text{Terms}(\varphi) \rightarrow U^M$
 - If t is a variable x , $\bar{\alpha}(t) = \alpha(x)$
 - If t is $f(t_1, \dots, t_m)$, $\bar{\alpha}(t) = f^M(\bar{\alpha}(t_1), \dots, \bar{\alpha}(t_m))$
 - In prev. example, $\bar{\alpha}(f(y, a)) = f^M(\alpha(y), a^M) = 2 + 0 = 2$
- If φ is an atomic formula
 - $M, \alpha \models (t_1 = t_2)$ iff $\bar{\alpha}(t_1)$ and $\bar{\alpha}(t_2)$ coincide
 - $M, \alpha \models P(t_1, \dots, t_m)$ iff $(\bar{\alpha}(t_1), \dots, \bar{\alpha}(t_m)) \in P^M$

Semantics of FOL: Formalizing the intuition

Given structure M and binding α , does φ evaluate to **true**?

Notationally, does $\mathbf{M}, \alpha \models \varphi$?

- Extend $\alpha : \text{free}(\varphi) \rightarrow U^M$ to $\bar{\alpha} : \text{Terms}(\varphi) \rightarrow U^M$
 - If t is a variable x , $\bar{\alpha}(t) = \alpha(x)$
 - If t is $f(t_1, \dots, t_m)$, $\bar{\alpha}(t) = f^M(\bar{\alpha}(t_1), \dots, \bar{\alpha}(t_m))$
 - In prev. example, $\bar{\alpha}(f(y, a)) = f^M(\alpha(y), a^M) = 2 + 0 = 2$
- If φ is an atomic formula
 - $M, \alpha \models (t_1 = t_2)$ iff $\bar{\alpha}(t_1)$ and $\bar{\alpha}(t_2)$ coincide
 - $M, \alpha \models P(t_1, \dots, t_m)$ iff $(\bar{\alpha}(t_1), \dots, \bar{\alpha}(t_m)) \in P^M$
 - In prev. example, suppose $\alpha'(x) = 1, \alpha'(y) = 2$. Then $M, \alpha' \models R(x, f(y, a))$ as $(\bar{\alpha}'(x), \bar{\alpha}'(f(y, a))) = (1, 2) \in R^M$.

Semantics of FOL: Formalizing the intuition

Given structure M and binding α , does φ evaluate to **true**?

Notationally, does $\mathbf{M}, \alpha \models \varphi$?

- Extend $\alpha : \text{free}(\varphi) \rightarrow U^M$ to $\bar{\alpha} : \text{Terms}(\varphi) \rightarrow U^M$
 - If t is a variable x , $\bar{\alpha}(t) = \alpha(x)$
 - If t is $f(t_1, \dots, t_m)$, $\bar{\alpha}(t) = f^M(\bar{\alpha}(t_1), \dots, \bar{\alpha}(t_m))$
 - In prev. example, $\bar{\alpha}(f(y, a)) = f^M(\alpha(y), a^M) = 2 + 0 = 2$
- If φ is an atomic formula
 - $M, \alpha \models (t_1 = t_2)$ iff $\bar{\alpha}(t_1)$ and $\bar{\alpha}(t_2)$ coincide
 - $M, \alpha \models P(t_1, \dots, t_m)$ iff $(\bar{\alpha}(t_1), \dots, \bar{\alpha}(t_m)) \in P^M$
 - In prev. example, suppose $\alpha'(x) = 1, \alpha'(y) = 2$. Then $M, \alpha' \models R(x, f(y, a))$ as $(\bar{\alpha}'(x), \bar{\alpha}'(f(y, a))) = (1, 2) \in R^M$.
- $M, \alpha \models \neg\varphi_i$ iff $M, \alpha \not\models \varphi_1$

Semantics of FOL: Formalizing the intuition

Given structure M and binding α , does φ evaluate to **true**?

Notationally, does $\mathbf{M}, \alpha \models \varphi$?

- Extend $\alpha : \text{free}(\varphi) \rightarrow U^M$ to $\bar{\alpha} : \text{Terms}(\varphi) \rightarrow U^M$
 - If t is a variable x , $\bar{\alpha}(t) = \alpha(x)$
 - If t is $f(t_1, \dots, t_m)$, $\bar{\alpha}(t) = f^M(\bar{\alpha}(t_1), \dots, \bar{\alpha}(t_m))$
 - In prev. example, $\bar{\alpha}(f(y, a)) = f^M(\alpha(y), a^M) = 2 + 0 = 2$
- If φ is an atomic formula
 - $M, \alpha \models (t_1 = t_2)$ iff $\bar{\alpha}(t_1)$ and $\bar{\alpha}(t_2)$ coincide
 - $M, \alpha \models P(t_1, \dots, t_m)$ iff $(\bar{\alpha}(t_1), \dots, \bar{\alpha}(t_m)) \in P^M$
 - In prev. example, suppose $\alpha'(x) = 1, \alpha'(y) = 2$. Then $M, \alpha' \models R(x, f(y, a))$ as $(\bar{\alpha}'(x), \bar{\alpha}'(f(y, a))) = (1, 2) \in R^M$.
- $M, \alpha \models \neg\varphi$; iff $M, \alpha \not\models \varphi_1$
- $M, \alpha \models \varphi_1 \wedge \varphi_2$ iff $M, \alpha \models \varphi_1$ and $M, \alpha \models \varphi_2$

Semantics of FOL: Formalizing the intuition

Given structure M and binding α , does φ evaluate to **true**?

Notationally, does $\mathbf{M}, \alpha \models \varphi$?

- Extend $\alpha : \text{free}(\varphi) \rightarrow U^M$ to $\bar{\alpha} : \text{Terms}(\varphi) \rightarrow U^M$
 - If t is a variable x , $\bar{\alpha}(t) = \alpha(x)$
 - If t is $f(t_1, \dots, t_m)$, $\bar{\alpha}(t) = f^M(\bar{\alpha}(t_1), \dots, \bar{\alpha}(t_m))$
 - In prev. example, $\bar{\alpha}(f(y, a)) = f^M(\alpha(y), a^M) = 2 + 0 = 2$
- If φ is an atomic formula
 - $M, \alpha \models (t_1 = t_2)$ iff $\bar{\alpha}(t_1)$ and $\bar{\alpha}(t_2)$ coincide
 - $M, \alpha \models P(t_1, \dots, t_m)$ iff $(\bar{\alpha}(t_1), \dots, \bar{\alpha}(t_m)) \in P^M$
 - In prev. example, suppose $\alpha'(x) = 1, \alpha'(y) = 2$. Then $M, \alpha' \models R(x, f(y, a))$ as $(\bar{\alpha}'(x), \bar{\alpha}'(f(y, a))) = (1, 2) \in R^M$.
- $M, \alpha \models \neg\varphi$; iff $M, \alpha \not\models \varphi_1$
- $M, \alpha \models \varphi_1 \wedge \varphi_2$ iff $M, \alpha \models \varphi_1$ and $M, \alpha \models \varphi_2$
- $M, \alpha \models \exists x \varphi$ iff there is some $c \in U^M$ such that $M, \alpha[x \mapsto c] \models \varphi$, where
 - $\alpha[x \mapsto c](v) = \alpha(v)$, if variable v is different from x
 - $\alpha[x \mapsto c](x) = c$

Semantics of FOL: Illustration

$$\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$$

Semantics of FOL: Illustration

$$\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$$

- Vocabulary $\mathcal{V} : \{a, f, =, R\}$

Semantics of FOL: Illustration

$$\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$$

- Vocabulary $\mathcal{V} : \{a, f, =, R\}$

$$\bullet M = (\overbrace{\mathbb{N}}^{U^M}, (\overbrace{0}^{a^M}, \overbrace{u+v}^{f^M(u,v)}, \overbrace{u < v}^{R^M(u,v)}))$$

Semantics of FOL: Illustration

$$\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$$

- Vocabulary $\mathcal{V} : \{a, f, =, R\}$

$$\bullet M = (\overbrace{\mathbb{N}}^{U^M}, \quad (\overbrace{0}^{a^M}, \quad \overbrace{u+v}^{f^M(u,v)}, \quad \overbrace{u < v}^{R^M(u,v)}))$$

- $\text{free}(\varphi) = \{y\}$, and $\alpha(y) = 2$

Semantics of FOL: Illustration

$$\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$$

- Vocabulary $\mathcal{V} : \{a, f, =, R\}$

$$\bullet M = (\overbrace{\mathbb{N}}^{U^M}, \quad (\overbrace{0}^{a^M}, \quad \overbrace{u+v}^{f^M(u,v)}, \quad \overbrace{u < v}^{R^M(u,v)}))$$

- $\text{free}(\varphi) = \{y\}$, and $\alpha(y) = 2$
- $M, \alpha[z \mapsto 1] \models (\neg(z = a) \wedge R(z, y))$
- Therefore, $M, \alpha \models \exists z (\neg(z = a) \wedge R(z, y))$

Semantics of FOL: Illustration

$$\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$$

- Vocabulary $\mathcal{V} : \{a, f, =, R\}$

$$\bullet M = (\overbrace{\mathbb{N}}^{U^M}, \quad (\overbrace{0}^{a^M}, \quad \overbrace{u+v}^{f^M(u,v)}, \quad \overbrace{u < v}^{R^M(u,v)}))$$

- $\text{free}(\varphi) = \{y\}$, and $\alpha(y) = 2$
- $M, \alpha[z \mapsto 1] \models (\neg(z = a) \wedge R(z, y))$
- Therefore, $M, \alpha \models \exists z (\neg(z = a) \wedge R(z, y))$
- Similarly, $M, \alpha[x \mapsto 0] \models R(x, f(y, a))$
- Therefore, $M, \alpha \models \exists x R(x, f(y, a))$

Semantics of FOL: Illustration

$$\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$$

- Vocabulary $\mathcal{V} : \{a, f, =, R\}$

$$\bullet M = (\overbrace{\mathbb{N}}^{U^M}, \overbrace{0}^{a^M}, \overbrace{u+v}^{f^M(u,v)}, \overbrace{u < v}^{R^M(u,v)})$$

- $\text{free}(\varphi) = \{y\}$, and $\alpha(y) = 2$
- $M, \alpha[z \mapsto 1] \models (\neg(z = a) \wedge R(z, y))$
- Therefore, $M, \alpha \models \exists z (\neg(z = a) \wedge R(z, y))$
- Similarly, $M, \alpha[x \mapsto 0] \models R(x, f(y, a))$
- Therefore, $M, \alpha \models \exists x R(x, f(y, a))$
- Finally, $M, \alpha \models \varphi$

Semantics of FOL: Illustration

$$\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$$

- Vocabulary $\mathcal{V} : \{a, f, =, R\}$

$$\bullet M = (\overbrace{\mathbb{N}}^{U^M}, \quad (\overbrace{0}^{a^M}, \quad \overbrace{u+v}^{f^M(u,v)}, \quad \overbrace{u < v}^{R^M(u,v)}))$$

- $\text{free}(\varphi) = \{y\}$, and $\alpha(y) = 2$
- $M, \alpha[z \mapsto 1] \models (\neg(z = a) \wedge R(z, y))$
- Therefore, $M, \alpha \models \exists z (\neg(z = a) \wedge R(z, y))$
- Similarly, $M, \alpha[x \mapsto 0] \models R(x, f(y, a))$
- Therefore, $M, \alpha \models \exists x R(x, f(y, a))$
- Finally, $M, \alpha \models \varphi$
- Note that if $\alpha'(y) = 1$, $M, \alpha' \not\models \varphi$

Semantic Relations in FOL

Let $\Gamma = \{\varphi_1, \varphi_2, \dots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

Semantic Relations in FOL

Let $\Gamma = \{\varphi_1, \varphi_2, \dots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

Let $\Gamma = \{\varphi_1, \varphi_2, \dots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

- **Semantic Entailment:** $\Gamma \models \psi$ holds iff whenever $M, \alpha \models \varphi_i$ for all $\varphi_i \in \Gamma$, then $M, \alpha \models \psi$ as well.
 - $\{\forall x ((x = a) \vee R(x, y)), \quad R(a, y)\} \models \forall z R(z, y)$

Let $\Gamma = \{\varphi_1, \varphi_2, \dots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

- **Semantic Entailment:** $\Gamma \models \psi$ holds iff whenever $M, \alpha \models \varphi_i$ for all $\varphi_i \in \Gamma$, then $M, \alpha \models \psi$ as well.
 - $\{\forall x ((x = a) \vee R(x, y)), R(a, y)\} \models \forall z R(z, y)$
- **Satisfiability:** ψ is satisfiable iff there is some M and α such that $M, \alpha \models \psi$
 - $\exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$ is satisfiable

Semantic Relations in FOL

Let $\Gamma = \{\varphi_1, \varphi_2, \dots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

- **Semantic Entailment:** $\Gamma \models \psi$ holds iff whenever $M, \alpha \models \varphi_i$ for all $\varphi_i \in \Gamma$, then $M, \alpha \models \psi$ as well.
 - $\{\forall x ((x = a) \vee R(x, y)), R(a, y)\} \models \forall z R(z, y)$
- **Satisfiability:** ψ is satisfiable iff there is some M and α such that $M, \alpha \models \psi$
 - $\exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$ is satisfiable
- **Validity:** A \mathcal{V} -formula ψ is valid iff $M, \alpha \models \psi$ for all \mathcal{V} -structures M and all bindings α that assign values from U^M to $\text{free}(\psi)$.
 - $\forall x P(x, y) \rightarrow \exists x P(x, y)$ is valid

Semantic Relations in FOL

Let $\Gamma = \{\varphi_1, \varphi_2, \dots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

- **Semantic Entailment:** $\Gamma \models \psi$ holds iff whenever $M, \alpha \models \varphi_i$ for all $\varphi_i \in \Gamma$, then $M, \alpha \models \psi$ as well.
 - $\{\forall x ((x = a) \vee R(x, y)), R(a, y)\} \models \forall z R(z, y)$
- **Satisfiability:** ψ is satisfiable iff there is some M and α such that $M, \alpha \models \psi$
 - $\exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \wedge R(z, y))$ is satisfiable
- **Validity:** A \mathcal{V} -formula ψ is valid iff $M, \alpha \models \psi$ for all \mathcal{V} -structures M and all bindings α that assign values from U^M to $\text{free}(\psi)$.
 - $\forall x P(x, y) \rightarrow \exists x P(x, y)$ is valid
- **Consistency:** Γ is consistent iff there is at least one M and α such that $M, \alpha \models \varphi_i$ for all $\varphi_i \in \Gamma$.
 - $\{\exists x R(x, y), \exists x R(f(x), y), \exists x R(f(f(x)), y), \dots\}$ is consistent

Sematic Equivalence in FOL

$\varphi \equiv \psi$ iff $\{\varphi\} \models \psi$ and $\{\psi\} \models \varphi$.

Quantifier Equivalences

- $\forall x \forall y \varphi \equiv \forall y \forall x \varphi, \quad \exists x \exists y \varphi \equiv \exists y \exists x \varphi$
- $\forall x (\varphi_1 \wedge \varphi_2) \equiv (\forall x \varphi_1) \wedge (\forall x \varphi_2)$
- $\exists x (\varphi_1 \vee \varphi_2) \equiv (\exists x \varphi_1) \vee (\exists x \varphi_2)$
- If $x \notin \text{free}(\varphi_2)$, then $Qx (\varphi_1 \text{ op } \varphi_2) \equiv (Qx \varphi_1) \text{ op } \varphi_2$, where $Q \in \{\exists, \forall\}$ and $\text{op} \in \{\vee, \wedge\}$.

Renaming Quantified Variables

Let $z \notin \text{free}(\varphi) \cup \text{bnd}(\varphi)$.

Then $Qx \varphi \equiv Qz \varphi[z/x]$ for $Q \in \{\exists, \forall\}$.

Enabler for substitution, e.g., $\exists x R(f(x, y), w) \equiv \exists z R(f(z, y), w)$
 $f(x, y)$ not free for y in $\exists x R(f(x, y), w)$, but is free for y in
 $\exists z R(f(z, y), w)$.

- If φ is a \mathcal{V} -sentence (no free vars), no binding α necessary for evaluating truth of φ
 - Given \mathcal{V} -structure M , we can ask if $M \models \varphi$
 - Class of \mathcal{V} -structures defined by φ is $\{M \models \varphi\}$
- Some examples of structures: graphs, databases, number systems

Graphs as FO structures

A graph G

- U^G : set of vertices
- Vocabulary \mathcal{V} : $\{E, =\}$, where E is a binary (edge) relation
- Interpretation: For $a, b \in U^G$, $E^G(a, b) = \text{true}$ iff there is an edge from vertex a to vertex b in G

Graphs as FO structures

A graph G

- U^G : set of vertices
- Vocabulary \mathcal{V} : $\{E, =\}$, where E is a binary (edge) relation
- Interpretation: For $a, b \in U^G$, $E^G(a, b) = \text{true}$ iff there is an edge from vertex a to vertex b in G

Examples of classes of graphs definable in FOL:

- $\forall x \forall y (\neg(x = y) \rightarrow E(x, y))$
 - (Infinite) class of all cliques

Graphs as FO structures

A graph G

- U^G : set of vertices
- Vocabulary \mathcal{V} : $\{E, =\}$, where E is a binary (edge) relation
- Interpretation: For $a, b \in U^G$, $E^G(a, b) = \text{true}$ iff there is an edge from vertex a to vertex b in G

Examples of classes of graphs definable in FOL:

- $\forall x \forall y (\neg(x = y) \rightarrow E(x, y))$
 - (Infinite) class of all cliques
- $\exists x \forall y (\neg(x = y) \rightarrow \neg E(x, y))$
 - (Infinite) class of all graphs with at least one vertex from which there is no edge to any other vertex

Graphs as FO structures

A graph G

- U^G : set of vertices
- Vocabulary \mathcal{V} : $\{E, =\}$, where E is a binary (edge) relation
- Interpretation: For $a, b \in U^G$, $E^G(a, b) = \text{true}$ iff there is an edge from vertex a to vertex b in G

Examples of classes of graphs definable in FOL:

- $\forall x \forall y (\neg(x = y) \rightarrow E(x, y))$
 - (Infinite) class of all cliques
- $\exists x \forall y (\neg(x = y) \rightarrow \neg E(x, y))$
 - (Infinite) class of all graphs with at least one vertex from which there is no edge to any other vertex
- $\forall x \forall y \forall z (\neg(x = y) \wedge \neg(y = z) \wedge \neg(z = x)) \rightarrow \neg(E(x, y) \wedge E(y, z) \wedge E(z, x))$
 - (Infinite) class of all graphs with no cycles of length 3

Graphs as FO structures

A graph G

- U^G : set of vertices
- Vocabulary \mathcal{V} : $\{E, =\}$, where E is a binary (edge) relation
- Interpretation: For $a, b \in U^G$, $E^G(a, b) = \text{true}$ iff there is an edge from vertex a to vertex b in G

Examples of classes of graphs definable in FOL:

- $\forall x \forall y (\neg(x = y) \rightarrow E(x, y))$
 - (Infinite) class of all cliques
- $\exists x \forall y (\neg(x = y) \rightarrow \neg E(x, y))$
 - (Infinite) class of all graphs with at least one vertex from which there is no edge to any other vertex
- $\forall x \forall y \forall z (\neg(x = y) \wedge \neg(y = z) \wedge \neg(z = x)) \rightarrow \neg(E(x, y) \wedge E(y, z) \wedge E(z, x))$
 - (Infinite) class of all graphs with no cycles of length 3
- $\exists x \exists y (\neg(x = y) \wedge E(x, y) \wedge \forall z ((x = z) \vee (y = z)))$
 - (Finite) class of graphs with exactly two connected vertices.

A relational database D

- U^D : set of (possibly differently typed) data items
- Vocabulary \mathcal{V} : $\{P_1, \dots, P_k, =\}$, where P_i is a k_i -ary predicate corr. to the i^{th} table in database with k_i columns
- Interpretation: For $a_1, \dots, a_{k_i} \in U^D$, $P_i(a_1, \dots, a_{k_i}) = \mathbf{true}$ iff (a_1, \dots, a_{k_1}) is a row of the i^{th} table

A relational database D

- U^D : set of (possibly differently typed) data items
- Vocabulary \mathcal{V} : $\{P_1, \dots, P_k, =\}$, where P_i is a k_i -ary predicate corr. to the i^{th} table in database with k_i columns
- Interpretation: For $a_1, \dots, a_{k_i} \in U^D$, $P_i(a_1, \dots, a_{k_i}) = \text{true}$ iff (a_1, \dots, a_{k_i}) is a row of the i^{th} table

Examples of classes of databases definable in FOL:

- $\forall x \forall y \forall z \text{StRec}(x, y, z) \leftrightarrow \text{Dob}(x, y) \wedge \text{Class}(x, z)$
 - Table StRec is the natural join of Tables Dob and Class

A relational database D

- U^D : set of (possibly differently typed) data items
- Vocabulary \mathcal{V} : $\{P_1, \dots, P_k, =\}$, where P_i is a k_i -ary predicate corr. to the i^{th} table in database with k_i columns
- Interpretation: For $a_1, \dots, a_{k_i} \in U^D$, $P_i(a_1, \dots, a_{k_i}) = \text{true}$ iff (a_1, \dots, a_{k_i}) is a row of the i^{th} table

Examples of classes of databases definable in FOL:

- $\forall x \forall y \forall z \text{StRec}(x, y, z) \leftrightarrow \text{Dob}(x, y) \wedge \text{Class}(x, z)$
 - Table StRec is the natural join of Tables Dob and Class
- $\forall x \forall y \text{Dob}(x, y) \rightarrow \exists z \text{StRec}(x, y, z)$
 - Table Dob is a projection of Table StRec

A relational database D

- U^D : set of (possibly differently typed) data items
- Vocabulary \mathcal{V} : $\{P_1, \dots, P_k, =\}$, where P_i is a k_i -ary predicate corr. to the i^{th} table in database with k_i columns
- Interpretation: For $a_1, \dots, a_{k_i} \in U^D$, $P_i(a_1, \dots, a_{k_i}) = \text{true}$ iff (a_1, \dots, a_{k_i}) is a row of the i^{th} table

Examples of classes of databases definable in FOL:

- $\forall x \forall y \forall z \text{StRec}(x, y, z) \leftrightarrow \text{Dob}(x, y) \wedge \text{Class}(x, z)$
 - Table StRec is the natural join of Tables Dob and Class
- $\forall x \forall y \text{Dob}(x, y) \rightarrow \exists z \text{StRec}(x, y, z)$
 - Table Dob is a projection of Table StRec

Example database query:

- $\varphi(x) \triangleq \exists y \exists z (\text{Dob}(x, y) \wedge \text{After}(y, "01/01/1990") \wedge \text{Class}(x, z) \wedge \text{Primary}(z))$

Defines set of students born after "01/01/1990" and studying in a primary class.

Number systems as FO structures

Natural/real numbers with addition, multiplication, linear ordering and constants **0** and **1** (fixed interpretation)

- $\mathfrak{N} = (\mathbb{N}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$
- $\mathfrak{R} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$

Number systems as FO structures

Natural/real numbers with addition, multiplication, linear ordering and constants **0** and **1** (fixed interpretation)

- $\mathfrak{N} = (\mathbb{N}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$
- $\mathfrak{R} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$

Examples of properties expressible in FOL:

- $\mathfrak{R} \models \forall x \exists y (x = ((y \times y) \times y))$
 - Every real number has a real cube root

Number systems as FO structures

Natural/real numbers with addition, multiplication, linear ordering and constants **0** and **1** (fixed interpretation)

- $\mathfrak{N} = (\mathbb{N}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$
- $\mathfrak{R} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$

Examples of properties expressible in FOL:

- $\mathfrak{R} \models \forall x \exists y (x = ((y \times y) \times y))$
 - Every real number has a real cube root
- $\mathfrak{N} \not\models \forall x \exists y \exists z (x = (y \times y) + (z \times z))$
 $\mathfrak{R} \models \forall x \exists y \exists z (x = (y \times y) + (z \times z))$
 - Not every natural number can be expressed as the sum of squares of two natural numbers. This can be done for real numbers

Number systems as FO structures

Natural/real numbers with addition, multiplication, linear ordering and constants **0** and **1** (fixed interpretation)

- $\mathfrak{N} = (\mathbb{N}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$
- $\mathfrak{R} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$

Examples of properties expressible in FOL:

- $\mathfrak{R} \models \forall x \exists y (x = ((y \times y) \times y))$
 - Every real number has a real cube root
- $\mathfrak{N} \not\models \forall x \exists y \exists z (x = (y \times y) + (z \times z))$
 $\mathfrak{R} \models \forall x \exists y \exists z (x = (y \times y) + (z \times z))$
 - Not every natural number can be expressed as the sum of squares of two natural numbers. This can be done for real numbers
- $\mathfrak{N} \models \forall x \exists y ((x < y) \wedge (\forall z \forall w (y = z \times w) \rightarrow ((z = y) \vee (w = y))))$
 - There are infinitely many prime natural numbers

A Proof System for FOL

All proof rules considered yesterday for Propositional Logic

Additional proof rules for quantifiers and equality

$$\frac{}{t = t} \quad (= \text{introduction})$$

$$\frac{t_1 = t_2 \quad \varphi[t_1/x]}{\varphi[t_2/x]} \quad (= \text{elimination})$$

$$\frac{\forall x \varphi}{\varphi[t/x]} \quad (\forall \text{ elimination})$$

$$\frac{[x_0 \quad \dots \quad \varphi[x_0/x]]}{\forall x \varphi} \quad (\forall \text{ introduction})$$

$$\frac{\varphi[t/x]}{\exists x \varphi} \quad (\exists \text{ introduction})$$

$$\frac{\exists x \varphi \quad [x_0 \quad \varphi[x_0/x] \quad \dots \quad \chi]}{\chi} \quad (\exists \text{ elimination})$$

Let Γ be a finite set of FOL formulas, and ψ be a FOL formula.
We say $\Gamma \vdash \psi$ if ψ can be syntactically derived from Γ by a finite sequence of application of our proof rules.

Soundness

If $\Gamma \vdash \psi$, then $\Gamma \models \psi$

Completeness

If $\Gamma \models \psi$, then $\Gamma \vdash \psi$

Soundness, Completeness, Undecidability

Let Γ be a finite set of FOL formulas, and ψ be a FOL formula. We say $\Gamma \vdash \psi$ if ψ can be syntactically derived from Γ by a finite sequence of application of our proof rules.

Soundness

If $\Gamma \vdash \psi$, then $\Gamma \models \psi$

Completeness

If $\Gamma \models \psi$, then $\Gamma \vdash \psi$

Undecidability

Given a FOL formula φ , checking validity of φ , i.e. does $\{\} \models \varphi$ is undecidable.

Completeness implies that detecting non-validity is non-terminating, in general

Compactness Theorem

Let Γ be a (possibly infinite) set of FOL formulas. If all finite subsets of Γ are consistent (satisfiable), then so is Γ

Consequences of compactness:

- **Upward Lowenheim Skolem Theorem:** Let φ be a \mathcal{V} -sentence such that for every natural number $n \geq 1$, there is a \mathcal{V} -structure M_n with $\geq n$ elements in its universe, such that $M_n \models \varphi$. Then there exists a \mathcal{V} -structure M with infinitely many elements in its universe, such that $M \models \varphi$

Proof: Follows from Compactness Theorem

Consequences:

There is no FOL sentence that describes the class of finite cliques

There is no FOL sentence that describes the class of finite sets