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Introduction =X

B (Existential) Quantifier Elimination problem: given a formula
e :=3dX1.VXy...3X,.0(Xq,..., X,,,Y)

find a quantifier-free formula ¥ (Y") that is equivalent to ¢
modulo T

B Several important applications. E.qg.

¥ |mage compuation
B Parameter synthesis



Introduction
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B (Craig) Interpolant for an ordered pair (4, B) of formulae s.t.
ANBE=r L (or: Al=r —B) isaformulals.t.

IA:T[
"IABErl (I

m All the uninterpreted (in 1") symbols of /
are shared between 4 and B

m \Why are interpolants useful?

® Overapproximation of 4 relative to B

-B

— —B)

= Overapprox. of 3y, op1@. A

= “Local” explanation of why 4 is inconsistent with B
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Background

Symbolic transition systems

= State variables X
= |nitial states formula I (X)
= Transition relation formula 7T'( X, X”)

=D<

® A state 0 is an assignment to the state vars /\,, cx Ti = Vi

B A path of the system S Is a sequence of states o0g, ...,0k

such that o

B A k-step (sym

_ o
— 1 and 05,0,

=3

polic) unrolling of S is a formula

I(X%) A NIZ) T(X, X

® Encodes all possible paths of length up to k

B A state property is a formula P over X
— P

® Encodes all the states 0 such that O




Forward reachability checking

B Forward image computation

® Compute all states reachable from o In one transition:

Img(a (X)) := IX.0(X) AT(X, X')[X/X']

® Prove that a set of states Bad(X) is not reachable:

Bad(X)

-

Img(R(X))
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Forward reachability checking

B Forward image computation

® Compute all states reachable from o In one transition:

Img(o(X)) := IX.0(X) AT(X, X')[X/X']
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Forward reachability checking gl A

B Forward image computation

® Compute all states reachable from o In one transition:
Img(o(X)) :=3X.0(X) AT(X, X[ X/X']

® Prove that a set of states Bad(X) is not reachable:

R(X) :




Interpolation-based reachability -

B |[mage computation requires guantifier elimination, which is
typically very expensive (both in theory and in practice)

B [nterpolation-based algorithm (McMillan CAV'03): use
Interpolants to overapproximate image computation

® much more efficient than the previous algorithm

B nterpolation is often much cheaper than quantifier elimination
B abstraction (overapproximation) accelerates convergence

® termination is still guaranteed for finite-state systems



Interpolation-based reachability REN

= Set R(X) := I(X)
® Check satisfiability of Ry A A¥- T; A Bad,

Q- ~-O-@




Interpolation-based reachability REN
® Check satisfiability of Ry A A¥- T; A Bad,

@< -O-@>
A B

B |f UNSAT:
= Set (X)) := Interpolant(A, B)[X1/X]

¥ is an abstraction of the forward image
guided by the property




Interpolation-based reachability =X
mSet R(X) := I(X)
® Check satisfiability of Ry A A*~) T; A Bad,

@< -O-@>
A B

B |f UNSAT:
= Set (X)) := Interpolant(A, B)[X1/X]

¥ is an abstraction of the forward image
guided by the property

m [f ¢ = R, return UNREACHABLE | fixpoint found
= else, set R(X) := R(X) V ¢(X) and continue




Interpolation-based reachability REN

= Set R(X) := I(X)
® Check satisfiability of Ry A A¥- T; A Bad,

@—< - ~O-@
A B

B |f SAT:

" |f R =1, return REACHABLE

® The unrolling hits bad
® Otherwise, we don't know

B The path might be feasible due to the overapproximation
B |ncrease k and try again
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Existential elimination for LRA =€

Fourier-Motzkin method

® Given a conjunction of linear inequalities C and one variable
X to eliminate

® Partition C into C* and C-:
CTi={a;-x <) bijy;+citi
C™i={—ar-x <) ;ibxjyj+crlx

® Return ¢(Y) — /\zk:(o < Zj ag-bij+a; by, e aq;-ck—l—ak.c,,;)

a; aj a; - aj

® For multiple variables x4, ..., 2, , apply the above in
sequence

® For arbitrary formulae ¢(z,Y")

® First put ¢ in DNF, and then apply the above



Boosting Fourier-Motzkin with SMT BN

® The Fourier-Motzkin method is a purely syntactical one, which
might generate a lot of redundant constraints

= Blow-up when converting the input to DNF
= Blow-up when eliminating a single variable
= Blow-up when eliminating multiple variables
® No reuse of information

® \We can mitigate the blow-ups by using an SMT solver, to
perform a “semantic-aware” existential elimination

= Although it won't improve the (doubly-exponential) worst-case
complexity, it will greatly improve performance in practice

B See e.g. [Monniaux 2008]



SMT-based FM-elim

def FM elim SMT(formula, vars):

res = FALSE()

while True:
m = get model(formula)
if m is None: break
conj = { (a if entails(m, a) else Not(a))

for a in atoms(formula) }

conj e = FM elim conj(conj, vars)
res = 0Or(res, conj e)
formula = And(formula, Not(conj e))

return res

def FM elim conj(conj, vars):
for x in vars:
cCp { ¢ for ¢ in conj if coeff(c, x) > 0 }
cn { ¢ for ¢ in conj if coeff(c, x) < 0 }
conj = conj - (c p | c.n)
for a in c p:
for b in c n:
c = combine(a, b, x)
if not implies(conj, c): conj.add(c)
return And(*conj)

14




Alternative: Virtual Term Substitution REN

® \Main bottleneck of the FME-based algorithm is the
computation of the DNF

® Even in the SMT case, still has to enumerate cubes of the input
formula

B Virtual Term Substitution method doesn't require a DNF

® Can work on a NNF, which can be computed in linear time

® Main idea: compute aset S := {07y,...,0,} such that

Jz.¢ is equivalentto \/"_ o[z := o]

= ¢ is computed syntactically, by only looking at the literals of ¢
® The Boolean structure doesn't matter




Virtual Term Substitution =X

B Collect all literals containing

= Put them in the form (x <1 ¢;), € {<, =, >}

B By rewriting (tl < t2) —> (tl — tg) V (tl < tg)
—(t1 < ta) — (tg < t1) (and so on)

B Build § := {ti | (ZE:tz) E@}U{ti—&? ‘ (CIJ<ti) EQO}U{OO}
B £ Is a symbolic infinitesimal parameter

B Apply the subsitutions as follows

(2 patj)[z = oo] = { Lif pae {=, <}

it > is >
Lif s =
(CIZ‘Nt]‘)[CEI:ti—&T]: (tigt]‘) if > is <
(ti>tj) if > 1s >
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=32y <5 A((y >0)V (x <2y))A
(((z = 0) A (z < 4y)) V (y > —5))]
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Example
=32y <5 A((y >0)V (x <2y))A
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® Collect literals {(z < 2y), (z > 0), (z = 0), (z < 4y)}

(20)

mS:={0,2y —e,4y —e,00}
mplz:=0]=2y <5 A((y>0)V(0<2y)A((0<4y)V(y>-5))
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Example

L2

=3z |2y <5) A ((y >0)V(x<2y))A
(((z = 0) A (z < 4y)) V (y > —5))]

® Collect literals {(z < 2y), (z > 0), (z = 0), (z < 4y)}

mS

LR
Y
g

(20)

= 10,2y —e,4y — £,00}
z:=0] =2y <5) A ((y>0)V(0<2y))A((0<4y)V(y > -5))
z:=2y—¢e] = (2y <5) A (((2y > 0) A (2y < 4y)) V (y > —5))

v =4y —¢e]l = 2y <35)A((y > 0) vV (4y < 2y)) A ((4y > 0) V (y > =5))
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Example

L2

=3z |2y <5) A ((y >0)V(x<2y))A
(((z = 0) A (z < 4y)) V (y > —5))]

® Collect literals {(z < 2y), (z > 0), (z = 0), (z < 4y)}

(20)

mS:={0,2y —e,4y —e,00}

LR
Y
g
Y

z:=0] =2y <5) Ay >0)V(0<2y))A((0<4y)V(y>-5))
z:=2y—¢e] = (2y <5) A (((2y > 0) A (2y < 4y)) V (y > —5))
=4y —¢e] =2y <5 A((y>0)V 4y <2y)A(4y >0)V(y >-5))

r:=00] =2y <5 A(y>0)A(y>—b)



Example A

=32y <5 A((y >0)V (x <2y))A
(((z = 0) A (z < 4y)) V (y > —5))]

® Collect literals {(z < 2y), (z > 0), (z = 0), (z < 4y)}

(20)

mS:={02y—c,dy—e,00}

moofz:=0= 2y <5)A((y>0)V(0<2y))A(((0<4y)V(y>-5))

plr =2y —e] =2y <5) A(((2y > 0) A (2y < 4y)) V (y > —5))

plr =4y —el = (2y <5) A ((y > 0) V (4y < 2y)) A ((4y > 0) V (y > —5))

plz = 00| = (2y <5) A (y > 0) A (y > —5)

B Result: ¢lx:=0]Voplr:=2y—c|Vylr:=4y —e| Vol := o]



Virtual Term Substitution drawbacks -

® | ke the naive FM algorithm, the VTS method is purely
syntactic

® Doesn't consider the Boolean structure of the formula

= Many cases might produce inconsistent disjunct, or duplicate
and/or subsumed results

B |n the previous example:
m gpix = O: and gp[az ‘= OO] are equivalent
N gp:x = 2y — 8] and 90[$ =4y — 5] are equivalent
n o[z := 0] is implied by @[ := 2y — €]

®m therefore, dz.p is equivalentto p|x := 2y — €]

B \We can do better by exploiting SMT



SMT-based Virtual Term Substitution

14

def VTS elim SMT(formula, vars):

f = to nnf(formula)

res = FALSE()

while True:
m = get model(f)
if m 1s None: break
d = VIS elim model(f, m, vars)
res = Or(res, d)
f = And(f, Not(d))

return res

def VTS elim model(f, vars, m):
for x 1n vars:
S = get S(f, x)
val = eval S(S, x, m)
f = apply VTS(f, x, val)
return f

def eval S(S, x, m):
cur = None
for ¢ in S:

cur = t
if cur is not None:

return INF()

1f ¢ 1s (x = t) and m[x] == m[t]:
return t
elif ¢ 1s (x < t) and

(cur is None or m[t] < m[cur]):

return cur - EPSILON()




SMT-based Virtual Term Substitution

14

def VTS elim SMT(formula, vars):

f = to nnf(formula)

res = FALSE()

while True:
m = get model(f)
if m 1s None: break
d = VIS elim model(f, m, vars)
res = Or(res, d)
f = And(f, Not(d))

return res

def VTS elim model(f, vars, m):
for x 1n vars:
S = get S(f, x)
val = eval S(S, x, m)
f = apply VTS(f, x, val)
return f

Find the virtual substitution

that is consistent with
the current model

def eval S(S, x, m):
cur = None
for ¢ in S:

cur = t
if cur is not None:

return INF()

1f ¢ 1s (x = t) and m[x] == m[t]:
return t
elif ¢ 1s (x < t) and

(cur is None or m[t] < m[cur]):

return cur - EPSILON()




SMT-based Virtual Term Substitution

=2

def VTS elim SMT(formula, vars):

f = to nnf(formula)

res = FALSE()

while True:
m = get model(f)
if m 1s None: break
d = VIS elim model(f, m, vars)
res = Or(res, d)
f = And(f, Not(d))

return res

def VTS elim model(f, vars, m):
for x 1n vars:
S = get S(f, x)
val = eval S(S, x, m)
f = apply VTS(f, x, val)
return f

Find the virtual substitution

that is consistent with
the current model

def eval S(S, x, m):
cur = None
for ¢ in S:

cur = t
if cur is not None:

return INF()

1f ¢ 1s (x = t) and m[x] == m[t]:
return t
elif ¢ 1s (x < t) and

(cur is None or m[t] < m[cur]):

return cur - EPSILON()

Do not explore
already-covered models
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Efficient interpolation in SAT -

B |Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

® Traverse the resolution proof, annotating each node with a
partial interpolant /

® The partial interpolant for the root node (the empty clause) is the
computed interpolant
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B |Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time
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partial interpolant /
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computed interpolant

B McMillan's annotation rules (others exist):
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Efficient interpolation in SAT =€

B |Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

® Traverse the resolution proof, annotating each node with a
partial interpolant /

® The partial interpolant for the root node (the empty clause) is the
computed interpolant

B McMillan's annotation rules (others exist):

® For each leaf node (input clause) C in the proof:
mifCcA,set!:=\{leC|var(l) € B}
® Otherwise (C € B),set I := T

= For each inner node (resolution) with parents ¢ V [ and ¢ V —l
and annotations /1 and /o

mfvar(l) € B, set I := I A\ I, ; otherwise, set [ := I; V I




Example

A= (xV-yr) A (72 V —y2) Ay
B = (_‘yl \/yg) /\ (yl V Z) N\ —z

=2

TV Y1 =z V Y
Y1 VY2 Y1
Y2 Y1 VY2
Y1V 2 Y1
2 -z




Example

A=
. ((:1:\/ —y1) A (mx VvV —y2) Ayr
Y1 Vy2) A (Y1 V z) Az

U \/ —1y2 —|y2

Y1 V Y2

Y1

Y1

(—y1 V —y2) Ay

Y1 V Y2

-1 (my1 vV ye) Ay

(my1 V y2) A ys

1 (=
(—y1 V —y2) Ay




Interpolants in SMT

B Resolution refutations in SMT:

Boolean part T-specific part for conjunctions

(ground resolution) of constraints (negated T-lemmas)




Interpolants in SMT

B Resolution refutations in SMT:

Boolean part T-specific part for conjunctions
(ground resolution) of constraints (negated T-lemmas)

Standard Boolean T-specific interpolation
Interpolation for conjunctions only

Theory interpolation only for sets of T-literals




Interpolants in SMT

B Resolution refutations in SMT:

Boolean part T-specific part for conjunctions
(ground resolution) of constraints (negated T-lemmas)

Standard Boolean T-specific interpolation
Interpolation for conjunctions only

Theory interpolation only for sets of T-literals

® Annotation for a T-lemma C:
I:= T—interpolant(/\{l c -C | var(l) ¢ B},

A{l € ~C | var(l) € B})




Equality (EUF)
B |Interpolants from coloured congruence graphs
® Nodes with [ ifterm occursin A B if term is shared
colours: B ifterm occursin B

® Edges with colours of the nodes they connect

® Uncolorable edge: connects nodes of two different colours
B Always possible to obtain a coloured graph

® (by introducing new nodes)

=<




Equality (EUF) e

B |Interpolants from coloured congruence graphs

® Nodes with B iftermoccursin A B ifterm is shared
colours: B ifterm occursin B

® Edges with colours of the nodes they connect

® Uncolorable edge: connects nodes of two different colours
B Always possible to obtain a coloured graph

® (by introducing new nodes)

A = (u _ g(s)) A (g(t) _ x)/\ L Uncolourable
(f(u,y) = 2) D om ﬂ@ ®f(z,v) 2

-
-
-
-
-
-
-
-
-
-
-
-
=
-
-
-
~
-
~
R
<
&
W




Equality (EUF) REN

B |Interpolants from coloured congruence graphs

® Nodes with B iftermoccursin A B ifterm is shared
colours: B ifterm occursin B

® Edges with colours of the nodes they connect

® Uncolorable edge: connects nodes of two different colours
B Always possible to obtain a coloured graph

® (by introducing new nodes)

Ve f(xay) T




Interpolation algorithm (sketch)

B Start from disequality edge .
B Compute summaries for A-paths with shared endpoints

4 | | 4—m----4 | M

——
A A and H A




Interpolation algorithm (sketch) e

B Start from disequality edge .
B Compute summaries for A-paths with shared endpoints

4 = | 4—®----4 | M

——
A A and H A

B |[f an A-summary involves a congruence edge, compute
summaries recursively on function arguments

® Use B-summaries as premises for the A-summary

B

y ] y | y y
— —
=N 4 4

S




Interpolation algorithm (sketch)

B Start from disequality edge .
B Compute summaries for A-paths with shared endpoints

4 | | 4—m----4 | M

——
A A and H A

B |[f an A-summary involves a congruence edge, compute
summaries recursively on function arguments

® Use B-summaries as premises for the A-summary

B

y ] y | y y
— —
= --E—m 4

7

B (Several cases to consider)
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® Start from —(f(z,v) = 2)

B A-summaries for —m-} z = f(z,y)



=14
Exam P @

B:=(v=y)A(s=1t)A .
~(f(z,v) =2 x

® Start from —(f(z,v) = 2)

B A-summaries for —m-} z = f(x,y)
= Recurse on edge [JONN} -- - -TICEN)
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Example
A= (u=g(s) A (g(t) = z)A .- HACEEN] - -
(fluy)=2) el :

® Start from —(f(z,v) = 2)

B A-summaries for —m-} z = f(x,y)
= Recurse on edge [JONN} -- - -TICEN)

= Recurse on edge F[B}
= Path @—H, B-summary: (s =t)




B:=w=y)A(s=1)A .
~(f(w,v) = 2 x

® Start from —(f(z,v) = 2)

B A-summaries for —m-} z = f(x,y)
= Recurse on edge [JONN} -- - -TICEN)

= Recurse on edge I8}
= Path @—H, B-summary: (s =t)

® |nterpolant: (s =t) = (2 = f(z,y))




Linear Rational Arithmetic (LRA) =€

B [nterpolants from proofs of unsatisfiability of a system of
inequalities ) . a;z; <c

B Proof of unsatisfiability: linear combination of inequalities with
positive coefficients to derive a contradiction (0 < ¢ withc < 0)

B [nterpolant obtained out of the proof by combining inequalities
from A (using the same coefficients)

B Proof of unsatisfiability generated from the Simplex



Example REN

A=0Bxy—21<1),(0<z14+22) B:=3<x3—211),223<1)

J/

~~ ~~ ~ ~

S1 S9 53 S4
tableau bounds candidate solution 3
S1 = 3x9 — X1 —o00 < g1 < 1 1 — 0
So = X1+ X2 0 < 59 < @ Ty — 0
S3 = X3 — 2X1 3 < s3 < o© Ts > 0
Sq4 = 23 —ox0 < 54 < 1 s1 — 0
So — 0
s3 +— 0
sy — 0



Example =X

A:=QBrs—x21<1),(0< 1 + :1:2) B:=3<z3—211), 223 <1)

J/

\ .
~~ ~~ ~~ ~~

S1 S92 S3 S4
tableau bounds candidate solution j3
L3 = ——81-|- 82-|-83 —00 S < 1 T, — —1
To = 1514—4 < < o0 Ty i
— _1 § < < o0 2
Ll — TA51 7T 452 = = T3 3
S4 = —81+ 389+ 283 =X < < 1 S1 > 1
So 0
S3 = 3
Sq4 5

No suitable variable for pivoting!
Conflict




Example

A:=QBrs—x21<1),(0< 1 + 1132) B:=(3<xz3—211), (223 <1)

J/

\ .
N N Vs Y

S1 S92 S3 S4
tableau bounds candidate solution j3
L3 = ——81-|- 82-|-83 —00 S < 1 T, — —1
To = —51—|- < < o0 To i
_ ATy < 53l < o0 : 4
Ll — TA51 7T 452 = = T3 3
Sqg = —81+ 389 +283| =X < < 1 S1 > 1
Proof: S22 g
S3 =
1223 <1 -3z —x1 <1
(223 < 1) (Brz —21 < 1) sy B

(2$3+3£B2—$1§2) S(OSZL’l—l—CIZ’Q)

(2563 — 45131 < 2) 2 - (3 < L3 — 25131)
(0 < —4)




Example

A:=QBrs—x21<1),(0< 1 + :UQ) B:=(3<xz3—211), (223 <1)

J/

\ .

S1 S92 S3 S4
tableau bounds candidate solution j3
L3 = ——81-|- 82-|-83 —00 S < 1 T, — —1
To = —81 —I— < < o0 To i
_ 2 U < s3] < : 4
L1 151 T 452 = — T3 3
Sqg = —81+ 389 +283| =X < < 1 S1 > 1
Interpolant: S2 /7 g

S3 =

— 1-(3x9 — 21 <1
( : L= ) S4 > 5
(ng—ﬂflgl) 3(O§$1—|—ZIZ’2)
(-4&3‘1 S 1) —
(—4181 S 1)




Linear Integer Arithmetic (LIA) REN

B Constraints of the form
d.icixi e, el =}

B Cutting-plane proof system: complete proof system for LIA

— t1 <0 to <0
Hyp —— Comb — —— . c1,c0 >0
yptSO Cl°t1—|—62°t2§0 b2

> .cizi+c<0
> Gwi+ 5] <0

Div d > 0 divides the ¢;’s



Linear Integer Arithmetic (LlA) F FORATONE

B Constraints of the form
Y . cixi + ¢, e {<, =}

B Cutting-plane proof system: complete proof system for LIA

— t1 <0 to <0
Hyp —— Comb — —— . c1,c0 >0
yptSO Cl°t1—|—62°t2§0 b2

. C;T; <0 .
Zq; L T (31 <0



Linear Integer Arithmetic (LIA) REN

B Constraints of the form
d.icixi e, el =}

B Cutting-plane proof system: complete proof system for LIA

— t1 <0 to <0
Hyp —— Comb — —— . c1,c0 > 0
yptSO Cl°t1—|—02°t2§0 b2

> .cizi+c<0
Zi%$i+ (ﬂ <0’

B |nterpolation by annotating proof rules with inequalities

Div d > 0 divides the ¢;’s

® When | is derived, the associated annotation is the computed
Interpolant




Interpolation with ceilings e

B Need to extend the signature of LIA to allow interpolation

® Introduce the ceiling function [-] [Pudlak '97]
= Allow non-variable terms to be non-integers (e.g. %)



Interpolation with ceilings =>¢

B Need to extend the signature of LIA to allow interpolation

® Introduce the ceiling function [-] [Pudlak '97]
= Allow non-variable terms to be non-integers (e.g. %)

1 o t ft<0eA
YPoi<ow<o T\ 0ift<0enB

t1 <O, <0  ta<0[th <O

Comb
o Cl°t1—|—62°t2§0[Cl°t,1—|—62°t/2§0]

Zyg‘ ¢B 2iYj T sz€A brzk + 2y, e anp Ci%i + C
(> 2B @Y + 2 canp CiTi + 1]

. 2 i
ZyﬁZB %yj + szeB szk/Jr inEAﬂB %:1:‘7; T %W

. Zmz CZZEi—I—t/
(> y,eB Vi =7 Il a> o divides a;, b5, c:

Div




Interpolation with ceilings - example REN

A — —y—4r—-1<0 B —y—42+1<0
| y+42 <0 ]l y+42—-2<0

y+4x <0 —y—42+1<0

dr —4z+1 <0 —y—dr—1<0 y+42—2<0

4-(r—24+1<0) —4x+42—-3<0




Interpolation with ceilings - example REN

A — —y—4r—-1<0 B —y—42+1<0
| y+42 <0 ]l y+42—-2<0

y+4x <0 —y—42+1<0

[y + 42 < O] 0 <0]
dr —4z+1 <0 —y—dr—1<0 y+42—2<0
[y + 2nx < 0] —y —4x — 1 < 0] 0 < 0]
4-(x—2+1<0) —dr+42-3<0
[z +[¥] <0 [~y —4zr —1 <0




Interpolation with ceilings - example BN

A — —y—4r—-1<0 B —y—42+1<0
|l y+4x <0 T y+42—2<0

y+4xr <0 —y —42+1<0

[y + 42 < O] 0 <0]
dr —4z+1 <0 —y—dr—1<0 y+42—2<0
[y + 2nx < 0] —y —4x — 1 < 0] 0 < 0]
4-(x—2+1<0) —dr+42-3<0
[z +[¥] <0 [~y —4zr —1 <0

(1<0)=1
Interpolant: [4|5| —y —1 <0




SMT(LIA) with ceilings REN

B ceilings can be eliminated via preprocessing

= Replace every term ||
with a fresh integer variable T[t]

= Add the 2 unit clauses
(encoding the meaning of ceiling: [t] —1 <t < [t])

(l-:z:‘m —1-t+1<0)
(l-t—l-azm <0)

where | Is the least common multiple of the denominators of the
coefficients in ¢



Bit-vectors (BV) REN

B |[nterpolation for bit-vectors is hard

® Only some limited work done so far

B Most efficient solvers use eager encoding into SAT, which is
efficient but not good for interpolation

® Easy in principle, but not very useful interpolants

B Try to exploit lazy bit-blasting to incorporate BV into DPLL(T)



Interpolation via Bit-Blasting =2

B [nterpolation via bit-blasting Is easy...

® From Apgyvand By generate ABool and BBool
Each var * of width n encoded with n Boolean vars b7 ... b7

= Generate a Boolean interpolant Igool for (ABool, BBool)

= Replace every variable b7 in {Boolwith the bit-selection 7]
and every Boolean connective with the corresponding bit-wise
connective: A +— &, Vi |, -~

B but quite impractical

® Generates “ugly” interpolants
® Word-level structure of the original problem completely lost
® How to apply word-level simplifications?



Interpolation via Bit-Blasting - Example _:‘<
A= (ags) * bs) = 15(5)) A (as) = 3(g))
B < ﬂ(b[g] %uC[8] — 1[8]) A\ (6[8] — 2[8])

A word-level interpolant is:

def

I = (big) * 3;3) = 15(g))

...but with bit-blasting we get:

I' = (big[0] = 1p17) A ((bysy[0]& ~ ((((((~ bys)[7]& ~ byg[6])&
~ big)[5])& ~ bg)[4])& ~ big)[3])&big)[2])& ~ bg[1])) = Opy)



Alternative: Iazy bit-blasting and DPLL(T)

B Exploit Jazy bit-blasting

B Bit-blast only BV-atoms, not the whole formula

® Boolean skeleton of the formula handled by the “main” DPLL, like
iIn DPLL(T)

® Conjunctions of BV-atoms handled (via bit-blasting) by a “sub”-
DPLL (DPLL-BV) that acts as a BV-solver

Standard BV-specific Interpolation
Boolean Interpolation for conjunctions of constraints




Interpolation for BV constraints

B A layered approach

B Apply in sequence a chain of procedures of increasing
generality and cost

¥ |nterpolation in EUF

¥ |nterpolation via equality inlining

® |nterpolation via Linear Integer Arithmetic encoding
® [nterpolation via bit-blasting

=2




Interpolation in EUF K
B Treat all the BV-operators as uninterpreted functions

B Exploit cheap, efficient algorithms for solving and
Interpolating modulo EUF

B Possible because we avoid bit-blasting upront!

oR
@
=h

Example: A ($1[32] = 3[32]) A (3 [32] = 41[32] - L2 [32])
B

f

Q.
)

(5134 (32] — 5132[32]) A\ ($5[32] — 3[32] g [32])/\
ﬁ($3[32] — 45 [32])

IUF = z3 = f(f3, 22)

Iy = L3[32] = 3[32] " L2[32]




Interpolation via Equality Inlining '°<

® Interpolation via quantifier elimination: given (A, B) an
Interpolant can be computed by eliminating quantifiers from
ngBA or from ngA—lB

B |[n general, this can be very expensive for BV

= Might require bit-blasting and can cause blow-up of the formula

B Cheap case: non-common variables occurring in “definitional”
equalities

Example: (g; - e) N and x does not occur in e, then

B((z=e) Np) = ¢z — €



Interpolation via Equality Inlining BN

B |nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

" Try both from A and — B
® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] > (374[8] - 335[8]) <s (0[24] L X1[g] — 1[32]))/\
(332[8] — 561[8]) A\ (374[8] — 192[8]) A\ (CIZ‘5 8] = 128[8])

Q.
)
H-;

(w318 - T6[s]) = (— (0247 =2 T215)))[7 = O])A
r378] <u Lig]) A (O1s) <u T3781) N (Te[s] = 1is)

—~
]




Interpolation via Equality Inlining

B |nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

® Try both from 4 and — B
® |f one of them succeeds, we have an interpolant

FONDAZ
BRUNO KESSLER

def

Example: A= (0[24] e ($4[8] y 375[8]) <s (0[24] e L1[8] — 1[32]))/\

(CIBQ[g] — 581[8]) A\ (554[8] — 192[8]) A\ (375[8] — 128[8])

S —

Definitional equalities




Interpolation via Equality Inlining

-

B |nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

" Try both from A and — B

® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] e (334[8] y 335[8]) <s (0[24] 2 L1[8] — 1[32]))/\

($2[8] = $1[8])

N (zas) = 192(g)) A (25[5) = 1285))

Q.

ef

B = ((z3(s] - T6[s)) = (—(0j24) :: Z2(8]))[7 : O])A
(

r378] <u Lig]) A (O1s) <u 3781) N (T6[8] = 1is)




Interpolation via Equality Inlining BN

B |nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

" Try both from A and — B
® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] e (374[8] y 335[8]) <s (0[24] B 332[8] — 1[32]))/\
A\ (334[8] — 192[8]) A\ (375[8] — 128[8])

Q.

ef

B = ((z3(s] - z6[s)) = (— (0241 1 T2(8]))[7 : O)A
(z318) <u Lig)) A (Ops) <u z3(5)) N (z6[8) = 1g))




Interpolation via Equality Inlining =X

B |nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

" Try both from A and — B
® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] e (334[8] y 335[8]) <s (0[24] o 5’32[8] — 1[32]))/\
A\ (374[8] — 192[8]) A\ (375[8] — 128[8])

Q.

ef

B = ((z3(s] - z6[s)) = (— (0241 1 T2(8]))[7 : O)A
(z318) <u Lig)) A (Ops) <u z3(5)) N (z6[8) = 1g))




Interpolation via Equality Inlining BN

B |nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

" Try both from A and — B
® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] :: (192[8] : 128[8]) <s (0[24] L XT218] — 1[32]))
N A\

Q.

ef

B = ((z3(s] - z6[s)) = (— (0241 1 T2(8]))[7 : O)A
(z318) <u Lig)) A (Ops) <u z3(5)) N (z6[8) = 1g))




Interpolation via Equality InIining

B |nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

® Try both from 4 and — B
® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] :: (192[8] - 128[8]) <s (0[24] 2 L2[8] — 1[32]))

B = ((z3(s] - z6[s)) = (— (0241 1 T2(8]))[7 : O)A
(z3(8] <u 1[s7) A (O8] <u Z3[8)) A (T6[5) = 1[5)




Interpolation via LIA Encoding

B Simple idea (in principle):
® Encode a set of BV-constraints into an SMT(LIA)-formula

® Generate a LIA-interpolant using existing algorithms
® Map back to a BV-interpolant

B However, several problems to solve:
= Efficiency
® More importantly, soundness




Encoding BV into LIA =

B Use well-known encodings from BV to SMT(LIA)

= Encode each BV term ¢, as an integer variable z; and the
constraints (0 <x) A (g <27 — 1)

® Encode each BV operation as a LIA-formula.

Examples: | |
ticjen 2 tipli s 5] ™ (20 =m) A (2, = 27 h+ 2/m+ DA
1€[0,2)Ame 0,277 Y AR 0,27 1)

def

tn] = tipn] T l2[n] ™ (2 =24, + 20, —2"0) A (0 <0 < 1)

tin) = tif) - K ) (v =k -z, —2"0) N (0 <0 <k)




From LIA-interpolants to BV-interpolants _°<

B “Invert” the LIA encoding to get a BV interpolant

B (nsound in general

® |ssues due to overflow and (un)signedness of operations

B Our (very simple) solution: check the interpolants

® Given a candidate interpolant I, use our SMT(BV) solver to
check the unsatisfiability of (A A —I)V (B A I)

" |f successful, then I is an Interpolant



From LIA- to BV-interpolants: examples A

A= (11 18] = Ys[4] * ?15[4]) A (Y1 (8] — Z/2[8]) A (95[4] — 1[4])
B= ~(Yag) + Lig) <w Y218)) A (Yajg) = i)

Encoding into LIA:

def

ArL1a :(:zij = 162y, + szys) /\ (:Eyl — wa) A (wy5 = 1)A
(wyl < [07 28)) A (xyz < [07 28)) A (.Cl?y5 < [07 24))

Bria d:ef_'(xy4-|-1 < ny) A ($y4—|—1 = Ty, T+ 1 — QSU)A
(CCy4 — 1)/\

(Tya+1 € [0,2%)) A (2y, € [0,2%)) AN (0 < 0 < 1)



From LIA- to BV-interpolants: examples = . oo

A= (11 8] = Ys[4] y5[4]) A (Y1 8] = y2[8]) A (95[4] — 1[4])
B= =(Yarg) + Lig) <u Y2i8)) N (Yajs) = i)

LIA-Interpolant:

def

ILIA — (17 S £Uy2)

BV-interpolant:

def

I'= (178) <u Y2(s)




From LIA- to BV-interpolants: examples e

A =(ya1g = 81g)) A (y3(8) = Ors)) A (Yajg) = Y2[s))

def

B = (y13[16] — 0[8] . y4[8]) A (255[16] <u Y13[16] - (0[8] ‘e y3[8]))

Encoding into LIA:
Avia d:ef(xyz = 81) A (Tys = 0) A (Ty, = Ty, )A
(2, €[0,2%)) A (zy; € [0,2%)) A (2, € [0,2%))

Lyi1z = 28 -0+ CCiy4) A (255 < xyls—l—(O::ys))/\

(

(xy13+(0::y3) = Ty;3 t+ 2°.0+ Lys — 2160)/\
(ajy13 S [07 216)) A\ (:’Uy13—|—(012y3) S [07 216))/\
(



- =€
From LIA- to BV-interpolants: examples

A =(ya1g = 81g)) A (y3(8) = Ors)) A (Yajg) = Y2[s))

def

B = (y13[16] — 0[8] . y4[8]) A (255[16] <u Y13[16] - (0[8] ‘e y3[8]))

LIA-Interpolant:

def

Itia = (xys + Ty, < 81)

BV-interpolant:

I= (y3[8] + Ya[g] Su 81[8])




From LIA- to BV-interpolants: examples

A dzef(yz[S] = 81(g)) A (ysg) = Ops)) A (Yajs) = Y218))

def

B = (y13p16) = Ojg) =t Yas)) N (255116) <w y13716] + (O[g) = ¥3(57))

LIA-Interpolant:

def

Iria = ($y3 + Ty, < 81)

Addition might

overflow in BV!

BV-interpolant:

I %{s} + Yajs) Fu 8lig))




From LIA- to BV-interpolants: examples _°<

A =(ya1g = 81g)) A (y3(8) = Ors)) A (Yajg) = Y2[s))

def

B = (y13[16] — 0[8] . y4[8]) A (255[16] <u Y13[16] - (0[8] ‘e y3[8]))

LIA-Interpolant:

def

Itia = (xys + Ty, < 81)

Addition might
overflow in BV!

BV-interpolant:

A correct interpolant would be
def

I = (0[1] .. yg[g] + 0[1] . y4[8] Su 8]-[9])




From LIA- to BV-interpolants: examples e

A d:efﬂ(yzl[g] + 151 <u y3[8]) A (2 8] = Y4[g] T 1[8])
def

B =(y21s) + Lig) <u Y3s)) A (Yr(s) = 3[8]) A (Yr[8) = Y25 + Ljg))
Encoding into LIA:

def
Aria :_‘(wy4—|—1 < wys) A (.CIZy2 — Cli‘y4_|_1)/\

(Tys41 = Ty, +1—2%01)A
(Tys €[0,2%)) A (2y, € [0,2%)) A (2y, € [0,2%))A
(2401 € 0,29) A (0 < 0y < 1)

Q.

ef

Bria = Lyo+1 < a:y?,) A (xw — 3) A ($y7 — CIJy2_|_1)/\

(
(Tyotr1 = Ty, +1 — 28‘72)/\
(x?ﬁ < [0728)) A (CEy2_|_1 < [0728)) A (0 < 02 < 1)



From LIA- to BV-interpolants: examples e

A d:efﬂ(yzl[g] + 1ig) <w ys(g)) A (Y2(8) = Yais] + 1ig))
B =(y215) + 1is] <u y3(s) A (i) = 3i81) A (Wris) = vas) + Lis))
LIA-interpolant:

def

ILIA = ( 259 < Lyy — Lys

256 )

BV-interpolant:  (after fixing overflows)
=, def

I' = (65281 16) <u (Org) :: Y2(8 ]) — (O :: y3[8])_|_
256(16] - (6553516) - (O[s] :: Y2(s])/u 25614)))



From LIA- to BV-interpolants: examples _:’(

A dzefﬂ(yzl[g] + 181 <u y3[8]) A (2 8] = Y4[g] T 1[8])
def

B =(y2(s) + L8] <u Ys[g)) A (Y718) = 3i8)) A (Y7(8) = Y2(s) + Lis))
LIA-interpolant:

def X 2
Tuia = (=255 < @y, — @y, +256( 152 )

BV-interpolant:  (after fixing overflows)

= (65281[1[8] : Yorg)) — (Ofg) = Yspg))+
256(16) - (655°

In this case, the problem

IS also the sign



From LIA- to BV-interpolants: examples e

A d:efﬂ(yzl[g] + 151 <u y3[8]) A (2 8] = Y4[g] T 1[8])
B d:ef(y2 g+ s <u ¥3 [8]) A (Y718 = 3i81) N (Y718) = 92 8] T 1(g))
LIA-interpolant:

def CEy2

ILIA = (—255 S $y2 — ili‘y3 —+ 250 L—1256J)

BV-interpolant:

def

I = (6528116 <s (Ojg] :: y2rg)) — (Ofg) == Ysjg))+
256(16] - (6553516 - (O[g] = Y2(s))/w 256(16]))

Correct interpolant



Interpolation in combined theories BN

B Delayed Theory Combination (DTC): use the DPLL engine to
perform theory combination

" Independent J;-solvers, that interact only with DPLL
® How: Boolean search space augmented with interface equalities
B Equalities between variables shared by the two theories

B Combination of theories
encoded directly in the
proof of unsatisfiability P

T2

T

T2
T T

= [ -lemmas for the

Individual theories T

B P contains interface
equalities




Interpolation in combined theories AN

B Problem for interpolation:
® Some interface equalities (x = y) are AB-mixed: x ¢ B, y & A
B nterpolation procedures don't work with AB-mixed terms

B Solution: Split AB-mixed equalities occurring in P, and fix the proof

® How: Split each 7-lemma
nV(r=y)into (nV (x =t))A
nV(t=y) with te ANB T T

T2

using available algorithms

T

T

= 7;'s must be equality-
iInterpolating and convex

® Propagate the changes
throughout P




Interpolation in combined theories

B Problem for interpolation:

® Some interface equalities (x = y) are AB-mixed: x ¢ B, y & A

B nterpolation procedures don't work with AB-mixed terms

=D<

B Solution: Split AB-mixed equalities occurring in P, and fix the proof

® How: Split each 7-lemma

nV(r=y)into (nV (x =t))A

nV(t=y) with te ANB
using available algorithms

= 7;'s must be equality-
iInterpolating and convex

® Propagate the changes
throughout P

T

T2

1

7o

T2

T

T

P’




Interpolation in combined theories

B Problem for interpolation:

14

® Some interface equalities (x = y) are AB-mixed: * ¢ B, y ¢ A

B nterpolation procedures don't work with AB-mixed terms

B Solution: Split AB-mixed equalities occurring in P, and fix the proof

® How: Split each 7-lemma

Problem: splitting can
cause exponential blow-up
In P

Solution: control the kind of

proofs generated by DPLL,
so that the splitting can be
performed efficiently
(le-local proofs)

T2

1

7o

T2

T

T

Pl




L : : =53¢
Interpolation in combined theories

B After splitting AB-mixed equalities, we can compute an
Interpolant as usual

® Nothing special needed for theory combination!

® Because theory combination is encoded in the proof, we can
reuse the Boolean interpolation algorithm

B Features:

® No need of ad-hoc interpolant combination procedures
= Exploit state-of-the-art SMT solvers, based on (variants of) DTC
= Split only when necessary



Example

A=(a1=f(x1)N(z—x21=1) A (a1 +

B:=(az=f

/\

T2)) N\ (2 —x2 = 1) A (az A

=<



Example

A= (a1

f(z1))

T-lemmas:
Cr=(z1=22)Va(z—x1 =1)V
—(z—x9=1)
Cy =(a1 = az2) V =(az = f(z2))V
—(a1 = f(z1)) V =(21 = 22)

03 E—l(al +z = O) V

—(a1 = az)

ANz—xz1=1)A
NA(z—z0 =1) A

14

—(ag +2=1)\




(oS
E - :
Xample 7 g
RRRRRRRRRRRR

A=(a1=f(x1))AN(z—x21=1)A (a1 + z=0)

Wsitl;\birr)\rt?eo S. 7
Cs (al =az) V ~(az = f(x2))V (a1 = f(z1)) Os
—(a1 = f(21)) V (21 = x2) \@6/(@2 = f(z2))
Cs=-(a1 +2=0)V-(az+2z=1)\ (2 — g = )\@7/

—u(al — ag) \J_/




14

Example
A=(a1 = f(z1))AN(z—21=1)A (a1 + 2 =0)
B:=(as = f(z2))N(z—22=1)A (a2 +2z=1)
Pesubproof!  m = m mmmm-- - - -
! !
! !
T-lemmas: ' !
Cr=(z1=22)Va(z—x1 =1)V : :
—(z—x9=1) 1 Cs Co I
Cr=(a1 = a)Vlas = f))v :
—(a1 = f(x1)) V ~(21 = 22) 0 1 Cvo
03 E_l(al—l—Z:O)\/_'(CLQ—|—Z:1):\/ \ / :
=(a1 = az) I o oo S !



Example =X

A=(a1=f(x1)AN(z—x21=1)A (a1 + z=0)
B:=(as = f(z2))N(z—22=1)A (a2 +2z=1)

Pesubproof: e m m m m - - - - - - -

T-lemmas:
{C’l =(z1 =x2)V(z—x1 = 1)\/]
2(2 — @y = 1)
Cy =(a1 = az2) V =(az = f(z2))V
—(a1 = f(z1)) V (21 = x2) W

C3 Eﬁ(a1+z:())\/ﬂ(a2+z:1):\/ \ /

=(a1 = az) I SP) ]




Example =X

A=(a1=f(x1)AN(z—x21=1)A (a1 + z=0)
B:=(as = f(z2))N(z—22=1)A (a2 +2z=1)

Pesubproof: e m m m - - -- - - - -

!
Ci=(r1=z—-1)Va(z—z1=1)v | :
=(z — 29 = 1) : s Cs :
Cl=(z—1=z3)V-(z—21=1)V I \ / !
Rt s A R i
2 =1 = a2 a2 = J &2 I
—(a1 = f(21))V =(21 = 2) 1 \@, / o :
Cs Eﬁ(a1+z:())\/ﬂ(a2+z:1):\/ 2\ / :

ﬁ(a1 — CL2) | S



Example 2

A=(a1=f(x1)AN(z—x21=1)A (a1 + z=0)
B:=(as = f(z2))N(z—22=1)A (a2 +2z=1)

Cy =(a1 = az) V =(az = f(5132))\/]
=(a1 = f(x1)) V ~(21 = x2)

P subproof: A=
Ci=(r1=z—-1)Va(z—z1=1)v | ,=a,)inC,
—(z —x9 =1) : C,
Cl=(z—1=x2)V(z—xz1=1)V 1
—(z —x9 = 1) :
1

(s E—l(al + Z = O) V _'(CLQ +z = 1)I @2\ /

ﬁ(CL1 = CL2) | O
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Proof Tree Preserving Interpolation REN

B [Christ, Hoenicke and Nutz, TACAS 2013]

B [nterpolants with AB-mixed literals without proof rewriting

® Replace AB-mixed terms (s < t) with(s < x) A (z < t)
In leaves, where x Is a fresh purification variable

® Eliminate the purification variable when resolving on (s < t)
C1V (s <t) [[1(z)] Co V(s <t) [Iz2(x)]
C1V (s [Ig]

B Advantages:

® no need of proof rewriting

® handles also for non-convex theories
B Drawbacks:

¥ need T-specific interpolation rules for resolution steps
® more complex interpolation system



From Binary to Sequence Interpolants

-

® An ordered sequence of formulae F, ..., F;,, such that
Ni b = L
® \We want a sequence of interpolants Iy, ..., I,—1such that

.IkiS

an interpolant for (/\le Fi, /\;’L:k_|_1 F;)

= Py NIy = Iy forall k € [2,n — 1]

B Needed in various applications (e.g. abstraction refinement)

B How to compute them?

® |n general, if we compute arbitrary binary interpolants for
(/\izl i /\j:k—l—l j), the second condition will not hold



A simple solution

= Compute [; as an interpolant of (7, \7_, Fj)

® Compute [,, as an interpolant of (I_1 A Fj, A\

1=k+1

Fj)

® Claim: [ Is an interpolant for (/\Z 1 Fis /\
B Proof (sketch):

1=k+1

Fj)

k—1
= By ind.hyp. I;_1 is an interpolant for (/\,_; £ /\j . )

k—1
SO /\7;:1 Fi; = Ix—1 and I 1/\Fk/\/\3 ka1

F;

= L

B Advantages:

¥ simple to implement
® can use any off-the-shelf binary interpolation

B Drawback: requires n-1 SMT calls

14




A more efficient algorithm

® Compute an SMT proof of unsatisfiablity P for A, F;

B Compute each [, := Interpolant(/\le ki, /\?:]H-l Fy)

from the same proof P

® Theorem: FrL N[, = I




A more efficient algorithm =X

® Compute an SMT proof of unsatisfiablity P for A, F;

B Compute each [, := Interpolant(/\le ki, /\?:lﬁ-l Fy)

from the same proof P

® Theorem: FrL N[, = I

B Proof (sketch) — case n=3:

® | et C be a node of P with partial interpolants /' and /" for the
partitionings (£1, F2 A F3)and (F1 A Fa, F3) resp. Then we
can prove, by induction on the structure of P, that:

I'NFo =1"Vv\/{l e C|var(l) ¢ Fs}

® The theorem then follows as a corollary

® Works also for DTC-rewritten proofs
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