OOOOOOO
RRRRRRRRRRRR

Indian SAT+SMT school 2016

SMT Tutorial

2. Quantifier Elimination and
Interpolation in SMT

Alberto Griggio

Fondazione Bruno Kessler — Trento, Italy



Outline

Introduction
Example Applications in Formal Verification
SMT-based Quantifier Elimination

Computing interpolants in SMT

14



Introduction =X

B (Existential) Quantifier Elimination problem: given a formula
e :=3dX1.VXy...3X,.0(Xq,..., X,,,Y)

find a quantifier-free formula ¥ (Y") that is equivalent to ¢
modulo T

B Several important applications. E.qg.

¥ |mage compuation
B Parameter synthesis



Introduction

=<

B (Craig) Interpolant for an ordered pair (4, B) of formulae s.t.
ANBE=r L (or: Al=r —B) isaformulals.t.

IA:T[
"IABErl (I

m All the uninterpreted (in 1") symbols of /
are shared between 4 and B

m \Why are interpolants useful?

® Overapproximation of 4 relative to B

-B

— —B)

= Overapprox. of 3y, op1@. A

= “Local” explanation of why 4 is inconsistent with B



Outline

Introduction
Example Applications in Formal Verification
SMT-based Quantifier Elimination

Computing interpolants in SMT



Background

Symbolic transition systems

= State variables X
= |nitial states formula I (X)
= Transition relation formula 7T'( X, X”)

=D<

® A state 0 is an assignment to the state vars /\,, cx Ti = Vi

B A path of the system S Is a sequence of states o0g, ...,0k

such that o

B A k-step (sym

_ o
— 1 and 05,0,

=3

polic) unrolling of S is a formula

I(X%) A NIZ) T(X, X

® Encodes all possible paths of length up to k

B A state property is a formula P over X
— P

® Encodes all the states 0 such that O




Forward reachability checking

B Forward image computation

® Compute all states reachable from o In one transition:

Img(a (X)) := IX.0(X) AT(X, X')[X/X']

® Prove that a set of states Bad(X) is not reachable:

Bad(X)

-

Img(R(X))

=<



Forward reachability checking

B Forward image computation

® Compute all states reachable from o In one transition:

Img(a (X)) := IX.0(X) AT(X, X')[X/X']

® Prove that a set of states Bad(X) is not reachable:

R(X) :

Bad(X)

=<



Forward reachability checking

B Forward image computation

® Compute all states reachable from o In one transition:

Img(a (X)) := IX.0(X) AT(X, X')[X/X']

® Prove that a set of states Bad(X) is not reachable:

R(X) : Bad(X)

|

D
FONDAZIONE
3RUNO KESSLER



Forward reachability checking

B Forward image computation

® Compute all states reachable from o In one transition:

Img(o(X)) := IX.0(X) AT(X, X')[X/X']

® Prove that a set of states Bad(X) is not reachable:

FONDAZIONE
BRUNO K



Forward reachability checking

B Forward image computation

® Compute all states reachable from o In one transition:

Img(a (X)) := IX.0(X) AT(X, X')[X/X']

® Prove that a set of states Bad(X) is not reachable:

R(X) : Bad(X)

|

D
FONDAZIONE
3RUNO KESSLER



Forward reachability checking gl A

B Forward image computation

® Compute all states reachable from o In one transition:
Img(o(X)) :=3X.0(X) AT(X, X[ X/X']

® Prove that a set of states Bad(X) is not reachable:

R(X) :




Interpolation-based reachability -

B |[mage computation requires guantifier elimination, which is
typically very expensive (both in theory and in practice)

B [nterpolation-based algorithm (McMillan CAV'03): use
Interpolants to overapproximate image computation

® much more efficient than the previous algorithm

B nterpolation is often much cheaper than quantifier elimination
B abstraction (overapproximation) accelerates convergence

® termination is still guaranteed for finite-state systems



Interpolation-based reachability REN

= Set R(X) := I(X)
® Check satisfiability of Ry A A¥- T; A Bad,

Q- ~-O-@




Interpolation-based reachability REN
® Check satisfiability of Ry A A¥- T; A Bad,

@< -O-@>
A B

B |f UNSAT:
= Set (X)) := Interpolant(A, B)[X1/X]

¥ is an abstraction of the forward image
guided by the property




Interpolation-based reachability =X
mSet R(X) := I(X)
® Check satisfiability of Ry A A*~) T; A Bad,

@< -O-@>
A B

B |f UNSAT:
= Set (X)) := Interpolant(A, B)[X1/X]

¥ is an abstraction of the forward image
guided by the property

m [f ¢ = R, return UNREACHABLE | fixpoint found
= else, set R(X) := R(X) V ¢(X) and continue




Interpolation-based reachability REN

= Set R(X) := I(X)
® Check satisfiability of Ry A A¥- T; A Bad,

@—< - ~O-@
A B

B |f SAT:

" |f R =1, return REACHABLE

® The unrolling hits bad
® Otherwise, we don't know

B The path might be feasible due to the overapproximation
B |ncrease k and try again



Outline

=<

Introduction
Example Applications in Formal Verification
SMT-based Quantifier Elimination

Computing interpolants in SMT



Existential elimination for LRA =€

Fourier-Motzkin method

® Given a conjunction of linear inequalities C and one variable
X to eliminate

® Partition C into C* and C-:
CTi={a;-x <) bijy;+citi
C™i={—ar-x <) ;ibxjyj+crlx

® Return ¢(Y) — /\zk:(o < Zj ag-bij+a; by, e aq;-ck—l—ak.c,,;)

a; aj a; - aj

® For multiple variables x4, ..., 2, , apply the above in
sequence

® For arbitrary formulae ¢(z,Y")

® First put ¢ in DNF, and then apply the above



Boosting Fourier-Motzkin with SMT BN

® The Fourier-Motzkin method is a purely syntactical one, which
might generate a lot of redundant constraints

= Blow-up when converting the input to DNF
= Blow-up when eliminating a single variable
= Blow-up when eliminating multiple variables
® No reuse of information

® \We can mitigate the blow-ups by using an SMT solver, to
perform a “semantic-aware” existential elimination

= Although it won't improve the (doubly-exponential) worst-case
complexity, it will greatly improve performance in practice

B See e.g. [Monniaux 2008]



SMT-based FM-elim

def FM elim SMT(formula, vars):

res = FALSE()

while True:
m = get model(formula)
if m is None: break
conj = { (a if entails(m, a) else Not(a))

for a in atoms(formula) }

conj e = FM elim conj(conj, vars)
res = 0Or(res, conj e)
formula = And(formula, Not(conj e))

return res

def FM elim conj(conj, vars):
for x in vars:
cCp { ¢ for ¢ in conj if coeff(c, x) > 0 }
cn { ¢ for ¢ in conj if coeff(c, x) < 0 }
conj = conj - (c p | c.n)
for a in c p:
for b in c n:
c = combine(a, b, x)
if not implies(conj, c): conj.add(c)
return And(*conj)

14




Alternative: Virtual Term Substitution REN

® \Main bottleneck of the FME-based algorithm is the
computation of the DNF

® Even in the SMT case, still has to enumerate cubes of the input
formula

B Virtual Term Substitution method doesn't require a DNF

® Can work on a NNF, which can be computed in linear time

® Main idea: compute aset S := {07y,...,0,} such that

Jz.¢ is equivalentto \/"_ o[z := o]

= ¢ is computed syntactically, by only looking at the literals of ¢
® The Boolean structure doesn't matter




Virtual Term Substitution =X

B Collect all literals containing

= Put them in the form (x <1 ¢;), € {<, =, >}

B By rewriting (tl < t2) —> (tl — tg) V (tl < tg)
—(t1 < ta) — (tg < t1) (and so on)

B Build § := {ti | (ZE:tz) E@}U{ti—&? ‘ (CIJ<ti) EQO}U{OO}
B £ Is a symbolic infinitesimal parameter

B Apply the subsitutions as follows

(2 patj)[z = oo] = { Lif pae {=, <}

it > is >
Lif s =
(CIZ‘Nt]‘)[CEI:ti—&T]: (tigt]‘) if > is <
(ti>tj) if > 1s >



Example

=32y <5 A((y >0)V (x <2y))A
(((z = 0) A (z < 4y)) V (y > —5))]



Example
=32y <5 A((y >0)V (x <2y))A
(((z = 0) A (z < 4y)) V (y > —5))]

® Collect literals {(z < 2y), (z > 0), (z = 0), (z < 4y)}

(20)

mS:={0,2y —e,4y —e,00}

=2



Example
=32y <5 A((y >0)V (x <2y))A
(((z = 0) A (z < 4y)) V (y > —5))]

® Collect literals {(z < 2y), (z > 0), (z = 0), (z < 4y)}

(20)

mS:={0,2y —e,4y —e,00}
mplz:=0]=2y <35 A((y>0)V(0<2y)A(0<4y)V(y>-5))

=D<



Example
=32y <5 A((y >0)V (x <2y))A
(((z = 0) A (z < 4y)) V (y > —5))]

® Collect literals {(z < 2y), (z > 0), (z = 0), (z < 4y)}

(20)

mS:={0,2y —e,4y —e,00}
mplz:=0]=2y <5 A((y>0)V(0<2y)A((0<4y)V(y>-5))
plr =2y —e] =2y <5) A (((2y > 0) A (2y < 4y)) V (y > —5))

14



14

Example

L2

=3z |2y <5) A ((y >0)V(x<2y))A
(((z = 0) A (z < 4y)) V (y > —5))]

® Collect literals {(z < 2y), (z > 0), (z = 0), (z < 4y)}

mS

LR
Y
g

(20)

= 10,2y —e,4y — £,00}
z:=0] =2y <5) A ((y>0)V(0<2y))A((0<4y)V(y > -5))
z:=2y—¢e] = (2y <5) A (((2y > 0) A (2y < 4y)) V (y > —5))

v =4y —¢e]l = 2y <35)A((y > 0) vV (4y < 2y)) A ((4y > 0) V (y > =5))



14

Example

L2

=3z |2y <5) A ((y >0)V(x<2y))A
(((z = 0) A (z < 4y)) V (y > —5))]

® Collect literals {(z < 2y), (z > 0), (z = 0), (z < 4y)}

(20)

mS:={0,2y —e,4y —e,00}

LR
Y
g
Y

z:=0] =2y <5) Ay >0)V(0<2y))A((0<4y)V(y>-5))
z:=2y—¢e] = (2y <5) A (((2y > 0) A (2y < 4y)) V (y > —5))
=4y —¢e] =2y <5 A((y>0)V 4y <2y)A(4y >0)V(y >-5))

r:=00] =2y <5 A(y>0)A(y>—b)



Example A

=32y <5 A((y >0)V (x <2y))A
(((z = 0) A (z < 4y)) V (y > —5))]

® Collect literals {(z < 2y), (z > 0), (z = 0), (z < 4y)}

(20)

mS:={02y—c,dy—e,00}

moofz:=0= 2y <5)A((y>0)V(0<2y))A(((0<4y)V(y>-5))

plr =2y —e] =2y <5) A(((2y > 0) A (2y < 4y)) V (y > —5))

plr =4y —el = (2y <5) A ((y > 0) V (4y < 2y)) A ((4y > 0) V (y > —5))

plz = 00| = (2y <5) A (y > 0) A (y > —5)

B Result: ¢lx:=0]Voplr:=2y—c|Vylr:=4y —e| Vol := o]



Virtual Term Substitution drawbacks -

® | ke the naive FM algorithm, the VTS method is purely
syntactic

® Doesn't consider the Boolean structure of the formula

= Many cases might produce inconsistent disjunct, or duplicate
and/or subsumed results

B |n the previous example:
m gpix = O: and gp[az ‘= OO] are equivalent
N gp:x = 2y — 8] and 90[$ =4y — 5] are equivalent
n o[z := 0] is implied by @[ := 2y — €]

®m therefore, dz.p is equivalentto p|x := 2y — €]

B \We can do better by exploiting SMT



SMT-based Virtual Term Substitution

14

def VTS elim SMT(formula, vars):

f = to nnf(formula)

res = FALSE()

while True:
m = get model(f)
if m 1s None: break
d = VIS elim model(f, m, vars)
res = Or(res, d)
f = And(f, Not(d))

return res

def VTS elim model(f, vars, m):
for x 1n vars:
S = get S(f, x)
val = eval S(S, x, m)
f = apply VTS(f, x, val)
return f

def eval S(S, x, m):
cur = None
for ¢ in S:

cur = t
if cur is not None:

return INF()

1f ¢ 1s (x = t) and m[x] == m[t]:
return t
elif ¢ 1s (x < t) and

(cur is None or m[t] < m[cur]):

return cur - EPSILON()




SMT-based Virtual Term Substitution

14

def VTS elim SMT(formula, vars):

f = to nnf(formula)

res = FALSE()

while True:
m = get model(f)
if m 1s None: break
d = VIS elim model(f, m, vars)
res = Or(res, d)
f = And(f, Not(d))

return res

def VTS elim model(f, vars, m):
for x 1n vars:
S = get S(f, x)
val = eval S(S, x, m)
f = apply VTS(f, x, val)
return f

Find the virtual substitution

that is consistent with
the current model

def eval S(S, x, m):
cur = None
for ¢ in S:

cur = t
if cur is not None:

return INF()

1f ¢ 1s (x = t) and m[x] == m[t]:
return t
elif ¢ 1s (x < t) and

(cur is None or m[t] < m[cur]):

return cur - EPSILON()




SMT-based Virtual Term Substitution

=2

def VTS elim SMT(formula, vars):

f = to nnf(formula)

res = FALSE()

while True:
m = get model(f)
if m 1s None: break
d = VIS elim model(f, m, vars)
res = Or(res, d)
f = And(f, Not(d))

return res

def VTS elim model(f, vars, m):
for x 1n vars:
S = get S(f, x)
val = eval S(S, x, m)
f = apply VTS(f, x, val)
return f

Find the virtual substitution

that is consistent with
the current model

def eval S(S, x, m):
cur = None
for ¢ in S:

cur = t
if cur is not None:

return INF()

1f ¢ 1s (x = t) and m[x] == m[t]:
return t
elif ¢ 1s (x < t) and

(cur is None or m[t] < m[cur]):

return cur - EPSILON()

Do not explore
already-covered models




Outline

Introduction
Example Applications in Formal Verification
SMT-based Quantifier Elimination

Computing interpolants in SMT

=<



Efficient interpolation in SAT -

B |Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

® Traverse the resolution proof, annotating each node with a
partial interpolant /

® The partial interpolant for the root node (the empty clause) is the
computed interpolant



Efficient interpolation in SAT -

B |Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

® Traverse the resolution proof, annotating each node with a
partial interpolant /

® The partial interpolant for the root node (the empty clause) is the
computed interpolant

B McMillan's annotation rules (others exist):




Efficient interpolation in SAT =€

B |Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

® Traverse the resolution proof, annotating each node with a
partial interpolant /

® The partial interpolant for the root node (the empty clause) is the
computed interpolant

B McMillan's annotation rules (others exist):

® For each leaf node (input clause) C in the proof:

mif C e A,set]:=\{leC]|var(l) € B}
® Otherwise (C € B),set I := T




Efficient interpolation in SAT =€

B |Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

® Traverse the resolution proof, annotating each node with a
partial interpolant /

® The partial interpolant for the root node (the empty clause) is the
computed interpolant

B McMillan's annotation rules (others exist):

® For each leaf node (input clause) C in the proof:
mifCcA,set!:=\{leC|var(l) € B}
® Otherwise (C € B),set I := T

= For each inner node (resolution) with parents ¢ V [ and ¢ V —l
and annotations /1 and /o

mfvar(l) € B, set I := I A\ I, ; otherwise, set [ := I; V I




Example

A= (xV-yr) A (72 V —y2) Ay
B = (_‘yl \/yg) /\ (yl V Z) N\ —z

=2

TV Y1 =z V Y
Y1 VY2 Y1
Y2 Y1 VY2
Y1V 2 Y1
2 -z




Example

A=
. ((:1:\/ —y1) A (mx VvV —y2) Ayr
Y1 Vy2) A (Y1 V z) Az

U \/ —1y2 —|y2

Y1 V Y2

Y1

Y1

(—y1 V —y2) Ay

Y1 V Y2

-1 (my1 vV ye) Ay

(my1 V y2) A ys

1 (=
(—y1 V —y2) Ay




Interpolants in SMT

B Resolution refutations in SMT:

Boolean part T-specific part for conjunctions

(ground resolution) of constraints (negated T-lemmas)




Interpolants in SMT

B Resolution refutations in SMT:

Boolean part T-specific part for conjunctions
(ground resolution) of constraints (negated T-lemmas)

Standard Boolean T-specific interpolation
Interpolation for conjunctions only

Theory interpolation only for sets of T-literals




Interpolants in SMT

B Resolution refutations in SMT:

Boolean part T-specific part for conjunctions
(ground resolution) of constraints (negated T-lemmas)

Standard Boolean T-specific interpolation
Interpolation for conjunctions only

Theory interpolation only for sets of T-literals

® Annotation for a T-lemma C:
I:= T—interpolant(/\{l c -C | var(l) ¢ B},

A{l € ~C | var(l) € B})




Equality (EUF)
B |Interpolants from coloured congruence graphs
® Nodes with [ ifterm occursin A B if term is shared
colours: B ifterm occursin B

® Edges with colours of the nodes they connect

® Uncolorable edge: connects nodes of two different colours
B Always possible to obtain a coloured graph

® (by introducing new nodes)

=<




Equality (EUF) e

B |Interpolants from coloured congruence graphs

® Nodes with B iftermoccursin A B ifterm is shared
colours: B ifterm occursin B

® Edges with colours of the nodes they connect

® Uncolorable edge: connects nodes of two different colours
B Always possible to obtain a coloured graph

® (by introducing new nodes)

A = (u _ g(s)) A (g(t) _ x)/\ L Uncolourable
(f(u,y) = 2) D om ﬂ@ ®f(z,v) 2

-
-
-
-
-
-
-
-
-
-
-
-
=
-
-
-
~
-
~
R
<
&
W




Equality (EUF) REN

B |Interpolants from coloured congruence graphs

® Nodes with B iftermoccursin A B ifterm is shared
colours: B ifterm occursin B

® Edges with colours of the nodes they connect

® Uncolorable edge: connects nodes of two different colours
B Always possible to obtain a coloured graph

® (by introducing new nodes)

Ve f(xay) T




Interpolation algorithm (sketch)

B Start from disequality edge .
B Compute summaries for A-paths with shared endpoints

4 | | 4—m----4 | M

——
A A and H A




Interpolation algorithm (sketch) e

B Start from disequality edge .
B Compute summaries for A-paths with shared endpoints

4 = | 4—®----4 | M

——
A A and H A

B |[f an A-summary involves a congruence edge, compute
summaries recursively on function arguments

® Use B-summaries as premises for the A-summary

B

y ] y | y y
— —
=N 4 4

S




Interpolation algorithm (sketch)

B Start from disequality edge .
B Compute summaries for A-paths with shared endpoints

4 | | 4—m----4 | M

——
A A and H A

B |[f an A-summary involves a congruence edge, compute
summaries recursively on function arguments

® Use B-summaries as premises for the A-summary

B

y ] y | y y
— —
= --E—m 4

7

B (Several cases to consider)



—
:

FONDAZIONE

BRUNO KESSLER

Example




m
u, ",
o,
e,
2,
e,
%
’
-
-
)
)
=
=
=
=
=
=
=
=
=
=
=
=
=
=
N
s
H
N
<
s
~
&
\J
o

[ Qs

® Start from —(f(z,v) = 2)

B A-summaries for —m-} z = f(z,y)



=14
Exam P @

B:=(v=y)A(s=1t)A .
~(f(z,v) =2 x

® Start from —(f(z,v) = 2)

B A-summaries for —m-} z = f(x,y)
= Recurse on edge [JONN} -- - -TICEN)




|

D
FONDAZIONE
3RUNO KESSLER

Example
A= (u=g(s) A (g(t) = z)A .- HACEEN] - -
(fluy)=2) el :

® Start from —(f(z,v) = 2)

B A-summaries for —m-} z = f(x,y)
= Recurse on edge [JONN} -- - -TICEN)

= Recurse on edge F[B}
= Path @—H, B-summary: (s =t)




B:=w=y)A(s=1)A .
~(f(w,v) = 2 x

® Start from —(f(z,v) = 2)

B A-summaries for —m-} z = f(x,y)
= Recurse on edge [JONN} -- - -TICEN)

= Recurse on edge I8}
= Path @—H, B-summary: (s =t)

® |nterpolant: (s =t) = (2 = f(z,y))




Linear Rational Arithmetic (LRA) =€

B [nterpolants from proofs of unsatisfiability of a system of
inequalities ) . a;z; <c

B Proof of unsatisfiability: linear combination of inequalities with
positive coefficients to derive a contradiction (0 < ¢ withc < 0)

B [nterpolant obtained out of the proof by combining inequalities
from A (using the same coefficients)

B Proof of unsatisfiability generated from the Simplex



Example REN

A=0Bxy—21<1),(0<z14+22) B:=3<x3—211),223<1)

J/

~~ ~~ ~ ~

S1 S9 53 S4
tableau bounds candidate solution 3
S1 = 3x9 — X1 —o00 < g1 < 1 1 — 0
So = X1+ X2 0 < 59 < @ Ty — 0
S3 = X3 — 2X1 3 < s3 < o© Ts > 0
Sq4 = 23 —ox0 < 54 < 1 s1 — 0
So — 0
s3 +— 0
sy — 0



Example =X

A:=QBrs—x21<1),(0< 1 + :1:2) B:=3<z3—211), 223 <1)

J/

\ .
~~ ~~ ~~ ~~

S1 S92 S3 S4
tableau bounds candidate solution j3
L3 = ——81-|- 82-|-83 —00 S < 1 T, — —1
To = 1514—4 < < o0 Ty i
— _1 § < < o0 2
Ll — TA51 7T 452 = = T3 3
S4 = —81+ 389+ 283 =X < < 1 S1 > 1
So 0
S3 = 3
Sq4 5

No suitable variable for pivoting!
Conflict




Example

A:=QBrs—x21<1),(0< 1 + 1132) B:=(3<xz3—211), (223 <1)

J/

\ .
N N Vs Y

S1 S92 S3 S4
tableau bounds candidate solution j3
L3 = ——81-|- 82-|-83 —00 S < 1 T, — —1
To = —51—|- < < o0 To i
_ ATy < 53l < o0 : 4
Ll — TA51 7T 452 = = T3 3
Sqg = —81+ 389 +283| =X < < 1 S1 > 1
Proof: S22 g
S3 =
1223 <1 -3z —x1 <1
(223 < 1) (Brz —21 < 1) sy B

(2$3+3£B2—$1§2) S(OSZL’l—l—CIZ’Q)

(2563 — 45131 < 2) 2 - (3 < L3 — 25131)
(0 < —4)




Example

A:=QBrs—x21<1),(0< 1 + :UQ) B:=(3<xz3—211), (223 <1)

J/

\ .

S1 S92 S3 S4
tableau bounds candidate solution j3
L3 = ——81-|- 82-|-83 —00 S < 1 T, — —1
To = —81 —I— < < o0 To i
_ 2 U < s3] < : 4
L1 151 T 452 = — T3 3
Sqg = —81+ 389 +283| =X < < 1 S1 > 1
Interpolant: S2 /7 g

S3 =

— 1-(3x9 — 21 <1
( : L= ) S4 > 5
(ng—ﬂflgl) 3(O§$1—|—ZIZ’2)
(-4&3‘1 S 1) —
(—4181 S 1)




Linear Integer Arithmetic (LIA) REN

B Constraints of the form
d.icixi e, el =}

B Cutting-plane proof system: complete proof system for LIA

— t1 <0 to <0
Hyp —— Comb — —— . c1,c0 >0
yptSO Cl°t1—|—62°t2§0 b2

> .cizi+c<0
> Gwi+ 5] <0

Div d > 0 divides the ¢;’s



Linear Integer Arithmetic (LlA) F FORATONE

B Constraints of the form
Y . cixi + ¢, e {<, =}

B Cutting-plane proof system: complete proof system for LIA

— t1 <0 to <0
Hyp —— Comb — —— . c1,c0 >0
yptSO Cl°t1—|—62°t2§0 b2

. C;T; <0 .
Zq; L T (31 <0



Linear Integer Arithmetic (LIA) REN

B Constraints of the form
d.icixi e, el =}

B Cutting-plane proof system: complete proof system for LIA

— t1 <0 to <0
Hyp —— Comb — —— . c1,c0 > 0
yptSO Cl°t1—|—02°t2§0 b2

> .cizi+c<0
Zi%$i+ (ﬂ <0’

B |nterpolation by annotating proof rules with inequalities

Div d > 0 divides the ¢;’s

® When | is derived, the associated annotation is the computed
Interpolant




Interpolation with ceilings e

B Need to extend the signature of LIA to allow interpolation

® Introduce the ceiling function [-] [Pudlak '97]
= Allow non-variable terms to be non-integers (e.g. %)



Interpolation with ceilings =>¢

B Need to extend the signature of LIA to allow interpolation

® Introduce the ceiling function [-] [Pudlak '97]
= Allow non-variable terms to be non-integers (e.g. %)

1 o t ft<0eA
YPoi<ow<o T\ 0ift<0enB

t1 <O, <0  ta<0[th <O

Comb
o Cl°t1—|—62°t2§0[Cl°t,1—|—62°t/2§0]

Zyg‘ ¢B 2iYj T sz€A brzk + 2y, e anp Ci%i + C
(> 2B @Y + 2 canp CiTi + 1]

. 2 i
ZyﬁZB %yj + szeB szk/Jr inEAﬂB %:1:‘7; T %W

. Zmz CZZEi—I—t/
(> y,eB Vi =7 Il a> o divides a;, b5, c:

Div




Interpolation with ceilings - example REN

A — —y—4r—-1<0 B —y—42+1<0
| y+42 <0 ]l y+42—-2<0

y+4x <0 —y—42+1<0

dr —4z+1 <0 —y—dr—1<0 y+42—2<0

4-(r—24+1<0) —4x+42—-3<0




Interpolation with ceilings - example REN

A — —y—4r—-1<0 B —y—42+1<0
| y+42 <0 ]l y+42—-2<0

y+4x <0 —y—42+1<0

[y + 42 < O] 0 <0]
dr —4z+1 <0 —y—dr—1<0 y+42—2<0
[y + 2nx < 0] —y —4x — 1 < 0] 0 < 0]
4-(x—2+1<0) —dr+42-3<0
[z +[¥] <0 [~y —4zr —1 <0




Interpolation with ceilings - example BN

A — —y—4r—-1<0 B —y—42+1<0
|l y+4x <0 T y+42—2<0

y+4xr <0 —y —42+1<0

[y + 42 < O] 0 <0]
dr —4z+1 <0 —y—dr—1<0 y+42—2<0
[y + 2nx < 0] —y —4x — 1 < 0] 0 < 0]
4-(x—2+1<0) —dr+42-3<0
[z +[¥] <0 [~y —4zr —1 <0

(1<0)=1
Interpolant: [4|5| —y —1 <0




SMT(LIA) with ceilings REN

B ceilings can be eliminated via preprocessing

= Replace every term ||
with a fresh integer variable T[t]

= Add the 2 unit clauses
(encoding the meaning of ceiling: [t] —1 <t < [t])

(l-:z:‘m —1-t+1<0)
(l-t—l-azm <0)

where | Is the least common multiple of the denominators of the
coefficients in ¢



Bit-vectors (BV) REN

B |[nterpolation for bit-vectors is hard

® Only some limited work done so far

B Most efficient solvers use eager encoding into SAT, which is
efficient but not good for interpolation

® Easy in principle, but not very useful interpolants

B Try to exploit lazy bit-blasting to incorporate BV into DPLL(T)



Interpolation via Bit-Blasting =2

B [nterpolation via bit-blasting Is easy...

® From Apgyvand By generate ABool and BBool
Each var * of width n encoded with n Boolean vars b7 ... b7

= Generate a Boolean interpolant Igool for (ABool, BBool)

= Replace every variable b7 in {Boolwith the bit-selection 7]
and every Boolean connective with the corresponding bit-wise
connective: A +— &, Vi |, -~

B but quite impractical

® Generates “ugly” interpolants
® Word-level structure of the original problem completely lost
® How to apply word-level simplifications?



Interpolation via Bit-Blasting - Example _:‘<
A= (ags) * bs) = 15(5)) A (as) = 3(g))
B < ﬂ(b[g] %uC[8] — 1[8]) A\ (6[8] — 2[8])

A word-level interpolant is:

def

I = (big) * 3;3) = 15(g))

...but with bit-blasting we get:

I' = (big[0] = 1p17) A ((bysy[0]& ~ ((((((~ bys)[7]& ~ byg[6])&
~ big)[5])& ~ bg)[4])& ~ big)[3])&big)[2])& ~ bg[1])) = Opy)



Alternative: Iazy bit-blasting and DPLL(T)

B Exploit Jazy bit-blasting

B Bit-blast only BV-atoms, not the whole formula

® Boolean skeleton of the formula handled by the “main” DPLL, like
iIn DPLL(T)

® Conjunctions of BV-atoms handled (via bit-blasting) by a “sub”-
DPLL (DPLL-BV) that acts as a BV-solver

Standard BV-specific Interpolation
Boolean Interpolation for conjunctions of constraints




Interpolation for BV constraints

B A layered approach

B Apply in sequence a chain of procedures of increasing
generality and cost

¥ |nterpolation in EUF

¥ |nterpolation via equality inlining

® |nterpolation via Linear Integer Arithmetic encoding
® [nterpolation via bit-blasting

=2




Interpolation in EUF K
B Treat all the BV-operators as uninterpreted functions

B Exploit cheap, efficient algorithms for solving and
Interpolating modulo EUF

B Possible because we avoid bit-blasting upront!

oR
@
=h

Example: A ($1[32] = 3[32]) A (3 [32] = 41[32] - L2 [32])
B

f

Q.
)

(5134 (32] — 5132[32]) A\ ($5[32] — 3[32] g [32])/\
ﬁ($3[32] — 45 [32])

IUF = z3 = f(f3, 22)

Iy = L3[32] = 3[32] " L2[32]




Interpolation via Equality Inlining '°<

® Interpolation via quantifier elimination: given (A, B) an
Interpolant can be computed by eliminating quantifiers from
ngBA or from ngA—lB

B |[n general, this can be very expensive for BV

= Might require bit-blasting and can cause blow-up of the formula

B Cheap case: non-common variables occurring in “definitional”
equalities

Example: (g; - e) N and x does not occur in e, then

B((z=e) Np) = ¢z — €



Interpolation via Equality Inlining BN

B |nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

" Try both from A and — B
® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] > (374[8] - 335[8]) <s (0[24] L X1[g] — 1[32]))/\
(332[8] — 561[8]) A\ (374[8] — 192[8]) A\ (CIZ‘5 8] = 128[8])

Q.
)
H-;

(w318 - T6[s]) = (— (0247 =2 T215)))[7 = O])A
r378] <u Lig]) A (O1s) <u T3781) N (Te[s] = 1is)

—~
]




Interpolation via Equality Inlining

B |nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

® Try both from 4 and — B
® |f one of them succeeds, we have an interpolant

FONDAZ
BRUNO KESSLER

def

Example: A= (0[24] e ($4[8] y 375[8]) <s (0[24] e L1[8] — 1[32]))/\

(CIBQ[g] — 581[8]) A\ (554[8] — 192[8]) A\ (375[8] — 128[8])

S —

Definitional equalities




Interpolation via Equality Inlining

-

B |nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

" Try both from A and — B

® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] e (334[8] y 335[8]) <s (0[24] 2 L1[8] — 1[32]))/\

($2[8] = $1[8])

N (zas) = 192(g)) A (25[5) = 1285))

Q.

ef

B = ((z3(s] - T6[s)) = (—(0j24) :: Z2(8]))[7 : O])A
(

r378] <u Lig]) A (O1s) <u 3781) N (T6[8] = 1is)




Interpolation via Equality Inlining BN

B |nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

" Try both from A and — B
® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] e (374[8] y 335[8]) <s (0[24] B 332[8] — 1[32]))/\
A\ (334[8] — 192[8]) A\ (375[8] — 128[8])

Q.

ef

B = ((z3(s] - z6[s)) = (— (0241 1 T2(8]))[7 : O)A
(z318) <u Lig)) A (Ops) <u z3(5)) N (z6[8) = 1g))




Interpolation via Equality Inlining =X

B |nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

" Try both from A and — B
® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] e (334[8] y 335[8]) <s (0[24] o 5’32[8] — 1[32]))/\
A\ (374[8] — 192[8]) A\ (375[8] — 128[8])

Q.

ef

B = ((z3(s] - z6[s)) = (— (0241 1 T2(8]))[7 : O)A
(z318) <u Lig)) A (Ops) <u z3(5)) N (z6[8) = 1g))




Interpolation via Equality Inlining BN

B |nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

" Try both from A and — B
® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] :: (192[8] : 128[8]) <s (0[24] L XT218] — 1[32]))
N A\

Q.

ef

B = ((z3(s] - z6[s)) = (— (0241 1 T2(8]))[7 : O)A
(z318) <u Lig)) A (Ops) <u z3(5)) N (z6[8) = 1g))




Interpolation via Equality InIining

B |nline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

® Try both from 4 and — B
® |f one of them succeeds, we have an interpolant

def

Example: A = (0[24] :: (192[8] - 128[8]) <s (0[24] 2 L2[8] — 1[32]))

B = ((z3(s] - z6[s)) = (— (0241 1 T2(8]))[7 : O)A
(z3(8] <u 1[s7) A (O8] <u Z3[8)) A (T6[5) = 1[5)




Interpolation via LIA Encoding

B Simple idea (in principle):
® Encode a set of BV-constraints into an SMT(LIA)-formula

® Generate a LIA-interpolant using existing algorithms
® Map back to a BV-interpolant

B However, several problems to solve:
= Efficiency
® More importantly, soundness




Encoding BV into LIA =

B Use well-known encodings from BV to SMT(LIA)

= Encode each BV term ¢, as an integer variable z; and the
constraints (0 <x) A (g <27 — 1)

® Encode each BV operation as a LIA-formula.

Examples: | |
ticjen 2 tipli s 5] ™ (20 =m) A (2, = 27 h+ 2/m+ DA
1€[0,2)Ame 0,277 Y AR 0,27 1)

def

tn] = tipn] T l2[n] ™ (2 =24, + 20, —2"0) A (0 <0 < 1)

tin) = tif) - K ) (v =k -z, —2"0) N (0 <0 <k)




From LIA-interpolants to BV-interpolants _°<

B “Invert” the LIA encoding to get a BV interpolant

B (nsound in general

® |ssues due to overflow and (un)signedness of operations

B Our (very simple) solution: check the interpolants

® Given a candidate interpolant I, use our SMT(BV) solver to
check the unsatisfiability of (A A —I)V (B A I)

" |f successful, then I is an Interpolant



From LIA- to BV-interpolants: examples A

A= (11 18] = Ys[4] * ?15[4]) A (Y1 (8] — Z/2[8]) A (95[4] — 1[4])
B= ~(Yag) + Lig) <w Y218)) A (Yajg) = i)

Encoding into LIA:

def

ArL1a :(:zij = 162y, + szys) /\ (:Eyl — wa) A (wy5 = 1)A
(wyl < [07 28)) A (xyz < [07 28)) A (.Cl?y5 < [07 24))

Bria d:ef_'(xy4-|-1 < ny) A ($y4—|—1 = Ty, T+ 1 — QSU)A
(CCy4 — 1)/\

(Tya+1 € [0,2%)) A (2y, € [0,2%)) AN (0 < 0 < 1)



From LIA- to BV-interpolants: examples = . oo

A= (11 8] = Ys[4] y5[4]) A (Y1 8] = y2[8]) A (95[4] — 1[4])
B= =(Yarg) + Lig) <u Y2i8)) N (Yajs) = i)

LIA-Interpolant:

def

ILIA — (17 S £Uy2)

BV-interpolant:

def

I'= (178) <u Y2(s)




From LIA- to BV-interpolants: examples e

A =(ya1g = 81g)) A (y3(8) = Ors)) A (Yajg) = Y2[s))

def

B = (y13[16] — 0[8] . y4[8]) A (255[16] <u Y13[16] - (0[8] ‘e y3[8]))

Encoding into LIA:
Avia d:ef(xyz = 81) A (Tys = 0) A (Ty, = Ty, )A
(2, €[0,2%)) A (zy; € [0,2%)) A (2, € [0,2%))

Lyi1z = 28 -0+ CCiy4) A (255 < xyls—l—(O::ys))/\

(

(xy13+(0::y3) = Ty;3 t+ 2°.0+ Lys — 2160)/\
(ajy13 S [07 216)) A\ (:’Uy13—|—(012y3) S [07 216))/\
(



- =€
From LIA- to BV-interpolants: examples

A =(ya1g = 81g)) A (y3(8) = Ors)) A (Yajg) = Y2[s))

def

B = (y13[16] — 0[8] . y4[8]) A (255[16] <u Y13[16] - (0[8] ‘e y3[8]))

LIA-Interpolant:

def

Itia = (xys + Ty, < 81)

BV-interpolant:

I= (y3[8] + Ya[g] Su 81[8])




From LIA- to BV-interpolants: examples

A dzef(yz[S] = 81(g)) A (ysg) = Ops)) A (Yajs) = Y218))

def

B = (y13p16) = Ojg) =t Yas)) N (255116) <w y13716] + (O[g) = ¥3(57))

LIA-Interpolant:

def

Iria = ($y3 + Ty, < 81)

Addition might

overflow in BV!

BV-interpolant:

I %{s} + Yajs) Fu 8lig))




From LIA- to BV-interpolants: examples _°<

A =(ya1g = 81g)) A (y3(8) = Ors)) A (Yajg) = Y2[s))

def

B = (y13[16] — 0[8] . y4[8]) A (255[16] <u Y13[16] - (0[8] ‘e y3[8]))

LIA-Interpolant:

def

Itia = (xys + Ty, < 81)

Addition might
overflow in BV!

BV-interpolant:

A correct interpolant would be
def

I = (0[1] .. yg[g] + 0[1] . y4[8] Su 8]-[9])




From LIA- to BV-interpolants: examples e

A d:efﬂ(yzl[g] + 151 <u y3[8]) A (2 8] = Y4[g] T 1[8])
def

B =(y21s) + Lig) <u Y3s)) A (Yr(s) = 3[8]) A (Yr[8) = Y25 + Ljg))
Encoding into LIA:

def
Aria :_‘(wy4—|—1 < wys) A (.CIZy2 — Cli‘y4_|_1)/\

(Tys41 = Ty, +1—2%01)A
(Tys €[0,2%)) A (2y, € [0,2%)) A (2y, € [0,2%))A
(2401 € 0,29) A (0 < 0y < 1)

Q.

ef

Bria = Lyo+1 < a:y?,) A (xw — 3) A ($y7 — CIJy2_|_1)/\

(
(Tyotr1 = Ty, +1 — 28‘72)/\
(x?ﬁ < [0728)) A (CEy2_|_1 < [0728)) A (0 < 02 < 1)



From LIA- to BV-interpolants: examples e

A d:efﬂ(yzl[g] + 1ig) <w ys(g)) A (Y2(8) = Yais] + 1ig))
B =(y215) + 1is] <u y3(s) A (i) = 3i81) A (Wris) = vas) + Lis))
LIA-interpolant:

def

ILIA = ( 259 < Lyy — Lys

256 )

BV-interpolant:  (after fixing overflows)
=, def

I' = (65281 16) <u (Org) :: Y2(8 ]) — (O :: y3[8])_|_
256(16] - (6553516) - (O[s] :: Y2(s])/u 25614)))



From LIA- to BV-interpolants: examples _:’(

A dzefﬂ(yzl[g] + 181 <u y3[8]) A (2 8] = Y4[g] T 1[8])
def

B =(y2(s) + L8] <u Ys[g)) A (Y718) = 3i8)) A (Y7(8) = Y2(s) + Lis))
LIA-interpolant:

def X 2
Tuia = (=255 < @y, — @y, +256( 152 )

BV-interpolant:  (after fixing overflows)

= (65281[1[8] : Yorg)) — (Ofg) = Yspg))+
256(16) - (655°

In this case, the problem

IS also the sign



From LIA- to BV-interpolants: examples e

A d:efﬂ(yzl[g] + 151 <u y3[8]) A (2 8] = Y4[g] T 1[8])
B d:ef(y2 g+ s <u ¥3 [8]) A (Y718 = 3i81) N (Y718) = 92 8] T 1(g))
LIA-interpolant:

def CEy2

ILIA = (—255 S $y2 — ili‘y3 —+ 250 L—1256J)

BV-interpolant:

def

I = (6528116 <s (Ojg] :: y2rg)) — (Ofg) == Ysjg))+
256(16] - (6553516 - (O[g] = Y2(s))/w 256(16]))

Correct interpolant



Interpolation in combined theories BN

B Delayed Theory Combination (DTC): use the DPLL engine to
perform theory combination

" Independent J;-solvers, that interact only with DPLL
® How: Boolean search space augmented with interface equalities
B Equalities between variables shared by the two theories

B Combination of theories
encoded directly in the
proof of unsatisfiability P

T2

T

T2
T T

= [ -lemmas for the

Individual theories T

B P contains interface
equalities




Interpolation in combined theories AN

B Problem for interpolation:
® Some interface equalities (x = y) are AB-mixed: x ¢ B, y & A
B nterpolation procedures don't work with AB-mixed terms

B Solution: Split AB-mixed equalities occurring in P, and fix the proof

® How: Split each 7-lemma
nV(r=y)into (nV (x =t))A
nV(t=y) with te ANB T T

T2

using available algorithms

T

T

= 7;'s must be equality-
iInterpolating and convex

® Propagate the changes
throughout P




Interpolation in combined theories

B Problem for interpolation:

® Some interface equalities (x = y) are AB-mixed: x ¢ B, y & A

B nterpolation procedures don't work with AB-mixed terms

=D<

B Solution: Split AB-mixed equalities occurring in P, and fix the proof

® How: Split each 7-lemma

nV(r=y)into (nV (x =t))A

nV(t=y) with te ANB
using available algorithms

= 7;'s must be equality-
iInterpolating and convex

® Propagate the changes
throughout P

T

T2

1

7o

T2

T

T

P’




Interpolation in combined theories

B Problem for interpolation:

14

® Some interface equalities (x = y) are AB-mixed: * ¢ B, y ¢ A

B nterpolation procedures don't work with AB-mixed terms

B Solution: Split AB-mixed equalities occurring in P, and fix the proof

® How: Split each 7-lemma

Problem: splitting can
cause exponential blow-up
In P

Solution: control the kind of

proofs generated by DPLL,
so that the splitting can be
performed efficiently
(le-local proofs)

T2

1

7o

T2

T

T

Pl




L : : =53¢
Interpolation in combined theories

B After splitting AB-mixed equalities, we can compute an
Interpolant as usual

® Nothing special needed for theory combination!

® Because theory combination is encoded in the proof, we can
reuse the Boolean interpolation algorithm

B Features:

® No need of ad-hoc interpolant combination procedures
= Exploit state-of-the-art SMT solvers, based on (variants of) DTC
= Split only when necessary



Example

A=(a1=f(x1)N(z—x21=1) A (a1 +

B:=(az=f

/\

T2)) N\ (2 —x2 = 1) A (az A

=<



Example

A= (a1

f(z1))

T-lemmas:
Cr=(z1=22)Va(z—x1 =1)V
—(z—x9=1)
Cy =(a1 = az2) V =(az = f(z2))V
—(a1 = f(z1)) V =(21 = 22)

03 E—l(al +z = O) V

—(a1 = az)

ANz—xz1=1)A
NA(z—z0 =1) A

14

—(ag +2=1)\




(oS
E - :
Xample 7 g
RRRRRRRRRRRR

A=(a1=f(x1))AN(z—x21=1)A (a1 + z=0)

Wsitl;\birr)\rt?eo S. 7
Cs (al =az) V ~(az = f(x2))V (a1 = f(z1)) Os
—(a1 = f(21)) V (21 = x2) \@6/(@2 = f(z2))
Cs=-(a1 +2=0)V-(az+2z=1)\ (2 — g = )\@7/

—u(al — ag) \J_/




14

Example
A=(a1 = f(z1))AN(z—21=1)A (a1 + 2 =0)
B:=(as = f(z2))N(z—22=1)A (a2 +2z=1)
Pesubproof!  m = m mmmm-- - - -
! !
! !
T-lemmas: ' !
Cr=(z1=22)Va(z—x1 =1)V : :
—(z—x9=1) 1 Cs Co I
Cr=(a1 = a)Vlas = f))v :
—(a1 = f(x1)) V ~(21 = 22) 0 1 Cvo
03 E_l(al—l—Z:O)\/_'(CLQ—|—Z:1):\/ \ / :
=(a1 = az) I o oo S !



Example =X

A=(a1=f(x1)AN(z—x21=1)A (a1 + z=0)
B:=(as = f(z2))N(z—22=1)A (a2 +2z=1)

Pesubproof: e m m m m - - - - - - -

T-lemmas:
{C’l =(z1 =x2)V(z—x1 = 1)\/]
2(2 — @y = 1)
Cy =(a1 = az2) V =(az = f(z2))V
—(a1 = f(z1)) V (21 = x2) W

C3 Eﬁ(a1+z:())\/ﬂ(a2+z:1):\/ \ /

=(a1 = az) I SP) ]




Example =X

A=(a1=f(x1)AN(z—x21=1)A (a1 + z=0)
B:=(as = f(z2))N(z—22=1)A (a2 +2z=1)

Pesubproof: e m m m - - -- - - - -

!
Ci=(r1=z—-1)Va(z—z1=1)v | :
=(z — 29 = 1) : s Cs :
Cl=(z—1=z3)V-(z—21=1)V I \ / !
Rt s A R i
2 =1 = a2 a2 = J &2 I
—(a1 = f(21))V =(21 = 2) 1 \@, / o :
Cs Eﬁ(a1+z:())\/ﬂ(a2+z:1):\/ 2\ / :

ﬁ(a1 — CL2) | S



Example 2

A=(a1=f(x1)AN(z—x21=1)A (a1 + z=0)
B:=(as = f(z2))N(z—22=1)A (a2 +2z=1)

Cy =(a1 = az) V =(az = f(5132))\/]
=(a1 = f(x1)) V ~(21 = x2)

P subproof: A=
Ci=(r1=z—-1)Va(z—z1=1)v | ,=a,)inC,
—(z —x9 =1) : C,
Cl=(z—1=x2)V(z—xz1=1)V 1
—(z —x9 = 1) :
1

(s E—l(al + Z = O) V _'(CLQ +z = 1)I @2\ /

ﬁ(CL1 = CL2) | O



=14

Example

/N 7N
S
Il
N N
_ _
_ _
— a\
S I
SN—"
< <
/N 7N
—
Il
— a\
8 8
|
N N
SN—" N
< <
/N 7N
N 7N
— N
88
SN—"
Y Sy
Il
— N
S J
N—"

. 1
. D
I 2\_
D 1
I \
./ I
1 — I
. D .
_/3\ 1
1 © .
5
.. = =
5T 5= Zz= =1
o 8 = g5 ==
Q= | = | (-
N N
S |l | R
7p 2__ 2__ 4+ =
;e 5§ 2 & g S T
N T = r == S o=
> = [ =
22T A 2T
~—~ T
LEE L E S s
=T~ s e
I Rl +
- S RS Sas s
S T T T T T T
I I 1l
~ O3 = ~ M
@) O




Proof Tree Preserving Interpolation REN

B [Christ, Hoenicke and Nutz, TACAS 2013]

B [nterpolants with AB-mixed literals without proof rewriting

® Replace AB-mixed terms (s < t) with(s < x) A (z < t)
In leaves, where x Is a fresh purification variable

® Eliminate the purification variable when resolving on (s < t)
C1V (s <t) [[1(z)] Co V(s <t) [Iz2(x)]
C1V (s [Ig]

B Advantages:

® no need of proof rewriting

® handles also for non-convex theories
B Drawbacks:

¥ need T-specific interpolation rules for resolution steps
® more complex interpolation system



From Binary to Sequence Interpolants

-

® An ordered sequence of formulae F, ..., F;,, such that
Ni b = L
® \We want a sequence of interpolants Iy, ..., I,—1such that

.IkiS

an interpolant for (/\le Fi, /\;’L:k_|_1 F;)

= Py NIy = Iy forall k € [2,n — 1]

B Needed in various applications (e.g. abstraction refinement)

B How to compute them?

® |n general, if we compute arbitrary binary interpolants for
(/\izl i /\j:k—l—l j), the second condition will not hold



A simple solution

= Compute [; as an interpolant of (7, \7_, Fj)

® Compute [,, as an interpolant of (I_1 A Fj, A\

1=k+1

Fj)

® Claim: [ Is an interpolant for (/\Z 1 Fis /\
B Proof (sketch):

1=k+1

Fj)

k—1
= By ind.hyp. I;_1 is an interpolant for (/\,_; £ /\j . )

k—1
SO /\7;:1 Fi; = Ix—1 and I 1/\Fk/\/\3 ka1

F;

= L

B Advantages:

¥ simple to implement
® can use any off-the-shelf binary interpolation

B Drawback: requires n-1 SMT calls

14




A more efficient algorithm

® Compute an SMT proof of unsatisfiablity P for A, F;

B Compute each [, := Interpolant(/\le ki, /\?:]H-l Fy)

from the same proof P

® Theorem: FrL N[, = I




A more efficient algorithm =X

® Compute an SMT proof of unsatisfiablity P for A, F;

B Compute each [, := Interpolant(/\le ki, /\?:lﬁ-l Fy)

from the same proof P

® Theorem: FrL N[, = I

B Proof (sketch) — case n=3:

® | et C be a node of P with partial interpolants /' and /" for the
partitionings (£1, F2 A F3)and (F1 A Fa, F3) resp. Then we
can prove, by induction on the structure of P, that:

I'NFo =1"Vv\/{l e C|var(l) ¢ Fs}

® The theorem then follows as a corollary

® Works also for DTC-rewritten proofs



Selected bibliography =X

DISCLAIMER: this is very incomplete. Apologies to missing
authors/works

B Quantifier Elimination in SMT

® Monniaux. A Quantifier Elimination Algorithm for Linear Real
Arithmetic. LPAR 2008

= Bjgrner. Linear Quantifier Elimination as an Abstract Decision
Procedure. |[JCAR 2010

= Komuravelli, Gurfinkel, Chaki. SMT-based model checking for
recursive programs. FMSD 48(3) 2016



Selected bibliography =€

B [nterpolants in SAT and SMT

= McMillan. An Interpolating Theorem Prover. TCS 2005.

® Yorsh, Musuvathi. A Combination Method for Generating
Interpolants. CADE 2005

= Cimatti, Griggio, Sebastiani. Efficient Generation of Craig
Interpolants in SMT. TOCL 2010

® Rybalchenko, Sofronie-Stokkermans. Constraint solving for
Interpolation. J. Symb. Comput. 45(11): 1212-1233 (2010)

® Griggio. Effective Word-Level Interpolation for Software
Verification. FMCAD 2011

= Brillout, Kroening, Riummer, Wahl. An Interpolating Sequent
Calculus for Quantifier-Free Presburger Arithmetic. J. Autom.
Reasoning 47(4): 341-367 (2011)



Selected bibliography =€

B [nterpolants in SAT and SMT

= D'Silva, Kroening, Purandare, Weissenbacher. Interpolant
strength. VMCAI 2010

B Goel, Krstic, Tinelli. Ground interpolation for the theory of
equality. Logical Methods in Computer Science 8(1) 2012

® Bruttomesso, Ghilardi, Ranise. Quantifier-free interpolation of
a Theory of Arrays. Logical Methods in Comp. Sci. 8(2) 2012

® Totla, Wies. Complete instantiation-based interpolation. POPL
2013

® Christ, Hoenicke, Nutz. Proof Tree Preserving Interpolation.
TACAS 2013

® Ruemmer, Subotic. Exploring Interpolants. FMCAD 2013

® Bruttomesso, Ghilardi, Ranise. Quantifier-free interpolation in
combinations of equality interpolating theories. TOCL 2014



Selected bibliography =€

B [nterpolants in Formal Verification

= McMillan. Interpolation and SAT-based Model Checking. CAV
2003

® Henzinger, Jhala, Majumdar, McMillan. Abstractions from
Proofs. POPL 2004

= McMillan. Lazy Abstraction with Interpolants. CAV 2006

® Vizel, Grumberg. Interpolation-Sequence based model
checking. FMCAD 2009

= Albargouthi, Gurfinkel, Chechick. Whale: an interpolation-
based algorithm for inter-procedural verification. VMCAI
2012



Thank You



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122

