
Indian SAT+SMT school 2016

SMT Tutorial

2. Quantifier Elimination and
Interpolation in SMT

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy

Outline

Introduction

Example Applications in Formal Verification

SMT-based Quantifier Elimination

Computing interpolants in SMT

Introduction

 (Existential) Quantifier Elimination problem: given a formula

find a quantifier-free formula that is equivalent to
modulo T

 Several important applications. E.g.

 Image compuation

 Parameter synthesis

Introduction

 (Craig) Interpolant for an ordered pair (A, B) of formulae s.t.

 is a formula I s.t.





 All the uninterpreted (in) symbols of I
are shared between A and B

 Why are interpolants useful?

 Overapproximation of A relative to B

 Overapprox. of

 “Local” explanation of why A is inconsistent with B

Outline

Introduction

Example Applications in Formal Verification

SMT-based Quantifier Elimination

Computing interpolants in SMT

Background

Symbolic transition systems

 State variables

 Initial states formula

 Transition relation formula

 A state is an assignment to the state vars

 A path of the system S is a sequence of states
such that and

 A k-step (symbolic) unrolling of S is a formula

 Encodes all possible paths of length up to k

 A state property is a formula over

 Encodes all the states such that

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Interpolation-based reachability

 Image computation requires quantifier elimination, which is
typically very expensive (both in theory and in practice)

 Interpolation-based algorithm (McMillan CAV'03): use
interpolants to overapproximate image computation

 much more efficient than the previous algorithm

 interpolation is often much cheaper than quantifier elimination
 abstraction (overapproximation) accelerates convergence

 termination is still guaranteed for finite-state systems

Interpolation-based reachability

 Set

 Check satisfiability of

T07!1 Tk¡1 7!k

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set

 is an abstraction of the forward image
 guided by the property

T07!1 Tk¡1 7!k

A

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set

 is an abstraction of the forward image
 guided by the property

 If , return UNREACHABLE fixpoint found

 else, set and continue

T07!1 Tk¡1 7!k

A

Interpolation-based reachability

 Set

 Check satisfiability of

 If SAT:

 If , return REACHABLE

 The unrolling hits bad
 Otherwise, we don't know

 The path might be feasible due to the overapproximation
 Increase k and try again

T07!1 Tk¡1 7!k

A

Outline

Introduction

Example Applications in Formal Verification

SMT-based Quantifier Elimination

Computing interpolants in SMT

Existential elimination for LRA

Fourier-Motzkin method

 Given a conjunction of linear inequalities C and one variable
x to eliminate

 Partition C into C+ and C-:

 Return

 For multiple variables , apply the above in
sequence

 For arbitrary formulae

 First put in DNF, and then apply the above

Boosting Fourier-Motzkin with SMT

 The Fourier-Motzkin method is a purely syntactical one, which
might generate a lot of redundant constraints

 Blow-up when converting the input to DNF

 Blow-up when eliminating a single variable

 Blow-up when eliminating multiple variables

 No reuse of information

 We can mitigate the blow-ups by using an SMT solver, to
perform a “semantic-aware” existential elimination

 Although it won't improve the (doubly-exponential) worst-case
complexity, it will greatly improve performance in practice

 See e.g. [Monniaux 2008]

SMT-based FM-elim

def FM_elim_SMT(formula, vars):
 res = FALSE()
 while True:
 m = get_model(formula)
 if m is None: break
 conj = { (a if entails(m, a) else Not(a))
 for a in atoms(formula) }
 conj_e = FM_elim_conj(conj, vars)
 res = Or(res, conj_e)
 formula = And(formula, Not(conj_e))
 return res

def FM_elim_conj(conj, vars):
 for x in vars:
 c_p = { c for c in conj if coeff(c, x) > 0 }
 c_n = { c for c in conj if coeff(c, x) < 0 }
 conj = conj - (c_p | c_n)
 for a in c_p:
 for b in c_n:
 c = combine(a, b, x)
 if not implies(conj, c): conj.add(c)
 return And(*conj)

Alternative: Virtual Term Substitution

 Main bottleneck of the FME-based algorithm is the
computation of the DNF

 Even in the SMT case, still has to enumerate cubes of the input
formula

 Virtual Term Substitution method doesn't require a DNF

 Can work on a NNF, which can be computed in linear time

 Main idea: compute a set such that
 is equivalent to

 is computed syntactically, by only looking at the literals of

 The Boolean structure doesn't matter

Virtual Term Substitution

 Collect all literals containing

 Put them in the form

 By rewriting
 (and so on)

 Build

 is a symbolic infinitesimal parameter

 Apply the subsitutions as follows

Example



Example



 Collect literals



Example



 Collect literals





Example



 Collect literals





Example



 Collect literals





Example



 Collect literals





Example



 Collect literals





 Result:

Virtual Term Substitution drawbacks

 Like the naive FM algorithm, the VTS method is purely
syntactic

 Doesn't consider the Boolean structure of the formula

 Many cases might produce inconsistent disjunct, or duplicate
and/or subsumed results

 In the previous example:
 and are equivalent
 and are equivalent
 is implied by

 therefore, is equivalent to

 We can do better by exploiting SMT

SMT-based Virtual Term Substitution

def VTS_elim_SMT(formula, vars):
 f = to_nnf(formula)
 res = FALSE()
 while True:
 m = get_model(f)
 if m is None: break
 d = VTS_elim_model(f, m, vars)
 res = Or(res, d)
 f = And(f, Not(d))
 return res

def VTS_elim_model(f, vars, m):
 for x in vars:
 S = get_S(f, x)
 val = eval_S(S, x, m)
 f = apply_VTS(f, x, val)
 return f

def eval_S(S, x, m):
 cur = None
 for c in S:
 if c is (x = t) and m[x] == m[t]:
 return t
 elif c is (x < t) and
 (cur is None or m[t] < m[cur]):
 cur = t
 if cur is not None:
 return cur - EPSILON()
 return INF()

SMT-based Virtual Term Substitution

def VTS_elim_SMT(formula, vars):
 f = to_nnf(formula)
 res = FALSE()
 while True:
 m = get_model(f)
 if m is None: break
 d = VTS_elim_model(f, m, vars)
 res = Or(res, d)
 f = And(f, Not(d))
 return res

def VTS_elim_model(f, vars, m):
 for x in vars:
 S = get_S(f, x)
 val = eval_S(S, x, m)
 f = apply_VTS(f, x, val)
 return f

def eval_S(S, x, m):
 cur = None
 for c in S:
 if c is (x = t) and m[x] == m[t]:
 return t
 elif c is (x < t) and
 (cur is None or m[t] < m[cur]):
 cur = t
 if cur is not None:
 return cur - EPSILON()
 return INF()

Find the virtual substitution
that is consistent with

the current model

SMT-based Virtual Term Substitution

def VTS_elim_SMT(formula, vars):
 f = to_nnf(formula)
 res = FALSE()
 while True:
 m = get_model(f)
 if m is None: break
 d = VTS_elim_model(f, m, vars)
 res = Or(res, d)
 f = And(f, Not(d))
 return res

def VTS_elim_model(f, vars, m):
 for x in vars:
 S = get_S(f, x)
 val = eval_S(S, x, m)
 f = apply_VTS(f, x, val)
 return f

def eval_S(S, x, m):
 cur = None
 for c in S:
 if c is (x = t) and m[x] == m[t]:
 return t
 elif c is (x < t) and
 (cur is None or m[t] < m[cur]):
 cur = t
 if cur is not None:
 return cur - EPSILON()
 return INF()

Find the virtual substitution
that is consistent with

the current model

Do not explore
already-covered models

Outline

Introduction

Example Applications in Formal Verification

SMT-based Quantifier Elimination

Computing interpolants in SMT

Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the
computed interpolant

Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the
computed interpolant

 McMillan's annotation rules (others exist):

Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the
computed interpolant

 McMillan's annotation rules (others exist):

 For each leaf node (input clause) C in the proof:

 If , set
 Otherwise (), set

Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the
computed interpolant

 McMillan's annotation rules (others exist):

 For each leaf node (input clause) C in the proof:

 If , set
 Otherwise (), set

 For each inner node (resolution) with parents and
and annotations and

 If , set ; otherwise, set

Example

Example

Interpolants in SMT

 Resolution refutations in SMT:

Boolean part
(ground resolution)

T-specific part for conjunctions
of constraints (negated T-lemmas)

Interpolants in SMT

 Resolution refutations in SMT:

Boolean part
(ground resolution)

T-specific part for conjunctions
of constraints (negated T-lemmas)

Standard Boolean
interpolation

T-specific interpolation
for conjunctions only

Theory interpolation only for sets of T-literals

Interpolants in SMT

 Resolution refutations in SMT:

 Annotation for a T-lemma C:

Boolean part
(ground resolution)

T-specific part for conjunctions
of constraints (negated T-lemmas)

Standard Boolean
interpolation

T-specific interpolation
for conjunctions only

Theory interpolation only for sets of T-literals

Equality (EUF)

 Interpolants from coloured congruence graphs

 Nodes with
colours:

 Edges with colours of the nodes they connect

 Uncolorable edge: connects nodes of two different colours
 Always possible to obtain a coloured graph

 (by introducing new nodes)

if term occurs in A

if term occurs in B

if term is shared

Equality (EUF)

 Interpolants from coloured congruence graphs

 Nodes with
colours:

 Edges with colours of the nodes they connect

 Uncolorable edge: connects nodes of two different colours
 Always possible to obtain a coloured graph

 (by introducing new nodes)

if term occurs in A

if term occurs in B

if term is shared

Uncolourable

Equality (EUF)

 Interpolants from coloured congruence graphs

 Nodes with
colours:

 Edges with colours of the nodes they connect

 Uncolorable edge: connects nodes of two different colours
 Always possible to obtain a coloured graph

 (by introducing new nodes)

if term occurs in A

if term occurs in B

if term is shared

Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

and

Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

 If an A-summary involves a congruence edge, compute
summaries recursively on function arguments

 Use B-summaries as premises for the A-summary

and

Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

 If an A-summary involves a congruence edge, compute
summaries recursively on function arguments

 Use B-summaries as premises for the A-summary

 (Several cases to consider)

and

Example

Example

 Start from

 A-summaries for

Example

 Start from

 A-summaries for

 Recurse on edge

 Path

Example

 Start from

 A-summaries for

 Recurse on edge

 Path

 Recurse on edge
 Path , B-summary:

Example

 Start from

 A-summaries for

 Recurse on edge

 Path

 Recurse on edge
 Path , B-summary:

 Interpolant:

Linear Rational Arithmetic (LRA)

 Interpolants from proofs of unsatisfiability of a system of
inequalities

 Proof of unsatisfiability: linear combination of inequalities with
positive coefficients to derive a contradiction (with)

 Interpolant obtained out of the proof by combining inequalities
from A (using the same coefficients)

 Proof of unsatisfiability generated from the Simplex

Example

 tableau bounds candidate solution

Example

tableau bounds candidate solution

No suitable variable for pivoting!
Conflict

Example

tableau bounds candidate solution

Proof:

Example

tableau bounds candidate solution

Interpolant:

 Constraints of the form

 Cutting-plane proof system: complete proof system for LIA

Hyp
¡
t · 0

Comb
t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Div

P
i cixi + c · 0P

i
ci
d
xi + d c

d
e · 0

; d > 0 divides the ci's

Linear Integer Arithmetic (LIA)

P
i cixi + c ./ 0; ./2 f·;=g

 Constraints of the form

 Cutting-plane proof system: complete proof system for LIA

Hyp
¡
t · 0

Comb
t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Div

P
i cixi + c · 0P

i
ci
d
xi + d c

d
e · 0

; d > 0 divides the ci's

Linear Integer Arithmetic (LIA)

P
i cixi + c ./ 0; ./2 f·;=g

LRA rules

 Constraints of the form

 Cutting-plane proof system: complete proof system for LIA

 Interpolation by annotating proof rules with inequalities

 When is derived, the associated annotation is the computed
interpolant

Hyp
¡
t · 0

Comb
t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Div

P
i cixi + c · 0P

i
ci
d
xi + d c

d
e · 0

; d > 0 divides the ci's

Linear Integer Arithmetic (LIA)

P
i cixi + c ./ 0; ./2 f·;=g

?

Interpolation with ceilings

 Need to extend the signature of LIA to allow interpolation

 Introduce the ceiling function [Pudlák '97]

 Allow non-variable terms to be non-integers (e.g.)

d¢e
x
2

Interpolation with ceilings

 Need to extend the signature of LIA to allow interpolation

 Introduce the ceiling function [Pudlák '97]

 Allow non-variable terms to be non-integers (e.g.)

d¢e
x
2

Comb
t1 · 0 [t01 · 0] t2 · 0 [t02 · 0]

c1 ¢ t1 + c2 ¢ t2 · 0 [c1 ¢ t01 + c2 ¢ t02 · 0]

d > 0 divides aj ; bk; ci

Div

P
yj 62B ajyj +

P
zk 62A bkzk +

P
xi2A\B cixi + c

[
P
yj 62B ajyj +

P
xi2A\B c

0
ixi + t

0]
P
yj 62B

aj
d
yj +

P
zk2B

bk
d
zk +

P
xi2A\B

ci
d
xi + d c

d
e

[
P
yj 62B

aj
d
yj + d

P
xi2A\B c

0
ixi+t

0

d
e]

Interpolation with ceilings - example

(1 · 0) ´ ?

B :=

½
¡y ¡ 4z + 1 · 0

y + 4z ¡ 2 · 0
A :=

½
¡y ¡ 4x¡ 1 · 0

y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0

Interpolation with ceilings - example

(1 · 0) ´ ?

B :=

½
¡y ¡ 4z + 1 · 0

y + 4z ¡ 2 · 0
A :=

½
¡y ¡ 4x¡ 1 · 0

y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0

[0 · 0]

[y + 2nx · 0] [0 · 0]

 Interpolant:

Interpolation with ceilings - example

(1 · 0) ´ ?

B :=

½
¡y ¡ 4z + 1 · 0

y + 4z ¡ 2 · 0
A :=

½
¡y ¡ 4x¡ 1 · 0

y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0

[0 · 0]

[y + 2nx · 0] [0 · 0]

SMT(LIA) with ceilings

 ceilings can be eliminated via preprocessing

 Replace every term
with a fresh integer variable

 Add the 2 unit clauses
(encoding the meaning of ceiling:)

where is the least common multiple of the denominators of the
coefficients in

dte
xdte

(l ¢ xdte ¡ l ¢ t+ l · 0)

(l ¢ t¡ l ¢ xdte · 0)

l
t

Bit-vectors (BV)

 Interpolation for bit-vectors is hard

 Only some limited work done so far

 Most efficient solvers use eager encoding into SAT, which is
efficient but not good for interpolation

 Easy in principle, but not very useful interpolants

 Try to exploit lazy bit-blasting to incorporate BV into DPLL(T)

Interpolation via Bit-Blasting

 Interpolation via bit-blasting is easy…

 From and generate and

Each var of width n encoded with n Boolean vars

 Generate a Boolean interpolant for

 Replace every variable in with the bit-selection
and every Boolean connective with the corresponding bit-wise
connective:

 ...but quite impractical

 Generates “ugly” interpolants

 Word-level structure of the original problem completely lost

 How to apply word-level simplifications?

BBoolABV BBV

x bx1 : : : b
x
n

IBool

ABool

(ABool; BBool)

IBoolbxi x[i]

^ 7! &; _ 7! j; : 7!»

Interpolation via Bit-Blasting - Example

A word-level interpolant is:

...but with bit-blasting we get:

A
def
= (a[8] ¤ b[8] = 15[8]) ^ (a[8] = 3[8])

B
def
= :(b[8]%uc[8] = 1[8]) ^ (c[8] = 2[8])

I
def
= (b[8] ¤ 3[8] = 15[8])

I 0
def

= (b[8][0] = 1[1]) ^ ((b[8][0]& » ((((((» b[8][7]& » b[8][6])&
» b[8][5])& » b[8][4])& » b[8][3])&b[8][2])& » b[8][1])) = 0[1])

Alternative: lazy bit-blasting and DPLL(T)

 Exploit lazy bit-blasting

 Bit-blast only BV-atoms, not the whole formula

 Boolean skeleton of the formula handled by the “main” DPLL, like
in DPLL(T)

 Conjunctions of BV-atoms handled (via bit-blasting) by a “sub”-
DPLL (DPLL-BV) that acts as a BV-solver

Standard
Boolean Interpolation

BV-specific Interpolation
for conjunctions of constraints

Interpolation for BV constraints

 A layered approach

 Apply in sequence a chain of procedures of increasing
generality and cost

 Interpolation in EUF

 Interpolation via equality inlining

 Interpolation via Linear Integer Arithmetic encoding

 Interpolation via bit-blasting

Interpolation in EUF

 Treat all the BV-operators as uninterpreted functions

 Exploit cheap, efficient algorithms for solving and
interpolating modulo EUF

 Possible because we avoid bit-blasting upront!

Example: A
def
= (x1[32] = 3[32]) ^ (x3[32] = x1[32] ¢ x2[32])

B
def

= (x4[32] = x2[32]) ^ (x5[32] = 3[32] ¢ x4[32])^
:(x3[32] = x5[32])

IUF
def
= x3 = f

¢(f3; x2)

IBV
def
= x3[32] = 3[32] ¢ x2[32]

Interpolation via Equality Inlining

 Interpolation via quantifier elimination: given , an
interpolant can be computed by eliminating quantifiers from
 or from

 In general, this can be very expensive for BV

 Might require bit-blasting and can cause blow-up of the formula

 Cheap case: non-common variables occurring in “definitional”
equalities

Example: and does not occur in , then

(A;B)

9x 62BA 9x 62A:B

(x = e) ^ ' x e

9x((x = e) ^ ') =) '[x 7! e]

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

A
def

= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

Example:

B
def

= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^
(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

A
def

= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

B
def

= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^
(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Definitional equalities

Example:

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

A
def

= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

B
def

= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^
(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example:

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

B
def

= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^
(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def

= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x2[8] ¡ 1[32]))^
^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

B
def

= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^
(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def

= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x2[8] ¡ 1[32]))^
^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

B
def

= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^
(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def

= (0[24] :: (192[8] ¢ 128[8]) ·s (0[24] :: x2[8] ¡ 1[32]))

^ ^

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

 Try both from and

 If one of them succeeds, we have an interpolant

A :B

B
def

= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^
(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def

= (0[24] :: (192[8] ¢ 128[8]) ·s (0[24] :: x2[8] ¡ 1[32]))

^ ^

I
def
= (032 ·s (024 :: x2[8] ¡ 1[32])

Interpolation via LIA Encoding

 Simple idea (in principle):

 Encode a set of BV-constraints into an SMT(LIA)-formula

 Generate a LIA-interpolant using existing algorithms

 Map back to a BV-interpolant

 However, several problems to solve:

 Efficiency

 More importantly, soundness

Encoding BV into LIA

 Use well-known encodings from BV to SMT(LIA)

 Encode each BV term as an integer variable and the
constraints

 Encode each BV operation as a LIA-formula.

t[n] xt
(0 · xt) ^ (xt · 2n ¡ 1)

t[i¡j+1]
def
= t1[n][i : j] (xt = m) ^ (xt1 = 2i+1h + 2jm+ l)^

l 2 [0; 2i) ^m 2 [0; 2i¡j+1) ^ h 2 [0; 2n¡i¡1)

t[n]
def
= t1[n] + t2[n] (xt = xt1 + xt2 ¡ 2n¾) ^ (0 · ¾ · 1)

t[n]
def
= t1[n] ¢ k (xt = k ¢ xt1 ¡ 2n¾) ^ (0 · ¾ · k)

Examples:

From LIA-interpolants to BV-interpolants

 “Invert” the LIA encoding to get a BV interpolant

 Unsound in general

 Issues due to overflow and (un)signedness of operations

 Our (very simple) solution: check the interpolants

 Given a candidate interpolant , use our SMT(BV) solver to

check the unsatisfiability of

 If successful, then is an interpolant

Î

Î

(A ^ :Î) _ (B ^ Î)

From LIA- to BV-interpolants: examples

Encoding into LIA:

ALIA
def

=(xy2 = 16xy5 + xy5) ^ (xy1 = xy2) ^ (xy5 = 1)^
(xy1 2 [0; 28)) ^ (xy2 2 [0; 28)) ^ (xy5 2 [0; 24))

BLIA
def

=:(xy4+1 · xy2) ^ (xy4+1 = xy4 + 1¡ 28¾)^
(xy4 = 1)^
(xy4+1 2 [0; 28)) ^ (xy4 2 [0; 28)) ^ (0 · ¾ · 1)

A
def
= (y1[8] = y5[4] :: y5[4]) ^ (y1[8] = y2[8]) ^ (y5[4] = 1[4])

B
def
= :(y4[8] + 1[8] ·u y2[8]) ^ (y4[8] = 1[8])

From LIA- to BV-interpolants: examples

LIA-Interpolant:

BV-interpolant:

ILIA
def

= (17 · xy2)

I
def
= (17[8] ·u y2[8])

Good!

A
def
= (y1[8] = y5[4] :: y5[4]) ^ (y1[8] = y2[8]) ^ (y5[4] = 1[4])

B
def
= :(y4[8] + 1[8] ·u y2[8]) ^ (y4[8] = 1[8])

From LIA- to BV-interpolants: examples

Encoding into LIA:

ALIA
def

=(xy2 = 81) ^ (xy3 = 0) ^ (xy4 = xy2)^
(xy2 2 [0; 28)) ^ (xy3 2 [0; 28)) ^ (xy4 2 [0; 28))

BLIA
def

=(xy13 = 28 ¢ 0 + xy4) ^ (255 · xy13+(0::y3))^
(xy13+(0::y3) = xy13 + 28 ¢ 0 + xy3 ¡ 216¾)^
(xy13 2 [0; 216)) ^ (xy13+(0::y3) 2 [0; 216))^
(0 · ¾ · 1)

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def

= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def

= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

Addition might
overflow in BV!

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def

= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

Addition might
overflow in BV!

A correct interpolant would be

I
def
= (0[1] :: y3[8] + 0[1] :: y4[8] ·u 81[9])

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))

From LIA- to BV-interpolants: examples

Encoding into LIA:

ALIA
def

=:(xy4+1 · xy3) ^ (xy2 = xy4+1)^
(xy4+1 = xy4 + 1¡ 28¾1)^
(xy2 2 [0; 28)) ^ (xy3 2 [0; 28)) ^ (xy4 2 [0; 28))^
(xy4+1 2 [0; 28)) ^ (0 · ¾1 · 1)

BLIA
def

=(xy2+1 · xy3) ^ (xy7 = 3) ^ (xy7 = xy2+1)^
(xy2+1 = xy2 + 1¡ 28¾2)^
(xy7 2 [0; 28)) ^ (xy2+1 2 [0; 28)) ^ (0 · ¾2 · 1)

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Î0
def

= (65281[16] ·u (0[8] :: y2[8])¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

(after fixing overflows)

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Î0
def

= (65281[16] ·u (0[8] :: y2[8])¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

(after fixing overflows)

Still
Wrong!

In this case, the problem
is also the sign

From LIA- to BV-interpolants: examples

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Correct interpolant

I
def

= (65281[16] ·s (0[8] :: y2[8])¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

Interpolation in combined theories

 Combination of theories
encoded directly in the
proof of unsatisfiability P

 -lemmas for the
individual theories

 P contains interface
equalities

 Delayed Theory Combination (DTC): use the DPLL engine to
perform theory combination

 Independent -solvers, that interact only with DPLL

 How: Boolean search space augmented with interface equalities

 Equalities between variables shared by the two theories

?

T1T2

T1

T1 T1

T2
T2

T2

P

Ti

Ti

Interpolation in combined theories

 How: Split each -lemma
 into
 with
using available algorithms

 's must be equality-
interpolating and convex

 Propagate the changes
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation:

 Some interface equalities (x = y) are AB-mixed:

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

?

T1T2

T1

T1 T1

T2
T2

T2

P

Interpolation in combined theories

 How: Split each -lemma
 into
 with
using available algorithms

 's must be equality-
interpolating and convex

 Propagate the changes
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation:

 Some interface equalities (x = y) are AB-mixed:

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

?

T1
T2

T1 T1 T1

T2
T2

T2
T2

T1

T2

P'

Interpolation in combined theories

 How: Split each -lemma
 into
 with
using available algorithms

 's must be equality-
interpolating and convex

 Propagate the changes
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation:

 Some interface equalities (x = y) are AB-mixed:

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

Problem: splitting can
cause exponential blow-up
in P

Solution: control the kind of
proofs generated by DPLL,
so that the splitting can be
performed efficiently
(ie-local proofs) ?

T1
T2

T1 T1 T1

T2
T2

T2
T2

T1

T2

P'

Interpolation in combined theories

 After splitting AB-mixed equalities, we can compute an
interpolant as usual

 Nothing special needed for theory combination!

 Because theory combination is encoded in the proof, we can
reuse the Boolean interpolation algorithm

 Features:

 No need of ad-hoc interpolant combination procedures

 Exploit state-of-the-art SMT solvers, based on (variants of) DTC

 Split only when necessary

Example

Example

T-lemmas:

?

£3

(a2 + z = 1)

(a1 + z = 0)

£4

£5

£6

£7

(z ¡ x2 = 1)

(a1 = f(x1))

(a2 = f(x2))

(z ¡ x1 = 1)

Example

T-lemmas: Pivot: (x
1
 = x

2
)

?

£3

(a2 + z = 1)

(a1 + z = 0)

£4

£5

£6

£7

(z ¡ x2 = 1)

(a1 = f(x1))

(a2 = f(x2))

(z ¡ x1 = 1)

C3 C2

£1 C1
£2

Pivot: (a
1
 = a

2
)

subproof
with int.eqs.

Example

C3 C2

C1£1

£2

Pie subproof:

T-lemmas:

Example

C3 C2

C1£1

£2

Pie subproof:

T-lemmas: Split (x
1
= x

2
) in C

1

Example

Pie subproof:

T-lemmas:
C3 C2

£1 C01

C001£02

£2

C01 ´(x1 = z ¡ 1) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

C 001 ´(z ¡ 1 = x2) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

Example

Pie subproof:

T-lemmas:
C3 C2

£1 C01

C001£02

£2

C01 ´(x1 = z ¡ 1) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

C 001 ´(z ¡ 1 = x2) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

Split (a
1
= a

2
) in C

2

Example

Pie subproof:

£1

£2

C001£02

C01£01

C002

C02C03
C02 ´(a1 = f(z ¡ 1)) _ :(a2 = f(x2))_

:(a1 = f(x1)) _ :(x1 = z ¡ 1)_
:(z ¡ 1 = x2)

C 002 ´(f(z ¡ 1) = a2) _ :(a2 = f(x2))_
:(a1 = f(x1)) _ :(x1 = z ¡ 1)_
:(z ¡ 1 = x2)

C03 ´:(a1 + z = 0) _ :(a2 + z = 1)_
:(a1 = f(z ¡ 1)) _ :(f(z ¡ 1) = a2)

Proof Tree Preserving Interpolation

 [Christ, Hoenicke and Nutz, TACAS 2013]

 Interpolants with AB-mixed literals without proof rewriting

 Replace AB-mixed terms with
in leaves, where is a fresh purification variable

 Eliminate the purification variable when resolving on

 Advantages:

 no need of proof rewriting

 handles also for non-convex theories

 Drawbacks:

 need T-specific interpolation rules for resolution steps

 more complex interpolation system

From Binary to Sequence Interpolants

 An ordered sequence of formulae such that

 We want a sequence of interpolants such that

 is an interpolant for

 for all

 Needed in various applications (e.g. abstraction refinement)

 How to compute them?

 In general, if we compute arbitrary binary interpolants for

 , the second condition will not hold

A simple solution

 Compute as an interpolant of

 Compute as an interpolant of

 Claim: is an interpolant for

 Proof (sketch):

 By ind.hyp. is an interpolant for

so and

 Advantages:

 simple to implement

 can use any off-the-shelf binary interpolation

 Drawback: requires n-1 SMT calls

A more efficient algorithm

 Compute an SMT proof of unsatisfiablity P for

 Compute each

from the same proof P

 Theorem:

A more efficient algorithm

 Compute an SMT proof of unsatisfiablity P for

 Compute each

from the same proof P

 Theorem:

 Proof (sketch) – case n=3:

 Let C be a node of P with partial interpolants I' and I'' for the
partitionings and resp. Then we
can prove, by induction on the structure of P, that:

 The theorem then follows as a corollary

 Works also for DTC-rewritten proofs

Selected bibliography

DISCLAIMER: this is very incomplete. Apologies to missing
authors/works

 Quantifier Elimination in SMT

 Monniaux. A Quantifier Elimination Algorithm for Linear Real
Arithmetic. LPAR 2008

 Bjørner. Linear Quantifier Elimination as an Abstract Decision
Procedure. IJCAR 2010

 Komuravelli, Gurfinkel, Chaki. SMT-based model checking for
recursive programs. FMSD 48(3) 2016

Selected bibliography

 Interpolants in SAT and SMT

 McMillan. An Interpolating Theorem Prover. TCS 2005.

 Yorsh, Musuvathi. A Combination Method for Generating
Interpolants. CADE 2005

 Cimatti, Griggio, Sebastiani. Efficient Generation of Craig
Interpolants in SMT. TOCL 2010

 Rybalchenko, Sofronie-Stokkermans. Constraint solving for
interpolation. J. Symb. Comput. 45(11): 1212-1233 (2010)

 Griggio. Effective Word-Level Interpolation for Software
Verification. FMCAD 2011

 Brillout, Kroening, Rümmer, Wahl. An Interpolating Sequent
Calculus for Quantifier-Free Presburger Arithmetic. J. Autom.
Reasoning 47(4): 341-367 (2011)

Selected bibliography

 Interpolants in SAT and SMT

 D'Silva, Kroening, Purandare, Weissenbacher. Interpolant
strength. VMCAI 2010

 Goel, Krstic, Tinelli. Ground interpolation for the theory of
equality. Logical Methods in Computer Science 8(1) 2012

 Bruttomesso, Ghilardi, Ranise. Quantifier-free interpolation of
a Theory of Arrays. Logical Methods in Comp. Sci. 8(2) 2012

 Totla, Wies. Complete instantiation-based interpolation. POPL
2013

 Christ, Hoenicke, Nutz. Proof Tree Preserving Interpolation.
TACAS 2013

 Ruemmer, Subotic. Exploring Interpolants. FMCAD 2013

 Bruttomesso, Ghilardi, Ranise. Quantifier-free interpolation in
combinations of equality interpolating theories. TOCL 2014

Selected bibliography

 Interpolants in Formal Verification

 McMillan. Interpolation and SAT-based Model Checking. CAV
2003

 Henzinger, Jhala, Majumdar, McMillan. Abstractions from
Proofs. POPL 2004

 McMillan. Lazy Abstraction with Interpolants. CAV 2006

 Vizel, Grumberg. Interpolation-Sequence based model
checking. FMCAD 2009

 Albargouthi, Gurfinkel, Chechick. Whale: an interpolation-
based algorithm for inter-procedural verification. VMCAI
2012

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122

