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Introduction

 (Existential) Quantifier Elimination problem: given a formula

find a quantifier-free formula            that is equivalent to 
modulo T

 Several important applications. E.g.

 Image compuation

 Parameter synthesis



  

Introduction

 (Craig) Interpolant for an ordered pair (A, B) of formulae s.t.    

                                                    is a formula I s.t.





 All the uninterpreted (in     ) symbols of I 
are shared between A and B

 Why are interpolants useful?

 Overapproximation of A relative to B

 Overapprox. of 

 “Local” explanation of why A is inconsistent with B
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Background

Symbolic transition systems

 State variables

 Initial states formula

 Transition relation formula

 A state     is an assignment to the state vars

 A path of the system S is a sequence of states
such that                and

 A k-step (symbolic) unrolling of S is a formula

 Encodes all possible paths of length up to k

 A state property is a formula     over

 Encodes all the states      such that



  

Forward reachability checking

 Forward image computation

 Compute all states reachable from     in one transition:

 Prove that a set of states                is not reachable:
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Forward reachability checking

 Forward image computation

 Compute all states reachable from     in one transition:

 Prove that a set of states                is not reachable:



  

Interpolation-based reachability

 Image computation requires quantifier elimination, which is 
typically very expensive (both in theory and in practice)

 Interpolation-based algorithm (McMillan CAV'03): use 
interpolants to overapproximate image computation

 much more efficient than the previous algorithm

 interpolation is often much cheaper than quantifier elimination
 abstraction (overapproximation) accelerates convergence

 termination is still guaranteed for finite-state systems



  

Interpolation-based reachability

 Set

 Check satisfiability of

T07!1 Tk¡1 7!k



  

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set 

              is an abstraction of the forward image 
         guided by the property

T07!1 Tk¡1 7!k
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Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set 

              is an abstraction of the forward image 
         guided by the property

 If              , return UNREACHABLE      fixpoint found

 else, set                                            and continue

T07!1 Tk¡1 7!k

A



  

Interpolation-based reachability

 Set

 Check satisfiability of

 If SAT:

 If            , return REACHABLE

 The unrolling hits bad
 Otherwise, we don't know

 The path might be feasible due to the overapproximation
 Increase k and try again

T07!1 Tk¡1 7!k

A



Outline

Introduction

Example Applications in Formal Verification

SMT-based Quantifier Elimination

Computing interpolants in SMT



Existential elimination for LRA

Fourier-Motzkin method

 Given a conjunction of linear inequalities C and one variable 
x to eliminate

 Partition C into C+ and C-:

 Return

 For multiple variables                    , apply the above in 
sequence

 For arbitrary formulae 

 First put      in DNF, and then apply the above



Boosting Fourier-Motzkin with SMT

 The Fourier-Motzkin method is a purely syntactical one, which 
might generate a lot of redundant constraints

 Blow-up when converting the input to DNF

 Blow-up when eliminating a single variable

 Blow-up when eliminating multiple variables

 No reuse of information

 We can mitigate the blow-ups by using an SMT solver, to 
perform a “semantic-aware” existential elimination

 Although it won't improve the (doubly-exponential) worst-case 
complexity, it will greatly improve performance in practice

 See e.g. [Monniaux 2008]



SMT-based FM-elim

def FM_elim_SMT(formula, vars):
   res = FALSE()
   while True:
       m = get_model(formula)
       if m is None: break
       conj = { (a if entails(m, a) else Not(a)) 
                 for a in atoms(formula) }
       conj_e = FM_elim_conj(conj, vars)
       res = Or(res, conj_e)
       formula = And(formula, Not(conj_e))
   return res

def FM_elim_conj(conj, vars):
   for x in vars:
       c_p = { c for c in conj if coeff(c, x) > 0 }
       c_n = { c for c in conj if coeff(c, x) < 0 }
       conj = conj - (c_p | c_n)
       for a in c_p:
           for b in c_n:
               c = combine(a, b, x)
               if not implies(conj, c): conj.add(c)
   return And(*conj)



Alternative: Virtual Term Substitution

 Main bottleneck of the FME-based algorithm is the 
computation of the DNF

 Even in the SMT case, still has to enumerate cubes of the input 
formula

 Virtual Term Substitution method doesn't require a DNF

 Can work on a NNF, which can be computed in linear time

 Main idea: compute a set                                   such that 
           is equivalent to

     is computed syntactically, by only looking at the literals of

 The Boolean structure doesn't matter



Virtual Term Substitution

 Collect all literals containing      

 Put them in the form

 By rewriting                   
                                                                                 (and so on)  

 Build

    is a symbolic infinitesimal parameter

 Apply the subsitutions as follows
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Example



 Collect literals

  



 Result:



Virtual Term Substitution drawbacks

 Like the naive FM algorithm, the VTS method is purely 
syntactic

 Doesn't consider the Boolean structure of the formula

 Many cases might produce inconsistent disjunct, or duplicate 
and/or subsumed results

 In the previous example:
                    and                        are equivalent
                              and                                are equivalent
                   is implied by

 therefore,            is equivalent to                         

 We can do better by exploiting SMT



SMT-based Virtual Term Substitution

def VTS_elim_SMT(formula, vars):
  f = to_nnf(formula)
  res = FALSE()
  while True:
    m = get_model(f)
    if m is None: break
    d = VTS_elim_model(f, m, vars)
    res = Or(res, d)
    f = And(f, Not(d))
  return res

def VTS_elim_model(f, vars, m):
  for x in vars:
    S = get_S(f, x)
    val = eval_S(S, x, m)
    f = apply_VTS(f, x, val)
  return f

def eval_S(S, x, m):
  cur = None
  for c in S:
      if c is (x = t) and m[x] == m[t]:
          return t
      elif c is (x < t) and 
            (cur is None or m[t] < m[cur]):
          cur = t
  if cur is not None:
      return cur - EPSILON()
  return INF()
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Find the virtual substitution
that is consistent with

the current model



SMT-based Virtual Term Substitution

def VTS_elim_SMT(formula, vars):
  f = to_nnf(formula)
  res = FALSE()
  while True:
    m = get_model(f)
    if m is None: break
    d = VTS_elim_model(f, m, vars)
    res = Or(res, d)
    f = And(f, Not(d))
  return res

def VTS_elim_model(f, vars, m):
  for x in vars:
    S = get_S(f, x)
    val = eval_S(S, x, m)
    f = apply_VTS(f, x, val)
  return f

def eval_S(S, x, m):
  cur = None
  for c in S:
      if c is (x = t) and m[x] == m[t]:
          return t
      elif c is (x < t) and 
            (cur is None or m[t] < m[cur]):
          cur = t
  if cur is not None:
      return cur - EPSILON()
  return INF()

Find the virtual substitution
that is consistent with

the current model

Do not explore 
already-covered models
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Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be 
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a 
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the 
computed interpolant
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Efficient interpolation in SAT

 Interpolants for Boolean CNF formulae (A, B) can be 
computed from resolution refutations in linear time

 Traverse the resolution proof, annotating each node with a 
partial interpolant I

 The partial interpolant for the root node (the empty clause) is the 
computed interpolant

 McMillan's annotation rules (others exist):

 For each leaf node (input clause) C in the proof:

 If              , set 
 Otherwise (             ), set 

 For each inner node (resolution) with parents           and
and annotations      and

 If                    , set                        ; otherwise, set



  

Example



  

Example



  

Interpolants in SMT

 Resolution refutations in SMT: 

Boolean part 
(ground resolution)

T-specific part for conjunctions 
of constraints (negated T-lemmas)
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Standard Boolean
interpolation
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Interpolants in SMT

 Resolution refutations in SMT: 

 Annotation for a T-lemma C:

Boolean part 
(ground resolution)

T-specific part for conjunctions 
of constraints (negated T-lemmas)

Standard Boolean
interpolation

T-specific interpolation
for conjunctions only

Theory interpolation only for sets of T-literals 



  

Equality (EUF)

 Interpolants from coloured congruence graphs

 Nodes with 
colours:

 Edges with colours of the nodes they connect

 Uncolorable edge: connects nodes of two different colours
 Always possible to obtain a coloured graph

 (by introducing new nodes)

if term occurs in A

if term occurs in B

if term is shared
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Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

and



  

Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

 If an A-summary involves a congruence edge, compute 
summaries recursively on function arguments

 Use B-summaries as premises for the A-summary

and



  

Interpolation algorithm (sketch)

 Start from disequality edge

 Compute summaries for A-paths with shared endpoints

 If an A-summary involves a congruence edge, compute 
summaries recursively on function arguments

 Use B-summaries as premises for the A-summary

 (Several cases to consider)

and
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Example

 Start from

 A-summaries for

 Recurse on edge

 Path

 Recurse on edge
 Path              ,   B-summary:

 Interpolant: 



  

Linear Rational Arithmetic (LRA)

 Interpolants from proofs of unsatisfiability of a system of 
inequalities

 Proof of unsatisfiability: linear combination of inequalities with 
positive coefficients to derive a contradiction (          with         )

 Interpolant obtained out of the proof by combining inequalities 
from A (using the same coefficients)

 Proof of unsatisfiability generated from the Simplex



Example

 
 tableau                                 bounds                   candidate solution    
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tableau                                 bounds                   candidate solution    

No suitable variable for pivoting!
Conflict



Example

 
tableau                                 bounds                   candidate solution    

Proof:



Example

 
tableau                                 bounds                   candidate solution    

Interpolant:



  

 Constraints of the form

 Cutting-plane proof system: complete proof system for LIA

Hyp
¡
t · 0

Comb
t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Div

P
i cixi + c · 0P

i
ci
d
xi + d c

d
e · 0

; d > 0 divides the ci's

Linear Integer Arithmetic (LIA)

P
i cixi + c ./ 0; ./2 f·;=g
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Div

P
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i
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d
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d
e · 0
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LRA rules



  

 Constraints of the form

 Cutting-plane proof system: complete proof system for LIA

 Interpolation by annotating proof rules with inequalities 

 When      is derived, the associated annotation is the computed 
interpolant

Hyp
¡
t · 0

Comb
t1 · 0 t2 · 0

c1 ¢ t1 + c2 ¢ t2 · 0
; c1; c2 > 0

Div

P
i cixi + c · 0P

i
ci
d
xi + d c

d
e · 0

; d > 0 divides the ci's

Linear Integer Arithmetic (LIA)

P
i cixi + c ./ 0; ./2 f·;=g

?



  

Interpolation with ceilings

 Need to extend the signature of LIA to allow interpolation

 Introduce the ceiling function         [Pudlák '97]

 Allow non-variable terms to be non-integers (e.g.    )

d¢e
x
2



  

Interpolation with ceilings

 Need to extend the signature of LIA to allow interpolation

 Introduce the ceiling function         [Pudlák '97]

 Allow non-variable terms to be non-integers (e.g.    )

d¢e
x
2

Comb
t1 · 0 [t01 · 0] t2 · 0 [t02 · 0]

c1 ¢ t1 + c2 ¢ t2 · 0 [c1 ¢ t01 + c2 ¢ t02 · 0]

d > 0 divides aj ; bk; ci

Div

P
yj 62B ajyj +

P
zk 62A bkzk +

P
xi2A\B cixi + c

[
P
yj 62B ajyj +

P
xi2A\B c

0
ixi + t

0]
P
yj 62B

aj
d
yj +

P
zk2B

bk
d
zk +

P
xi2A\B

ci
d
xi + d c

d
e

[
P
yj 62B

aj
d
yj + d

P
xi2A\B c

0
ixi+t

0

d
e]



  

Interpolation with ceilings - example

(1 · 0) ´ ?

B :=

½
¡y ¡ 4z + 1 · 0

y + 4z ¡ 2 · 0
A :=

½
¡y ¡ 4x¡ 1 · 0

y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0
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[0 · 0]

[y + 2nx · 0] [0 · 0]



  Interpolant:

Interpolation with ceilings - example

(1 · 0) ´ ?

B :=

½
¡y ¡ 4z + 1 · 0

y + 4z ¡ 2 · 0
A :=

½
¡y ¡ 4x¡ 1 · 0

y + 4x · 0

y + 4x · 0 ¡y ¡ 4z + 1 · 0

¡y ¡ 4x¡ 1 · 0 y + 4z ¡ 2 · 0

[0 · 0]

[y + 2nx · 0] [0 · 0]



  

SMT(LIA) with ceilings

 ceilings can be eliminated via preprocessing

 Replace every term                         
with a fresh integer variable 

 Add the 2 unit clauses 
(encoding the meaning of ceiling:                                )

where     is the least common multiple of the denominators of the 
coefficients in 

dte
xdte

(l ¢ xdte ¡ l ¢ t+ l · 0)

(l ¢ t¡ l ¢ xdte · 0)

l
t



  

Bit-vectors (BV)

 Interpolation for bit-vectors is hard

 Only some limited work done so far

 Most efficient solvers use eager encoding into SAT, which is 
efficient but not good for interpolation

 Easy in principle, but not very useful interpolants

 Try to exploit lazy bit-blasting to incorporate BV into DPLL(T)



  

Interpolation via Bit-Blasting

 Interpolation via bit-blasting is easy…

 From          and           generate            and 

Each var     of width n encoded with n Boolean vars

 Generate a Boolean interpolant           for

 Replace every variable      in          with the bit-selection
and every Boolean connective with the corresponding bit-wise 
connective:

 ...but quite impractical

 Generates “ugly” interpolants

 Word-level structure of the original problem completely lost

 How to apply word-level simplifications?

BBoolABV BBV

x bx1 : : : b
x
n

IBool

ABool

(ABool; BBool)

IBoolbxi x[i]

^ 7! &; _ 7! j; : 7!»



  

Interpolation via Bit-Blasting - Example

 

A word-level interpolant is:

...but with bit-blasting we get:

A
def
= (a[8] ¤ b[8] = 15[8]) ^ (a[8] = 3[8])

B
def
= :(b[8]%uc[8] = 1[8]) ^ (c[8] = 2[8])

I
def
= (b[8] ¤ 3[8] = 15[8])

I 0
def

= (b[8][0] = 1[1]) ^ ((b[8][0]& » ((((((» b[8][7]& » b[8][6])&
» b[8][5])& » b[8][4])& » b[8][3])&b[8][2])& » b[8][1])) = 0[1])



  

Alternative: lazy bit-blasting and DPLL(T)

 Exploit lazy bit-blasting

 Bit-blast only BV-atoms, not the whole formula

 Boolean skeleton of the formula handled by the “main” DPLL, like 
in DPLL(T)

 Conjunctions of BV-atoms handled (via bit-blasting) by a “sub”-
DPLL (DPLL-BV) that acts as a BV-solver

Standard
Boolean Interpolation

BV-specific Interpolation
for conjunctions of constraints



  

Interpolation for BV constraints

 A layered approach

 Apply in sequence a chain of procedures of increasing 
generality and cost

 Interpolation in EUF

 Interpolation via equality inlining

 Interpolation via Linear Integer Arithmetic encoding

 Interpolation via bit-blasting



  

Interpolation in EUF

 Treat all the BV-operators as uninterpreted functions

 Exploit cheap, efficient algorithms for solving and 
interpolating  modulo EUF

 Possible because we avoid bit-blasting upront!

Example: A
def
= (x1[32] = 3[32]) ^ (x3[32] = x1[32] ¢ x2[32])

B
def

= (x4[32] = x2[32]) ^ (x5[32] = 3[32] ¢ x4[32])^
:(x3[32] = x5[32])

IUF
def
= x3 = f

¢(f3; x2)

IBV
def
= x3[32] = 3[32] ¢ x2[32]



  

Interpolation via Equality Inlining

 Interpolation via quantifier elimination: given           , an 
interpolant can be computed by eliminating quantifiers from
               or from

 In general, this can be very expensive for BV

 Might require bit-blasting and can cause blow-up of the formula

 Cheap case: non-common variables occurring in “definitional” 
equalities

Example:                         and      does not occur in    , then

(A;B)

9x 62BA 9x 62A:B

(x = e) ^ ' x e

9x((x = e) ^ ') =) '[x 7! e]



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant

A :B

A
def

= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

Example:

B
def

= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^
(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])
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 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant
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A
def
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(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Definitional equalities

Example:
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 If one of them succeeds, we have an interpolant

A :B

A
def

= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

B
def

= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^
(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example:



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant

A :B

B
def

= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^
(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def

= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x2[8] ¡ 1[32]))^
^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant

A :B

B
def

= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^
(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def

= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x2[8] ¡ 1[32]))^
^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant

A :B

B
def

= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^
(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def

= (0[24] :: (192[8] ¢ 128[8]) ·s (0[24] :: x2[8] ¡ 1[32]))

^ ^



  

Interpolation via Equality Inlining

 Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

 Try both from     and 

 If one of them succeeds, we have an interpolant

A :B

B
def

= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^
(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example: A
def

= (0[24] :: (192[8] ¢ 128[8]) ·s (0[24] :: x2[8] ¡ 1[32]))

^ ^

I
def
= (032 ·s (024 :: x2[8] ¡ 1[32])



  

Interpolation via LIA Encoding

 Simple idea (in principle):

 Encode a set of BV-constraints into an SMT(LIA)-formula

 Generate a LIA-interpolant using existing algorithms

 Map back to a BV-interpolant

 However, several problems to solve:

 Efficiency

 More importantly, soundness



  

Encoding BV into LIA

 Use well-known encodings from BV to SMT(LIA)

 Encode each BV term       as an integer variable        and the 
constraints

 Encode each BV operation as a LIA-formula. 

t[n] xt
(0 · xt) ^ (xt · 2n ¡ 1)

t[i¡j+1]
def
= t1[n][i : j] (xt = m) ^ (xt1 = 2i+1h + 2jm+ l)^

l 2 [0; 2i) ^m 2 [0; 2i¡j+1) ^ h 2 [0; 2n¡i¡1)

t[n]
def
= t1[n] + t2[n] (xt = xt1 + xt2 ¡ 2n¾) ^ (0 · ¾ · 1)

t[n]
def
= t1[n] ¢ k (xt = k ¢ xt1 ¡ 2n¾) ^ (0 · ¾ · k)

Examples:



  

From LIA-interpolants to BV-interpolants

 “Invert” the LIA encoding to get a BV interpolant

 Unsound in general

 Issues due to overflow and (un)signedness of operations

 Our (very simple) solution: check the interpolants

 Given a candidate interpolant    , use our SMT(BV) solver to 

check the unsatisfiability of 

 If successful, then     is an interpolant

Î

Î

(A ^ :Î) _ (B ^ Î)



  

From LIA- to BV-interpolants: examples

 

Encoding into LIA:

ALIA
def

=(xy2 = 16xy5 + xy5) ^ (xy1 = xy2) ^ (xy5 = 1)^
(xy1 2 [0; 28)) ^ (xy2 2 [0; 28)) ^ (xy5 2 [0; 24))

BLIA
def

=:(xy4+1 · xy2) ^ (xy4+1 = xy4 + 1¡ 28¾)^
(xy4 = 1)^
(xy4+1 2 [0; 28)) ^ (xy4 2 [0; 28)) ^ (0 · ¾ · 1)

A
def
= (y1[8] = y5[4] :: y5[4]) ^ (y1[8] = y2[8]) ^ (y5[4] = 1[4])

B
def
= :(y4[8] + 1[8] ·u y2[8]) ^ (y4[8] = 1[8])



  

From LIA- to BV-interpolants: examples

 

LIA-Interpolant:

BV-interpolant:

ILIA
def

= (17 · xy2)

I
def
= (17[8] ·u y2[8])

Good!

A
def
= (y1[8] = y5[4] :: y5[4]) ^ (y1[8] = y2[8]) ^ (y5[4] = 1[4])

B
def
= :(y4[8] + 1[8] ·u y2[8]) ^ (y4[8] = 1[8])



  

From LIA- to BV-interpolants: examples

 

Encoding into LIA:

ALIA
def

=(xy2 = 81) ^ (xy3 = 0) ^ (xy4 = xy2)^
(xy2 2 [0; 28)) ^ (xy3 2 [0; 28)) ^ (xy4 2 [0; 28))

BLIA
def

=(xy13 = 28 ¢ 0 + xy4) ^ (255 · xy13+(0::y3))^
(xy13+(0::y3) = xy13 + 28 ¢ 0 + xy3 ¡ 216¾)^
(xy13 2 [0; 216)) ^ (xy13+(0::y3) 2 [0; 216))^
(0 · ¾ · 1)

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def

= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def

= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

Addition might 
overflow in BV!

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def

= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

Addition might 
overflow in BV!

A correct interpolant would be

I
def
= (0[1] :: y3[8] + 0[1] :: y4[8] ·u 81[9])

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))



  

From LIA- to BV-interpolants: examples

 

Encoding into LIA:

ALIA
def

=:(xy4+1 · xy3) ^ (xy2 = xy4+1)^
(xy4+1 = xy4 + 1¡ 28¾1)^
(xy2 2 [0; 28)) ^ (xy3 2 [0; 28)) ^ (xy4 2 [0; 28))^
(xy4+1 2 [0; 28)) ^ (0 · ¾1 · 1)

BLIA
def

=(xy2+1 · xy3) ^ (xy7 = 3) ^ (xy7 = xy2+1)^
(xy2+1 = xy2 + 1¡ 28¾2)^
(xy7 2 [0; 28)) ^ (xy2+1 2 [0; 28)) ^ (0 · ¾2 · 1)

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Î0
def

= (65281[16] ·u (0[8] :: y2[8])¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

(after fixing overflows)



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Î0
def

= (65281[16] ·u (0[8] :: y2[8])¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

(after fixing overflows)

Still
Wrong!

In this case, the problem
is also the sign



  

From LIA- to BV-interpolants: examples

 

LIA-interpolant:

BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Correct interpolant

I
def

= (65281[16] ·s (0[8] :: y2[8])¡ (0[8] :: y3[8])+

256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])



  

Interpolation in combined theories

 Combination of theories 
encoded directly in the 
proof of unsatisfiability P

    -lemmas for the 
individual theories

 P contains interface 
equalities 

 Delayed Theory Combination (DTC): use the DPLL engine to 
perform theory combination 

 Independent     -solvers, that interact only with DPLL

 How: Boolean search space augmented with interface equalities

 Equalities between variables shared by the two theories

?

T1T2

T1

T1 T1

T2
T2

T2

P

Ti

Ti



  

Interpolation in combined theories

 How: Split each   -lemma       
                into                         
                with                  
using available algorithms 

     's must be equality-
interpolating and convex

 Propagate the changes 
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation: 

 Some interface equalities (x = y) are AB-mixed: 

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

?

T1T2

T1

T1 T1

T2
T2

T2

P



  

Interpolation in combined theories

 How: Split each   -lemma       
                into                         
                with                  
using available algorithms 

     's must be equality-
interpolating and convex

 Propagate the changes 
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation: 

 Some interface equalities (x = y) are AB-mixed: 

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

?

T1
T2

T1 T1 T1

T2
T2

T2
T2

T1

T2

P'



  

Interpolation in combined theories

 How: Split each   -lemma       
                into                         
                with                  
using available algorithms 

     's must be equality-
interpolating and convex

 Propagate the changes 
throughout P

x 62 B, y 62 A

T

Ti

t 2 A \B

 Problem for interpolation: 

 Some interface equalities (x = y) are AB-mixed: 

 Interpolation procedures don't work with AB-mixed terms

 Solution: Split AB-mixed equalities occurring in P, and fix the proof

Problem: splitting can 
cause exponential blow-up 
in P

Solution: control the kind of 
proofs generated by DPLL,
so that the splitting can be
performed efficiently
(ie-local proofs) ?

T1
T2

T1 T1 T1

T2
T2

T2
T2

T1

T2

P'



  

Interpolation in combined theories

 After splitting AB-mixed equalities, we can compute an 
interpolant as usual

 Nothing special needed for theory combination!

 Because theory combination is encoded in the proof, we can 
reuse the Boolean interpolation algorithm

 Features:

 No need of ad-hoc interpolant combination procedures 

 Exploit state-of-the-art SMT solvers, based on (variants of) DTC

 Split only when necessary



  

Example



  

Example

T-lemmas:

?

£3

(a2 + z = 1)

(a1 + z = 0)

£4

£5

£6

£7

(z ¡ x2 = 1)

(a1 = f(x1))

(a2 = f(x2))

(z ¡ x1 = 1)



  

Example

T-lemmas: Pivot: (x
1
 = x

2
)

?

£3

(a2 + z = 1)

(a1 + z = 0)

£4

£5

£6

£7

(z ¡ x2 = 1)

(a1 = f(x1))

(a2 = f(x2))

(z ¡ x1 = 1)

C3 C2

£1 C1
£2

Pivot: (a
1
 = a

2
)

subproof 
with int.eqs.



  

Example

C3 C2

C1£1

£2

Pie subproof:

T-lemmas:



  

Example

C3 C2

C1£1

£2

Pie subproof:

T-lemmas: Split (x
1 
= x

2
) in C

1



  

Example

Pie subproof:

T-lemmas:
C3 C2

£1 C01

C001£02

£2

C01 ´(x1 = z ¡ 1) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

C 001 ´(z ¡ 1 = x2) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)



  

Example

Pie subproof:

T-lemmas:
C3 C2

£1 C01

C001£02

£2

C01 ´(x1 = z ¡ 1) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

C 001 ´(z ¡ 1 = x2) _ :(z ¡ x1 = 1)_
:(z ¡ x2 = 1)

Split (a
1 
= a

2
) in C

2



  

Example

Pie subproof:

£1

£2

C001£02

C01£01

C002

C02C03
C02 ´(a1 = f(z ¡ 1)) _ :(a2 = f(x2))_

:(a1 = f(x1)) _ :(x1 = z ¡ 1)_
:(z ¡ 1 = x2)

C 002 ´(f(z ¡ 1) = a2) _ :(a2 = f(x2))_
:(a1 = f(x1)) _ :(x1 = z ¡ 1)_
:(z ¡ 1 = x2)

C03 ´:(a1 + z = 0) _ :(a2 + z = 1)_
:(a1 = f(z ¡ 1)) _ :(f(z ¡ 1) = a2)



  

Proof Tree Preserving Interpolation

 [Christ, Hoenicke and Nutz, TACAS 2013]

 Interpolants with AB-mixed literals without proof rewriting

 Replace AB-mixed terms              with                       
in leaves, where     is a fresh purification variable

 Eliminate the purification variable when resolving on

 

 Advantages: 

 no need of proof rewriting

 handles also for non-convex theories

 Drawbacks: 

 need T-specific interpolation rules for resolution steps

 more complex interpolation system



  

From Binary to Sequence Interpolants

 An ordered sequence of formulae                     such that

 We want a sequence of interpolants                     such that

      is an interpolant for

                               for all

 Needed in various applications (e.g. abstraction refinement)

 How to compute them?

 In general, if we compute arbitrary binary interpolants for

                                     , the second condition will not hold



  

A simple solution

 Compute       as an interpolant of

 Compute       as an interpolant of

 Claim:      is an interpolant for

 Proof (sketch):

 By ind.hyp.          is an interpolant for

so                                and

 

 Advantages: 

 simple to implement

 can use any off-the-shelf binary interpolation 

 Drawback: requires n-1 SMT calls
 



  

A more efficient algorithm

 Compute an SMT proof of unsatisfiablity P for 

 Compute each

from the same proof P

 Theorem:



  

A more efficient algorithm

 Compute an SMT proof of unsatisfiablity P for 

 Compute each

from the same proof P

 Theorem:

 Proof (sketch) – case n=3:

 Let C be a node of P with partial interpolants I' and I'' for the 
partitionings                         and                         resp. Then we 
can prove, by induction on the structure of P, that:

 The theorem then follows as a corollary

 Works also for DTC-rewritten proofs
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