
Indian SAT+SMT school 2016

SMT Tutorial

2. Quantifier Elimination and Interpolation in SMT

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy

Outline

Introduction

Example Applications in Formal Verification

SMT-based Quantifier Elimination

Computing interpolants in SMT

Introduction

- (Existential) Quantifier Elimination problem: given a formula

$$\varphi := \exists X_1. \forall X_2 \dots \exists X_n. \phi(X_1, \dots, X_n, Y)$$

find a quantifier-free formula $\psi(Y)$ that is equivalent to φ modulo T

- Several important applications. E.g.

- Image computation
 - Parameter synthesis

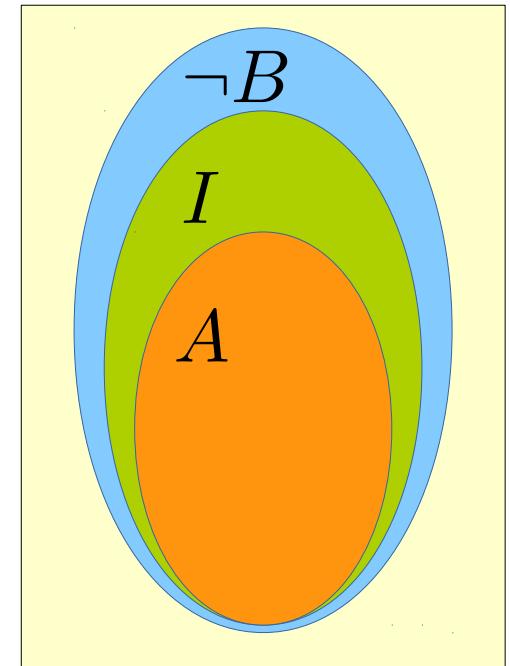
Introduction

- (Craig) Interpolant for an ordered pair (A, B) of formulae s.t.

$A \wedge B \models_T \perp$ (or: $A \models_T \neg B$) is a formula I s.t.

- $A \models_T I$
- $I \wedge B \models_T \perp$ ($I \models_T \neg B$)
- All the uninterpreted (in T) symbols of I are shared between A and B

- Why are interpolants useful?
 - Overapproximation of A relative to B
 - Overapprox. of $\exists_{\{x \notin B\}} \vec{x}. A$
 - “Local” explanation of why A is inconsistent with B



Outline

Introduction

Example Applications in Formal Verification

SMT-based Quantifier Elimination

Computing interpolants in SMT

Background

Symbolic transition systems

- State variables X
- Initial states formula $I(X)$
- Transition relation formula $T(X, X')$
- A state σ is an assignment to the state vars $\bigwedge_{x_i \in X} x_i = v_i$
- A path of the system S is a sequence of states $\sigma_0, \dots, \sigma_k$ such that $\sigma_0 \models I$ and $\sigma_i, \sigma'_{i+1} \models T$
- A k -step (symbolic) unrolling of S is a formula

$$I(X^0) \wedge \bigwedge_{i=0}^{k-1} T(X^i, X^{i+1})$$

 ■ Encodes all possible paths of length up to k
- A state property is a formula P over X
 ■ Encodes all the states σ such that $\sigma \models P$

Forward reachability checking

■ Forward image computation

- Compute all states reachable from σ in one transition:

$$\text{Img}(\sigma(X)) := \exists X. \sigma(X) \wedge T(X, X')[X/X']$$

■ Prove that a set of states $\text{Bad}(X)$ is **not reachable**:

$$R(X) := \text{I}(X)$$

Bad(X)

$$\text{Img}(R(X))$$

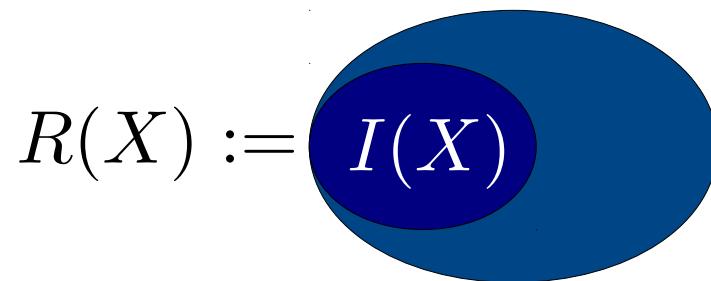
Forward reachability checking

■ Forward image computation

- Compute all states reachable from σ in one transition:

$$\text{Img}(\sigma(X)) := \exists X. \sigma(X) \wedge T(X, X')[X/X']$$

■ Prove that a set of states $\text{Bad}(X)$ is **not reachable**:



$$\text{Img}(R(X))$$

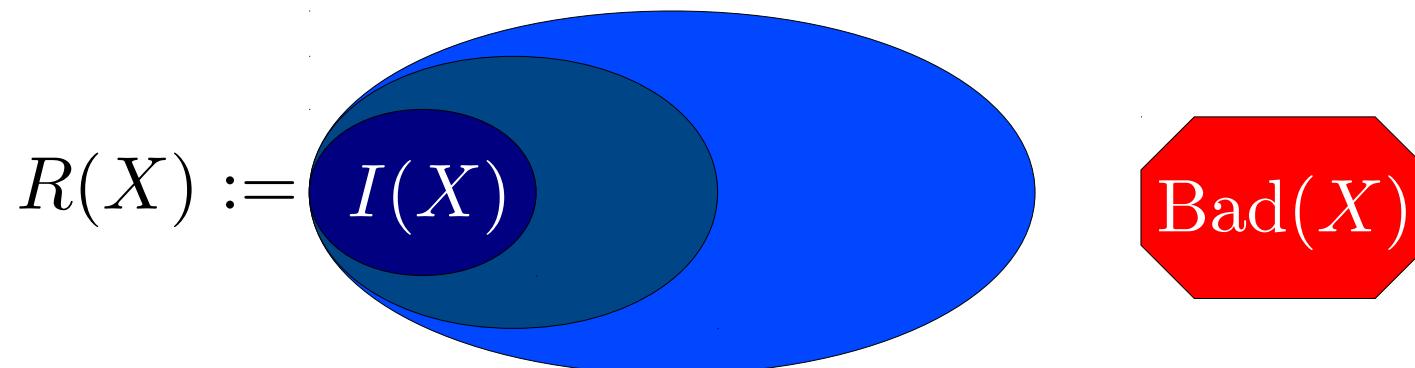
Forward reachability checking

■ Forward image computation

- Compute all states reachable from σ in one transition:

$$\text{Img}(\sigma(X)) := \exists X. \sigma(X) \wedge T(X, X')[X/X']$$

■ Prove that a set of states $\text{Bad}(X)$ is **not reachable**:



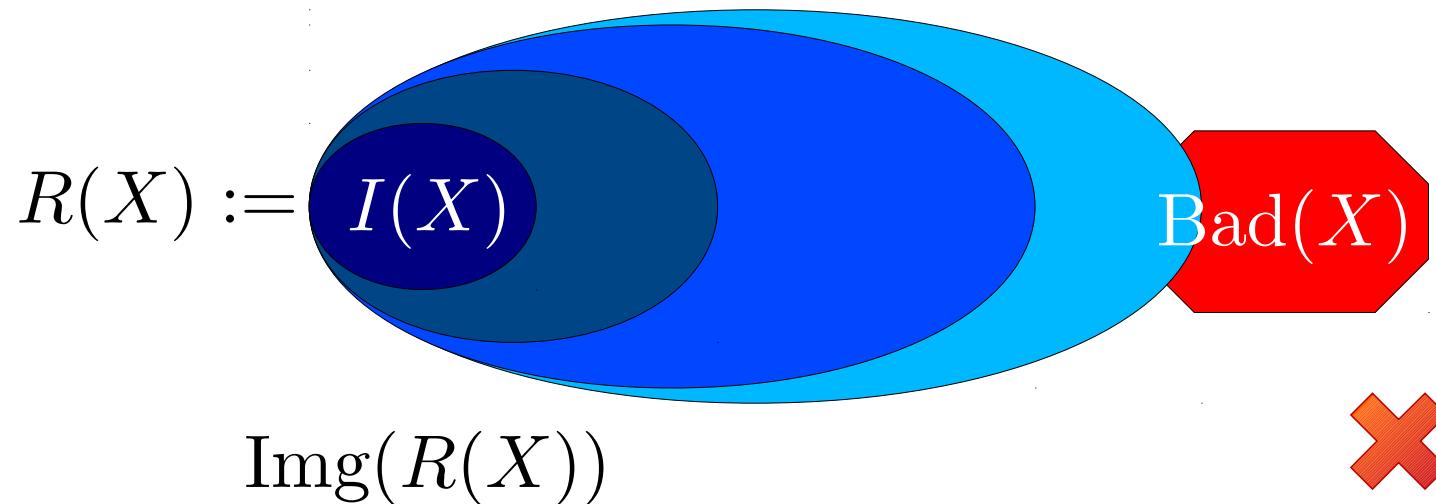
Forward reachability checking

■ Forward image computation

- Compute all states reachable from σ in one transition:

$$\text{Img}(\sigma(X)) := \exists X. \sigma(X) \wedge T(X, X')[X/X']$$

■ Prove that a set of states $\text{Bad}(X)$ is **not reachable**:



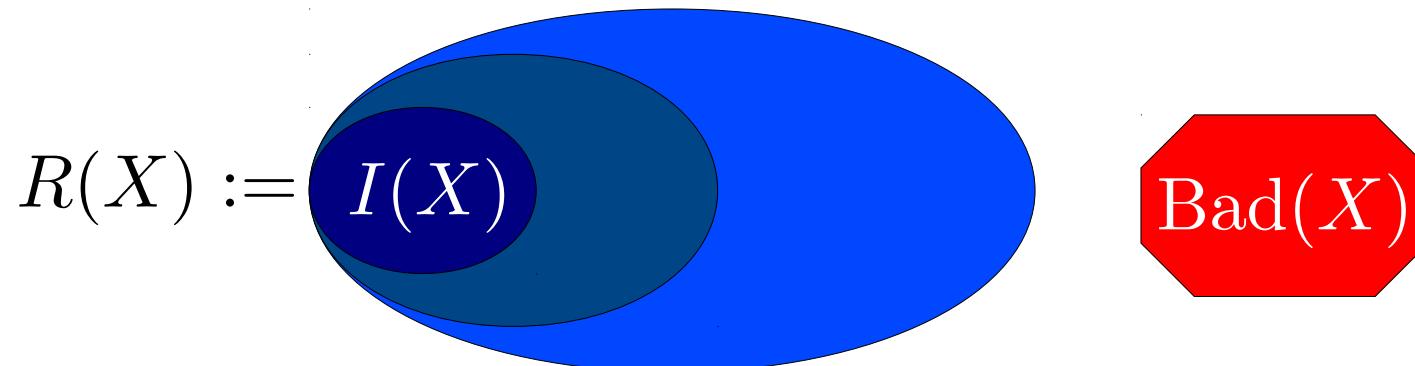
Forward reachability checking

■ Forward image computation

- Compute all states reachable from σ in one transition:

$$\text{Img}(\sigma(X)) := \exists X. \sigma(X) \wedge T(X, X')[X/X']$$

■ Prove that a set of states $\text{Bad}(X)$ is **not reachable**:



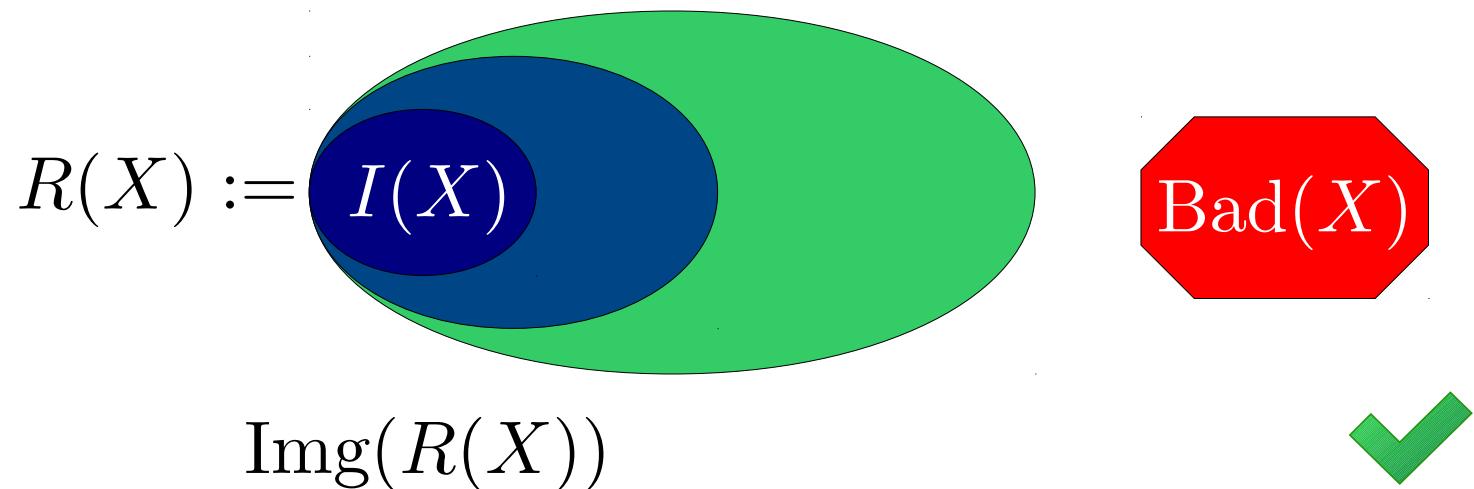
Forward reachability checking

■ Forward image computation

- Compute all states reachable from σ in one transition:

$$\text{Img}(\sigma(X)) := \exists X. \sigma(X) \wedge T(X, X')[X/X']$$

■ Prove that a set of states $\text{Bad}(X)$ is **not reachable**:

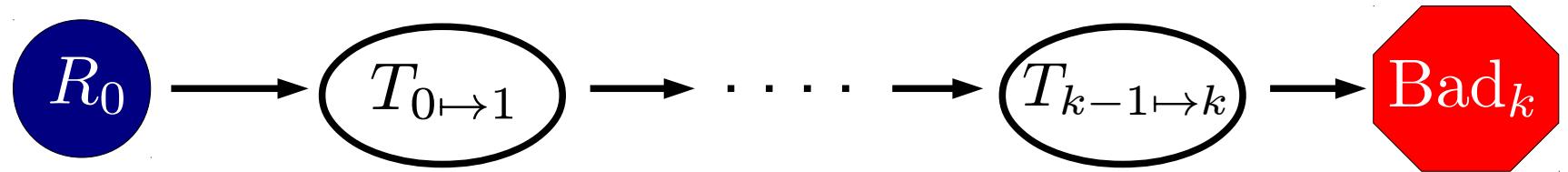


Interpolation-based reachability

- Image computation requires **quantifier elimination**, which is typically **very expensive** (both in theory and in practice)
- Interpolation-based algorithm (McMillan CAV'03): use interpolants to **overapproximate image computation**
 - much more efficient than the previous algorithm
 - interpolation is often much cheaper than quantifier elimination
 - abstraction (overapproximation) accelerates convergence
 - termination is still guaranteed for finite-state systems

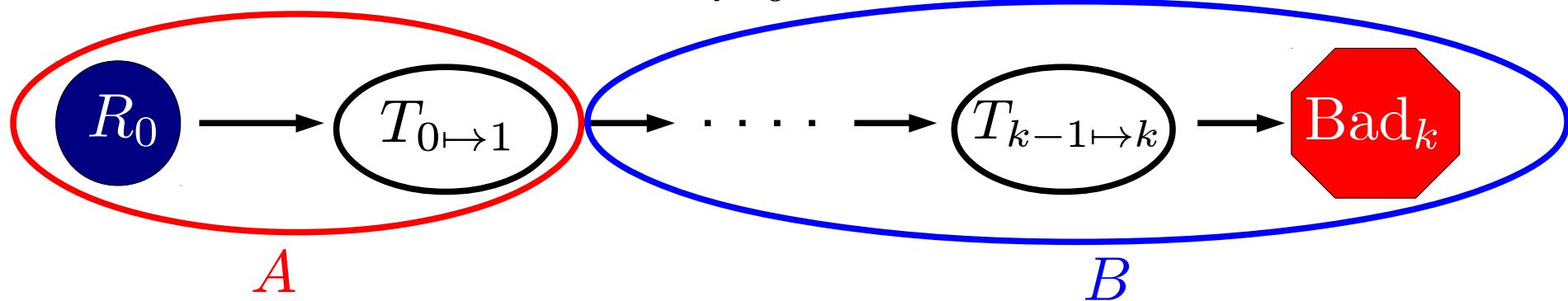
Interpolation-based reachability

- Set $R(X) := I(X)$
- Check satisfiability of $R_0 \wedge \bigwedge_{i=0}^{k-1} T_i \wedge \text{Bad}_k$



Interpolation-based reachability

- Set $R(X) := I(X)$
- Check satisfiability of $R_0 \wedge \bigwedge_{i=0}^{k-1} T_i \wedge \text{Bad}_k$

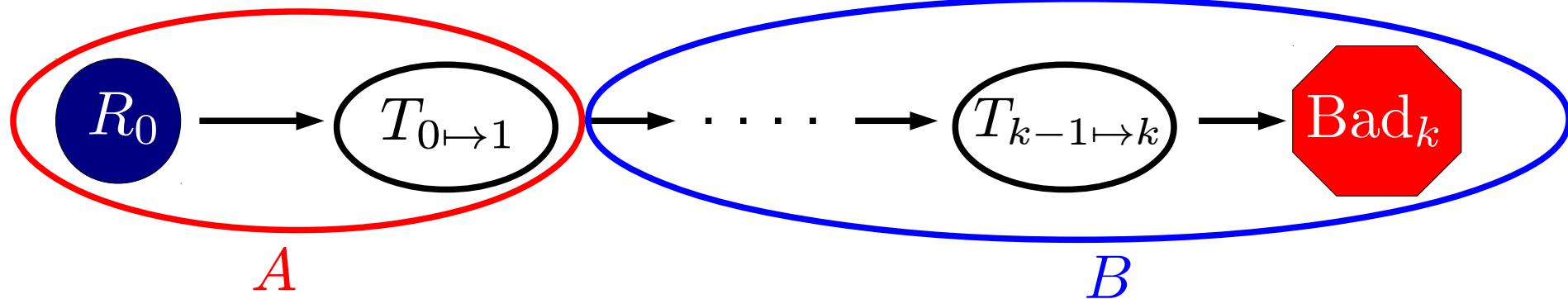


- If **UNSAT**:
 - Set $\varphi(X) := \text{Interpolant}(\textcolor{red}{A}, \textcolor{blue}{B})[X_1/X]$

φ is an **abstraction** of the forward image guided by the property

Interpolation-based reachability

- Set $R(X) := I(X)$
- Check satisfiability of $R_0 \wedge \bigwedge_{i=0}^{k-1} T_i \wedge \text{Bad}_k$



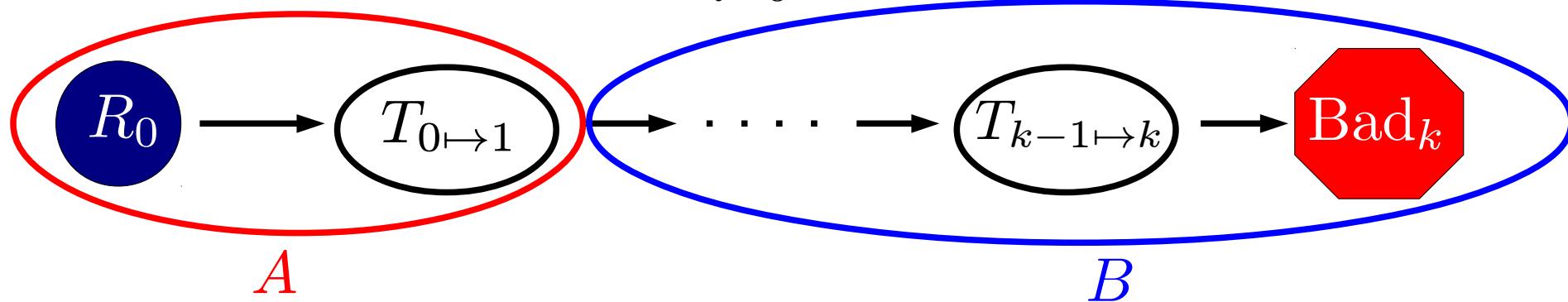
- If **UNSAT**:
 - Set $\varphi(X) := \text{Interpolant}(A, B)[X_1/X]$

φ is an **abstraction** of the forward image
guided by the property

- If $\varphi \models R$, return **UNREACHABLE** fixpoint found
- else, set $R(X) := R(X) \vee \varphi(X)$ and continue

Interpolation-based reachability

- Set $R(X) := I(X)$
- Check satisfiability of $R_0 \wedge \bigwedge_{i=0}^{k-1} T_i \wedge \text{Bad}_k$



- If **SAT**:
 - If $R \equiv I$, return **REACHABLE**
 - The unrolling hits bad
 - Otherwise, we don't know
 - The path might be feasible due to the overapproximation
 - Increase k and try again

Outline

Introduction

Example Applications in Formal Verification

SMT-based Quantifier Elimination

Computing interpolants in SMT

Existential elimination for LRA

Fourier-Motzkin method

- Given a **conjunction** of linear inequalities C and **one variable** x to eliminate

- Partition C into C^+ and C^- :

$$C^+ := \{a_i \cdot x \leq \sum_j b_{ij} \cdot y_j + c_i\}_i$$

$$C^- := \{-a_k \cdot x \leq \sum_j b_{kj} \cdot y_j + c_k\}_k$$

- Return $\psi(Y) := \bigwedge_{ik} (0 \leq \sum_j \frac{a_k \cdot b_{ij} + a_i \cdot b_{kj}}{a_i \cdot a_k} y_j + \frac{a_i \cdot c_k + a_k \cdot c_i}{a_i \cdot a_k})$
- For multiple variables x_1, \dots, x_n , apply the above in sequence
- For arbitrary formulae $\varphi(x, Y)$
 - First put φ in DNF, and then apply the above

Boosting Fourier-Motzkin with SMT

- The Fourier-Motzkin method is a **purely syntactical** one, which might generate a lot of **redundant constraints**
 - Blow-up when converting the input to DNF
 - Blow-up when eliminating a single variable
 - Blow-up when eliminating multiple variables
 - No reuse of information
- We can mitigate the blow-ups by using an **SMT solver**, to perform a **“semantic-aware” existential elimination**
 - Although it won't improve the (doubly-exponential) worst-case complexity, it will greatly improve performance in practice
 - See e.g. [Monniaux 2008]

SMT-based FM-elim

```
def FM_elim_SMT(formula, vars):  
    res = FALSE()  
    while True:  
        m = get_model(formula)  
        if m is None: break  
        conj = { (a if entails(m, a) else Not(a))  
                 for a in atoms(formula) }  
        conj_e = FM_elim_conj(conj, vars)  
        res = Or(res, conj_e)  
        formula = And(formula, Not(conj_e))  
    return res
```

```
def FM_elim_conj(conj, vars):  
    for x in vars:  
        c_p = { c for c in conj if coeff(c, x) > 0 }  
        c_n = { c for c in conj if coeff(c, x) < 0 }  
        conj = conj - (c_p | c_n)  
        for a in c_p:  
            for b in c_n:  
                c = combine(a, b, x)  
                if not implies(conj, c): conj.add(c)  
    return And(*conj)
```

Alternative: Virtual Term Substitution

- Main bottleneck of the FME-based algorithm is the computation of the DNF
 - Even in the SMT case, still has to enumerate cubes of the input formula
- Virtual Term Substitution method doesn't require a DNF
 - Can work on a NNF, which can be computed in linear time
- Main idea: compute a set $S := \{\sigma_1, \dots, \sigma_n\}$ such that $\exists x. \varphi$ is equivalent to $\bigvee_{i=1}^n \varphi[x := \sigma_i]$
 - S is computed syntactically, by only looking at the literals of φ
 - The Boolean structure doesn't matter

Virtual Term Substitution

- Collect all literals containing x
 - Put them in the form $(x \bowtie t_i)$, $\bowtie \in \{<, =, >\}$
 - By rewriting $(t_1 \leq t_2) \mapsto (t_1 = t_2) \vee (t_1 < t_2)$
 $\neg(t_1 \leq t_2) \mapsto (t_2 < t_1)$ (and so on)
- Build $S := \{t_i \mid (x = t_i) \in \varphi\} \cup \{t_i - \varepsilon \mid (x < t_i) \in \varphi\} \cup \{\infty\}$
 - ε is a **symbolic infinitesimal** parameter
- Apply the **substitutions** as follows

$$(x \bowtie t_j)[x := \infty] = \begin{cases} \perp & \text{if } \bowtie \in \{=, <\} \\ \top & \text{if } \bowtie \text{ is } > \end{cases}$$

$$(x \bowtie t_j)[x := t_i - \varepsilon] = \begin{cases} \perp & \text{if } \bowtie \text{ is } = \\ (t_i \leq t_j) & \text{if } \bowtie \text{ is } < \\ (t_i > t_j) & \text{if } \bowtie \text{ is } > \end{cases}$$

Example

- $\varphi := \exists x. [(2y < 5) \wedge ((y > 0) \vee (x < 2y)) \wedge (((x \geq 0) \wedge (x < 4y)) \vee (y > -5))]$

Example

- $\varphi := \exists x. [(2y < 5) \wedge ((y > 0) \vee (x < 2y)) \wedge (((x \geq 0) \wedge (x < 4y)) \vee (y > -5))]$
- **Collect literals** $\{(x < 2y), \underbrace{(x > 0), (x = 0), (x < 4y)}_{(x \geq 0)}\}$
- $S := \{0, 2y - \varepsilon, 4y - \varepsilon, \infty\}$

Example

- $\varphi := \exists x. [(2y < 5) \wedge ((y > 0) \vee (x < 2y)) \wedge (((x \geq 0) \wedge (x < 4y)) \vee (y > -5))]$
- **Collect literals** $\{(x < 2y), \underbrace{(x > 0), (x = 0)}_{(x \geq 0)}, (x < 4y)\}$
- $S := \{0, 2y - \varepsilon, 4y - \varepsilon, \infty\}$
- $\varphi[x := 0] = (2y < 5) \wedge ((y > 0) \vee (0 < 2y)) \wedge ((0 < 4y) \vee (y > -5))$

Example

- $\varphi := \exists x. [(2y < 5) \wedge ((y > 0) \vee (x < 2y)) \wedge (((x \geq 0) \wedge (x < 4y)) \vee (y > -5))]$
- **Collect literals** $\{(x < 2y), \underbrace{(x > 0), (x = 0)}_{(x \geq 0)}, (x < 4y)\}$
- $S := \{0, 2y - \varepsilon, 4y - \varepsilon, \infty\}$
- $\varphi[x := 0] = (2y < 5) \wedge ((y > 0) \vee (0 < 2y)) \wedge ((0 < 4y) \vee (y > -5))$
- $\varphi[x := 2y - \varepsilon] = (2y < 5) \wedge (((2y > 0) \wedge (2y \leq 4y)) \vee (y > -5))$

Example

- $\varphi := \exists x. [(2y < 5) \wedge ((y > 0) \vee (x < 2y)) \wedge (((x \geq 0) \wedge (x < 4y)) \vee (y > -5))]$
- **Collect literals** $\{(x < 2y), \underbrace{(x > 0), (x = 0)}_{(x \geq 0)}, (x < 4y)\}$
- $S := \{0, 2y - \varepsilon, 4y - \varepsilon, \infty\}$
- $\varphi[x := 0] = (2y < 5) \wedge ((y > 0) \vee (0 < 2y)) \wedge ((0 < 4y) \vee (y > -5))$
 $\varphi[x := 2y - \varepsilon] = (2y < 5) \wedge (((2y > 0) \wedge (2y \leq 4y)) \vee (y > -5))$
 $\varphi[x := 4y - \varepsilon] = (2y < 5) \wedge ((y > 0) \vee (4y \leq 2y)) \wedge ((4y > 0) \vee (y > -5))$

Example

- $\varphi := \exists x. [(2y < 5) \wedge ((y > 0) \vee (x < 2y)) \wedge (((x \geq 0) \wedge (x < 4y)) \vee (y > -5))]$
- **Collect literals** $\{(x < 2y), \underbrace{(x > 0), (x = 0)}_{(x \geq 0)}, (x < 4y)\}$
- $S := \{0, 2y - \varepsilon, 4y - \varepsilon, \infty\}$
- $\varphi[x := 0] = (2y < 5) \wedge ((y > 0) \vee (0 < 2y)) \wedge ((0 < 4y) \vee (y > -5))$
 $\varphi[x := 2y - \varepsilon] = (2y < 5) \wedge (((2y > 0) \wedge (2y \leq 4y)) \vee (y > -5))$
 $\varphi[x := 4y - \varepsilon] = (2y < 5) \wedge ((y > 0) \vee (4y \leq 2y)) \wedge ((4y > 0) \vee (y > -5))$
 $\varphi[x := \infty] = (2y < 5) \wedge (y > 0) \wedge (y > -5)$

Example

- $\varphi := \exists x. [(2y < 5) \wedge ((y > 0) \vee (x < 2y)) \wedge (((x \geq 0) \wedge (x < 4y)) \vee (y > -5))]$
- **Collect literals** $\{(x < 2y), \underbrace{(x > 0), (x = 0)}_{(x \geq 0)}, (x < 4y)\}$
- $S := \{0, 2y - \varepsilon, 4y - \varepsilon, \infty\}$
- $\varphi[x := 0] = (2y < 5) \wedge ((y > 0) \vee (0 < 2y)) \wedge ((0 < 4y) \vee (y > -5))$
 $\varphi[x := 2y - \varepsilon] = (2y < 5) \wedge (((2y > 0) \wedge (2y \leq 4y)) \vee (y > -5))$
 $\varphi[x := 4y - \varepsilon] = (2y < 5) \wedge ((y > 0) \vee (4y \leq 2y)) \wedge ((4y > 0) \vee (y > -5))$
 $\varphi[x := \infty] = (2y < 5) \wedge (y > 0) \wedge (y > -5)$
- **Result:** $\varphi[x := 0] \vee \varphi[x := 2y - \varepsilon] \vee \varphi[x := 4y - \varepsilon] \vee \varphi[x := \infty]$

Virtual Term Substitution drawbacks

- Like the naive FM algorithm, the VTS method is purely syntactic
 - Doesn't consider the Boolean structure of the formula
 - Many cases might produce inconsistent disjunct, or duplicate and/or subsumed results

- In the previous example:
 - $\varphi[x := 0]$ and $\varphi[x := \infty]$ are equivalent
 - $\varphi[x := 2y - \varepsilon]$ and $\varphi[x := 4y - \varepsilon]$ are equivalent
 - $\varphi[x := 0]$ is implied by $\varphi[x := 2y - \varepsilon]$
- therefore, $\exists x. \varphi$ is equivalent to $\varphi[x := 2y - \varepsilon]$

- We can do better by exploiting SMT

SMT-based Virtual Term Substitution

```
def VTS_elim_SMT(formula, vars):  
    f = to_nnf(formula)  
    res = FALSE()  
    while True:  
        m = get_model(f)  
        if m is None: break  
        d = VTS_elim_model(f, m, vars)  
        res = Or(res, d)  
        f = And(f, Not(d))  
    return res
```

```
def VTS_elim_model(f, vars, m):  
    for x in vars:  
        S = get_S(f, x)  
        val = eval_S(S, x, m)  
        f = apply_VTS(f, x, val)  
    return f
```

```
def eval_S(S, x, m):  
    cur = None  
    for c in S:  
        if c is (x = t) and m[x] == m[t]:  
            return t  
        elif c is (x < t) and  
            (cur is None or m[t] < m[cur]):  
            cur = t  
    if cur is not None:  
        return cur - EPSILON()  
    return INF()
```

SMT-based Virtual Term Substitution

```
def VTS_elim_SMT(formula, vars):  
    f = to_nnf(formula)  
    res = FALSE()  
    while True:  
        m = get_model(f)  
        if m is None: break  
        d = VTS_elim_model(f, m, vars)  
        res = Or(res, d)  
        f = And(f, Not(d))  
    return res
```

```
def VTS_elim_model(f, vars, m):  
    for x in vars:  
        S = get_S(f, x)  
        val = eval_S(S, x, m)  
        f = apply_VTS(f, x, val)  
    return f
```

Find the virtual substitution
that is consistent with
the current model

```
def eval_S(S, x, m):  
    cur = None  
    for c in S:  
        if c is (x = t) and m[x] == m[t]:  
            return t  
        elif c is (x < t) and  
            (cur is None or m[t] < m[cur]):  
            cur = t  
    if cur is not None:  
        return cur - EPSILON()  
    return INF()
```

SMT-based Virtual Term Substitution

```
def VTS_elim_SMT(formula, vars):  
    f = to_nnf(formula)  
    res = FALSE()  
    while True:  
        m = get_model(f)  
        if m is None: break  
        d = VTS_elim_model(f, m, vars)  
        res = Or(res, d)  
        f = And(f, Not(d))  
    return res
```

```
def VTS_elim_model(f, vars, m):  
    for x in vars:  
        S = get_S(f, x)  
        val = eval_S(S, x, m)  
        f = apply_VTS(f, x, val)  
    return f
```

Find the virtual substitution
that is consistent with
the current model

```
def eval_S(S, x, m):  
    cur = None  
    for c in S:  
        if c is (x = t) and m[x] == m[t]:  
            return t  
        elif c is (x < t) and  
            (cur is None or m[t] < m[cur]):  
            cur = t  
    if cur is not None:  
        return cur - EPSILON()  
    return INF()
```

Do not explore
already-covered models

Outline

Introduction

Example Applications in Formal Verification

SMT-based Quantifier Elimination

Computing interpolants in SMT

Efficient interpolation in SAT

- Interpolants for Boolean CNF formulae (A , B) can be computed **from resolution refutations** in linear time
- Traverse the resolution proof, **annotating** each node with a partial interpolant I
 - The partial interpolant for the root node (the empty clause) is the computed interpolant

Efficient interpolation in SAT

- Interpolants for Boolean CNF formulae (A , B) can be computed **from resolution refutations** in linear time
- Traverse the resolution proof, **annotating** each node with a partial interpolant I
 - The partial interpolant for the root node (the empty clause) is the computed interpolant
- McMillan's annotation rules (others exist):

Efficient interpolation in SAT

- Interpolants for Boolean CNF formulae (A , B) can be computed **from resolution refutations** in linear time
- Traverse the resolution proof, **annotating** each node with a partial interpolant I
 - The partial interpolant for the root node (the empty clause) is the computed interpolant
- McMillan's annotation rules (others exist):
 - For each leaf node (input clause) C in the proof:
 - If $C \in A$, set $I := \bigvee \{l \in C \mid \text{var}(l) \in B\}$
 - Otherwise ($C \in B$), set $I := \top$

Efficient interpolation in SAT

- Interpolants for Boolean CNF formulae (A , B) can be computed **from resolution refutations** in linear time
- Traverse the resolution proof, **annotating** each node with a partial interpolant I
 - The partial interpolant for the root node (the empty clause) is the computed interpolant
- McMillan's annotation rules (others exist):
 - For each leaf node (input clause) C in the proof:
 - If $C \in A$, set $I := \bigvee \{l \in C \mid \text{var}(l) \in B\}$
 - Otherwise ($C \in B$), set $I := \top$
 - For each inner node (resolution) with parents $\varphi \vee l$ and $\psi \vee \neg l$ and annotations I_1 and I_2
 - If $\text{var}(l) \in B$, set $I := I_1 \wedge I_2$; otherwise, set $I := I_1 \vee I_2$

Example

$$A := (x \vee \neg y_1) \wedge (\neg x \vee \neg y_2) \wedge y_1$$

$$B := (\neg y_1 \vee y_2) \wedge (y_1 \vee z) \wedge \neg z$$

$$\begin{array}{c} x \vee \neg y_1 \quad \neg x \vee \neg y_2 \\ \hline \neg y_1 \vee \neg y_2 \quad y_1 \\ \hline \neg y_2 \quad \neg y_1 \vee y_2 \\ \hline y_1 \vee z \quad \neg y_1 \\ \hline z \quad \neg z \\ \hline \perp \end{array}$$

Example

$$A := (x \vee \neg y_1) \wedge (\neg x \vee \neg y_2) \wedge y_1$$

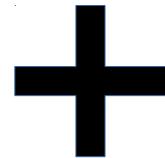
$$B := (\neg y_1 \vee y_2) \wedge (y_1 \vee z) \wedge \neg z$$

$$\begin{array}{c}
 \frac{x \vee \neg y_1 \quad \neg y_1 \quad \neg x \vee \neg y_2 \quad \neg y_2}{\neg y_1 \vee \neg y_2 \quad \neg y_1 \vee \neg y_2 \quad y_1 \quad y_1} \\
 \frac{\neg y_2 \quad (\neg y_1 \vee \neg y_2) \wedge y_1 \quad \neg y_1 \vee y_2 \quad \top}{y_1 \vee z \quad \top \quad \neg y_1 \quad (\neg y_1 \vee \neg y_2) \wedge y_1} \\
 \frac{z \quad (\neg y_1 \vee \neg y_2) \wedge y_1 \quad \neg z \quad \top}{\perp \quad (\neg y_1 \vee \neg y_2) \wedge y_1}
 \end{array}$$

Interpolants in SMT

■ Resolution refutations in SMT:

Boolean part
(ground resolution)

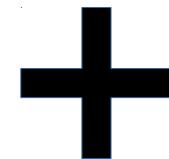


T -specific part for conjunctions
of constraints (negated T -lemmas)

Interpolants in SMT

■ Resolution refutations in SMT:

Boolean part
(ground resolution)



T -specific part for conjunctions
of constraints (negated T -lemmas)

Standard Boolean
interpolation

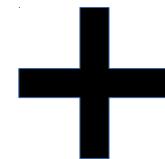
T -specific interpolation
for conjunctions only

Theory interpolation only for sets of T -literals

Interpolants in SMT

■ Resolution refutations in SMT:

Boolean part
(ground resolution)



T -specific part for conjunctions
of constraints (negated T -lemmas)

Standard Boolean
interpolation

T -specific interpolation
for conjunctions only

Theory interpolation only for sets of T -literals

■ Annotation for a T -lemma C :

$$I := T\text{-interpolant}(\bigwedge \{l \in \neg C \mid \text{var}(l) \notin B\},$$

$$\bigwedge \{l \in \neg C \mid \text{var}(l) \in B\})$$

■ Interpolants from coloured congruence graphs

- Nodes with colours:
 - if term occurs in A
 - if term is shared
 - if term occurs in B
- Edges with colours of the nodes they connect
 - Uncolorable edge: connects nodes of two different colours
- Always possible to obtain a coloured graph
 - (by introducing new nodes)

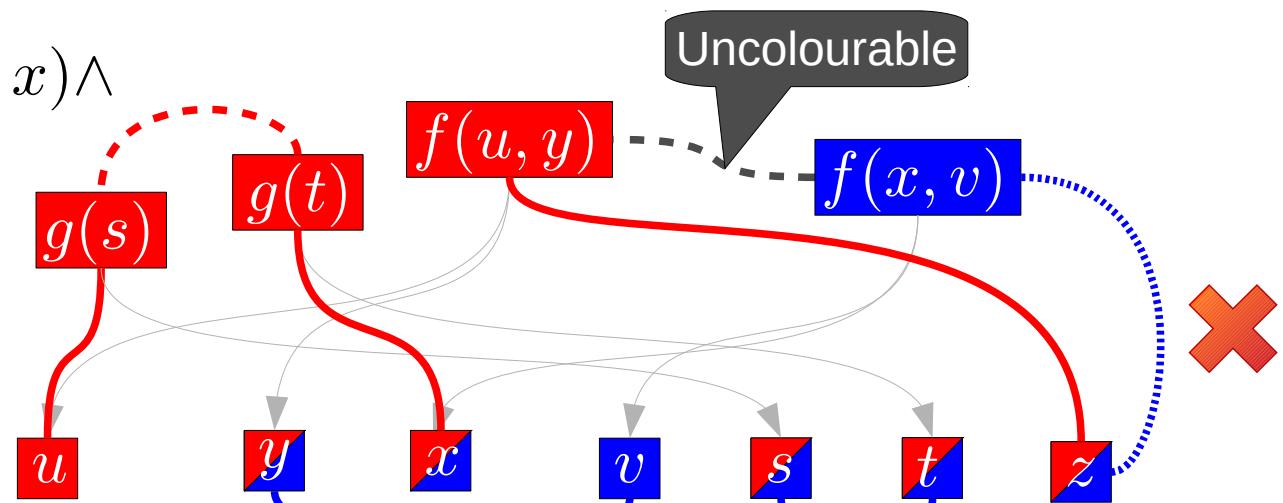
Equality (EUF)

■ Interpolants from coloured congruence graphs

- Nodes with colours:
 - Red if term occurs in A
 - Blue if term occurs in B
 - Red and Blue if term is shared
- Edges with colours of the nodes they connect
 - Uncolorable edge: connects nodes of two different colours
- Always possible to obtain a coloured graph
 - (by introducing new nodes)

$$A := (u = g(s)) \wedge (g(t) = x) \wedge (f(u, y) = z)$$

$$B := (v = y) \wedge (s = t) \wedge \neg(f(x, v) = z)$$



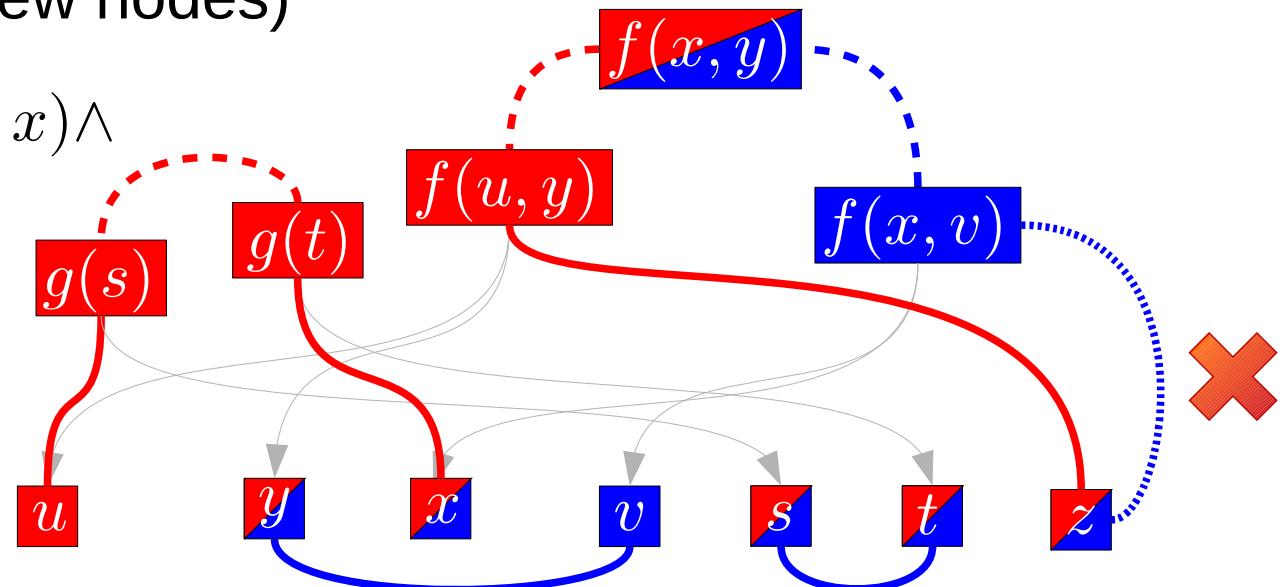
Equality (EUF)

■ Interpolants from coloured congruence graphs

- Nodes with colours:
 - if term occurs in A
 - if term is shared
 - if term occurs in B
- Edges with colours of the nodes they connect
 - Uncolorable edge: connects nodes of two different colours
- Always possible to obtain a coloured graph
 - (by introducing new nodes)

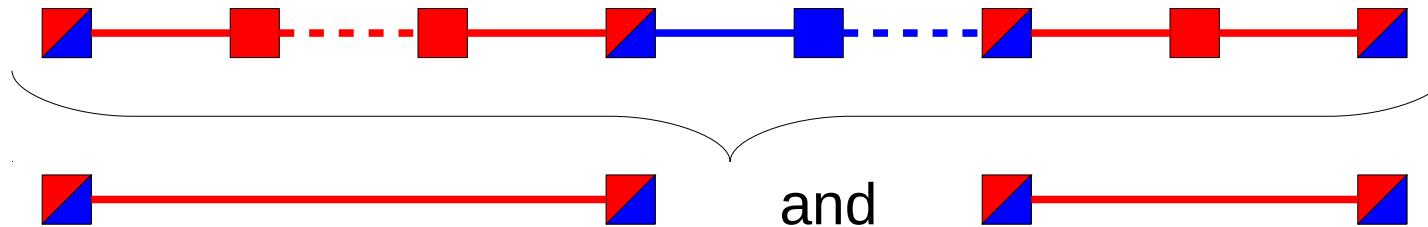
$$A := (u = g(s)) \wedge (g(t) = x) \wedge (f(u, y) = z)$$

$$B := (v = y) \wedge (s = t) \wedge \neg(f(x, v) = z)$$



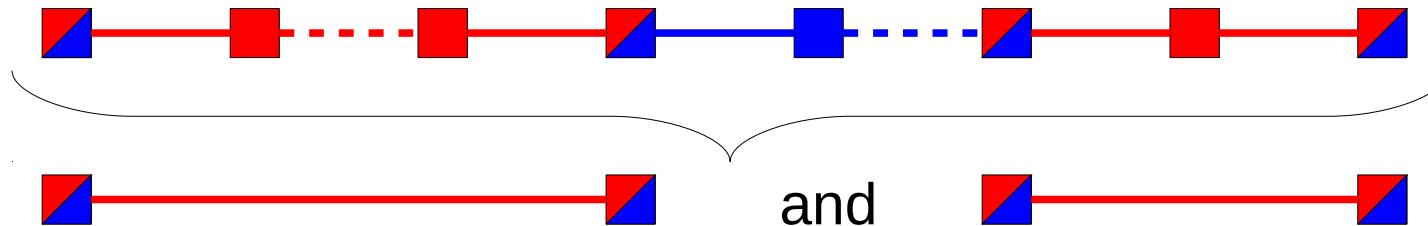
Interpolation algorithm (sketch)

- Start from disequality edge
- Compute **summaries** for **A**-paths with shared endpoints

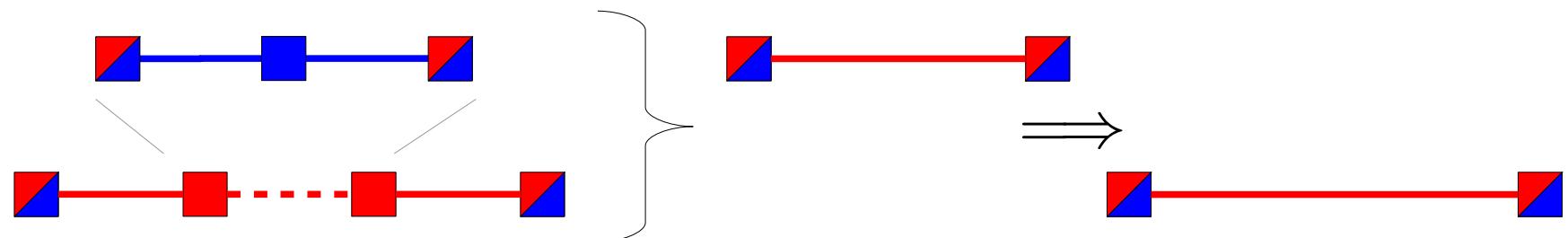


Interpolation algorithm (sketch)

- Start from disequality edge
- Compute **summaries** for **A**-paths with shared endpoints

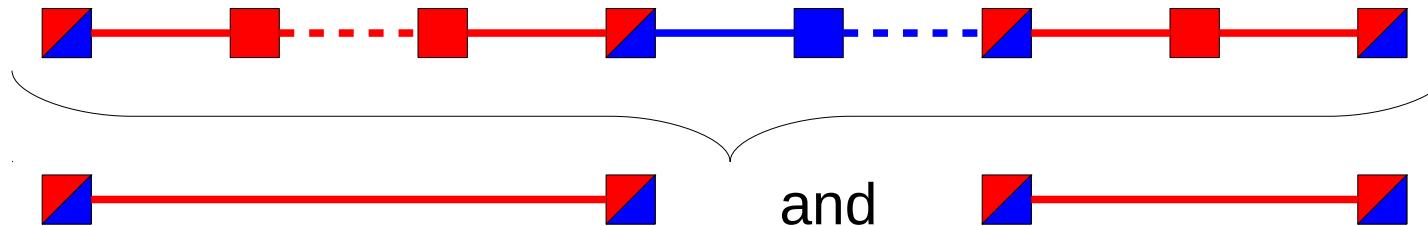


- If an **A**-summary involves a **congruence** edge, compute summaries **recursively** on function arguments
- Use **B**-summaries as **premises** for the **A**-summary

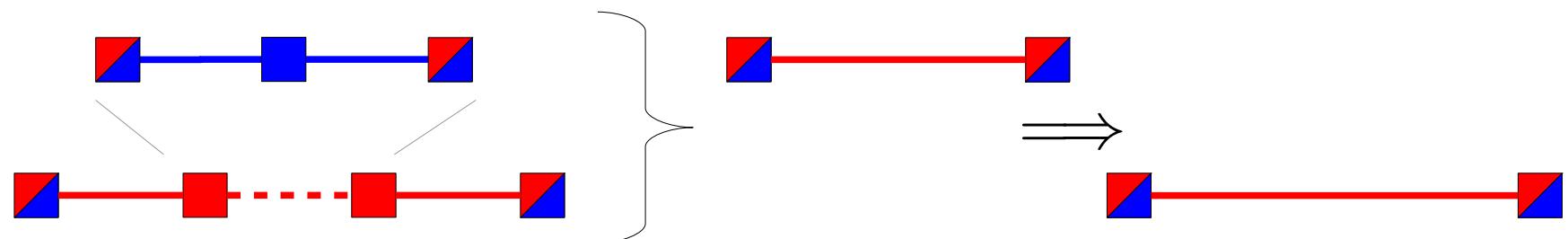


Interpolation algorithm (sketch)

- Start from disequality edge
- Compute **summaries** for **A**-paths with shared endpoints



- If an **A**-summary involves a **congruence** edge, compute summaries **recursively** on function arguments
 - Use **B**-summaries as **premises** for the **A**-summary

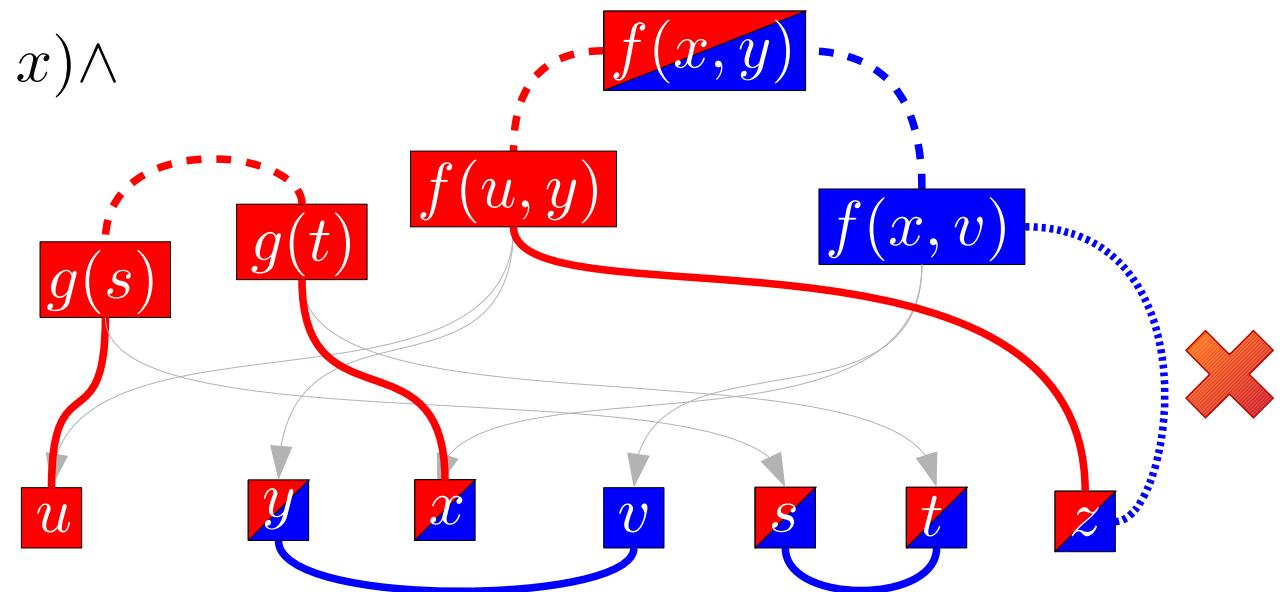


- (Several cases to consider)

Example

$A := (u = g(s)) \wedge (g(t) = x) \wedge (f(u, y) = z)$

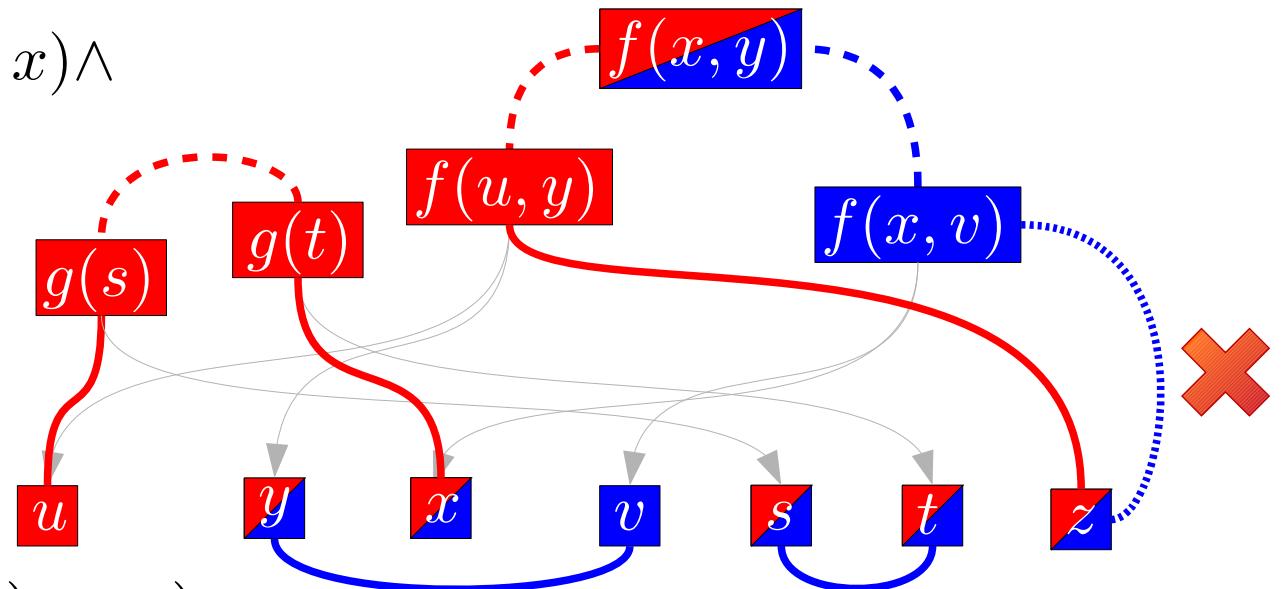
$B := (v = y) \wedge (s = t) \wedge \neg(f(x, v) = z)$



Example

$A := (u = g(s)) \wedge (g(t) = x) \wedge (f(u, y) = z)$

$B := (v = y) \wedge (s = t) \wedge \neg(f(x, v) = z)$

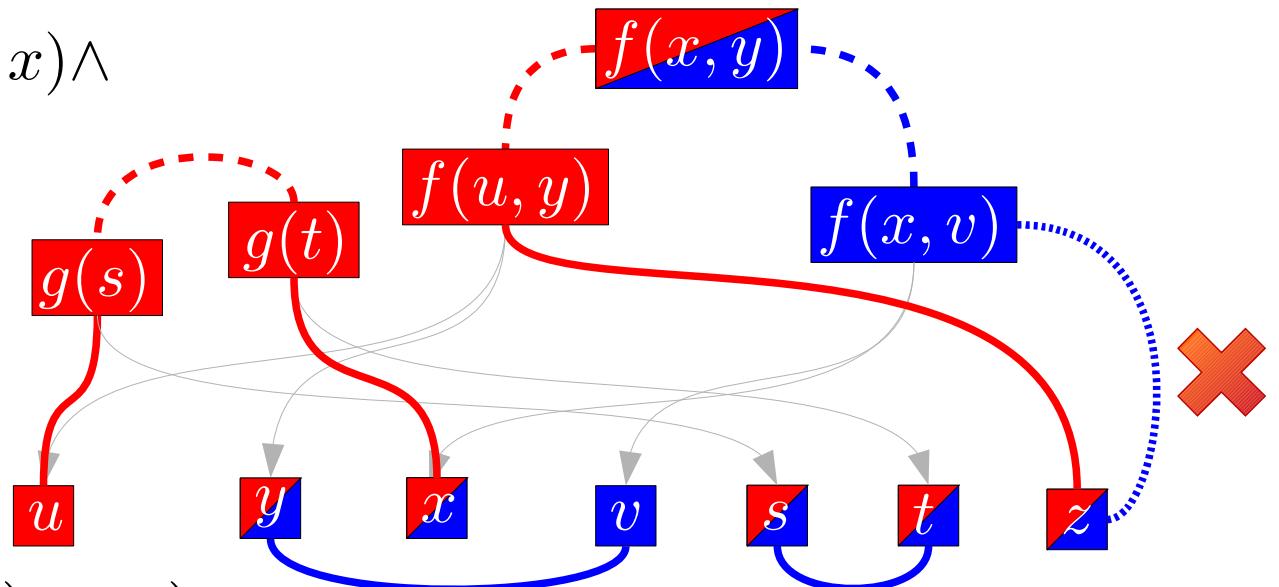


- Start from $\neg(f(x, v) = z)$
- A -summaries for $\{z \leftarrow f(u, y) \leftarrow f(x, y) \leftarrow f(x, v)\} \quad z = f(x, y)$

Example

$A := (u = g(s)) \wedge (g(t) = x) \wedge (f(u, y) = z)$

$B := (v = y) \wedge (s = t) \wedge \neg(f(x, v) = z)$

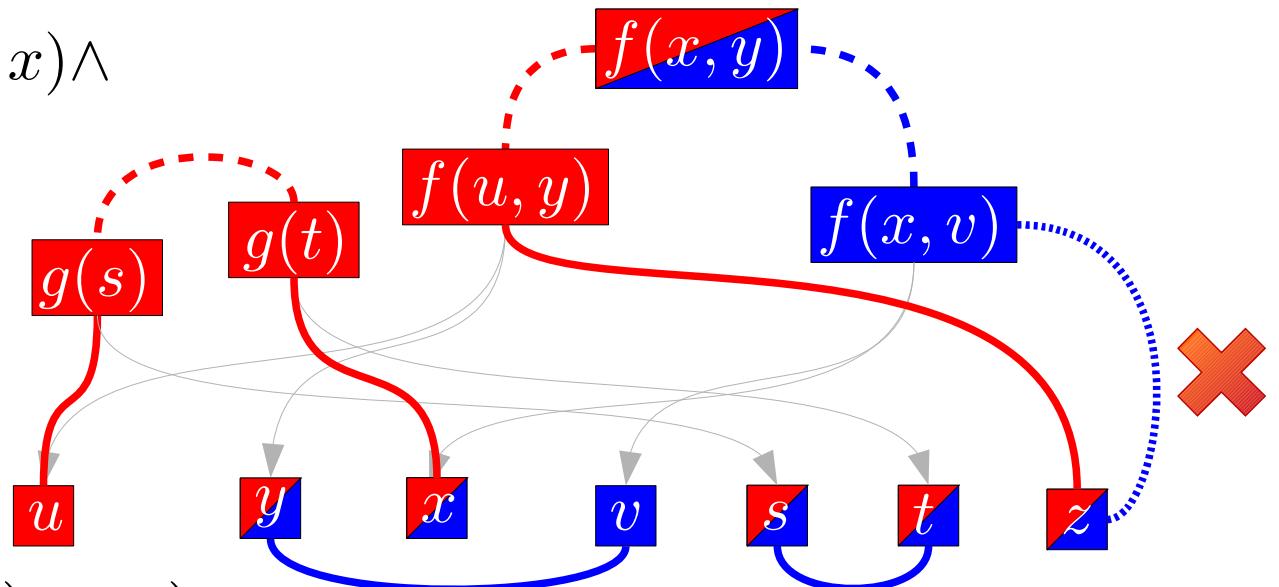


- Start from $\neg(f(x, v) = z)$
- A -summaries for $\{z \xrightarrow{\quad} f(u, y) \xrightarrow{\quad} f(x, y) \xrightarrow{\quad} f(x, v)\} z = f(x, y)$
- Recurse on edge $f(u, y) \xrightarrow{\quad} f(x, y)$
 - Path $\{u \xrightarrow{\quad} g(s) \xrightarrow{\quad} g(t) \xrightarrow{\quad} x\} \top$

Example

$A := (u = g(s)) \wedge (g(t) = x) \wedge (f(u, y) = z)$

$B := (v = y) \wedge (s = t) \wedge \neg(f(x, v) = z)$

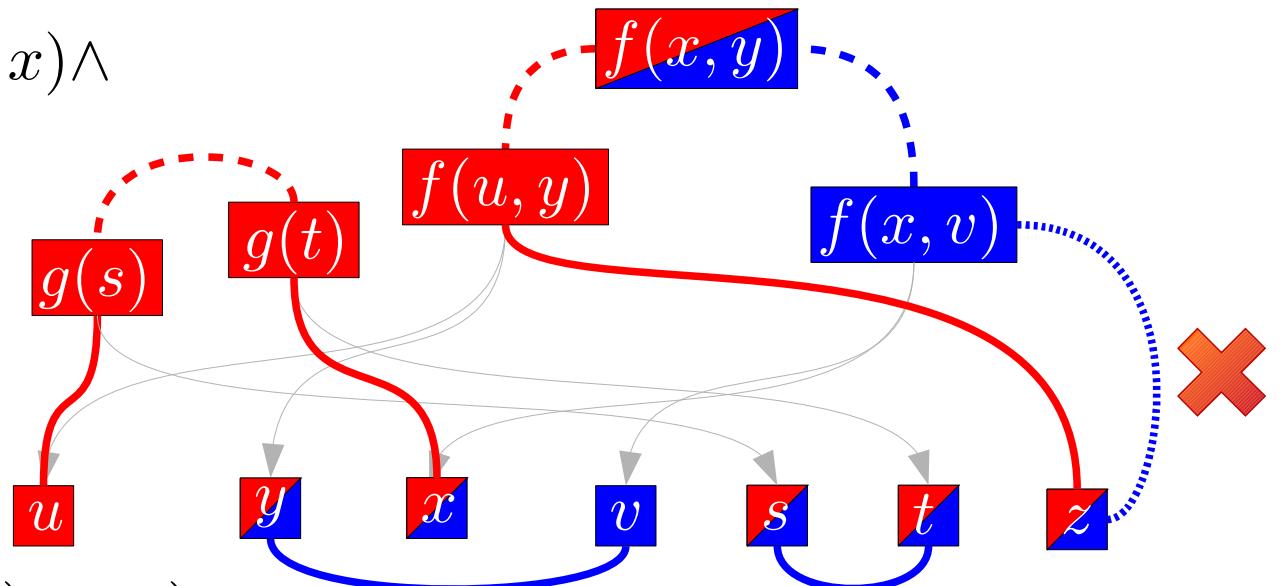


- Start from $\neg(f(x, v) = z)$
- A -summaries for $z \xrightarrow{\quad} f(u, y) \xrightarrow{\quad} f(x, y) \xrightarrow{\quad} f(x, v) \quad \} z = f(x, y)$
- Recurse on edge $f(u, y) \xrightarrow{\quad} f(x, y)$
 - Path $u \xrightarrow{\quad} g(s) \xrightarrow{\quad} g(t) \xrightarrow{\quad} x \quad \} \top$
 - Recurse on edge $g(s) \xrightarrow{\quad} g(t)$
 - Path $s \xrightarrow{\quad} t$, B -summary: $(s = t)$

Example

$A := (u = g(s)) \wedge (g(t) = x) \wedge (f(u, y) = z)$

$B := (v = y) \wedge (s = t) \wedge \neg(f(x, v) = z)$



- Start from $\neg(f(x, v) = z)$
- A -summaries for $\{z \xrightarrow{\quad} f(u, y) \xrightarrow{\quad} f(x, y) \xrightarrow{\quad} f(x, v)\} z = f(x, y)$
- Recurse on edge $f(u, y) \dashrightarrow f(x, y)$
 - Path $u \xrightarrow{\quad} g(s) \xrightarrow{\quad} g(t) \xrightarrow{\quad} x \} \top$
 - Recurse on edge $g(s) \dashrightarrow g(t)$
 - Path $s \xrightarrow{\quad} t$, B -summary: $(s = t)$
 - Interpolant: $(s = t) \implies (z = f(x, y))$

Linear Rational Arithmetic (LRA)

- Interpolants from proofs of unsatisfiability of a system of inequalities $\sum_i a_i x_i \leq c$
- Proof of unsatisfiability: linear combination of inequalities with positive coefficients to derive a contradiction ($0 \leq c$ with $c < 0$)
- Interpolant obtained out of the proof by combining inequalities from A (using the same coefficients)
- Proof of unsatisfiability generated from the Simplex

Example

$$A := \underbrace{(3x_2 - x_1 \leq 1)}_{s_1}, \underbrace{(0 \leq x_1 + x_2)}_{s_2}$$

$$B := \underbrace{(3 \leq x_3 - 2x_1)}_{s_3}, \underbrace{(2x_3 \leq 1)}_{s_4}$$

tableau

$$s_1 = 3x_2 - x_1$$

$$s_2 = x_1 + x_2$$

$$s_3 = x_3 - 2x_1$$

$$s_4 = 2x_3$$

bounds

$$-\infty \leq s_1 \leq 1$$

$$0 \vee \dots \vee s_2 \vee \dots \vee \infty$$

$$3 \vee \dots \vee s_3 \vee \dots \vee \infty$$

$$-\infty \leq s_4 \leq 1$$

candidate solution β

$$x_1 \mapsto 0$$

$$x_2 \mapsto 0$$

$$x_3 \mapsto 0$$

$$s_1 \mapsto 0$$

$$s_2 \mapsto 0$$

$$s_3 \mapsto 0$$

$$s_4 \mapsto 0$$

Example

$$A := \underbrace{(3x_2 - x_1 \leq 1)}_{s_1}, \underbrace{(0 \leq x_1 + x_2)}_{s_2}$$

$$B := \underbrace{(3 \leq x_3 - 2x_1)}_{s_3}, \underbrace{(2x_3 \leq 1)}_{s_4}$$

tableau

$$\begin{aligned} x_3 &= -\frac{1}{2}s_1 + \frac{3}{2}s_2 + s_3 \\ x_2 &= \frac{1}{4}s_1 + \frac{1}{4}s_2 \\ x_1 &= -\frac{1}{4}s_1 + \frac{3}{4}s_2 \\ s_4 &= -s_1 + 3s_2 + 2s_3 \end{aligned}$$

bounds

$$\begin{array}{c} -\infty \leq s_1 \leq 1 \\ 0 \leq s_2 \leq \infty \\ 3 \leq s_3 \leq \infty \\ -\infty \leq s_4 \leq 1 \end{array}$$

candidate solution β

$$\begin{array}{ll} x_1 & \mapsto -\frac{1}{4} \\ x_2 & \mapsto \frac{1}{4} \\ x_3 & \mapsto \frac{5}{2} \\ s_1 & \mapsto 1 \\ s_2 & \mapsto 0 \\ s_3 & \mapsto 3 \\ s_4 & \mapsto 5 \end{array}$$

No suitable variable for pivoting!

Conflict

Example

$$A := \underbrace{(3x_2 - x_1 \leq 1)}_{s_1}, \underbrace{(0 \leq x_1 + x_2)}_{s_2}$$

$$B := \underbrace{(3 \leq x_3 - 2x_1)}_{s_3}, \underbrace{(2x_3 \leq 1)}_{s_4}$$

tableau

$$\begin{aligned} x_3 &= -\frac{1}{2}s_1 + \frac{3}{2}s_2 + s_3 \\ x_2 &= \frac{1}{4}s_1 + \frac{1}{4}s_2 \\ x_1 &= -\frac{1}{4}s_1 + \frac{3}{4}s_2 \\ s_4 &= -s_1 + 3s_2 + 2s_3 \end{aligned}$$

bounds

$$\begin{array}{c} -\infty \leq s_1 \leq 1 \\ 0 \leq s_2 \leq \infty \\ 3 \leq s_3 \leq \infty \\ -\infty \leq s_4 \leq 1 \end{array}$$

candidate solution β

$$\begin{aligned} x_1 &\mapsto -\frac{1}{4} \\ x_2 &\mapsto \frac{1}{4} \\ x_3 &\mapsto \frac{5}{2} \\ s_1 &\mapsto 1 \\ s_2 &\mapsto 0 \\ s_3 &\mapsto 3 \\ s_4 &\mapsto 5 \end{aligned}$$

Proof:

$$\begin{array}{ll} \hline 1 \cdot (2x_3 \leq 1) & 1 \cdot (3x_2 - x_1 \leq 1) \\ \hline (2x_3 + 3x_2 - x_1 \leq 2) & 3 \cdot (0 \leq x_1 + x_2) \\ \hline (2x_3 - 4x_1 \leq 2) & 2 \cdot (3 \leq x_3 - 2x_1) \\ \hline (0 \leq -4) & \end{array}$$

Example

$$A := \underbrace{(3x_2 - x_1 \leq 1)}_{s_1}, \underbrace{(0 \leq x_1 + x_2)}_{s_2}$$

$$B := \underbrace{(3 \leq x_3 - 2x_1)}_{s_3}, \underbrace{(2x_3 \leq 1)}_{s_4}$$

tableau

$$\begin{aligned} x_3 &= -\frac{1}{2}s_1 + \frac{3}{2}s_2 + s_3 \\ x_2 &= \frac{1}{4}s_1 + \frac{1}{4}s_2 \\ x_1 &= -\frac{1}{4}s_1 + \frac{3}{4}s_2 \\ s_4 &= -s_1 + 3s_2 + 2s_3 \end{aligned}$$

bounds

$$\begin{array}{c} -\infty \leq s_1 \leq 1 \\ 0 \leq s_2 \leq \infty \\ 3 \leq s_3 \leq \infty \\ -\infty \leq s_4 \leq 1 \end{array}$$

candidate solution β

$$\begin{aligned} x_1 &\mapsto -\frac{1}{4} \\ x_2 &\mapsto \frac{1}{4} \\ x_3 &\mapsto \frac{5}{2} \\ s_1 &\mapsto 1 \\ s_2 &\mapsto 0 \\ s_3 &\mapsto 3 \\ s_4 &\mapsto 5 \end{aligned}$$

Interpolant:

$$\begin{array}{c} \hline \frac{1 \cdot (3x_2 - x_1 \leq 1)}{(3x_2 - x_1 \leq 1)} \\ \hline \frac{(3x_2 - x_1 \leq 1) \quad 3 \cdot (0 \leq x_1 + x_2)}{(-4x_1 \leq 1) \quad \hline} \\ \hline \end{array}$$

$$(-4x_1 \leq 1)$$

Linear Integer Arithmetic (LIA)

- Constraints of the form

$$\sum_i c_i x_i + c \bowtie 0, \quad \bowtie \in \{\leq, =\}$$

- Cutting-plane proof system: complete proof system for LIA

$$\text{Hyp } \frac{-}{t \leq 0}$$

$$\text{Comb } \frac{t_1 \leq 0 \quad t_2 \leq 0}{c_1 \cdot t_1 + c_2 \cdot t_2 \leq 0}, c_1, c_2 > 0$$

$$\text{Div } \frac{\sum_i c_i x_i + c \leq 0}{\sum_i \frac{c_i}{d} x_i + \lceil \frac{c}{d} \rceil \leq 0}, d > 0 \text{ divides the } c_i \text{'s}$$

Linear Integer Arithmetic (LIA)

- Constraints of the form

$$\sum_i c_i x_i + c \bowtie 0, \quad \bowtie \in \{\leq, =\}$$

- Cutting-plane proof system: complete proof system for LIA

$$\text{Hyp } \frac{-}{t \leq 0}$$

$$\text{Comb } \frac{t_1 \leq 0 \quad t_2 \leq 0}{c_1 \cdot t_1 + c_2 \cdot t_2 \leq 0}, c_1, c_2 > 0$$

LRA rules

$$\text{Div } \frac{\sum_i c_i x_i + c \leq 0}{\sum_i \frac{c_i}{d} x_i + \lceil \frac{c}{d} \rceil \leq 0}, d > 0 \text{ divides the } c_i \text{'s}$$

Linear Integer Arithmetic (LIA)

- Constraints of the form

$$\sum_i c_i x_i + c \bowtie 0, \quad \bowtie \in \{\leq, =\}$$

- Cutting-plane proof system: complete proof system for LIA

$$\text{Hyp } \frac{-}{t \leq 0}$$

$$\text{Comb } \frac{t_1 \leq 0 \quad t_2 \leq 0}{c_1 \cdot t_1 + c_2 \cdot t_2 \leq 0}, c_1, c_2 > 0$$

$$\text{Div } \frac{\sum_i c_i x_i + c \leq 0}{\sum_i \frac{c_i}{d} x_i + \lceil \frac{c}{d} \rceil \leq 0}, d > 0 \text{ divides the } c_i \text{'s}$$

- Interpolation by annotating proof rules with inequalities

- When \perp is derived, the associated annotation is the computed interpolant

Interpolation with ceilings

- Need to extend the signature of LIA to allow interpolation
 - Introduce the ceiling function $\lceil \cdot \rceil$ [Pudlák '97]
 - Allow non-variable terms to be non-integers (e.g. $\frac{x}{2}$)

Interpolation with ceilings

- Need to extend the signature of LIA to allow interpolation
 - Introduce the ceiling function $\lceil \cdot \rceil$ [Pudlák '97]
 - Allow non-variable terms to be non-integers (e.g. $\frac{x}{2}$)

$$\text{Hyp } \frac{-}{t \leq 0 \ [t' \leq 0]} t' = \begin{cases} t & \text{if } t \leq 0 \in A \\ 0 & \text{if } t \leq 0 \in B \end{cases}$$

$$\text{Comb } \frac{t_1 \leq 0 \ [t'_1 \leq 0] \quad t_2 \leq 0 \ [t'_2 \leq 0]}{c_1 \cdot t_1 + c_2 \cdot t_2 \leq 0 \ [c_1 \cdot t'_1 + c_2 \cdot t'_2 \leq 0]}$$

$$\text{Div } \frac{\sum_{y_j \notin B} a_j \mathbf{y}_j + \sum_{z_k \notin A} b_k \mathbf{z}_k + \sum_{x_i \in A \cap B} c_i x_i + c}{\sum_{y_j \notin B} \frac{a_j}{d} \mathbf{y}_j + \sum_{z_k \in B} \frac{b_k}{d} \mathbf{z}_k + \sum_{x_i \in A \cap B} \frac{c_i}{d} x_i + \lceil \frac{c}{d} \rceil}$$

$$[\sum_{y_j \notin B} \frac{a_j}{d} \mathbf{y}_j + \lceil \frac{\sum_{x_i \in A \cap B} c'_i x_i + t'}{d} \rceil] \quad d > 0 \text{ divides } a_j, b_k, c_i$$

Interpolation with ceilings - example

$$A := \begin{cases} -y - 4x - 1 \leq 0 \\ y + 4x \leq 0 \end{cases}$$

$$B := \begin{cases} -y - 4z + 1 \leq 0 \\ y + 4z - 2 \leq 0 \end{cases}$$

$$y + 4x \leq 0 \quad -y - 4z + 1 \leq 0$$

$$4x - 4z + 1 \leq 0$$

$$-y - 4x - 1 \leq 0 \quad y + 4z - 2 \leq 0$$

$$4 \cdot (x - z + 1 \leq 0)$$

$$-4x + 4z - 3 \leq 0$$

$$(1 \leq 0) \equiv \perp$$

Interpolation with ceilings - example

$$A := \begin{cases} -y - 4x - 1 \leq 0 \\ y + 4x \leq 0 \end{cases}$$

$$B := \begin{cases} -y - 4z + 1 \leq 0 \\ y + 4z - 2 \leq 0 \end{cases}$$

$$y + 4x \leq 0 \quad -y - 4z + 1 \leq 0$$

$$[y + 4x \leq 0] \quad [0 \leq 0]$$

$$4x - 4z + 1 \leq 0$$

$$-y - 4x - 1 \leq 0 \quad y + 4z - 2 \leq 0$$

$$[y + 2nx \leq 0]$$

$$[-y - 4x - 1 \leq 0] \quad [0 \leq 0]$$

$$4 \cdot (x - z + 1 \leq 0)$$

$$-4x + 4z - 3 \leq 0$$

$$[x + \lceil \frac{y}{4} \rceil \leq 0]$$

$$[-y - 4x - 1 \leq 0]$$

$$(1 \leq 0) \equiv \perp$$

$$[4\lceil \frac{y}{4} \rceil - y - 1 \leq 0]$$

Interpolation with ceilings - example

$$A := \begin{cases} -y - 4x - 1 \leq 0 \\ y + 4x \leq 0 \end{cases}$$

$$B := \begin{cases} -y - 4z + 1 \leq 0 \\ y + 4z - 2 \leq 0 \end{cases}$$

$$y + 4x \leq 0 \quad -y - 4z + 1 \leq 0$$

$$[y + 4x \leq 0] \quad [0 \leq 0]$$

$$4x - 4z + 1 \leq 0$$

$$-y - 4x - 1 \leq 0 \quad y + 4z - 2 \leq 0$$

$$[y + 2nx \leq 0]$$

$$[-y - 4x - 1 \leq 0] \quad [0 \leq 0]$$

$$4 \cdot (x - z + 1 \leq 0)$$

$$-4x + 4z - 3 \leq 0$$

$$[x + \lceil \frac{y}{4} \rceil \leq 0]$$

$$[-y - 4x - 1 \leq 0]$$

$$(1 \leq 0) \equiv \perp$$

Interpolant: $[4 \lceil \frac{y}{4} \rceil - y - 1 \leq 0]$

SMT(LIA) with ceilings

- ceilings can be eliminated via preprocessing
 - Replace every term $\lceil t \rceil$ with a fresh integer variable $x_{\lceil t \rceil}$
 - Add the 2 unit clauses (encoding the meaning of ceiling: $\lceil t \rceil - 1 < t \leq \lceil t \rceil$)

$$(l \cdot x_{\lceil t \rceil} - l \cdot t + l \leq 0)$$

$$(l \cdot t - l \cdot x_{\lceil t \rceil} \leq 0)$$

where l is the least common multiple of the denominators of the coefficients in t

- Interpolation for bit-vectors is hard
 - Only some limited work done so far
- Most efficient solvers use eager encoding into SAT, which is efficient but not good for interpolation
 - Easy in principle, but not very useful interpolants
- Try to exploit lazy bit-blasting to incorporate BV into DPLL(T)

Interpolation via Bit-Blasting

- Interpolation via bit-blasting is easy...
 - From A_{BV} and B_{BV} generate A_{Bool} and B_{Bool}
Each var x of width n encoded with n Boolean vars $b_1^x \dots b_n^x$
 - Generate a Boolean interpolant I_{Bool} for (A_{Bool}, B_{Bool})
 - Replace every variable b_i^x in I_{Bool} with the bit-selection $x[i]$ and every Boolean connective with the corresponding bit-wise connective: $\wedge \mapsto \&$, $\vee \mapsto |$, $\neg \mapsto \sim$
- ...but quite impractical
 - Generates “ugly” interpolants
 - Word-level structure of the original problem completely lost
 - How to apply word-level simplifications?

Interpolation via Bit-Blasting - Example

$$A \stackrel{\text{def}}{=} (\textcolor{red}{a}_{[8]} * b_{[8]} = 15_{[8]}) \wedge (\textcolor{red}{a}_{[8]} = 3_{[8]})$$

$$B \stackrel{\text{def}}{=} \neg(b_{[8]} \%_u \textcolor{blue}{c}_{[8]} = 1_{[8]}) \wedge (\textcolor{blue}{c}_{[8]} = 2_{[8]})$$

A word-level interpolant is:

$$I \stackrel{\text{def}}{=} (b_{[8]} * 3_{[8]} = 15_{[8]})$$

...but with bit-blasting we get:

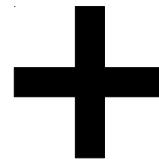
$$I' \stackrel{\text{def}}{=} (b_{[8]}[0] = 1_{[1]}) \wedge ((b_{[8]}[0] \& \sim (((((\sim b_{[8]}[7] \& \sim b_{[8]}[6]) \& \sim b_{[8]}[5]) \& \sim b_{[8]}[4]) \& \sim b_{[8]}[3]) \& b_{[8]}[2]) \& \sim b_{[8]}[1])) = 0_{[1]}$$

Alternative: lazy bit-blasting and DPLL(T)

■ Exploit *lazy bit-blasting*

- Bit-blast only BV-atoms, not the whole formula
- Boolean skeleton of the formula handled by the “main” DPLL, like in DPLL(T)
- Conjunctions of BV-atoms handled (via bit-blasting) by a “sub”-DPLL (DPLL-BV) that acts as a BV-solver

Standard
Boolean Interpolation



BV-specific Interpolation
for *conjunctions of constraints*

Interpolation for BV constraints

- A layered approach
- Apply in sequence a **chain of procedures** of increasing generality and cost
 - Interpolation in EUF
 - Interpolation via equality inlining
 - Interpolation via Linear Integer Arithmetic encoding
 - Interpolation via bit-blasting

Interpolation in EUF

- Treat all the BV-operators as uninterpreted functions
- Exploit cheap, efficient algorithms for solving and interpolating modulo EUF
- Possible because we avoid bit-blasting upfront!

Example: $A \stackrel{\text{def}}{=} (\textcolor{red}{x_1}_{[32]} = 3_{[32]}) \wedge (x_3_{[32]} = \textcolor{red}{x_1}_{[32]} \cdot x_2_{[32]})$

$$B \stackrel{\text{def}}{=} (\textcolor{blue}{x_4}_{[32]} = x_2_{[32]}) \wedge (\textcolor{blue}{x_5}_{[32]} = 3_{[32]} \cdot \textcolor{blue}{x_4}_{[32]}) \wedge \neg(x_3_{[32]} = \textcolor{blue}{x_5}_{[32]})$$
$$I_{\text{UF}} \stackrel{\text{def}}{=} x_3 = f \cdot (f^3, x_2)$$
$$I_{\text{BV}} \stackrel{\text{def}}{=} x_3_{[32]} = 3_{[32]} \cdot x_2_{[32]}$$

Interpolation via Equality Inlining

- Interpolation via **quantifier elimination**: given (A, B) , an interpolant can be computed by eliminating quantifiers from $\exists_{x \notin B} A$ or from $\exists_{x \notin A} \neg B$
- In general, this can be very expensive for BV
 - Might require bit-blasting and can cause blow-up of the formula
- Cheap case: non-common variables occurring in “definitional” equalities

Example: $(x = e) \wedge \varphi$ and x does not occur in e , then

$$\exists_x ((x = e) \wedge \varphi) \implies \varphi[x \mapsto e]$$

Interpolation via Equality Inlining

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \stackrel{\text{def}}{=} (0_{[24]} :: (x_4[8] \cdot x_5[8]) \leq_s (0_{[24]} :: x_1[8] - 1_{[32]})) \wedge (x_2[8] = x_1[8]) \wedge (x_4[8] = 192_{[8]}) \wedge (x_5[8] = 128_{[8]})$

$B \stackrel{\text{def}}{=} ((x_3[8] \cdot x_6[8]) = (-(0_{[24]} :: x_2[8]))[7 : 0]) \wedge (x_3[8] <_u 1_{[8]}) \wedge (0_{[8]} \leq_u x_3[8]) \wedge (x_6[8] = 1_{[8]})$

Interpolation via Equality Inlining

- Inline definitional equalities until either all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \stackrel{\text{def}}{=} (0_{[24]} :: (x_4[8] \cdot x_5[8]) \leq_s (0_{[24]} :: x_1[8] - 1_{[32]})) \wedge$
 $(x_2[8] = x_1[8]) \wedge (x_4[8] = 192_{[8]}) \wedge (x_5[8] = 128_{[8]})$

Definitional equalities

$B \stackrel{\text{def}}{=} ((x_3[8] \cdot x_6[8]) = (-(0_{[24]} :: x_2[8]))[7 : 0]) \wedge$
 $(x_3[8] <_u 1_{[8]}) \wedge (0_{[8]} \leq_u x_3[8]) \wedge (x_6[8] = 1_{[8]})$

Interpolation via Equality Inlining

- Inline definitional equalities until either all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \stackrel{\text{def}}{=} (0_{[24]} :: (x_4[8] \cdot x_5[8]) \leq_s (0_{[24]} :: x_1[8] - 1_{[32]})) \wedge (x_2[8] = x_1[8]) \wedge (x_4[8] = 192_{[8]}) \wedge (x_5[8] = 128_{[8]})$

$B \stackrel{\text{def}}{=} ((x_3[8] \cdot x_6[8]) = (-(0_{[24]} :: x_2[8]))[7 : 0]) \wedge (x_3[8] <_u 1_{[8]}) \wedge (0_{[8]} \leq_u x_3[8]) \wedge (x_6[8] = 1_{[8]})$

Interpolation via Equality Inlining

- Inline definitional equalities until either all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \stackrel{\text{def}}{=} (0_{[24]} :: (\textcolor{red}{x_4}_{[8]} \cdot \textcolor{red}{x_5}_{[8]}) \leq_s (0_{[24]} :: x_2_{[8]} - 1_{[32]})) \wedge$
 $\wedge (\textcolor{red}{x_4}_{[8]} = 192_{[8]}) \wedge (\textcolor{red}{x_5}_{[8]} = 128_{[8]})$

$B \stackrel{\text{def}}{=} ((\textcolor{blue}{x_3}_{[8]} \cdot \textcolor{blue}{x_6}_{[8]}) = (-(0_{[24]} :: x_2_{[8]})))[7 : 0]) \wedge$
 $(\textcolor{blue}{x_3}_{[8]} <_u 1_{[8]}) \wedge (0_{[8]} \leq_u \textcolor{blue}{x_3}_{[8]}) \wedge (\textcolor{blue}{x_6}_{[8]} = 1_{[8]})$

Interpolation via Equality Inlining

- Inline definitional equalities until either all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \stackrel{\text{def}}{=} (0_{[24]} :: (\textcolor{red}{x_4}_{[8]} \cdot \textcolor{red}{x_5}_{[8]}) \leq_s (0_{[24]} :: x_2_{[8]} - 1_{[32]})) \wedge$
 $\wedge (\textcolor{red}{x_4}_{[8]} = 192_{[8]}) \wedge (\textcolor{red}{x_5}_{[8]} = 128_{[8]})$

$B \stackrel{\text{def}}{=} ((\textcolor{blue}{x_3}_{[8]} \cdot \textcolor{blue}{x_6}_{[8]}) = (-(0_{[24]} :: x_2_{[8]})))[7 : 0]) \wedge$
 $(\textcolor{blue}{x_3}_{[8]} <_u 1_{[8]}) \wedge (0_{[8]} \leq_u \textcolor{blue}{x_3}_{[8]}) \wedge (\textcolor{blue}{x_6}_{[8]} = 1_{[8]})$

Interpolation via Equality Inlining

- Inline definitional equalities until either all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \stackrel{\text{def}}{=} (0_{[24]} :: (192_{[8]} \cdot 128_{[8]}) \leq_s (0_{[24]} :: x_2[8] - 1_{[32]}))$

\wedge \wedge

$B \stackrel{\text{def}}{=} ((x_3[8] \cdot x_6[8]) = (-(0_{[24]} :: x_2[8]))[7 : 0]) \wedge$
 $(x_3[8] <_u 1_{[8]}) \wedge (0_{[8]} \leq_u x_3[8]) \wedge (x_6[8] = 1_{[8]})$

Interpolation via Equality Inlining

- Inline definitional equalities until either all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \stackrel{\text{def}}{=} (0_{[24]} :: (192_{[8]} \cdot 128_{[8]}) \leq_s (0_{[24]} :: x_{2[8]} - 1_{[32]}))$

\wedge \wedge

$$I \stackrel{\text{def}}{=} (0_{32} \leq_s (0_{24} :: x_{2[8]} - 1_{[32]}))$$

$$B \stackrel{\text{def}}{=} ((x_3_{[8]} \cdot x_6_{[8]}) = (-(0_{[24]} :: x_{2[8]})))[7 : 0]) \wedge$$
$$(x_3_{[8]} <_u 1_{[8]}) \wedge (0_{[8]} \leq_u x_3_{[8]}) \wedge (x_6_{[8]} = 1_{[8]})$$

Interpolation via LIA Encoding

- Simple idea (in principle):
 - Encode a set of BV-constraints into an SMT(LIA)-formula
 - Generate a LIA-interpolant using existing algorithms
 - Map back to a BV-interpolant
- However, several problems to solve:
 - Efficiency
 - More importantly, soundness

Encoding BV into LIA

- Use well-known encodings from BV to SMT(LIA)
 - Encode each BV term $t_{[n]}$ as an integer variable x_t and the constraints $(0 \leq x_t) \wedge (x_t \leq 2^n - 1)$
 - Encode each BV operation as a LIA-formula.

Examples:

$$t_{[i-j+1]} \stackrel{\text{def}}{=} t_{1[n]}[i:j] \rightarrow (x_t = m) \wedge (x_{t_1} = 2^{i+1}h + 2^j m + l) \wedge l \in [0, 2^i) \wedge m \in [0, 2^{i-j+1}) \wedge h \in [0, 2^{n-i-1})$$

$$t_{[n]} \stackrel{\text{def}}{=} t_{1[n]} + t_{2[n]} \rightarrow (x_t = x_{t_1} + x_{t_2} - 2^n \sigma) \wedge (0 \leq \sigma \leq 1)$$

$$t_{[n]} \stackrel{\text{def}}{=} t_{1[n]} \cdot k \rightarrow (x_t = k \cdot x_{t_1} - 2^n \sigma) \wedge (0 \leq \sigma \leq k)$$

From LIA-interpolants to BV-interpolants

- “Invert” the LIA encoding to get a BV interpolant
- Unsound in general
 - Issues due to `overflow` and `(un)signedness` of operations
- Our (very simple) solution: check the interpolants
 - Given a candidate interpolant \hat{I} , use our SMT(BV) solver to check the unsatisfiability of $(A \wedge \neg \hat{I}) \vee (B \wedge \hat{I})$
 - If successful, then \hat{I} is an interpolant

From LIA- to BV-interpolants: examples

$$A \stackrel{\text{def}}{=} (\textcolor{red}{y_1}_{[8]} = \textcolor{red}{y_5}_{[4]} :: \textcolor{red}{y_5}_{[4]}) \wedge (\textcolor{red}{y_1}_{[8]} = y_2_{[8]}) \wedge (\textcolor{red}{y_5}_{[4]} = 1_{[4]})$$

$$B \stackrel{\text{def}}{=} \neg(\textcolor{blue}{y_4}_{[8]} + 1_{[8]} \leq_u y_2_{[8]}) \wedge (\textcolor{blue}{y_4}_{[8]} = 1_{[8]})$$

Encoding into LIA:

$$\begin{aligned} A_{\text{LIA}} \stackrel{\text{def}}{=} & (x_{y_2} = 16x_{y_5} + x_{y_5}) \wedge (x_{y_1} = x_{y_2}) \wedge (x_{y_5} = 1) \wedge \\ & (x_{y_1} \in [0, 2^8)) \wedge (x_{y_2} \in [0, 2^8)) \wedge (x_{y_5} \in [0, 2^4)) \end{aligned}$$

$$\begin{aligned} B_{\text{LIA}} \stackrel{\text{def}}{=} & \neg(x_{y_4+1} \leq x_{y_2}) \wedge (x_{y_4+1} = x_{y_4} + 1 - 2^8\sigma) \wedge \\ & (x_{y_4} = 1) \wedge \\ & (x_{y_4+1} \in [0, 2^8)) \wedge (x_{y_4} \in [0, 2^8)) \wedge (0 \leq \sigma \leq 1) \end{aligned}$$

From LIA- to BV-interpolants: examples

$$A \stackrel{\text{def}}{=} (\textcolor{red}{y_1}_{[8]} = \textcolor{red}{y_5}_{[4]} :: \textcolor{red}{y_5}_{[4]}) \wedge (\textcolor{red}{y_1}_{[8]} = y_2_{[8]}) \wedge (\textcolor{red}{y_5}_{[4]} = 1_{[4]})$$

$$B \stackrel{\text{def}}{=} \neg(\textcolor{blue}{y_4}_{[8]} + 1_{[8]} \leq_u y_2_{[8]}) \wedge (\textcolor{blue}{y_4}_{[8]} = 1_{[8]})$$

LIA-Interpolant:

$$I_{\text{LIA}} \stackrel{\text{def}}{=} (17 \leq x_{y_2})$$

BV-interpolant:

$$I \stackrel{\text{def}}{=} (17_{[8]} \leq_u y_2_{[8]})$$

From LIA- to BV-interpolants: examples

$$A \stackrel{\text{def}}{=} (y_2[8] = 81_{[8]}) \wedge (y_3[8] = 0_{[8]}) \wedge (y_4[8] = y_2[8])$$

$$B \stackrel{\text{def}}{=} (y_{13}[16] = 0_{[8]} :: y_4[8]) \wedge (255_{[16]} \leq_u y_{13}[16] + (0_{[8]} :: y_3[8]))$$

Encoding into LIA:

$$\begin{aligned} A_{\text{LIA}} \stackrel{\text{def}}{=} & (x_{y_2} = 81) \wedge (x_{y_3} = 0) \wedge (x_{y_4} = x_{y_2}) \wedge \\ & (x_{y_2} \in [0, 2^8)) \wedge (x_{y_3} \in [0, 2^8)) \wedge (x_{y_4} \in [0, 2^8)) \end{aligned}$$

$$\begin{aligned} B_{\text{LIA}} \stackrel{\text{def}}{=} & (x_{y_{13}} = 2^8 \cdot 0 + x_{y_4}) \wedge (255 \leq x_{y_{13}+(0::y_3)}) \wedge \\ & (x_{y_{13}+(0::y_3)} = x_{y_{13}} + 2^8 \cdot 0 + x_{y_3} - 2^{16}\sigma) \wedge \\ & (x_{y_{13}} \in [0, 2^{16})) \wedge (x_{y_{13}+(0::y_3)} \in [0, 2^{16})) \wedge \\ & (0 \leq \sigma \leq 1) \end{aligned}$$

From LIA- to BV-interpolants: examples

$$A \stackrel{\text{def}}{=} (y_2[8] = 81_{[8]}) \wedge (y_3[8] = 0_{[8]}) \wedge (y_4[8] = y_2[8])$$

$$B \stackrel{\text{def}}{=} (y_{13}[16] = 0_{[8]} :: y_4[8]) \wedge (255_{[16]} \leq_u y_{13}[16] + (0_{[8]} :: y_3[8]))$$

LIA-interpolant:

$$I_{\text{LIA}} \stackrel{\text{def}}{=} (x_{y_3} + x_{y_4} \leq 81)$$

BV-interpolant:

$$\hat{I} \stackrel{\text{def}}{=} (y_3[8] + y_4[8] \leq_u 81_{[8]})$$

Wrong!
 $B \wedge \hat{I} \not\models \perp$

From LIA- to BV-interpolants: examples

$$A \stackrel{\text{def}}{=} (y_2[8] = 81[8]) \wedge (y_3[8] = 0[8]) \wedge (y_4[8] = y_2[8])$$

$$B \stackrel{\text{def}}{=} (y_{13}[16] = 0[8] :: y_4[8]) \wedge (255[16] \leq_u y_{13}[16] + (0[8] :: y_3[8]))$$

LIA-interpolant:

$$I_{\text{LIA}} \stackrel{\text{def}}{=} (x_{y_3} + x_{y_4} \leq 81)$$

Addition might overflow in BV!

BV-interpolant:

$$\hat{I} \stackrel{\text{def}}{=} (y_3[8] + y_4[8] \leq_u 81[8])$$

Wrong!
 $B \wedge \hat{I} \not\models \perp$

From LIA- to BV-interpolants: examples

$$A \stackrel{\text{def}}{=} (y_2[8] = 81_{[8]}) \wedge (y_3[8] = 0_{[8]}) \wedge (y_4[8] = y_2[8])$$

$$B \stackrel{\text{def}}{=} (y_{13}[16] = 0_{[8]} :: y_4[8]) \wedge (255_{[16]} \leq_u y_{13}[16] + (0_{[8]} :: y_3[8]))$$

LIA-interpolant:

$$I_{\text{LIA}} \stackrel{\text{def}}{=} (x_{y_3} + x_{y_4} \leq 81)$$

Addition might overflow in BV!

BV-interpolant:

A correct interpolant would be

$$I \stackrel{\text{def}}{=} (0_{[1]} :: y_3[8] + 0_{[1]} :: y_4[8] \leq_u 81_{[9]})$$

Wrong!

$$B \wedge I \not\models \perp$$

From LIA- to BV-interpolants: examples

$$A \stackrel{\text{def}}{=} \neg(y_4[8] + 1[8] \leq_u y_3[8]) \wedge (y_2[8] = y_4[8] + 1[8])$$

$$B \stackrel{\text{def}}{=} (y_2[8] + 1[8] \leq_u y_3[8]) \wedge (y_7[8] = 3[8]) \wedge (y_7[8] = y_2[8] + 1[8])$$

Encoding into LIA:

$$\begin{aligned} A_{\text{LIA}} \stackrel{\text{def}}{=} & \neg(x_{y_4+1} \leq x_{y_3}) \wedge (x_{y_2} = x_{y_4+1}) \wedge \\ & (x_{y_4+1} = x_{y_4} + 1 - 2^8\sigma_1) \wedge \\ & (x_{y_2} \in [0, 2^8]) \wedge (x_{y_3} \in [0, 2^8]) \wedge (x_{y_4} \in [0, 2^8]) \wedge \\ & (x_{y_4+1} \in [0, 2^8]) \wedge (0 \leq \sigma_1 \leq 1) \end{aligned}$$

$$\begin{aligned} B_{\text{LIA}} \stackrel{\text{def}}{=} & (x_{y_2+1} \leq x_{y_3}) \wedge (x_{y_7} = 3) \wedge (x_{y_7} = x_{y_2+1}) \wedge \\ & (x_{y_2+1} = x_{y_2} + 1 - 2^8\sigma_2) \wedge \\ & (x_{y_7} \in [0, 2^8]) \wedge (x_{y_2+1} \in [0, 2^8]) \wedge (0 \leq \sigma_2 \leq 1) \end{aligned}$$

From LIA- to BV-interpolants: examples

$$A \stackrel{\text{def}}{=} \neg(y_4[8] + 1_{[8]} \leq_u y_3[8]) \wedge (y_2[8] = y_4[8] + 1_{[8]})$$

$$B \stackrel{\text{def}}{=} (y_2[8] + 1_{[8]} \leq_u y_3[8]) \wedge (y_7[8] = 3_{[8]}) \wedge (y_7[8] = y_2[8] + 1_{[8]})$$

LIA-interpolant:

$$I_{\text{LIA}} \stackrel{\text{def}}{=} (-255 \leq x_{y_2} - x_{y_3} + 256 \lfloor -1 \frac{x_{y_2}}{256} \rfloor)$$

BV-interpolant: (after fixing overflows)

$$\begin{aligned} \hat{I}' \stackrel{\text{def}}{=} & (65281_{[16]} \leq_u (0_{[8]} :: y_2[8]) - (0_{[8]} :: y_3[8]) + \\ & 256_{[16]} \cdot (65535_{[16]} \cdot (0_{[8]} :: y_2[8]) /_u 256_{[16]})) \end{aligned}$$

From LIA- to BV-interpolants: examples

$$A \stackrel{\text{def}}{=} \neg(y_4[8] + 1[8] \leq_u y_3[8]) \wedge (y_2[8] = y_4[8] + 1[8])$$

$$B \stackrel{\text{def}}{=} (y_2[8] + 1[8] \leq_u y_3[8]) \wedge (y_7[8] = 3[8]) \wedge (y_7[8] = y_2[8] + 1[8])$$

LIA-interpolant:

$$I_{\text{LIA}} \stackrel{\text{def}}{=} (-255 \leq x_{y_2} - x_{y_3} + 256 \lfloor -1 \frac{x_{y_2}}{256} \rfloor)$$

BV-interpolant: (after fixing overflows)

$$\hat{I}' \stackrel{\text{def}}{=} (65281_{[16]} \leq_u (0_{[8]} :: y_2[8]) - (0_{[8]} :: y_3[8]) + 256_{[16]} \cdot (65535_{[16]} \cdot (0_{[8]} :: y_2[8]) /_u 256_{[16]}))$$

In this case, the problem
is also the sign

Still
Wrong!

From LIA- to BV-interpolants: examples

$$A \stackrel{\text{def}}{=} \neg(y_4[8] + 1[8] \leq_u y_3[8]) \wedge (y_2[8] = y_4[8] + 1[8])$$

$$B \stackrel{\text{def}}{=} (y_2[8] + 1[8] \leq_u y_3[8]) \wedge (y_7[8] = 3[8]) \wedge (y_7[8] = y_2[8] + 1[8])$$

LIA-interpolant:

$$I_{\text{LIA}} \stackrel{\text{def}}{=} (-255 \leq x_{y_2} - x_{y_3} + 256 \lfloor -1 \frac{x_{y_2}}{256} \rfloor)$$

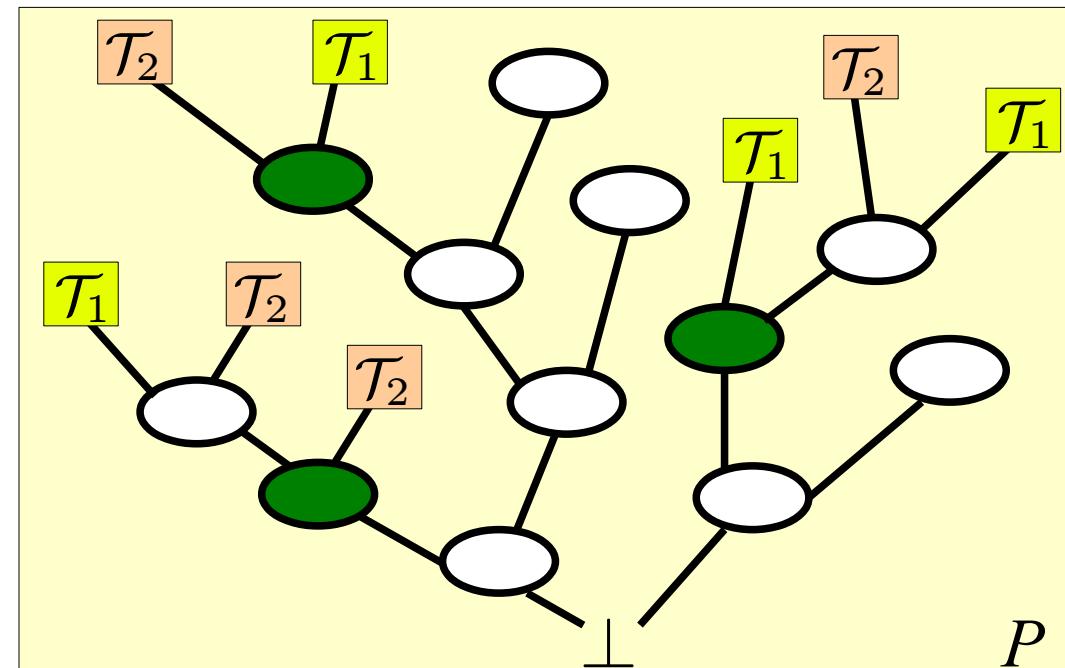
BV-interpolant:

$$I \stackrel{\text{def}}{=} (65281_{[16]} \leq_s (0_{[8]} :: y_2[8]) - (0_{[8]} :: y_3[8]) + 256_{[16]} \cdot (65535_{[16]} \cdot (0_{[8]} :: y_2[8]) /_u 256_{[16]}))$$

Correct interpolant

Interpolation in combined theories

- **Delayed Theory Combination (DTC):** use the **DPLL** engine to perform **theory combination**
 - Independent \mathcal{T}_i -solvers, that interact only with DPLL
 - How: Boolean search space augmented with **interface equalities**
 - Equalities between variables shared by the two theories
- Combination of theories encoded directly in the proof of unsatisfiability P
 - \mathcal{T}_i -lemmas for the individual theories
 - P contains interface equalities



Interpolation in combined theories

■ Problem for interpolation:

- Some interface equalities ($x = y$) are AB-mixed: $x \notin B, y \notin A$
- *Interpolation procedures don't work with AB-mixed terms*

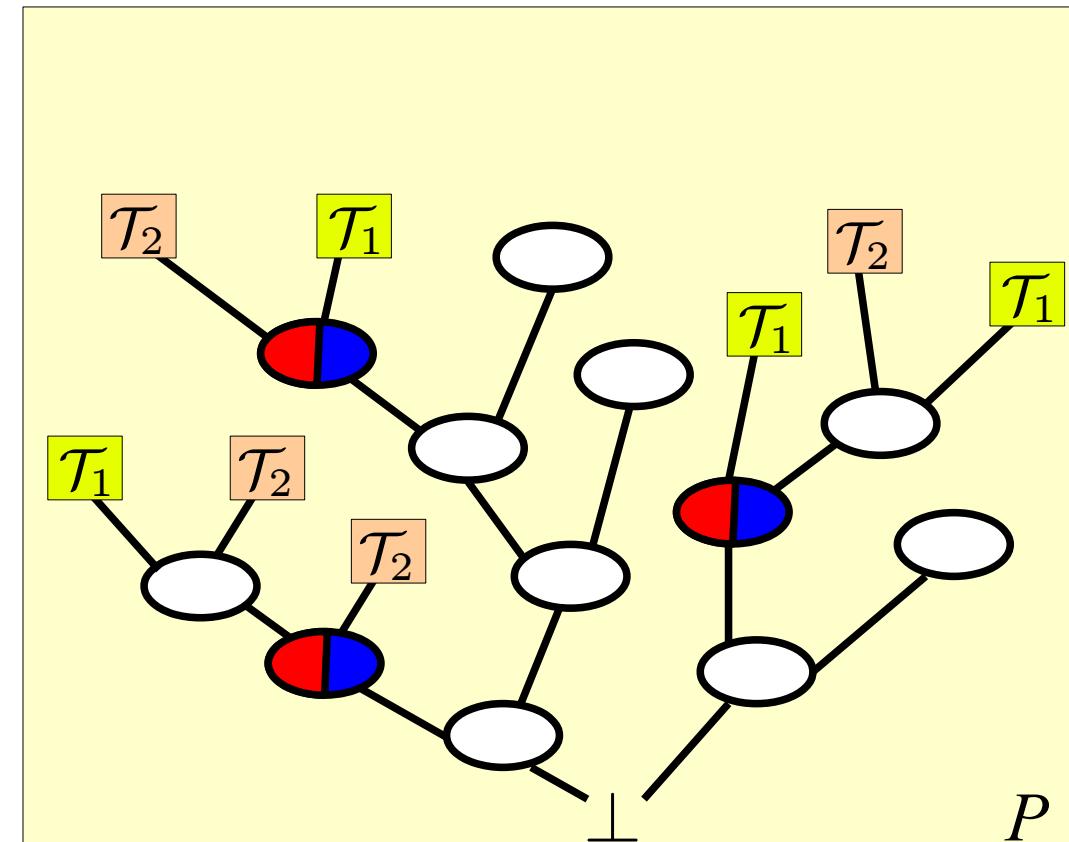
■ Solution: *Split AB-mixed equalities occurring in P , and fix the proof*

■ How: Split each \mathcal{T} -lemma

$\eta \vee (x = y)$ into $(\eta \vee (x = t)) \wedge \eta \vee (t = y)$ with $t \in A \cap B$
using available algorithms

■ \mathcal{T}_i 's must be **equality-interpolating** and **convex**

■ Propagate the changes throughout P



Interpolation in combined theories

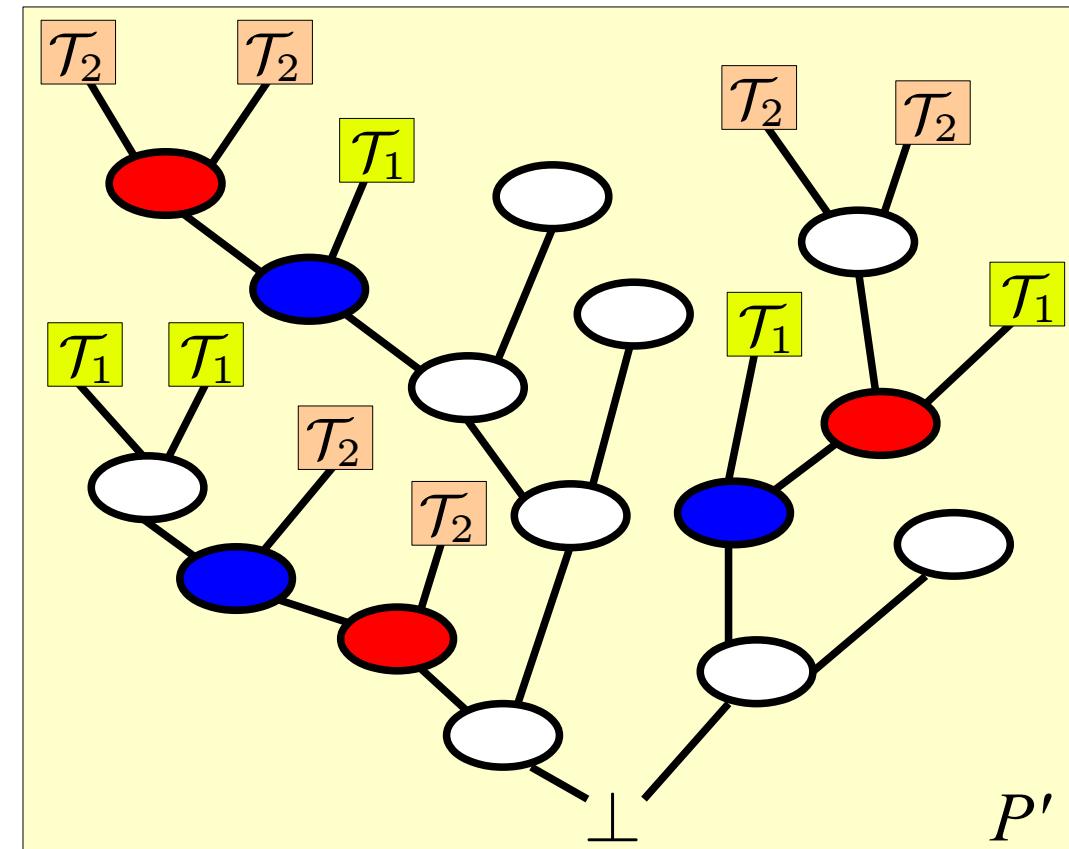
■ Problem for interpolation:

- Some interface equalities ($x = y$) are **AB-mixed**: $x \notin B, y \notin A$
- *Interpolation procedures don't work with AB-mixed terms*

■ Solution: *Split AB-mixed equalities occurring in P , and fix the proof*

- How: Split each \mathcal{T} -lemma
 $\eta \vee (x = y)$ into $(\eta \vee (x = t)) \wedge \eta \vee (t = y)$ with $t \in A \cap B$
using available algorithms

- \mathcal{T}_i 's must be **equality-interpolating** and **convex**
- Propagate the changes throughout P



Interpolation in combined theories

■ Problem for interpolation:

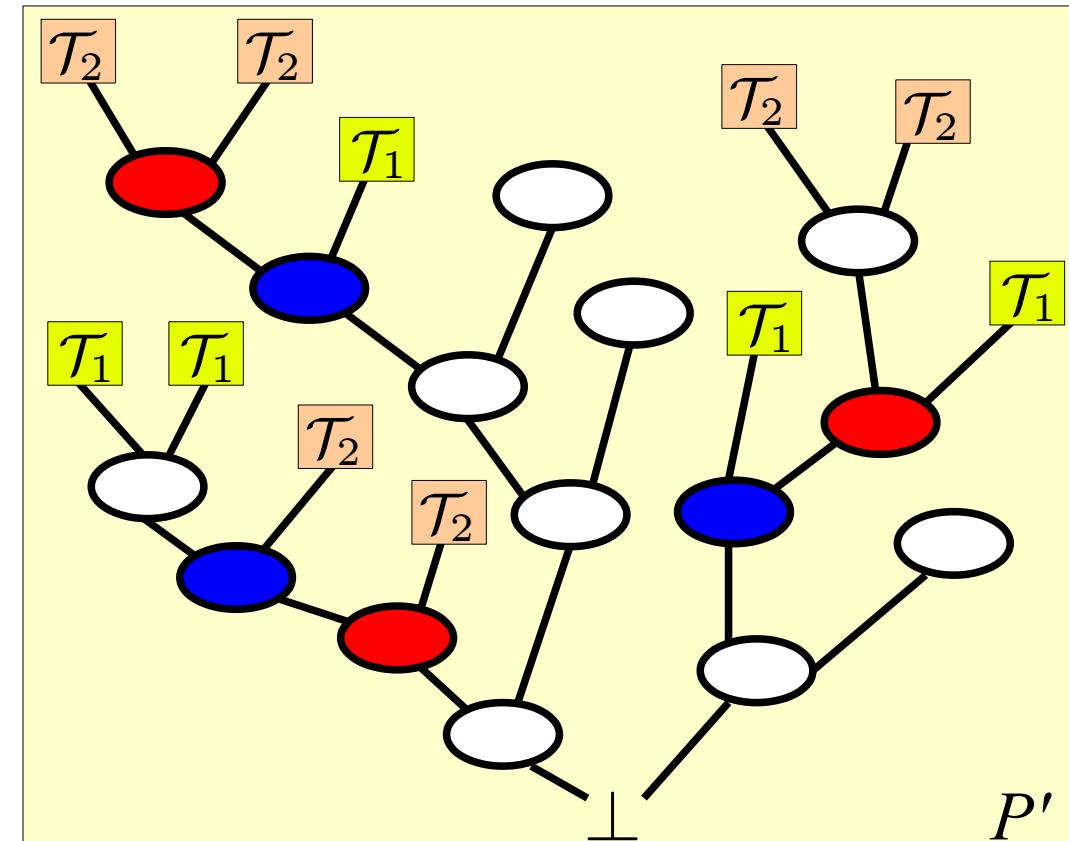
- Some interface equalities ($x = y$) are **AB-mixed**: $x \notin B$, $y \notin A$
- *Interpolation procedures don't work with AB-mixed terms*

■ Solution: *Split AB-mixed equalities occurring in P , and fix the proof*

- How: Split each \mathcal{T} -lemma

Problem: splitting can cause exponential blow-up in P

Solution: control the kind of proofs generated by DPLL, so that the splitting can be performed **efficiently** (ie-local proofs)



Interpolation in combined theories

- After splitting AB-mixed equalities, we can compute an interpolant as usual
 - *Nothing special needed for theory combination!*
 - Because theory combination is encoded in the proof, we can reuse the Boolean interpolation algorithm
- Features:
 - No need of **ad-hoc** interpolant **combination** procedures
 - Exploit state-of-the-art SMT solvers, based on (variants of) DTC
 - Split **only** when **necessary**

Example

$$A := (a_1 = f(x_1)) \wedge (z - x_1 = 1) \wedge (a_1 + z = 0)$$

$$B := (a_2 = f(x_2)) \wedge (z - x_2 = 1) \wedge (a_2 + z = 1)$$

Example

$$A := (a_1 = f(x_1)) \wedge (z - x_1 = 1) \wedge (a_1 + z = 0)$$

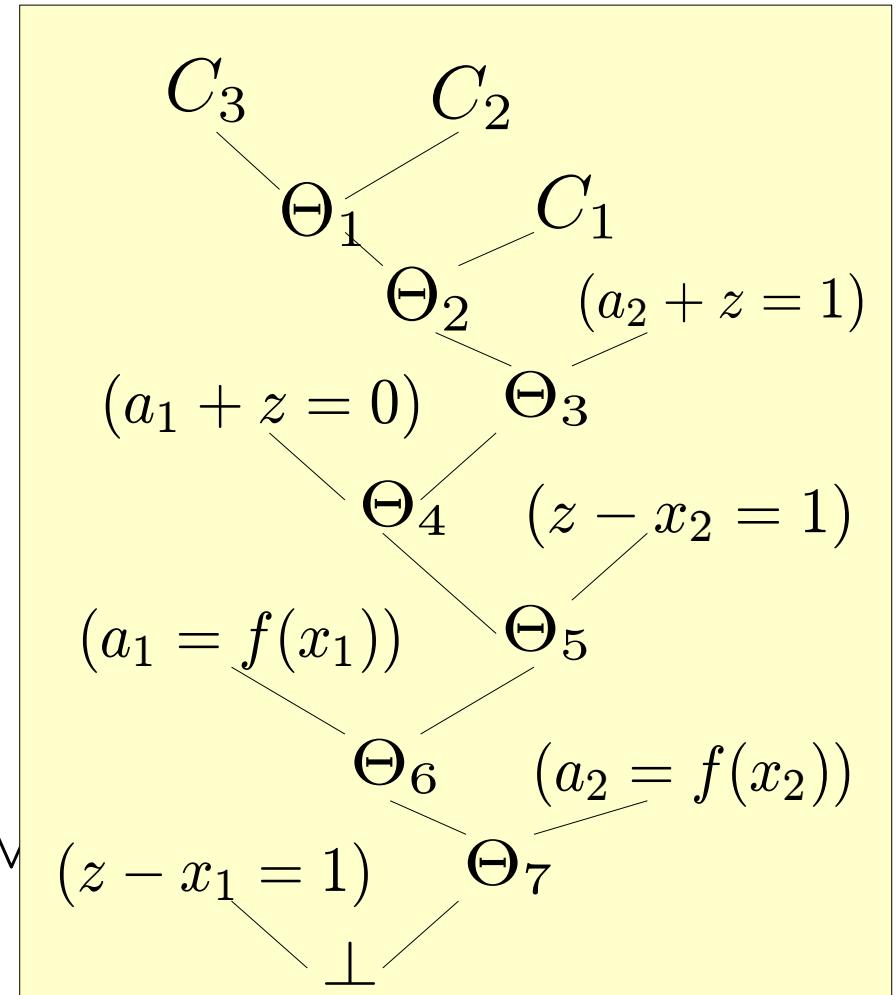
$$B := (a_2 = f(x_2)) \wedge (z - x_2 = 1) \wedge (a_2 + z = 1)$$

T-lemmas:

$$C_1 \equiv (x_1 = x_2) \vee \neg(z - x_1 = 1) \vee \neg(z - x_2 = 1)$$

$$C_2 \equiv (a_1 = a_2) \vee \neg(a_2 = f(x_2)) \vee \neg(a_1 = f(x_1)) \vee \neg(x_1 = x_2)$$

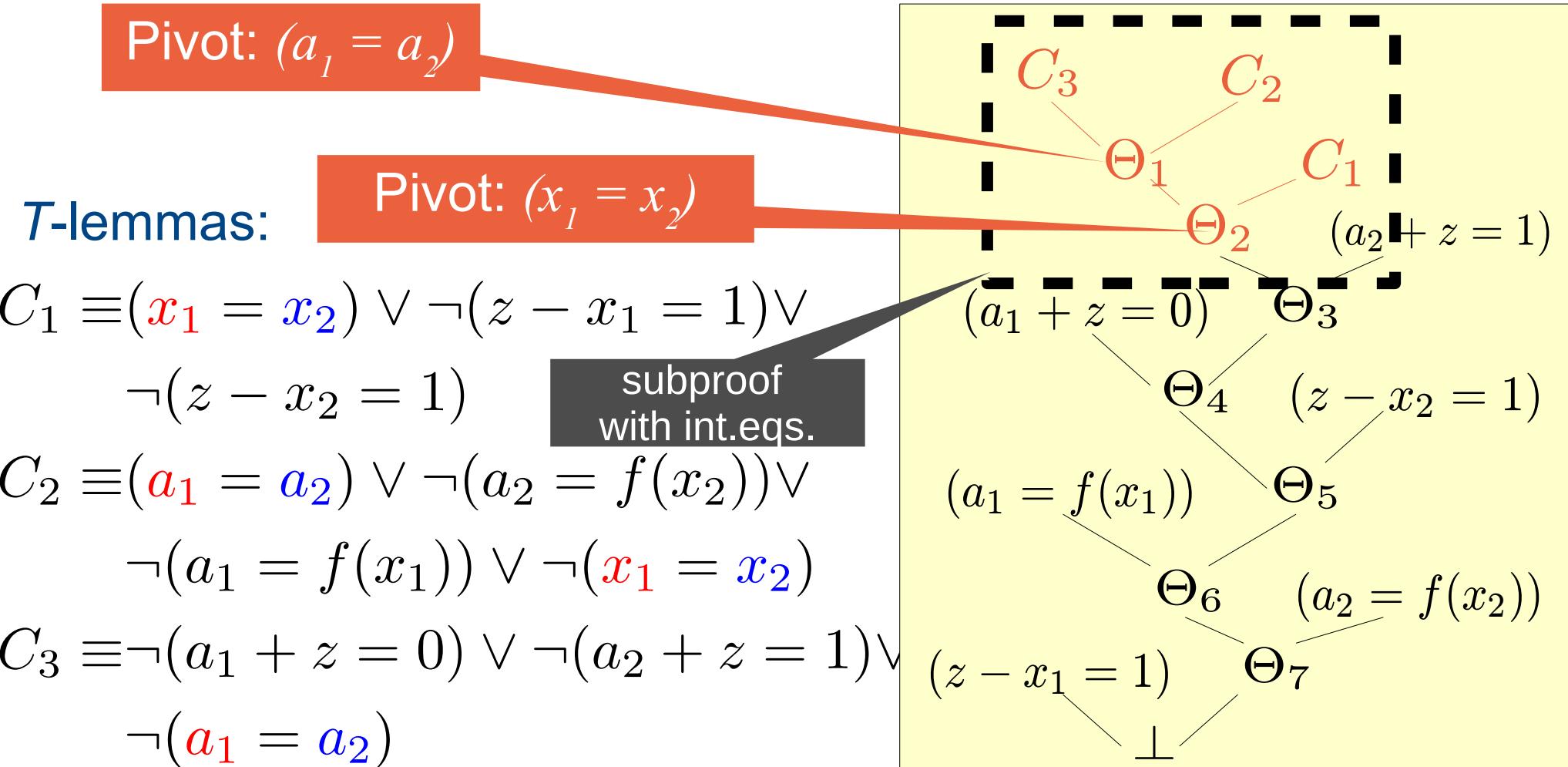
$$C_3 \equiv \neg(a_1 + z = 0) \vee \neg(a_2 + z = 1) \vee \neg(a_1 = a_2)$$



Example

$$A := (a_1 = f(x_1)) \wedge (z - x_1 = 1) \wedge (a_1 + z = 0)$$

$$B := (a_2 = f(x_2)) \wedge (z - x_2 = 1) \wedge (a_2 + z = 1)$$



Example

$$A := (a_1 = f(x_1)) \wedge (z - x_1 = 1) \wedge (a_1 + z = 0)$$

$$B := (a_2 = f(x_2)) \wedge (z - x_2 = 1) \wedge (a_2 + z = 1)$$

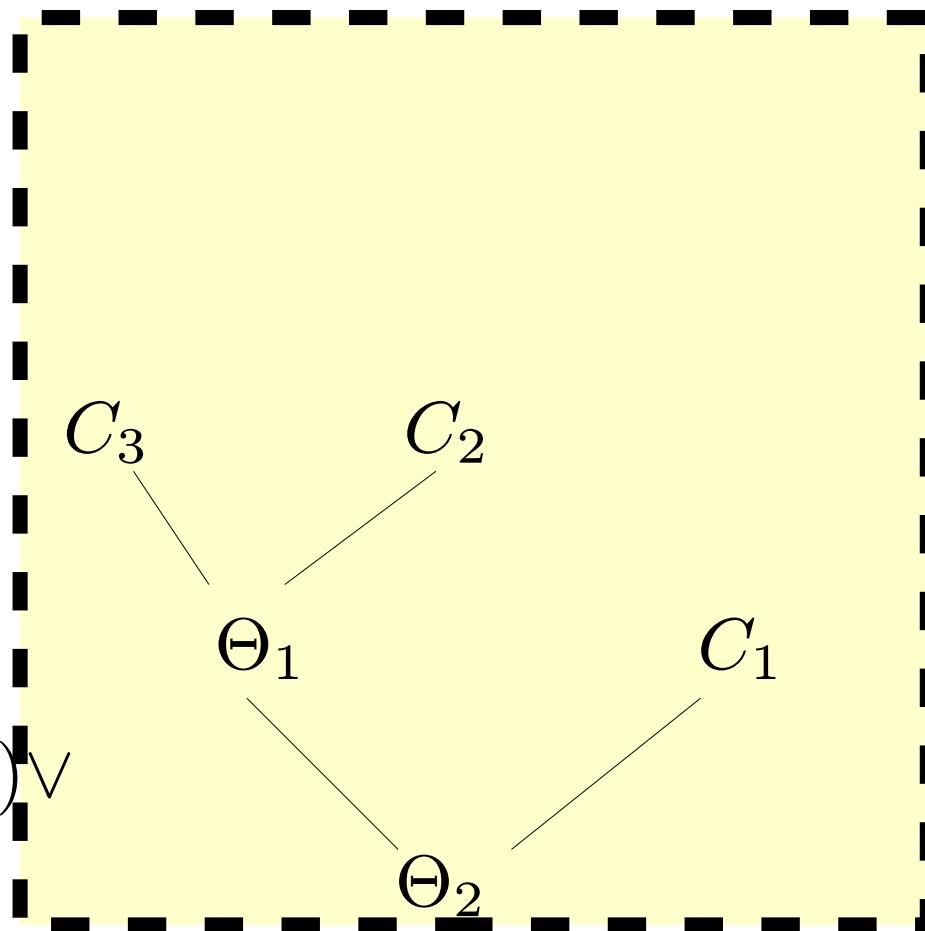
P^{ie} subproof:

T-lemmas:

$$C_1 \equiv (\textcolor{red}{x_1} = \textcolor{blue}{x_2}) \vee \neg(z - x_1 = 1) \vee \neg(z - x_2 = 1)$$

$$C_2 \equiv (\textcolor{red}{a_1} = \textcolor{blue}{a_2}) \vee \neg(a_2 = f(x_2)) \vee \neg(a_1 = f(x_1)) \vee \neg(\textcolor{red}{x_1} = \textcolor{blue}{x_2})$$

$$C_3 \equiv \neg(a_1 + z = 0) \vee \neg(a_2 + z = 1) \vee \neg(\textcolor{red}{a_1} = \textcolor{blue}{a_2})$$



Example

$$A := (a_1 = f(x_1)) \wedge (z - x_1 = 1) \wedge (a_1 + z = 0)$$

$$B := (a_2 = f(x_2)) \wedge (z - x_2 = 1) \wedge (a_2 + z = 1)$$

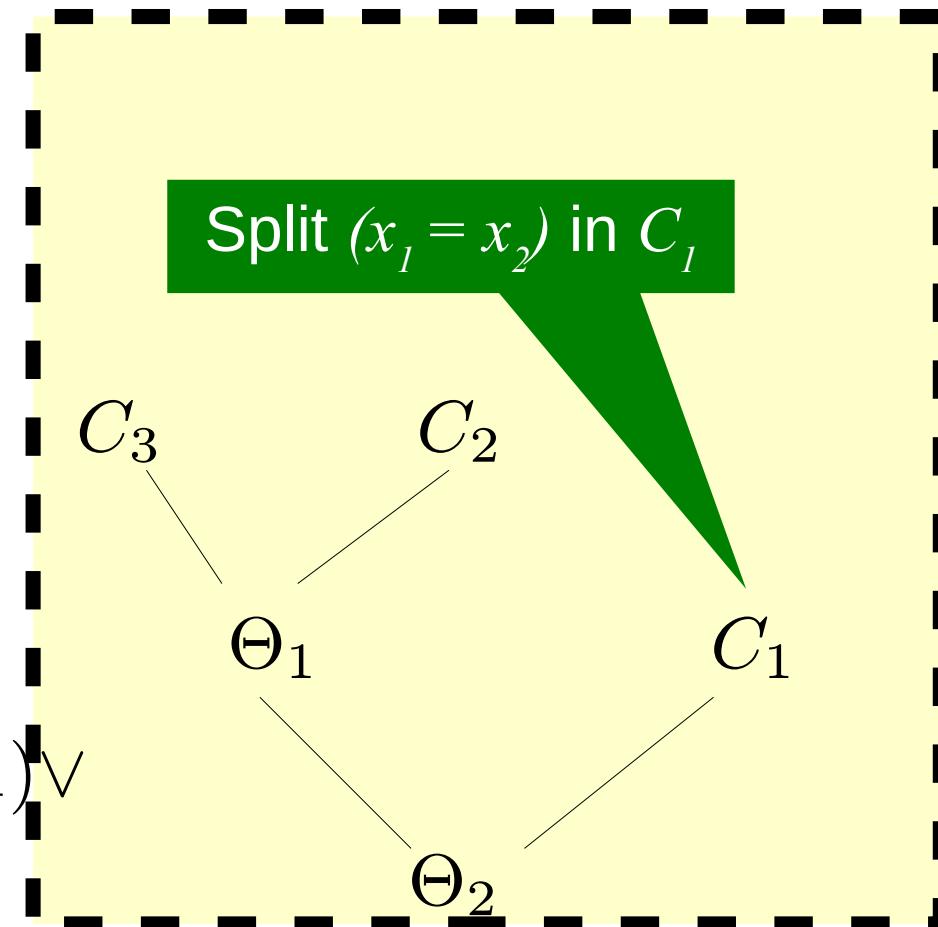
P^{ie} subproof:

T -lemmas:

$$C_1 \equiv (x_1 = x_2) \vee \neg(z - x_1 = 1) \vee \neg(z - x_2 = 1)$$

$$C_2 \equiv (a_1 = a_2) \vee \neg(a_2 = f(x_2)) \vee \neg(a_1 = f(x_1)) \vee \neg(x_1 = x_2)$$

$$C_3 \equiv \neg(a_1 + z = 0) \vee \neg(a_2 + z = 1) \vee \neg(a_1 = a_2)$$



Example

$$A := (a_1 = f(x_1)) \wedge (z - x_1 = 1) \wedge (a_1 + z = 0)$$

$$B := (a_2 = f(x_2)) \wedge (z - x_2 = 1) \wedge (a_2 + z = 1)$$

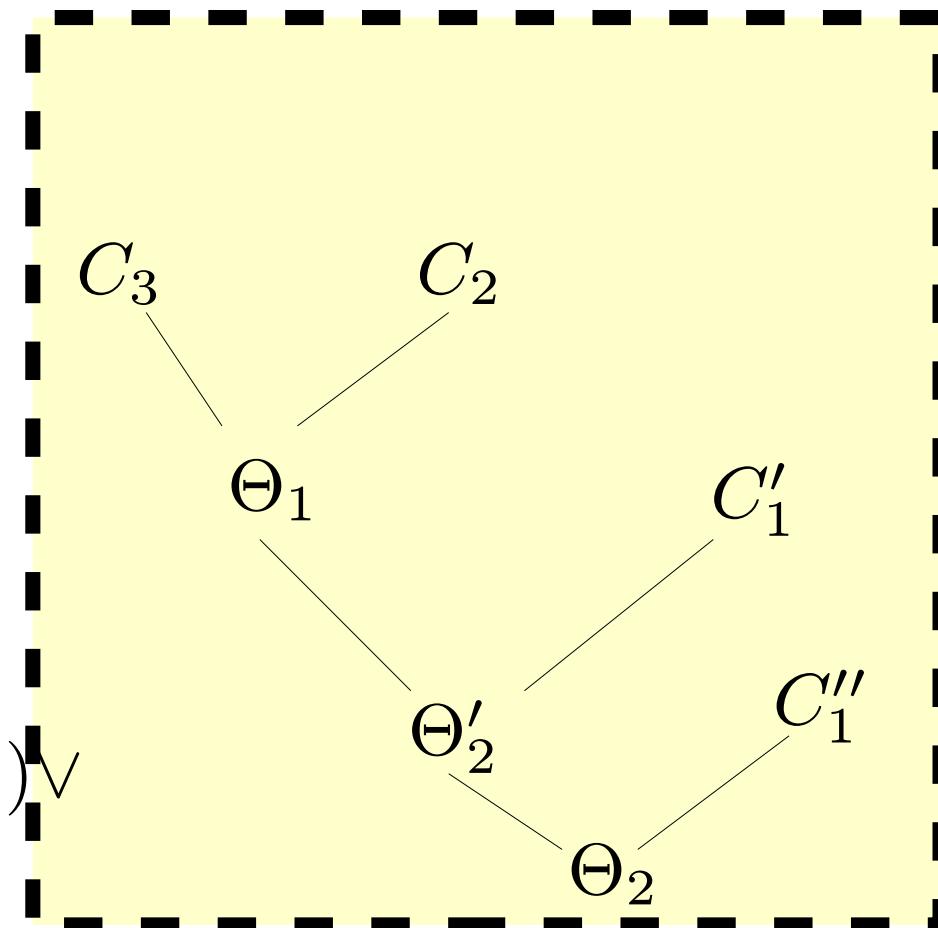
P^{ie} subproof:

$$C'_1 \equiv (x_1 = z - 1) \vee \neg(z - x_1 = 1) \vee \neg(z - x_2 = 1)$$

$$C''_1 \equiv (z - 1 = x_2) \vee \neg(z - x_1 = 1) \vee \neg(z - x_2 = 1)$$

$$C_2 \equiv (a_1 = a_2) \vee \neg(a_2 = f(x_2)) \vee \neg(a_1 = f(x_1)) \vee \neg(x_1 = x_2)$$

$$C_3 \equiv \neg(a_1 + z = 0) \vee \neg(a_2 + z = 1) \vee \neg(a_1 = a_2)$$



Example

$$A := (a_1 = f(x_1)) \wedge (z - x_1 = 1) \wedge (a_1 + z = 0)$$

$$B := (a_2 = f(x_2)) \wedge (z - x_2 = 1) \wedge (a_2 + z = 1)$$

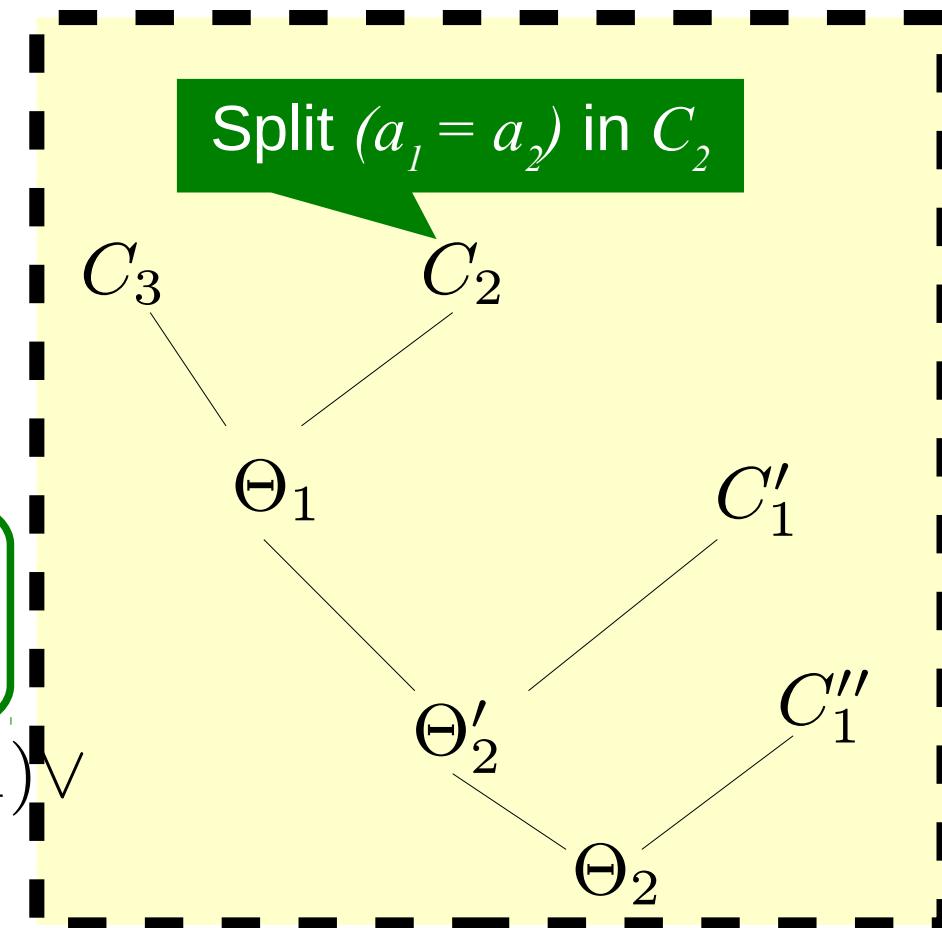
P^{ie} subproof:

$$C'_1 \equiv (x_1 = z - 1) \vee \neg(z - x_1 = 1) \vee \neg(z - x_2 = 1)$$

$$C''_1 \equiv (z - 1 = x_2) \vee \neg(z - x_1 = 1) \vee \neg(z - x_2 = 1)$$

$$C_2 \equiv (a_1 = a_2) \vee \neg(a_2 = f(x_2)) \vee \neg(a_1 = f(x_1)) \vee \neg(x_1 = x_2)$$

$$C_3 \equiv \neg(a_1 + z = 0) \vee \neg(a_2 + z = 1) \vee \neg(a_1 = a_2)$$



Example

$$A := (a_1 = f(x_1)) \wedge (z - x_1 = 1) \wedge (a_1 + z = 0)$$

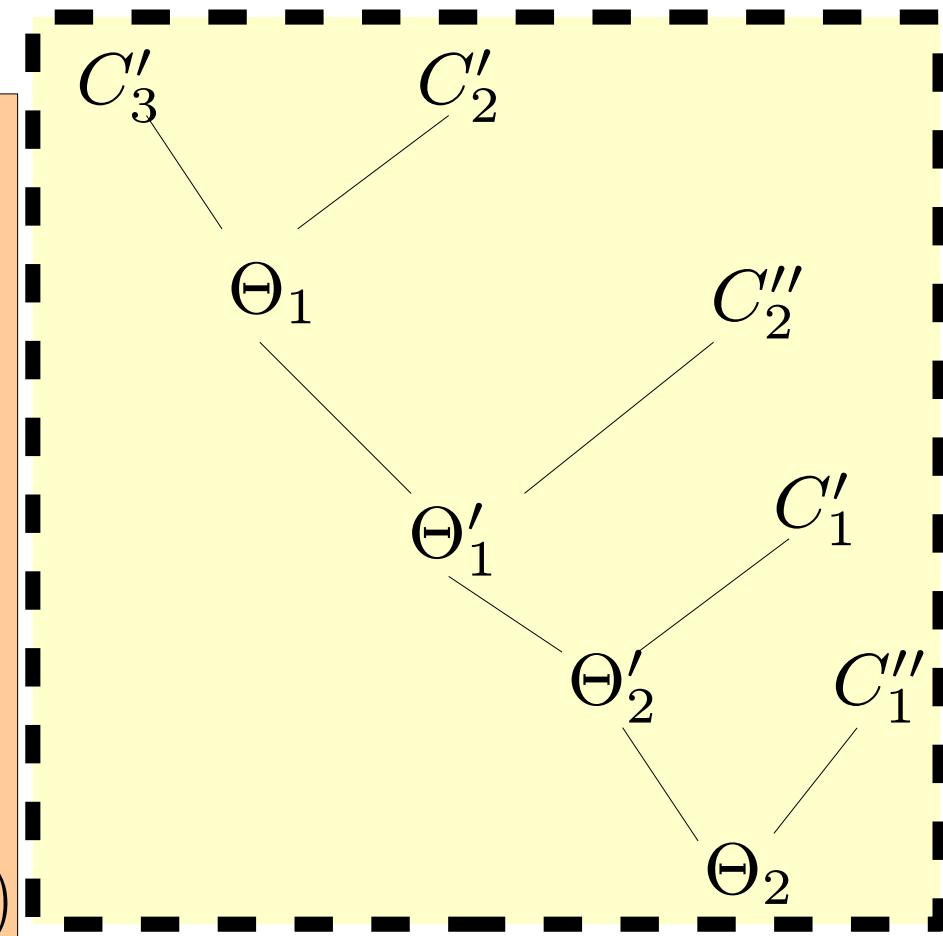
$$B := (a_2 = f(x_2)) \wedge (z - x_2 = 1) \wedge (a_2 + z = 1)$$

P^{ie} subproof:

$$C'_2 \equiv (a_1 = f(z - 1)) \vee \neg(a_2 = f(x_2)) \vee \\ \neg(a_1 = f(x_1)) \vee \neg(x_1 = z - 1) \vee \\ \neg(z - 1 = x_2)$$

$$C''_2 \equiv (f(z - 1) = a_2) \vee \neg(a_2 = f(x_2)) \vee \\ \neg(a_1 = f(x_1)) \vee \neg(x_1 = z - 1) \vee \\ \neg(z - 1 = x_2)$$

$$C'_3 \equiv \neg(a_1 + z = 0) \vee \neg(a_2 + z = 1) \vee \\ \neg(a_1 = f(z - 1)) \vee \neg(f(z - 1) = a_2)$$



Proof Tree Preserving Interpolation

- [Christ, Hoenicke and Nutz, TACAS 2013]
- Interpolants with AB-mixed literals without proof rewriting
 - Replace AB-mixed terms ($s \leq t$) with $(s \leq x) \wedge (x \leq t)$ in leaves, where x is a fresh purification variable
 - Eliminate the purification variable when resolving on $(s \leq t)$

$$\frac{C_1 \vee (s \leq t) [I_1(x)] \quad C_2 \vee \neg(s \leq t) [I_2(x)]}{C_1 \vee C_2 [I_3]}$$

- Advantages:
 - no need of proof rewriting
 - handles also for non-convex theories
- Drawbacks:
 - need T -specific interpolation rules for resolution steps
 - more complex interpolation system

From Binary to Sequence Interpolants

- An ordered sequence of formulae F_1, \dots, F_n such that $\bigwedge_i F_i \models \perp$
- We want a **sequence of interpolants** I_1, \dots, I_{n-1} such that
 - I_k is an interpolant for $(\bigwedge_{i=1}^k F_i, \bigwedge_{j=k+1}^n F_j)$
 - $F_k \wedge I_{k-1} \models I_k$ for all $k \in [2, n-1]$
- Needed in various applications (e.g. abstraction refinement)
- How to compute them?
 - In general, if we compute arbitrary binary interpolants for $(\bigwedge_{i=1}^k F_i, \bigwedge_{j=k+1}^n F_j)$, the second condition will not hold

A simple solution

- Compute I_1 as an interpolant of $(F_1, \bigwedge_{j=2}^n F_j)$
- Compute I_k as an interpolant of $(I_{k-1} \wedge F_k, \bigwedge_{j=k+1}^n F_j)$
- **Claim:** I_k is an interpolant for $(\bigwedge_{i=1}^k F_i, \bigwedge_{j=k+1}^n F_j)$
- **Proof (sketch):**
 - By ind.hyp. I_{k-1} is an interpolant for $(\bigwedge_{i=1}^{k-1} F_i, \bigwedge_{j=k}^n F_j)$
so $\bigwedge_{i=1}^{k-1} F_i \models I_{k-1}$ and $I_{k-1} \wedge F_k \wedge \bigwedge_{j=k+1}^n F_j \models \perp$
- **Advantages:**
 - simple to implement
 - can use any off-the-shelf binary interpolation
- **Drawback:** requires $n-1$ SMT calls

A more efficient algorithm

- Compute an SMT proof of unsatisfiability P for $\bigwedge_{i=1}^n F_i$
- Compute each $I_k := \text{Interpolant}(\bigwedge_{i=1}^k F_i, \bigwedge_{j=k+1}^n F_j)$ from the same proof P
- **Theorem:** $F_k \wedge I_{k-1} \models I_k$

A more efficient algorithm

- Compute an SMT proof of unsatisfiability P for $\bigwedge_{i=1}^n F_i$
- Compute each $I_k := \text{Interpolant}(\bigwedge_{i=1}^k F_i, \bigwedge_{j=k+1}^n F_j)$ from the same proof P
- **Theorem:** $F_k \wedge I_{k-1} \models I_k$
- **Proof (sketch) – case $n=3$:**
 - Let C be a node of P with partial interpolants I' and I'' for the partitionings $(F_1, F_2 \wedge F_3)$ and $(F_1 \wedge F_2, F_3)$ resp. Then we can prove, by induction on the structure of P , that:

$$I' \wedge F_2 \models I'' \vee \bigvee \{l \in C \mid \text{var}(l) \notin F_3\}$$

- The theorem then follows as a corollary
- Works also for DTC-rewritten proofs

Selected bibliography

*DISCLAIMER: this is **very incomplete**. Apologies to missing authors/works*

- Quantifier Elimination in SMT
 - Monniaux. **A Quantifier Elimination Algorithm for Linear Real Arithmetic**. LPAR 2008
 - Bjørner. **Linear Quantifier Elimination as an Abstract Decision Procedure**. IJCAR 2010
 - Komuravelli, Gurfinkel, Chaki. **SMT-based model checking for recursive programs**. FMSD 48(3) 2016

Selected bibliography

■ Interpolants in SAT and SMT

- McMillan. **An Interpolating Theorem Prover**. TCS 2005.
- Yorsh, Musuvathi. **A Combination Method for Generating Interpolants**. CADE 2005
- Cimatti, Griggio, Sebastiani. **Efficient Generation of Craig Interpolants in SMT**. TOCL 2010
- Rybalchenko, Sofronie-Stokkermans. **Constraint solving for interpolation**. J. Symb. Comput. 45(11): 1212-1233 (2010)
- Griggio. **Effective Word-Level Interpolation for Software Verification**. FMCAD 2011
- Brillout, Kroening, Rümmer, Wahl. **An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic**. J. Autom. Reasoning 47(4): 341-367 (2011)

■ Interpolants in SAT and SMT

- D'Silva, Kroening, Purandare, Weissenbacher. **Interpolant strength**. VMCAI 2010
- Goel, Krstic, Tinelli. **Ground interpolation for the theory of equality**. Logical Methods in Computer Science 8(1) 2012
- Bruttomesso, Ghilardi, Ranise. **Quantifier-free interpolation of a Theory of Arrays**. Logical Methods in Comp. Sci. 8(2) 2012
- Totla, Wies. **Complete instantiation-based interpolation**. POPL 2013
- Christ, Hoenicke, Nutz. **Proof Tree Preserving Interpolation**. TACAS 2013
- Ruemmer, Subotic. **Exploring Interpolants**. FMCAD 2013
- Bruttomesso, Ghilardi, Ranise. **Quantifier-free interpolation in combinations of equality interpolating theories**. TOCL 2014

Selected bibliography

■ Interpolants in Formal Verification

- McMillan. **Interpolation and SAT-based Model Checking**. CAV 2003
- Henzinger, Jhala, Majumdar, McMillan. **Abstractions from Proofs**. POPL 2004
- McMillan. **Lazy Abstraction with Interpolants**. CAV 2006
- Vizel, Grumberg. **Interpolation-Sequence based model checking**. FMCAD 2009
- Albargouthi, Gurfinkel, Chechick. **Whale: an interpolation-based algorithm for inter-procedural verification**. VMCAI 2012

Thank You