SAT Tutorial

Joao Marques-Silva

University of Lisbon, Portugal

First Indian SAT+SMT School
TIFR, Mumbai, India

December 04-10 2016

1/115

The CDCL SAT disruption

e SAT is NP-complete [c71]

2 /115

The CDCL SAT disruption

e SAT is NP-complete [c71]
— But, CDCL SAT solving is a success story of Computer Science

2 /115

The CDCL SAT disruption

e SAT is NP-complete [c71]

— But, CDCL SAT solving is a success story of Computer Science
— CDCL SAT solving has been truly disruptive
— Hundreds (thousands?) of practical applications

Noise l‘\“aIysisMud_ri_I-BalslmlI]iagrmsii'1 . G
i i 9 > _lechnology Mappin
Network Security Management Fault nggli]i“‘zt;ﬁ:ﬁ;mg Pedlgree EIJIISIStBIICy Fungcytinnli)l:acgmgors'}ﬁusn

Maximum SatisfiabilityConfigurationyeyination Analysis
softwal'e Testlngﬁllerﬂesign Switching Network Verification

Equivalence Checking Resource Constrained Scheduling

satISflah"Ity Modulo The“"esPackaggﬂﬁﬂM‘ﬁnagement Symiaiic Trajectory Evaluation

Quantified Boolean Formulas

. i i FPGA Routin
Software Model Checking Ssuant Frogramming g

Haplotyping wodel Findi :
Test Pattern Generation ode Pl?m“lfglllaﬁggwmasgﬁﬂmgsd eDIes[i;qul]DEhEgléiln!g]g

Power ““’"““““I_Iircu_it_ﬂelay Eumputation Genome Rearrangement)
Test Suite Minimization lazy Blause [;e“eratm"
Pseudo-Boolean Formulas

2 /115

CDCL SAT solver improvement |

CPU Time (in seconds)

1200

1000

800

200

[Source: Le Berre 2013]

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

[s}

aq

-

OO0 GOwI

T T T
Limmat (2002)
Zchaff (2002)
Berkmin (2002)
Forkll& (2003)
Siege (2003

Rsat (2007)
Minisat 2.1 (2008)
Precosat (2009)
Glucose (2009)

Contrasat {201 l)

Glucose 2.1 (2012

Llngelln% SS?E' (2012)
Glucose

Lingeling aqw (20‘1 k)]

T 5 T ! T

Number of problems solved

200

3/115

CDCL SAT solver improvement |l

Maximal allowed time (seconds)

2500

2000

1500

1000

500

[Source: Simon 2015]

40

T
berkmin561 (2002)
Forklift (2003)
minisat-static (2005)
minisat (2007)
precosat (2009)
glucose (2011)
lingeling-aqw (2013)
glucose (2014)
lingeling-bag-ml (2015)
glucose-adapt-phase (2016)

PH$9ROL

60 80 100
Number of solved problems (over the 300 benchs from 2011)

200 220

4 /115

CDCL SAT is the engines’ engine

Engines using
SAT engines

Other Boolean

Theorem Model

proving finding

5/115

CDCL SAT is ubiquitous in problem

Eager SMT

Planning
Problem Solving

with SAT
Encodings

Oracles

Counting

Enumeratiol MaxSAT

solving

Embeddings

Backbones

B&B
Search

Enumeratiol

OPT SAT

Lazy SMT

6/115

SAT can make the difference — axiom pinpointing

10*

|inlwugl_.l.I

EL*SAT

0*.2 10i.' i o i i : 10*
EL2MUS
e £L£1 medical ontologies [SAT'15]
— Minimal unsatisfiability (MUSes) & maximal satisfiability (MCSes)
& Enumeration

7/115

SAT can make the difference — model based diagnosis

103

scrypto

102 i

i L M :
102 107! 10° 10! 102 10°
wboinc

e Model-based diagnosis problem instances [1JCAI'L5]
— Maximum satisfiability (MaxSAT)

8 /115

This tutorial

e Part #1: Modern SAT solvers
— Conflict-Driven Clause Learning (CDCL) SAT solvers
» Goal: Overview for non-experts

9/115

This tutorial

e Part #1: Modern SAT solvers
— Conflict-Driven Clause Learning (CDCL) SAT solvers
» Goal: Overview for non-experts

e Part #2: Modeling problems for SAT

— Propositional encodings
— Modeling examples

9/115

This tutorial

e Part #1: Modern SAT solvers
— Conflict-Driven Clause Learning (CDCL) SAT solvers
» Goal: Overview for non-experts

e Part #2: Modeling problems for SAT

— Propositional encodings
— Modeling examples

e Part #3: Problem solving with SAT oracles

— Minimal unsatisfiability (MUS)
— Maximum satisfiability (MaxSAT)

— Maximatsatisfiabiity (MSS/MCS)

9/115

Part |

CDCL SAT Solving

10/115

Outline

Basic Definitions

11 /115

Preliminaries

e Variables: w,x,y,z,a,b,c,...

e Literals: w,X,y,a,..., but also ~w,—y, ...

e Clauses: disjunction of literals or set of literals

e Formula: conjunction of clauses or set of clauses

e Model (satisfying assignment): partial /total mapping from
variables to {0, 1} that satisfies formula

e Formula can be SAT/UNSAT

12/115

Preliminaries

e Variables: w,x,y,z,a,b,c,...

e Literals: w,X,y,a,..., but also ~w,—y, ...

e Clauses: disjunction of literals or set of literals

e Formula: conjunction of clauses or set of clauses

e Model (satisfying assignment): partial /total mapping from
variables to {0, 1} that satisfies formula
e Formula can be SAT/UNSAT

e Example:

— Example models:
» {r,s,a,b,c,d}
» {r,s,X,y,w,z,3,b,c,d}

12/115

Resolution

e Resolution rule: [DP60,R65]

(aVx) (BVX)
(avp)

— Complete proof system for propositional logic

13/115

Resolution

e Resolution rule: [DP60,R65]
(aV x) (BV%)
(aVp)
— Complete proof system for propositional logic
(x\/a (xV a) (yVa) (yVa)
|
(3

|~ N
\/

— Extensively used with (CDCL) SAT solvers

13/115

Resolution

e Resolution rule: [DP60,R65]
(aV x) (BV%)
(aVp)
— Complete proof system for propositional logic
(x\/a (xV a) (yVa) (yVa)
|
(3

— Extensively used with (CDCL) SAT solvers

e Self-subsuming resolution (with o/ C «): [E.g. SP04,EBOS]

(aVx) (o VX)

(@)

— («) subsumes («a V x)

13/115

Unit propagation

F = (r)A(FVs)A
(wVa)A(XV3aVb)A
(FVZVc)A(bVEV)

14 /115

Unit propagation

F = (r)A(FVs)A
(WVa)A(XV 3V b)A
(FVZVc)A(bVEV)

e Decisions / Variable Branchings:

w=1lx=1y=1z=1

14 /115

Unit propagation

Level
F = (NAFVS)A ‘1)
(wVva)A(xVaVvb)A
(FVZVc)A(bVEV) 2
3
e Decisions / Variable Branchings:
w=1lx=1y=1z=1 4

Dec. Unit Prop.

0 f———> S

w

o — o

_
X —>
y\

Z—> Cc—>

14 /115

Unit propagation

Level Dec. Unit Prop.

F = (NA(FVS)A oY A
(wVva)A(xVaVvb)A T i
(yVzVve)A(bvevd) 2 x—b

3y
e Decisions / Variable Branchings: \
w=1lx=1y=1z=1 4 Z———>c—> 4

e Additional definitions:
— Antecedent (or reason) of an implied assignment
» (bvEvd)ford
— Associate assignment with decision levels
» w=101, x=102, y=103,z=104
» r=100,d=104, ..

14 /115

Resolution proofs

e Refutation of unsatisfiable formula by iterated resolution
operations produces resolution proof

e An example:
F=@)AMb)A(GVc)A(aVb)A(aVd)A(aVd)
e Resolution proof:
(aV b) (3Vc)

N/
(¢) (bVc)
N/
(b) (b)
N/

L

e A modern SAT solver can generate resolution proofs using clauses

learned by the solver (ZM03]
15 /115

Unsatisfiable cores & proof traces

e CNF formula:

Level Dec. Unit Prop.
0 0 b —>

Implication graph with conflict

16 /115

Unsatisfiable cores & proof traces

e CNF formula:

Level Dec. Unit Prop.
0 0 b —>

Proof trace L: (3V c) (aV b) (&) (b)

16 /115

Unsatisfiable cores & proof traces

e CNF formula:

Level Dec. Unit Prop. (aVv b) (3Ve)
- N/
e @ (bvo)
1 SO
o CREPC
1

Resolution proof follows structure of conflicts

16 /115

Unsatisfiable cores & proof traces

e CNF formula:

Level Dec. Unit Prop. (aVv b) (3Ve)
- N/
e @ (bvo)
1 SO
o CREPC
1

Unsatisfiable subformula (core): (), (b),(aV c),(aV b)

16 /115

The DPLL algorithm

[DL60,DLL62]

Unassigned N

variables ?
lY
Satisfiable
Assign value
to variable
Unit

propagation

Conflict ?

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Unsatisfiable

e Optional: pure literal rule

17 /115

The DPLL algorithm

[DL60,DLL62)

F = (xVy)A(aVb)A(3Vb)A(aVb)A(3V D)

Unassigned N

variables ?
lY
Satisfiable
Assign value

to variable

l.—

Unit
propagation

N

Conflict ?

lv

N Can undo

decision ?
lv
Unsatisfiable
Backtrack &

flip variable

e Optional: pure literal rule

17 /115

The DPLL algorithm

—

Unassigned N

variables ?
lY
Satisfiable
Assign value
to variable
Unit

propagation

N

Conflict ?

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Unsatisfiable

e Optional: pure literal rule

[DL60,DLL62)

F = (xVy)A(aVb)A(3Vb)A(aVb)A(3V D)

Level

0
1
2

0

X

y

Dec. Unit Prop.

~N_

17 /115

The DPLL algorithm

[DL60‘DLL62]
— F = (xVy)A(aVb)A(3Vb)A(aVb)A(3VD)

Unassigned N

variables ?
1Y Level Dec. Unit Prop.
Satisfiable
Assign value 0 @
to variable
Unit 2 Y

propagation

N

Conflict ?

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Unsatisfiable

e Optional: pure literal rule

17 /115

The DPLL algorithm

—

Unassigned
variables ?

lY
Assign value
to variable

Unit
propagation

N

Conflict ?

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Unsatisfiable

l.—

N

Satisfiable

e Optional: pure literal rule

Level

0
1
2

3

[DL60,DLL62)

F = (xVy)A(aVb)A(3Vb)A(aVb)A(3V D)

17 /115

The DPLL algorithm

—

Unassigned
variables ?

lY
Assign value
to variable

Unit
propagation

N

Conflict ?

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Unsatisfiable

l.—

N

Satisfiable

e Optional: pure literal rule

[DL60,DLL62)

F = (xVy)A(aVb)A(3Vb)A(aVb)A(3V D)

Level Dec. Unit Prop.
0 0
1 X
2 y
3 a 1

17 /115

The DPLL algorithm

[DL60‘DLL62]
— F = (xVy)A(aVb)A(3Vb)A(aVb)A(3VD)

Unassigned N

variables ?
1Y Level Dec. Unit Prop.
Satisfiable
Assign value 0 @
to variable

Unit
propagation

N

Conflict ?

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Unsatisfiable

e Optional: pure literal rule

17 /115

The DPLL algorithm

[DL60‘DLL62]
— F = (xVy)A(aVb)A(3Vb)A(aVb)A(3VD)

Unassigned N

variables ?
1Y Level Dec. Unit Prop.
Satisfiable
Assign value 0 @
to variable

Unit
propagation

N

Conflict ?

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Unsatisfiable

e Optional: pure literal rule

17 /115

How significant is CDCL SAT solving?

e Sample of solvers:

POSIT: state of the art DPLL SAT solver in 1995

GRASP: first CDCL SAT solver, state of the art 1995~2000
Minisat: CDCL SAT solver, state of the art until the late 00s
Glucose: modern state of the art CDCL SAT solver

A

— Demo 1: model checking example (from IBM)

18 /115

How significant is CDCL SAT solving?

e Sample of solvers:

POSIT: state of the art DPLL SAT solver in 1995

GRASP: first CDCL SAT solver, state of the art 1995~2000
Minisat: CDCL SAT solver, state of the art until the late 00s
Glucose: modern state of the art CDCL SAT solver

A

— Demo 1: model checking example (from IBM)

e Demo 2: cooperative path finding (CPF)

18 /115

What is a CDCL SAT solver?

e Extend DPLL SAT solver with: [DP60,DLL62]

— Clause learning & non-chronological backtracking [mssosamssoo 8so7,207]

Search restarts [GSK98,BMS00,H07,B08]

Lazy data structures

Conflict-guided branching

19/115

What is a CDCL SAT solver?

e Extend DPLL SAT solver with: [DP60,DLL62]
— Clause learning & non-chronological backtracking [mssosamssoo 8so7,207]

» Exploit UIPs [MSS96a,55512)

» Minimize learned clauses [SB09,VG09]

» Opportunistically delete clauses [MSS96a,MSS99,GNO2)]

— Search restarts [GSK98,BMS00,H07,B08]

Lazy data structures
» Watched literals [MMZZMo1]

Conflict-guided branching

» Lightweight branching heuristics [MMZZMo1]
» Phase saving [S00,PDO7]

19/115

Outline

Clause Learning, UIPs & Minimization

20/115

Clause learning

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z\a 1

21/115

Clause learning

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z \ a 1
b
e Analyze conflict [MSS96a,MSS96b, MSS96c, MSS96d,MSS99]

21/115

Clause learning

Level Dec. Unit Prop.

0 0
1 x
2 y
3 z \: & > |
b
e Analyze conflict [MSS96a,MSS96b, MSS96c, MSS96d,MSS99]

— Reasons: x and z
» Decision variable & literals assigned at decision levels less than
current

21/115

Clause learning

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z \: & > |
b
e Analyze conflict [MSS96a,MSS96b, MSS96c, MSS96d,MSS99]

— Reasons: x and z
» Decision variable & literals assigned at decision levels less than
current
— Create new clause: (xV z)

21/115

Clause learning

Level Dec. Unit Prop.

0 1] _
(5VE) (2vb) (Rvzva)
1 X
2 y
3 z \: a > |
b
e Analyze conflict [MSS96a,MSS96b, MSS96c, MSS96d,MSS99]

— Reasons: x and z
» Decision variable & literals assigned at decision levels less than

current
— Create new clause: (xV z)
e Can relate clause learning with resolution

21/115

Clause learning

Level Dec. Unit Prop.

0 0

(3Vv b) (zvb) (RVZVa)
1 X |
5 P (3Vv2)
3 z \: a > |
b
e Analyze conflict [MSS96a,MSS96b, MSS96c, MSS96d,MSS99]

— Reasons: x and z
» Decision variable & literals assigned at decision levels less than

current
— Create new clause: (xV z)
e Can relate clause learning with resolution

21/115

Clause learning

Level Dec. Unit Prop.
0 0

(3Vv b) (zvb) (RVZVa)
L v
2 y T z)
3 “ \i ? /5 - (xV2)
b
e Analyze conflict [MSS96a,MSS96b, MSS96c, MSS96d,MSS99]

— Reasons: x and z
» Decision variable & literals assigned at decision levels less than

current
— Create new clause: (xV z)
e Can relate clause learning with resolution

21/115

Clause learning

Level Dec. Unit Prop.
0 0

(3Vv b) (zvb) (RVZVa)
1 X | /
2 y T z)
3 “ \i ? /:, - (xV2)
b
e Analyze conflict [MSS96a,MSS96b, MSS96c, MSS96d,MSS99]

— Reasons: x and z
» Decision variable & literals assigned at decision levels less than

current
— Create new clause: (xV z)
e Can relate clause learning with resolution
— Learned clauses result from (selected) resolution operations

21/115

Clause learning

Level Dec. Unit Prop.
0 0

(3Vv b) (zvb) (RVZVa)
1 X | /
2 y T z)
3 “ \i ? /:, - (xV2)
b
e Analyze conflict [MSS96a,MSS96b, MSS96c, MSS96d,MSS99]

— Reasons: x and z
» Decision variable & literals assigned at decision levels less than

current
— Create new clause: (xV z)
e Can relate clause learning with resolution
— Learned clauses result from (selected) resolution operations

¢ Note: GRASP-like clause learning

— Otbher instantiations of clause learning exist
21 /115

Clause learning — after backtracking

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z a 1

22 /115

Clause learning — after backtracking

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z

e Clause (X V Z) is asserting at decision level 1

22 /115

Clause learning — after backtracking

Level Dec. Unit Prop. Level Dec. Unit Prop.
0 0 0 0
1 X 1 X —> Z
2 y
3 V4

e Clause (X V Z) is asserting at decision level 1

22 /115

Clause learning — after backtracking

Level Dec. Unit Prop. Level Dec. Unit Prop.
0 0 0 0
1 X 1 X —> Z
2 y
3 z
e Clause (X V Z) is asserting at decision level 1
e Learned clauses are asserting (with exceptions) [MSS96a,MSS99]
[]

Backtracking differs from plain DPLL:

— Always bactrack after a conflict [ZMMMo1]

22 /115

Unique implication points (UIPs)

Level Dec. Unit Prop.

0 0
1 w
2 X
3 y\

4 z /
_—

J

o «— o
- <—no

23/115

Unique implication points (UIPs)

Level Dec. Unit Prop. (bve) (wvave) (xvavb) (7vzVa)
0 0 l
1 w (wV3avb)
2 x (wVxVa)
- |
x (wvxVyVZ)
4 z >

o €0

|
Y

- €=—o

e Learn clause (W VXV yV2Z)

23/115

Unique implication points (UIPs)

Level Dec. Unit Prop. (bve) (wvave) (xvavb) (7vzVa)
0 0 l
1 w (wV3avb)
2 x (wVxVa)
- |
x (wvxVyVZ)
4 z > a >

o €

i

- €=—o

e Learn clause (W VXV yV2Z)
e But ais an UIP [MSS96a,MSS99]
— Dominator in DAG for decision level 4

23/115

Unique implication points (UIPs)

Level Dec. Unit Prop. (E

B)
<

< € x € g — <

< o
\li)l

B

<

W

<

9

-

<

L8]

<

E:

=

<

N

<

&

<
<
w

e But ais an UIP [MSS96a,MSS99]
— Dominator in DAG for level 4

e Learn clause (w V XV a)
23/115

Multiple UIPs

Level Dec. Unit Prop.

0 0
1 w
2 X
3 y

~
N
/
s
X
o —
- «<—n

24 /115

Multiple UIPs

Level Dec. Unit Prop. e First UIP:
0 0 - Learn clause (w V y V 3)
1 w
2 X
3 y

Y

- €—o

24 /115

Multiple UIPs

Level Dec. Unit Prop. e First UIP:
0 0 - Learn clause (w V y V 3)
1 w e But there can be more than 1
UIP
2 X
3 y

- <— 0o

24 /115

Multiple UIPs

Level Dec. Unit Prop. e First UIP:
0 0 - Learn clause (w V y V 3)
LW e But there can be more than 1
ulp
2 - e Second UIP:
— Learn clause (x Vz V a)
¢ Y — Clause is not asserting

4 z\:\r)i

S

o <— o
- <—no

24 /115

Multiple UIPs

Level - Dec. Unit Prop e First UIP:
0 0 - Learn clause (w V y V 3)
LI e But there can be more than 1
ulp

2 * e Second UIP:

— Learn clause (x Vz V a)
¢ Y — Clause is not asserting

e In practice smaller clauses more

4 VA e _—

— Compare with (w VXV yVZ)

o — o

I effective
1

24 /115

Multiple UIPs

0
1

Level Dec. Unit Prop. e First UIP:
0 - Learn clause (w V y V 3)
w e But there can be more than 1
UlP
x e Second UIP:

— Learn clause (x Vz V a)
Y — Clause is not asserting

e In practice smaller clauses more

VA e _

i effective
s 1

SN
e Multiple UIPs proposed in GRASP

— First UIP learning proposed in Chaff
e Not used in recent state of the art CDCL SAT solvers

— Compare with (w VXV yVZ)

[MSS96a,MSS99]

[ZMMMO1]

24 /115

Multiple UIPs

Level Dec. Unit Prop.

0
1

e First UIP:
0 — Learn clause (w V y V 3)
w e But there can be more than 1
UIP
- e Second UIP:
— Learn clause (x Vz V a)
Y — Clause is not asserting
e In practice smaller clauses more
‘ > ! T effective
\ l l — Compare with (w VXV yV2Z)
s b—> L
e Multiple UIPs proposed in GRASP [MSS962,MSS99]

— First UIP learning proposed in Chaff
e Not used in recent state of the art CDCL SAT solvers

e Recent results show it can be beneficial on some instances

[ZMMMO1]

[55512]

24 /115

Clause minimization |

Level Dec. Unit Prop.

0 0
b
c

N7

e

25/115

Clause minimization |

Level Dec. Unit Prop. (3ve) (2vbve) (xvyvzva)
o 0 |
1 xX——> b (zvbva)
- | -
(XVyVZzVh)

o Learn clause (X VyV ZVb)

25 /115

Clause minimization |

Level Dec. Unit Prop. (3ve) (2vbve) (xvyvzva) (xVb)
o 0 |
1 xX——> b (zvbva)
- R
(xVyVzVvb)

o Learn clause (X VyV ZVb)

e Apply self-subsuming resolution (i.e. local minimization) [SB09]

25 /115

Clause minimization |

—
X1
<

<1
NI
<

SI

Level Dec. Unit Prop. (3ve) (2vbve) (xvyvzva) (xVb)
o 0 |
1 X—— b (zv bV a)
. m 1
V
y

=
<
<
L\J/I

e Apply self-subsuming resolution (i.e. local minimization) [SB09]

25 /115

Clause minimization |

—
X1
<

<1
NI
<

SI

Level Dec. Unit Prop. (3ve) (2vbve) (xvyvzva) (xVb)
o 0 |
1 X—— b (zv bV a)
. m 1
V
y

=
<
<
L\J/I

e Apply self-subsuming resolution (i.e. local minimization) [5B09]

e Learn clause (xVyV 2)

25 /115

Clause minimization Il

Level Dec. Unit Prop.
0 0
1

e
| \Zi

26 /115

Clause minimization Il

Level Dec. Unit Prop.
0 0
1

e
| *\2<

e Learn clause (w V X V €)

26 /115

Clause minimization Il

Level Dec. Unit Prop.

.) e Learn clause (w V X V C)

e Cannot apply self-subsuming
L resolution

w a Cc
\ / — Resolving with reason of c yields
b (WVXV3aVvhb)
2 X e \
\\' d— L

26 /115

Clause minimization Il

Level Dec. Unit Prop.

.) e Learn clause (w V X V C)

e Cannot apply self-subsuming
L resolution

w a Cc
\ / — Resolving with reason of c yields
b (WVXVavhb)
) e Can apply recursive minimization
X &
\\' d— L

26 /115

Clause minimization Il

Level Dec. Unit Prop.

o s (RN

0 0 .
e Cannot apply self-subsuming
L v ? < resolution
\ / — Resolving with reason of c yields
b (WVXV3aVvhb)
) e Can apply recursive minimization
X &
\\' d—> 1
e Marked nodes: literals in learned clause [SBO9]

26 /115

Clause minimization Il

Level Dec. Unit Prop.

. I ATV,
0 0 .
e Cannot apply self-subsuming
L v =& . resolution
\ / — Resolving with reason of ¢ yields
b

(WwVXV3aVhb)

) e Can apply recursive minimization
X &

NN

—>J_

e Marked nodes: literals in learned clause [SBO9]
e Trace back from ¢ until marked nodes or new decision nodes

— Drop literal c if only marked nodes visited

26 /115

Clause minimization Il

Level Dec. Unit Prop. _ o
o Learn—elause{w 3 €}
0 0

Cannot apply self-subsuming

& v = . resolution
\ / — Resolving with reason of c yields
b (WVXVavhb)
) e Can apply recursive minimization
X &

Learn clause (w V X)

N

e Marked nodes: literals in learned clause [SBO9]

e Trace back from ¢ until marked nodes or new decision nodes
— Drop literal c if only marked nodes visited

26 /115

Clause minimization Il

Level Dec. Unit Prop. _ o
o Learn—elause{w 3 €}
0 0

Cannot apply self-subsuming
1 A e s N

resolution
\ / — Resolving with reason of c yields

b (WwVXV3aVhb)

) Can apply recursive minimization
X &

N

Learn clause (w V X)

e Marked nodes: literals in learned clause [SBO9]

e Trace back from ¢ until marked nodes or new decision nodes
— Drop literal c if only marked nodes visited

¢ Recursive minimization runs in (amortized) linear time

26 /115

Outline

Search Restarts & Lazy Data Structures

27 /115

Search restarts |

e Heavy-tail behavior: [GSK98]

%below

o
©

o
®

0.7 1

0.6 1

0.5 1

0.4 1

0.3

0 2000 4000 6000 8000 10000 12000 *oackiracks

— 10000 runs, branching randomization on satisfiable industrial
instance

e Use rapid randomized restarts (search restarts)

28 /115

Search restarts Il

e Restart search after a number
of conflicts

cutoff cutoff solution

29 /115

Search restarts Il

e Restart search after a number
of conflicts

e Increase cutoff after each
restart

— Guarantees completeness
— Different policies exist

cutoff

cutoff

29 /115

Search restarts Il

e Restart search after a number
of conflicts
e Increase cutoff after each
restart
— Guarantees completeness
— Different policies exist
e Works for SAT & UNSAT
instances. Why?

— Not explained by Enff
heavy-tailed behavior

cutoff

29 /115

Search restarts Il

Restart search after a number
of conflicts

Increase cutoff after each
restart

— Guarantees completeness
— Different policies exist JUECELES .

5 A
Works for SAT & UNSAT ol
instances. Why?
— Not explained by ﬂoff

heavy-tailed behavior
— But there exist proof
complexity arguments
Learned clauses effective after
restart(s)

29

115

Data structures basics

e Each literal / should access clauses containing /
— Why?

30/115

Data structures basics

e Each literal / should access clauses containing /
— Why? Unit propagation

30/115

Data structures basics

e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause

30/115

Data structures basics
e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause

e Number of clause references equals number of literals, L

30/115

Data structures basics

e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause
e Number of clause references equals number of literals, L
— Clause learning can generate large clauses

» Worst-case size: O(n)

30/115

Data structures basics

e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause
e Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)

— Worst-case number of literals: O(m n)

30/115

Data structures basics

e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause
e Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)

— Worst-case number of literals: O(m n)
— In practice,

Unit propagation slow-down worse than linear as clauses are learned !

30/115

Data structures basics

Each literal / should access clauses containing /
— Why? Unit propagation

Clause with k literals results in k references, from literals to the
clause

Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)
— Worst-case number of literals: O(m n)
— In practice,

Unit propagation slow-down worse than linear as clauses are learned !

Clause learning to be effective requires a more efficient
representation:

30/115

Data structures basics

Each literal / should access clauses containing /
— Why? Unit propagation

Clause with k literals results in k references, from literals to the
clause

Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)
— Worst-case number of literals: O(m n)
— In practice,

Unit propagation slow-down worse than linear as clauses are learned !

Clause learning to be effective requires a more efficient
representation: Watched Literals [MMZZMo1]

30/115

Data structures basics

e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause
e Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)
— Worst-case number of literals: O(m n)
— In practice,

Unit propagation slow-down worse than linear as clauses are learned !

e Clause learning to be effective requires a more efficient
representation: Watched Literals [MMZZMo1]

— Watched literals are one example of lazy data structures

» But there are others

30/115

Watched literals

e Important states of a clause

[MMZZMo1]

literalsO = 4
literals1=0
size=5

EONEN

unit

literalsO = 4
literals1= 1
size=5

DX A

satisfied

literalsO = 5
literals1=0
size=5

ROXEO20N

unsatisfied

31/115

Watched literals

[MMZZMo1]
' '
e Important states of a clause ’ N ‘ N
unresolved
e Associate 2 references with @3 @1
each clause L
W ‘ N unresolved
@5 @3 @1
,,,,,,,,,,,, i e
@5 @3 @7 @1
v
satisfied
@5 @3 @ @7 @1
v
’ N ‘ N after backtracking to level 4
@3 @1

31/115

Watched literals

[MMZZMo1]
' '
e Important states of a clause ’ N ‘ N
unresolved
e Associate 2 references with @3 @1
each clause L
e Deciding unit requires M ‘ N unresolved
traversing all literals e @3 e1
R R
@5 @3 @7 @1
y
satisfied
@5 @3 @ @7 @1
v
’ N ‘ N after backtracking to level 4
@3 @1

31/115

Watched literals

[MMZZMo1]
| |
e Important states of a clause ’ N ‘ N
unresolved
e Associate 2 references with @ @l
each clause L
e Deciding unit requires W ‘ N unresolved
traversing all literals @5 @3 @1
e References unchanged when = [
backtracking W w i
@5 @3 @7 @1
||
satisfied
@ @3 @ @7 @l
(I
’ N ‘ N after backtracking to level 4
@3 @1

31/115

Additional key techniques

e Lightweight branching [MMZZMo1]
— Use conflict to bias variables to branch on, associate score with
each variable
— Prefer recent bias by regularly decreasing variable scores
— Recent promising ML-based branching [LGPC16a,LGPC16b]

32/115

Additional key techniques

e Lightweight branching [MMZZMo1]
— Use conflict to bias variables to branch on, associate score with
each variable
— Prefer recent bias by regularly decreasing variable scores
— Recent promising ML-based branching [LGPC16a,LGPC16b]

e Clause deletion policies

— Not practical to keep all learned clauses
— Delete larger clauses [E.g. MSS96a,MS599]
— Delete less used clauses [E.g. GN02,ES03]

32/115

Additional key techniques

e Lightweight branching [MMZZMo1]
— Use conflict to bias variables to branch on, associate score with
each variable
— Prefer recent bias by regularly decreasing variable scores
— Recent promising ML-based branching [LGPC16a,LGPC16b]

e Clause deletion policies

— Not practical to keep all learned clauses
— Delete larger clauses [E.g. MSS96a,MS599]
— Delete less used clauses [E.g. GN02,ES03]

e Other effective techniques:

— Phase saving [500,PDO7]
— Luby restarts [HO7]
— Literal blocks distance [AS09]
— Preprocessing/inprocessing [Eg. JHB12,HJLSB15]

32/115

Outline

Why CDCL Works?

33/115

Why CDCL works — a practitioner’s view

e GRASP-like clause learning extensively inspired in circuit reasoners

— UIPs mimic unique sensitization points (USPs), from testing
— Analysis of conflicts organized by decision levels

» In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN,

etc.
» Need to find ways to exploit the circuit's internal structure
» Several ideas originated in earlier work [MSS94a,MSS94b]

e There are also proof complexity arguments

34 /115

Why CDCL works — a practitioner’s view

e GRASP-like clause learning extensively inspired in circuit reasoners

— UIPs mimic unique sensitization points (USPs), from testing
— Analysis of conflicts organized by decision levels

» In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN,

etc.
» Need to find ways to exploit the circuit's internal structure
» Several ideas originated in earlier work [MSS94a,MSS94b]

e Understanding problem structure is essential

— Clauses are learned locally to each decision level
— UIPs further localize the learned clauses
— GRASP-like clause learning aims at learning small clauses, related

with the sources of conflicts
— Most practical problem instances exhibit the structure GRASP-like
clause learning is most effective on

» Most problems are not natively represented in clausal form [513]

e There are also proof complexity arguments

34 /115

Part Il

Problem Modeling for SAT

35/115

Outline

Recap Clausification of Boolean Formulas

36 /115

Representing Boolean formulas / circuits |

e Satisfiability problems can be defined on Boolean circuits/formulas
— Can use any logic connective: A, V, =, — 4>, ...
e Can represent circuits/formulas as CNF formulas [T68,PG86]

— For each (simple) gate, CNF formula encodes the consistent
assignments to the gate's inputs and output

» Given z = OP(x, y), represent in CNF z <> OP(x, y)

— CNF formula for the circuit is the conjunction of CNF formula for
each gate

Fe=(aVvVe)A(bVc)A(aVbVT) 2:@0
Fe=(FVEANGEVEA(rVsVi) rst

37 /115

Representing Boolean formulas / circuits |l

a b c| Feabe)
2:@0 00 0] 0
00 1 1
01 0 0
01 1 1
ab 1 00 0
P00 01 11 10 Lo 1 x
olfell ol| 1 ((o 110 1
— 1 1 1 0

Fe=(aVec)A(bVc)A(aVbVE)

38 /115

Representing Boolean formulas / circuits Il

e CNF formula for the circuit is the conjunction of the CNF formula
for each gate
— Can specify objectives with additional clauses

a — X
b_NAND c AND Y z=17?
P "D

39/115

Representing Boolean formulas / circuits Il

e CNF formula for the circuit is the conjunction of the CNF formula
for each gate
— Can specify objectives with additional clauses

a — X
b_NAND c AND Y z=17?
P "D

F = (aVx)A(bVx)A(3VbVX)A
(xVy)A(cVy)N(XVEVY)A
FV2)A(dVZ)A(yVdVZ)A(2)

e Note: z=d V (cA(=(anb)))
— No distinction between Boolean circuits and (non-clausal) formulas,
besides adding new variables

39/115

Representing Boolean formulas / circuits Il

e CNF formula for the circuit is the conjunction of the CNF formula
for each gate
— Can specify objectives with additional clauses

a — X
b_NAND c AND Y z=17?
Dy)

F = (@aVvx)A(bVx)A(a3VDVEX)A
(xVy)A(cVy)N(XVEVY)A
FV2)A(dVZ)A(yVdVZ)A(2)

e Note: z=d V (cA(=(anb)))
— No distinction between Boolean circuits and (non-clausal) formulas,
besides adding new variables

e Easy to do more structures: ITEs; Adders; etc.
39 /115

Outline

Hard and Soft Constraints

40 /115

Hard vs. soft constraints

e Hard: Constraints that must be satisfied

41 /115

Hard vs. soft constraints

e Hard: Constraints that must be satisfied
e Soft: Constraints that we would like to satisfy, if possible

— Associate a cost (can be unit) with falsifying each soft constraint
— For a hard constraint, the cost can be viewed as co

41 /115

Hard vs. soft constraints

e Hard: Constraints that must be satisfied
e Soft: Constraints that we would like to satisfy, if possible

— Associate a cost (can be unit) with falsifying each soft constraint
— For a hard constraint, the cost can be viewed as co

e An example:
— How to model linear cost function optimization?

g n
min Y0, 6%

s.t. ©

41 /115

Hard vs. soft constraints

e Hard: Constraints that must be satisfied
e Soft: Constraints that we would like to satisfy, if possible

— Associate a cost (can be unit) with falsifying each soft constraint
— For a hard constraint, the cost can be viewed as co

e An example:
— How to model linear cost function optimization?

. n
min 7Gx
s.t. ©

— Hard constraints: ¢

41 /115

Hard vs. soft constraints

e Hard: Constraints that must be satisfied
e Soft: Constraints that we would like to satisfy, if possible

— Associate a cost (can be unit) with falsifying each soft constraint
— For a hard constraint, the cost can be viewed as co

e An example:
— How to model linear cost function optimization?
g n
i 2 j=1 G X
s.t. ©

— Hard constraints: ¢
— Soft constraints: (x;), each with cost ¢;

41 /115

Outline

Linear Constraints

42 /115

Linear constraints

o Cardinality constraints: Z}’Zl xi < k?
— How to handle AtMost1 constraints, Z}':lxj <17
— General form: 377, x; >a k, with 1 € {<, <, =, >, >}

43 /115

Linear constraints

o Cardinality constraints: Z}’lej- <k?
— How to handle AtMost1 constraints, Z};lxj <17
— General form: 377, x; >a k, with 1 € {<, <, =, >, >}

e Pseudo-Boolean constraints: Z}’Zl ajx; > k, with
> € {<, <, =,2,>)

43 /115

Linear constraints

o Cardinality constraints: Z}’Zl xi < k?
— How to handle AtMost1 constraints, Z}':lxj <17
— General form: 377, x; >a k, with 1 € {<, <, =, >, >}

e Pseudo-Boolean constraints: EJ’-’ZI ajx; > k, with
> € {<, <, =,2,>)

e If variables are non-Boolean, e.g. with finite domain
— Need to encode variables (more later)

43 /115

Equalsl, AtlLeastl & AtMostl constraints

o > 7 1x =1 encode with (37, x < 1) A (D7, x5 > 1)

. f:lxj > 1: encode with (x1 Vxo V...V x;)

° J 1 Xj < 1 encode with:

— Pairwise encoding

» Clauses: O(n®) ; No auxiliary variables

— Sequential counter [S05]
» Clauses: O(n) ; Auxiliary variables: O(n)
— Bitwise encoding [PO7,FPO1]

» Clauses: O(nlogn) ; Auxiliary variables: O(log n)

44 /115

Pairwise encoding

e How to (propositionally) encode AtMost1 constraint
at+b+c+d<17?

45 /115

Pairwise encoding

e How to (propositionally) encode AtMostl constraint
at+b+c+d<17

a—>bAEAd
b—cAdAZ
c—>dAaAD
d—>3AbAC

LEl

— Encoded as: (3Vb)A(3VE

>
o
<
E;l
>
ol
<
\('LI
>
=
<
Q.
N—r
>
o
<
e;l

45 /115

Pairwise encoding

e How to (propositionally) encode AtMost1 constraint
at+b+c+d<17?

a—>bAEAd
b—cAdAZ
c—>dAaAD
d—3aAbAC

LEl

— Encoded as: (3Vb)A(3VE

e With N variables, number of clauses becomes 7"(";1)

— But no additional variables

>
m
<
S:I
>
=
<
\(?/I
>
=
<
Q)
N—r
>
o

45 /115

Sequential counter encoding

e Encode Elexj' < 1 with sequential counter:
(x1Vs1) A (% V 5p_1)A
/\1<i<n (()_(I \ Si) A (§i71 \ Si) A ()_<,' V §,‘,1))

— If some x; = 1, then all s; variables must be assigned
» si=1fori>j,andso x; =0 fori>j
» si=0fori<j,andso x; =0 for i <j
» Thus, all other x; variables must take value 0

— If all x; =0, can find consistent assighment to s; variables

— O(n) clauses ; O(n) auxiliary variables

46 /115

Bitwise encoding

e Encode ZJ'-’:lxj < 1 with bitwise encoding:

o An example: x3 +x +x3 <1

47 /115

Bitwise encoding

e Encode ZJ'-’:lxj < 1 with bitwise encoding:

- Auxiliary variables vp, ..., v, r = [log n] (with n > 1)

- Ifx; =1, then vy...v,_1 = by...b,_1, the binary encoding of j — 1
Xj — (V() = bo)/\. . ./\(V,71 = b,fl) = ()_g\/(VO = bg)/\. . ./\(Vrfl = brfl))

o An example: x3 +x +x3 <1

J—1 wvivw

X1 0 00
X2 1 01
X3 2 10

47 /115

Bitwise encoding

e Encode ZJ'-’:lxj < 1 with bitwise encoding:
— Auxiliary variables vo,...,v,—1 ; r = [logn] (with n > 1)
- Ifx; =1, then vy...v,_1 = by...b,_1, the binary encoding of j — 1
xi = (vo = bo)A.. . A(vic1 = br—1) < (XV(vo = bo)A. . A(Vr—1 = br—1))
— Clauses (x; V (vi <+ b)) = (X V [;), i=0,...,r — 1, where
» i=v,ifb=1
» [= Vj, otherwise

o An example: x3 +x +x3 <1

J—1 wvivw

X1 0 00 (Vi) A (X V)
X0 1 01 (% Vi) A (% Vw)
x3 2 10 (3Vwvi)A(R3Vin)

47 /115

Bitwise

encoding

e Encode ZJ'-’:lxj < 1 with bitwise encoding:

Auxiliary variables vo,...,v,_1 ; r = [logn] (with n > 1)
If x; =1, then vo...v,—1 = by...b,_1, the binary encoding of j — 1
xi = (vo = bo)A.. . A(vic1 = br—1) < (XV(vo = bo)A. . A(Vr—1 = br—1))
Clauses (xj V (vi <+ b)) = (X V i), i=0,...,r — 1, where

> =y, ifb=1

» i = v;, otherwise
If x; = 1, assignment to v; variables must encode j — 1

» For consistency, all other x variables must not take value 1
If all x; =0, any assignment to v; variables is consistent

O(nlogn) clauses ; O(logn) auxiliary variables

e An example: x3 +x +x3 <1

J—1 wviv

x1 0 00 (V) A (Vi)
X0 1 01 (% Vi) A (% Vw)
x3 2 10 (%3 V V1) A (X V %)

47 /115

General cardinality constraints

o General form: 3 7, x; < k (or X2 x; > k)

— Operational encoding [Wos]

» Clauses/Variables: O(n)
» Does not guarantee arc-consistency

Generalized pairwise

» Clauses: O(2") ; no auxiliary variables

— Sequential counters [S05]
» Clauses/Variables: O(n k)

— BDDs [ES06]
» Clauses/Variables: O(n k)

— Sorting networks [ESO6]
» Clauses/Variables: O(nlog” n)

— Cardinality Networks: [ANORC09,ANORC11a]
» Clauses/Variables: O(nlog” k)

— Pairwise Cardinality Networks: [czI10]

48 /115

Generalized pairwise encoding

o General form: > 7, x; < k

e Any combination of k 4 1 true variables is disallowed

49 /115

Generalized pairwise encoding

o General form: > 7, x; < k

e Any combination of k 4 1 true variables is disallowed

e Example: a+b+c+d <2

49 /115

Generalized pairwise encoding

o General form: > 7, x; < k

e Any combination of k 4 1 true variables is disallowed

e Example: a+b+c+d <2

aANb—¢ = (a3VbVvi)
aANb—d = (aVvbVvd)
ahc—d = (avevd)
bAc—d = (bVvEVvd)

— Encoded as: (3VbVE)A(ZVbVd)A(ZVEV

E;I
>
=
<
ol
<
&I

49 /115

Generalized pairwise encoding

o General form: > 7, x; < k

e Any combination of k 4 1 true variables is disallowed

e Example: a+b+c+d <2

aANb—¢ = (a3VbVvi)
aANb—d = (aVvbVvd)
ahc—d = (avevd)
bAc—d = (bVvcVd)

e In general, number of clauses is Cl?+1

— Recall: for AtMostl1 (i.e. for k = 1), number of clauses is: @

49 /115

Another example

e Example: a+b+c+d+e<2
e Encoding will contain C3 = 10 clauses:

aANb—¢C
aAb—d
aNb—eé
ahc—d
aNnc— €
aNd — €
bAc—d
bAc— &
bAd — &
chNd—é

L L L W
™ Q| @™ QO

~— N e N e N e

FERLLLEiey

P e e P ey

Ol T oI T LIy

<< <K<K LKL
Q Q0 O Q0 O OITI T
<< << KKK KK KL

M| ™|

50 /115

Sequential counter — revisited |

e Encode 7 ; x; < k with sequential counter:
z1 |‘T2 Tn
S1,1 521 Sp—1,1
51,2 52,2 Sn—1,2
1] 1
] I]
1] 1
| | e e mmm o 1
1] 1
1] 1
1 | 1
S1,k 52,k Sn—1,k
| 1 | Vo Un

e Equations for each block 1 < /< n, 1<) < k:

s = ZJ’ 1 X Si1=Si—11 VX
Sij = Si—1j V Si—1j-1 N\ Xj
s; represented in unary vi=(sii1k Ax;) =0

51/

115

Sequential counter — revisited Il

o CNF formula for 37, x; < k:

— Assume: k>0An>1
— Indeces: 1 <i<n,1<j<k

X1 \/X171)

=51,)

- V Si1)

—si—11 V' Si1)

X Vst i1V S,'J)
oS5V S;,J‘)

=X V TSi—1 k)

—Xp V jSnfl,k)

PR

e O(n k) clauses & variables

52 /115

Pseudo-Boolean constraints

e General form: 21’7:1 ajxj <b

— Operational encoding [Wos]

» Clauses/Variables: O(n)
» Does not guarantee arc-consistency

— BDDs [ES06]

» Worst-case exponential number of clauses

53 /115

Pseudo-Boolean constraints

e General form: 21’7:1 ajxj <b

— Operational encoding [Wos]

» Clauses/Variables: O(n)
» Does not guarantee arc-consistency

— BDDs [ES06]
» Worst-case exponential number of clauses
— Polynomial watchdog encoding [BBROY]

» Let v(n) = log(n) log(amax)
» Clauses: O(n’v(n)) ; Aux variables: O(n’v(n))

53 /115

Pseudo-Boolean constraints

e General form: 21’7:1 ajxj <b

— Operational encoding [Wos]

» Clauses/Variables: O(n)
» Does not guarantee arc-consistency

— BDDs [ES06]
» Worst-case exponential number of clauses
— Polynomial watchdog encoding [BBROY]

» Let v(n) = log(n) log(amax)
» Clauses: O(n’v(n)) ; Aux variables: O(n’v(n))

Improved polynomial watchdog encoding [ANORC11b]

» Clauses & aux variables: O(n*log(amax))

53 /115

Encoding PB constraints with BDDs |

e Encode 3x1 +3x +x3 <3
e Construct BDD

— E.g. analyze variables by decreasing coefficients
e Extract ITE-based circuit from BDD

54 /115

Encoding PB constraints with BDDs |

e Encode 3x1 +3x +x3 <3
e Construct BDD

— E.g. analyze variables by decreasing coefficients
e Extract ITE-based circuit from BDD

x1 S Ime
10
al bf
¥4 z
x2 3 e x S mE
0 1 0 1
a b a b
0 1
z z
x5 3 e x3 3 ImE
0o 1 0 1
al b al b]
1 0 1 0

54 /115

Encoding PB constraints with BDDs ||

e Encode 3x; +3xp +x3 <3
e Extract ITE-based circuit from BDD

e Simplify and create final circuit:

x| e

X2 X3 X3 X2

55/115

More on PB constraints

o How about Y 7 ; a;x; = k ?

56 /115

More on PB constraints

o How about Y 7 ; a;x; = k ?
- Canuse (37, 3% > k) A (X 3% < k), but...
> >.i;1 2 X = k is a subset-sum constraint

(special case of a knapsack constraint)

56 /115

More on PB constraints

o How about Y 7 ; a;x; = k ?
- Canuse (37, 3% > k) A (X 3% < k), but...
> >.i;1 2 X = k is a subset-sum constraint

(special case of a knapsack constraint)
» Cannot find all consequences in polynomial time [S03,FS02,T03]

56 /115

More on PB constraints

o How about Y 7 ; a;x; = k ?
- Canuse (37, 3% > k) A (X 3% < k), but...
> >.i;1 2 X = k is a subset-sum constraint

(special case of a knapsack constraint)
» Cannot find all consequences in polynomial time [S03,FS02,T03]

e Example:

dx1 + 3x0 + 2X3 =¥

56 /115

More on PB constraints

o How about Y 7 ; a;x; = k ?
- Canuse (37, 3% > k) A (X 3% < k), but...

> >.i;1 2 X = k is a subset-sum constraint
(special case of a knapsack constraint)
» Cannot find all consequences in polynomial time [S03,FS02,T03]

e Example:

dx1 + 3x0 + 2X3 =¥

- Replace by (4X1 + 3X2 + 2X3 2 5) N (4X1 + 3X2 + 2X3 S 5)

56 /115

More on PB constraints

o How about Y 7 ; a;x; = k ?
- Canuse (37, 3% > k) A (X 3% < k), but...

> >.i;1 2 X = k is a subset-sum constraint
(special case of a knapsack constraint)
» Cannot find all consequences in polynomial time [S03,FS02,T03]

e Example:

dx1 + 3x0 + 2X3 =¥

- Replace by (4X1 + 3X2 + 2X3 2 5) N (4X1 + 3X2 + 2X3 S 5)
— Let X = 0

56 /115

More on PB constraints

o How about Y 7 ; a;x; = k ?
- Canuse (37, 3% > k) A (X 3% < k), but...

> >.i;1 2 X = k is a subset-sum constraint
(special case of a knapsack constraint)
» Cannot find all consequences in polynomial time [S03,FS02,T03]

e Example:

4x1 +3x0 +2x3 =5
- Replace by (4X1 + 3X2 + 2X3 2 5) N (4X1 + 3X2 + 2X3 S 5)

— Let X = 0
— Either constraint can still be satisfied, but not both

56 /115

Outline

Encoding CSPs

57 /115

CSP constraints

e Many possible encodings:

— Direct encoding [dK89,GJ96,W00]
— Log encoding [Wo0]
— Support encoding [K90,G02]
— Log-Support encoding [G07]
— Order encoding for finite linear CSPs [TTKBO9]

58 /115

Direct encoding for CSP w/ binary constraints

Variable x; with domain D;, with m; = |Dj|

Constraints are relations over domains of variables
— For a constraint over xi, ..., xk, define relation R C Dy X --- x Dy
— Need to encode elements not in the relation
— For a binary relation, use set of binary clauses, one for each element
not in R

Represent values of x; with Boolean variables x; 1, ..., X m,

Require 7" xjx =1
— Suffices to require > " x; , > 1 [Woo]

If the pair of assignments x; = v; A x; = v; is not allowed, add
binary clause (i, V X.,)

59 /115

Additional topics

e Encoding problems to SAT is ubiquitous:

Many more encodings of finite domain CSP into SAT

Encodings of Answer Set Programming () into SAT

Eager SMT solving

Theorem provers iteratively encode problems into SAT

Model finders interatively encode problems into SAT

60 /115

Outline

Modeling Examples & Exercises

61 /115

Minimum vertex cover

e The problem:
— Graph G =(V,E)
— Vertex cover U C V
» For each (vi, v;) € E, either vi € Uor v; € U

— Minimum vertex cover: vertex cover U of minimum size

62 /115

Minimum vertex cover

e The problem:
— Graph G =(V,E)
— Vertex cover U C V
» For each (vi, v;) € E, either vi € Uor v; € U

— Minimum vertex cover: vertex cover U of minimum size

Vertex cover: {vo, v3, va}

62 /115

Minimum vertex cover

e The problem:
— Graph G =(V,E)
— Vertex cover U C V
» For each (vi, v;) € E, either vi € Uor v; € U

— Minimum vertex cover: vertex cover U of minimum size

Vertex cover: {vo, v3, va}

@ ° Min vertex cover: {vi}

62 /115

Minimum vertex cover

¢ Modeling with Pseudo-Boolean Optimization (PBO):
— Variables: x; for each v; € V, with x; = 1 iff v; € U
— Clauses: (x; V x;) for each (vi,v;) € E
— Objective function: minimize number of true x; variables

» l.e. minimize vertices included in U

63 /115

Minimum vertex cover

¢ Modeling with Pseudo-Boolean Optimization (PBO):
— Variables: x; for each v; € V, with x; = 1 iff v; € U
— Clauses: (x; V x;) for each (vi,v;) € E
— Objective function: minimize number of true x; variables

» l.e. minimize vertices included in U

@ @ minimize X1+ X2 + X3 + x4
subject to (X1 Vx2) A (x1 V x3) A (X1 V xa)

63 /115

Minimum vertex cover

¢ Modeling with Pseudo-Boolean Optimization (PBO):
— Variables: x; for each v; € V, with x; = 1 iff v; € U
— Clauses: (x; V x;) for each (vi,v;) € E
— Objective function: minimize number of true x; variables

» l.e. minimize vertices included in U

@ @ minimize X1+ X2 + X3 + x4
subject to (X1 Vx2) A (x1 V x3) A (X1 V xa)

e Alternative propositional encoding:

{(=x1), (mx2), (=x3), (—xa) }

{(x1 Vx2),(x1Vx3),(x1V xq)}

¥s
PH

63 /115

Graph coloring
e Given undirected graph G = (V, E) and k colors:

— Can we assign colors to vertices of G s.t. any pair of adjacent
vertices are assigned different colors?

64 /115

Graph coloring

e Given undirected graph G = (V/, E) and k colors:
— Can we assign colors to vertices of G s.t. any pair of adjacent
vertices are assigned different colors?

Valid coloring Invalid coloring

64 /115

Graph coloring

e Given undirected graph G = (V, E) and k colors:
— Can we assign colors to vertices of G s.t. any pair of adjacent
vertices are assigned different colors?

Valid coloring Invalid coloring

e How to model color assignments to vertices?

64 /115

Graph coloring

e Given undirected graph G = (V, E) and k colors:
— Can we assign colors to vertices of G s.t. any pair of adjacent
vertices are assigned different colors?

Valid coloring Invalid coloring

e How to model color assignments to vertices?
- xjj = 1 iff vertex v; € V is assigned color j € {1,... k}

64 /115

Graph coloring

e Given undirected graph G = (V, E) and k colors:
— Can we assign colors to vertices of G s.t. any pair of adjacent
vertices are assigned different colors?

Valid coloring Invalid coloring
e How to model color assignments to vertices?
- x;j = 1 iff vertex v; € V is assigned color j € {1,... k}
e How to model adjacent vertices with different colors?

64 /115

Graph coloring

e Given undirected graph G = (V, E) and k colors:
— Can we assign colors to vertices of G s.t. any pair of adjacent
vertices are assigned different colors?

Valid coloring Invalid coloring

e How to model color assignments to vertices?

- xjj = 1 iff vertex v; € V is assigned color j € {1,... k}
e How to model adjacent vertices with different colors?

= (ﬁX,',j V ﬁX/J) if (V,'7 V/) € E, with j € {1, ey k}

64 /115

Graph coloring

e Given undirected graph G = (V, E) and k colors:
— Can we assign colors to vertices of G s.t. any pair of adjacent
vertices are assigned different colors?

Valid coloring Invalid coloring

e How to model color assignments to vertices?

- xjj = 1 iff vertex v; € V is assigned color j € {1,... k}
e How to model adjacent vertices with different colors?

= (=xij Vi) if (vi,vy) € E, with j € {1,... k}
e How to model vertices get some color?

64 /115

Graph coloring

e Given undirected graph G = (V, E) and k colors:
— Can we assign colors to vertices of G s.t. any pair of adjacent
vertices are assigned different colors?

Valid coloring Invalid coloring

e How to model color assignments to vertices?

- xjj = 1 iff vertex v; € V is assigned color j € {1,... k}
e How to model adjacent vertices with different colors?

= (=xij Vi) if (vi,vy) € E, with j € {1,... k}
e How to model vertices get some color?

- Yjeqt,.kXij =1 forvieV

64 /115

Graph coloring

e Given undirected graph G = (V, E) and k colors:
— Can we assign colors to vertices of G s.t. any pair of adjacent
vertices are assigned different colors?

Valid coloring Invalid coloring

e How to model color assignments to vertices?

- xjj = 1 iff vertex v; € V is assigned color j € {1,... k}
e How to model adjacent vertices with different colors?

= (=xij Vi) if (vi,vy) € E, with j € {1,... k}
e How to model vertices get some color?

- Yjeqt,.kXij =1 forvieV

- Note: it suffices to use <\/je{1,...,k} Xi,j)

64 /115

The N-Queens problem |

e The N-Queens Problem:

Place N queens on a N x N board, such that no two queens attack
each other

e Example for a 5 x 5 board:

Q

65 /115

The N-Queens problem |l

xjj: 1 if queen placed in position (/,/); 0 otherwise

Each row must have exactly one queen:

N
1<i<N, D xj=1
Jj=1

Each column must have exactly one queen:

N
L<j<N, > %=1
i=1

Also, need to define constraints on diagonals...

66 /115

The N-Queens problem Il

e Each diagonal can have at most one queen:

j—1
i=1 2<j<N, in+kj—k <1
k=0

N—j
N i=N, 1<j<N, Y xijk<1
N\ N k=0
Y AN N—i
N\ N : :
j=1 1<i<N, Xivk jrk <1
/\ /\ /\ /\ ; +k j+k

i—1
J=N, 2<i<N, in—kj—kgl
k=0

67 /115

Design debugging

[SMVLS'07]

Correct circuit Faulty circuit
r r

AND y AND y
s s

AND z z
Input stimuli: (r,s) = (0,1) Input stimuli: {r,s) = (0,1)
Valid output: (y, z) = (0,0) Invalid output: (y,z) = (0,0)

e The model:
— Hard clauses: Input and output values
— Soft clauses: CNF representation of circuit

e The problem:
— Maximize number of satisfied clauses (i.e. circuit gates)

68 /115

Software package upgrades

[MBCV'06,TSJL'07,AL'08,ALMS’09,ALBL"10]

Universe of software packages: {p1,...,pn}

Associate x; with p;: x; = 1 iff p; is installed
Constraints associated with package p;i: (p;, D;, C;)

— D;: dependencies (required packages) for installing p;
— C;: conflicts (disallowed packages) for installing p;

Example problem: Maximum Installability
— Maximum number of packages that can be installed

— Package constraints represent hard clauses
— Soft clauses: (x;)

Package constraints:

p1,{p2V p3}, {ps})
p2,{ps}; {ps})

P3, {p2}7 (Z))

Pa, {P27 P3}» (Z))

N e =N =y

69 /115

Software package upgrades

[MBCV'06,TSJL'07,AL'08,ALMS’09,ALBL"10]

Universe of software packages: {p1,...,pn}

Associate x; with p;: x; = 1 iff p; is installed

Constraints associated with package p;i: (p;, D;, C;)
— D;: dependencies (required packages) for installing p;
— C;: conflicts (disallowed packages) for installing p;

Example problem: Maximum Installability
— Maximum number of packages that can be installed

— Package constraints represent hard clauses
— Soft clauses: (x;)

Package constraints: MaxSAT formulation:

(plv{PZ VP3}7{P4}) PH = {(ﬁxl V X2 VX3),(ﬁX1 \/ﬁX4),
(p27{p3}7{p4}) (_‘X2 \/X3)7(_‘X2 \/_|X4),(_\X3 \/X2)7
(p3, {p2},0) (Vv x2), (—xa V x3)}
(P47{P27P3},@) ps = {(Xl)v(XQ)v(X3)7(X4)}

69 /115

Exercise: knapsack

e Given list of pairs (v, w;), i=1,...,n
— Each pair (v;, w;), represents the value and weight of object /

70 /115

Exercise: knapsack

e Given list of pairs (v, w;), i=1,...,n
— Each pair (v;, w;), represents the value and weight of object /

e Pick subset of objects with the maximum sum of values, such that
the sum of weights does not exceed W

70 /115

Exercise: knapsack

Given list of pairs (vj,w;), i=1,...,n
— Each pair (v;, w;), represents the value and weight of object /

Pick subset of objects with the maximum sum of values, such that
the sum of weights does not exceed W

Propositional encoding for the knapsack problem?

e Hint: consider 0-1 ILP (or PBO) formulation:
— Associate propositional variable x; with each objet /
— x; = 1 iff object i is picked
max S VieXi
s.t 27:1 wi-xi < W

70 /115

Exercise: solving Sudoku |

5(3 7
6 1195
9|8 6
8 6 3
4 8 3 1
7 2 6
6 2(8
411(9 5
8 719

71/115

Exercise: solving Sudoku Il

N[O|~NIM|A|OT N
=T |O|N | |0 | M|~
M|t |r~|O|IN|O|
DN |N|j—H M|~ | O
NSO | <|O(n|N|M |~ |co
O~ ||
F|N|O| (O M|~ |0
M|~ | N[O |00 | <
N0 (T~ |N|M

72 /115

Exercise: solving Sudoku Il

N[O|~NIM|A|OT N
=T |O|N | |0 | M|~
M|t |r~|O|IN|O|
DN |N|j—H M|~ | O
NSO | <|O(n|N|M |~ |co
O~ ||
F|N|O| (O M|~ |0
M|~ | N[O |00 | <
N0 (T~ |N|M

e How to solve Sudoku with SAT?

72 /115

Solving Sudoku — with constraints

o Modeling the problem with integer variables:
— Rows: i=1,...,9
— Columns: j=1,...,9
— Variables: v;j € {1,2,...,9}, i,j € {1,...,9}

e Constraints:

73 /115

Solving Sudoku — with constraints

e Modeling the problem with integer variables:
— Rows: i=1,...,9
— Columns: j=1,...,9
— Variables: v;j € {1,2,...,9}, i,j € {1,...,9}

o Constraints:
— Each value used exactly once in each row:
» Forie{1,...,9}: alldifferent(vj1,...,Vig)

73 /115

Solving Sudoku — with constraints

e Modeling the problem with integer variables:
— Rows: i=1,...,9
— Columns: j=1,...,9
— Variables: v;j € {1,2,...,9}, i,j € {1,...,9}

o Constraints:
— Each value used exactly once in each row:
» Forie{1,...,9}: alldifferent(vj1,...,Vig)
— Each value used exactly once in each column:
» Forje {1,...,9}: alldifferent(vij, ..., vo)

73 /115

Solving Sudoku — with constraints

e Modeling the problem with integer variables:
— Rows: i=1,...,9
— Columns: j=1,...,9
— Variables: v;j € {1,2,...,9}, i,j € {1,...,9}

o Constraints:
— Each value used exactly once in each row:
» Forie{1,...,9}: alldifferent(vj1,...,Vig)
— Each value used exactly once in each column:
» Forje {1,...,9}: alldifferent(vij, ..., vo)
— Each value used exactly once in each 3 x 3 sub-grid:
» Fori,je{0,1,2}:
alldifferent(Vais1,3j41, V3i41,3j425 V3it1,3j435 V3it2,3j41s - - - 5 V3i+3,3j41s - - -)

73 /115

Solving Sudoku — propositional logic — variables

e Modeling with propositional variables:

— Rows: i=1,...,9
— Columns: j—l ,9
— Variables: v,Jke{O 1}, i,j,ke{l,...,9}

74 /115

Solving Sudoku — propositional logic — constraints

e Value in each cell is valid:
- Fori,je{l,...,9}:

Pkt Vidgk = 1

e Each value used exactly once in each row:
- Forie{l,...,9}, ke{l,...,9}:

S Vigk =1

e Each value used exactly once in each column:
- Forje{l,..., 9}, ke {1,...,9}:

> i Vigik = 1

e Each value used exactly once in each 3 x 3 sub-grid:
- Fori,j€{0,1,2}, ke {1,...,9}h

3 3
Y or1 D e Vitr3jtsk =1

75 /115

Solving Sudoku — propositional logic — constraints

e Value in each cell is valid:
- Fori,je{l,...,9}:

9
D k=1 Vigk =1
Each value used exactly once in each row:
- Forie{l,...,9}, ke{l,...,9}:
S Vigk =1

Each value used exactly once in each column:
- Forje{l,..., 9}, ke {1,...,9}:

> i Vigik = 1

Each value used exactly once in each 3 x 3 sub-grid:
- Fori,j€{0,1,2}, ke {1,...,9}h

3 3
Y or1 D e Vitr3jtsk =1

Q: how to encode Equalsl constraints?

75 /115

Constraints for fixed cells

5|3 7
6 1]9]5
98 6
8 6 3
4 8 3 1
7 2 6
6 2|8
4119 5
8 719

76 /115

Constraints for fixed cells

5|3 7
6 1]9]5
98 6
8 6 3
4 8 3 1
7 2 6
6 2|8
4119 5
8 719

e Integer variables:

vit=5wvi2=3,vis=7,v21 =06,v24=1,v25 =9
va6 =5v32=9,v33=8,v38=06,v41=38,v5=6,...

76 /115

Constraints for fixed cells

5|3 7
6 1]9]5
98 6
8 6 3
4 8 3 1
7 2 6
6 2|8
4119 5
8 719

e Integer variables:
vit=5wvi2=3,vis=7,v21 =06,v24=1,v25 =9
va6 =5v32=9,v33=8,v38=06,v41=38,v5=6,...
e Propositional variables:

vits=1,vips3=1vis7=1,v16=1,vo41=1v2509=1
vae5 = 1,v320=1,v338=1,v386=1,v418=1,vu56=1,.

76

115

Part Il

Problem Solving with SAT Oracles

77 /115

Computing a model

e (: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F, using an
NP oracle

78 /115

Computing a model

e (: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F, using an
NP oracle
— A possible algorithm:

» Analyze each variable x; € {x1,...,x,} = var(F)
» Consider F A (x;). Call NP oracle. If answer is yes, then add (x;) to
F. If answer is no, then add (—x;) to F

78 /115

Computing a model

e (Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F, using an
NP oracle
— A possible algorithm:

» Analyze each variable x; € {x1,...,x,} = var(F)
» Consider F A (x;). Call NP oracle. If answer is yes, then add (x;) to
F. If answer is no, then add (—x;) to F

— Algorithm needs |var(F)| calls to an NP oracle

78 /115

Computing a model

e (: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F, using an
NP oracle
— A possible algorithm:

» Analyze each variable x; € {x1,...,x,} = var(F)
» Consider F A (x;). Call NP oracle. If answer is yes, then add (x;) to
F. If answer is no, then add (—x;) to F

— Algorithm needs |var(F)| calls to an NP oracle

— Note: Cannot solve FSAT with logarithmic number of NP oracle
calls, unless P = NP [GF93]

e FSAT is an example of a function problem

78 /115

Computing a model

e (: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F, using an
NP oracle
— A possible algorithm:

» Analyze each variable x; € {x1,...,x,} = var(F)
» Consider F A (x;). Call NP oracle. If answer is yes, then add (x;) to
F. If answer is no, then add (—x;) to F

— Algorithm needs |var(F)| calls to an NP oracle

— Note: Cannot solve FSAT with logarithmic number of NP oracle
calls, unless P = NP [GF93]

e FSAT is an example of a function problem
— Note: FSAT can be solved with one SAT oracle call

78 /115

Beyond decision problems

Answer Problem Type

79 /115

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

79 /115

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution

79 /115

Beyond decision problems

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

79 /115

Beyond decision problems

Answer

Problem Type

Yes/No
Some solution

All solutions

Decision Problems

Function Problems

79 /115

Beyond decision problems

Answer

Problem Type

Yes/No
Some solution

All solutions

Decision Problems
Function Problems

Enumeration Problems

79 /115

Beyond decision problems

Answer

Problem Type

Yes/No
Some solution
All solutions

solutions

Decision Problems
Function Problems

Enumeration Problems

79 /115

Beyond decision problems

Answer

Problem Type

Yes/No
Some solution
All solutions

solutions

Decision Problems
Function Problems
Enumeration Problems

Counting Problems

79 /115

.. and beyond NP — decision and function problems

> ng FX FMg

%
N
N

N ng Fx5

PNP = AP FPNP = FAS
NP = MY = coNP FNP = FX} FM$ = coFNP

N S N S

AD =3P =P =n5=A° FAP = FXh = FP = FM5 = FA}

80/115

and beyond NP — our current range

R

ELEMENTARY

2EXPTIME
EXPSPACE

EXPTIME

PSPACE

81/115

Oracle-based problem solving — ideal scenario

Bounded # of
calls / queries

Poly-time Yes/No + Decision
Algorithm Witness Procedure

SAT, SMT, CSP, ...
Solver / Oracle

82/115

Oracle-based problem solving — in some settings

Bounded # of
calls / queries

Poly-time Yes/No + Decision
Algorithm Witness Procedure

SAT, SMT, CSP, ...
Solver / Oracle

83/115

Many problems to solve — within FPNP

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

All solutions Enumeration Problems

84 /115

Many problems to solve — within FPNP

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

All solutions Enumeration Problems

~
Function Problems on Propositional Formulas

MaxSAT MinSAT
PBO WBO

Minimal Models . N
Prime Implicants

Maximal Models Autarkies
Backbones Prime Implicates
MUSes MCSes MESes Indep. Vars
FSes MSSes MDSes Implicant Ext.
MNSes Implicate Ext.
MCFSes
(. J

84 /115

Many problems to solve — within FPNP

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

All solutions Enumeration Problems

'd N\
Function Problems on Propositional Formulas

// Optimization Problems)
\ MaxSAT MinSAT |

z Minimal Sets S

7RnImalModEle Prime Implicants \

Maximal Models Autarkies \

Backbones Prime Implicates

MCSes

)
\
| Muses MESes incepyVars

\ MDSes Implicant Ext. /

MSSes
\ /
\ MESSS MNSes Implicate Ext. 7
N MCFSes 4

84 /115

Selection of topics

Eager SMT

Planning

Encodings

MUS extraction

Counting

Problem Solving

Enumeratiol

with SAT

Oracles

MaxSAT

B&B
Search

Enumeratiol

Embeddings OPT SAT

Lazy SMT

Backbones

MaxSAT solving

85/115

Outline

Minimal Unsatisfiability

86 /115

Analyzing inconsistency — timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro Al Tue 10:00-11:00 8.2.37
Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37
Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

e Set of constraints consistent / satisfiable?

87 /115

Analyzing inconsistency — timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro Al Tue 10:00-11:00 8.2.37
Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37
Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

e Set of constraints consistent / satisfiable? No

87 /115

Analyzing inconsistency — timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro Al Tue 10:00-11:00 8.2.37
Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37
Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

e Set of constraints consistent / satisfiable? No
e Minimal subset of constraints that is inconsistent / unsatisfiable?

87 /115

Analyzing inconsistency — timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46

Linear Alg Mon 9:00-10:00 6.2.46

e Set of constraints consistent / satisfiable? No

e Minimal subset of constraints that is inconsistent / unsatisfiable?

87 /115

Analyzing inconsistency — timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro Al Tue 10:00-11:00 8.2.37
Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37
Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

e Set of constraints consistent / satisfiable? No
e Minimal subset of constraints that is inconsistent / unsatisfiable?

e Minimal subset of constraints whose removal makes remaining
constraints consistent?

87 /115

Analyzing inconsistency — timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro Al Tue 10:00-11:00 8.2.37
Databases Tue 11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

e Set of constraints consistent / satisfiable? No
e Minimal subset of constraints that is inconsistent / unsatisfiable?

e Minimal subset of constraints whose removal makes remaining
constraints consistent?

87 /115

Analyzing inconsistency — timetabling

Subject Day

Time Room

Intro Prog Mon
Intro Al Tue

Databases Tue

9:00-10:00 6.2.46
10:00-11:00 8.2.37
11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Adv Calculus Mon

9:00-10:00 8.2.06

... (hundreds of consistent constraints)

constraints consistent?

Set of constraints consistent / satisfiable? No
Minimal subset of constraints that is inconsistent / unsatisfiable?

Minimal subset of constraints whose removal makes remaining

How to compute these minimal sets?

87 /115

Unsatisfiable formulas — MUSes & MCSes

e Given F (F L), M C Fis a Minimal Unsatisfiable Subset (MUS)
iff M E L and VMIQM,M,# 1

(_\Xl V _\X2) A\ (Xl) N (XQ)/\(_\X3 V _\X4) A\ (X3) A\ (X4) A\ (X5 V X6)

88 /115

Unsatisfiable formulas — MUSes & MCSes

e Given F (F L), M C Fis a Minimal Unsatisfiable Subset (MUS)
iff M E L and VMIQM,M,# 1

(_\Xl V _\X2) A\ (Xl) A (Xz)

88 /115

Unsatisfiable formulas — MUSes & MCSes

e Given F (F L), M C Fis a Minimal Unsatisfiable Subset (MUS)
iff M E L and VMIQM,M,# 1

(_\Xl V _\X2) A\ (Xl) A (Xz)

e Given F (F L), C C Fis a Minimal Correction Subset (MCS) iff
F\CE Land Yeoce, F\C'E L. S =F\Cis MSS

(=x1 V =x2) A (x1) A ()A(—x3 V =xa) A (x3) A (xa) A (X5 V X6)

88 /115

Unsatisfiable formulas — MUSes & MCSes
e Given F (F L), M C Fis a Minimal Unsatisfiable Subset (MUS)
iff M E L and VMIQM,M,# 1
(_\Xl V _\X2) A\ (Xl) A (Xz)

e Given F (F L), C C Fis a Minimal Correction Subset (MCS) iff
F\CE Land Yeoce, F\C'E L. S =F\Cis MSS

A (x1) A (x2) A (x3) A (xa) A (x5 V X6)

88 /115

Unsatisfiable formulas — MUSes & MCSes

Given F (F L), M C F is a Minimal Unsatisfiable Subset (MUS)
iff M E L and VM/QM,M,% 1

(ﬁXl V ﬁXQ) AN (Xl) N (XQ)

Given F (F L), C C F is a Minimal Correction Subset (MCS) iff
F\CE Land Yeoce, F\C'E L. S =F\Cis MSS

A (x1) A (x2) A (x3) A (xa) A (x5 V X6)

e MUSes and MCSes are (subset-)minimal sets

e MUSes and minimal hitting sets of MCSes and vice-versa [re7,.]

88 /115

Unsatisfiable formulas — MUSes & MCSes

Given F (F L), M C F is a Minimal Unsatisfiable Subset (MUS)
iff M E L and VM/QM,M,% 1

(ﬁXl V ﬁXQ) AN (Xl) N (XQ)

Given F (F L), C C F is a Minimal Correction Subset (MCS) iff
F\CE Land Yeoce, F\C'E L. S =F\Cis MSS

A (x1) A (x2) A (x3) A (xa) A (x5 V X6)

e MUSes and MCSes are (subset-)minimal sets

e MUSes and minimal hitting sets of MCSes and vice-versa [re7,.]

How to compute MUSes & MCSes efficiently with SAT oracles?

88 /115

Why it matters?

e Analysis of over-constrained systems

— Model-based diagnosis [R87...]
Software fault localization

Spreadsheet debugging

Debugging relational specifications (e.g. Alloy)

Type error debugging

Axiom pinpointing in description logics

vVvyVvYyVvYVvyy

Model checking of software & hardware systems

Inconsistency measurement
— Minimal models; MinCost SAT; ...

e Find minimal relaxations to recover consistency

— But also minimum relaxations to recover consistency, eg. MaxSAT

e Find minimal explanations of inconsistency

— But also minimum explanations of inconsistency, eg. Smallest MUS

89 /115

Deletion-based algorithm

Input : Set F
Output: Minimal subset M
begin

M~ F

foreach c € M do

if =SAT(M \ {c}) then
L | MM\ {c} // If =SAT(M \ {c}), then c & MUS

return M // Final M is MUS

end

e Number of oracles calls: O(m) [CD91,BDTWO3]

90 /115

Deletion-based algorithm

Input : Set F
Output: Minimal subset M
begin
M~ F
foreach c € M do
if =SAT(M \ {c}) then
L M — M\ {c} // Remove ¢ from M

return M // Final M is MUS
end

e Number of oracles calls: O(m) [CD91,BDTWO3]

90 /115

Deletion — MUS example

a (&5} C3 Cy Cs C6 7
(aVoxe) (a) () (xsVox) (k) (k) (x5VX)

M M\ {c} —-SAT(M\ {c}) Outcome

91 /115

Deletion — MUS example

a (&5} C3 Cy Cs C6 7
(aVoxe) (a) () (xsVox) (k) (k) (x5VX)

M M\ {c} —-SAT(M\ {c}) Outcome

C1..C; C..Cy 1 Drop ¢

91 /115

Deletion — MUS example

@i C)) (o} Cy4 Cs Co cr

(aVoxe) (a) () (xsVox) (k) (k) (x5VX)

M M\ {c} —-SAT(M\ {c}) Outcome

C1..C; C..Cy 1 Drop ¢

C..C7 C3..C7 1 Drop o

91 /115

Deletion — MUS example

a o)) o) Ca Cs Co lor.
(Vo) (a) () (txsVox) (3) (k) (x6Vx)
M M\ {c} —-SAT(M\{c}) Outcome
C1..C; C..Cy 1 Drop ¢
C..C7 C3..C7 1 Drop o
C3..C7 C4..C7 1 Drop c3

91 /115

Deletion — MUS example

a o)) o) Ca Cs Co lor.
(Vo) (a) () (txsVox) (3) (k) (x6Vx)
M M\ {c} —-SAT(M\{c}) Outcome
C1..C; C..Cy 1 Drop ¢
C..C7 C3..C7 1 Drop o
C3..C7 C4..C7 1 Drop c3
C4..C7 C5..C7 0 Keep ¢

91 /115

Deletion — MUS example

a o)) o) Ca Cs Co lor.
(Vo) (a) () (txsVox) (3) (k) (x6Vx)
M M\ {c} —-SAT(M\{c}) Outcome
C1..C; C..Cy 1 Drop ¢
C..C7 C3..C7 1 Drop o
C3..C7 C4..C7 1 Drop c3
C4..C7 C5..C7 0 Keep ¢
C4..C7 C4CeC7 0 Keep cs

91 /115

Deletion — MUS example

a o)) o) Ca Cs Co lor.
(Vo) (a) () (txsVox) (3) (k) (x6Vx)
M M\ {c} —-SAT(M\{c}) Outcome
C1..C; C..Cy 1 Drop ¢
C..C7 C3..C7 1 Drop o
C3..C7 C4..C7 1 Drop c3
C4..C7 C5..C7 0 Keep ¢
C4..C7 C4CeC7 0 Keep cs
C4..C7 C4C5Cy 0 Keep ¢

91 /115

Deletion — MUS example

a o)) o) Ca Cs Co lor.
(Vo) (a) () (txsVox) (3) (k) (x6Vx)
M M\ {c} —-SAT(M\{c}) Outcome
C1..C; C..Cy 1 Drop ¢
C..C7 C3..C7 1 Drop o
C3..C7 C4..C7 1 Drop c3
C4..C7 C5..C7 0 Keep ¢
C4..C7 C4CeC7 0 Keep cs
C4..C7 C4C5Cy 0 Keep ¢
C4..C7 C4..Co 1 Drop ¢

91 /115

Deletion — MUS example

a o)) o) Ca Cs Co lor.
(Vo) (a) () (txsVox) (3) (k) (x6Vx)
M M\ {c} —-SAT(M\{c}) Outcome
C1..C; C..Cy 1 Drop ¢
C..C7 C3..C7 1 Drop o
C3..C7 C4..C7 1 Drop c3
C4..C7 C5..C7 0 Keep ¢
C4..C7 C4CeC7 0 Keep cs
C4..C7 C4C5Cy 0 Keep ¢
C4..C7 C4..Co 1 Drop ¢

e MUS: {C47 Cs, C6}

91 /115

Many MUS algorithms

e Formula F with m clauses k the size of largest minimal subset

Algorithm Oracle Calls Reference
Insertion-based O(k m) [PS88,vMW08]
MCS_MUS O(k m) [BK15]
Deletion-based O(m) [CD91,BDTWO3]
Linear insertion O(m) [MSL'11,BLMS'12]
Dichotomic O(k log(m)) [HLSBOG]
QuickXplain O(k + k log(7)) [J01,J04]
Progression O(k log(1+ 7)) [MSJB13,L14]

e Note: Lower bound in FPI\I'P and upper bound in F

PNP

[CTo5]

e Oracle calls correspond to testing unsatisfiability with SAT solver

o Practical optimizations: clause set trimming; clause set refinement;
redundancy removal; (recursive) model rotation

92 /115

Outline

Maximum Satisfiability

93/115

Recap MaxSAT

X6 V Xo —1Xg V Xo —1x2 V X1 X1
—Xg V Xg X6 V —1Xg X2 V Xq —X4 V Xp
x7 V X5 —x7 V Xg —X5 V X3 X3

¢ Given unsatisfiable formula, find largest subset of clauses that is

satisfiable

94 /115

Recap MaxSAT

X V Xo —1Xg V Xo —1x2 V X1 X1
—Xg V Xg X6 V —1Xg X2 V Xg —Xa V Xs
x7 V Xg —x7 V Xg —X5 V X3 X3

¢ Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

e A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

94 /115

Recap MaxSAT

X6 V Xo —1Xg V Xo —1x2 V X1 X1
—Xg V Xg X6 V —1Xg X2 V Xg —X4 V Xg
x7 V X5 —x7 V Xg —X5 V X3 —1X3

¢ Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

e A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

e The MaxSAT solution is one of the smallest MCSes

94 /115

Recap MaxSAT

X6 V Xo —1Xg V Xo —1x2 V X1 X1
—Xg V Xg X6 V —1Xg X2 V Xq —X4 V Xg
x7 V X5 —x7 V Xg —X5 V X3 X3

¢ Given unsatisfiable formula, find largest subset of clauses that is
satisfiable
e A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula
e The MaxSAT solution is one of the smallest MCSes
— Note: Clauses can have weights & there can be hard clauses

94 /115

Recap MaxSAT

X6 V Xo —1Xg V Xo —1x2 V X1 X1
—Xg V Xg X6 V —1Xg X2 V Xq —X4 V Xg
x7 V X5 —x7 V Xg —X5 V X3 X3

¢ Given unsatisfiable formula, find largest subset of clauses that is
satisfiable
e A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula
e The MaxSAT solution is one of the smallest cost MCSes
— Note: Clauses can have weights & there can be hard clauses

94 /115

Recap MaxSAT

X6 V Xo —1Xg V Xo —1x2 V X1 X1
—Xg V Xg X6 V —1Xg X2 V Xg —X4 V Xg
x7 V X5 —x7 V Xg —X5 V X3 X3

¢ Given unsatisfiable formula, find largest subset of clauses that is
satisfiable
e A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula
The MaxSAT solution is one of the smallest cost MCSes
— Note: Clauses can have weights & there can be hard clauses

e Many practical applications

94 /115

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?

Yes

95 /115

MaxSAT problem(s)

Hard Clauses?

No Yes

Plain Partial
Yes Weighted Weighted Partial

Weights?

95 /115

MaxSAT problem(s)

Hard Clauses?
No Yes
Weights? Plain Partial
Yes Weighted Weighted Partial

e Must satisfy hard clauses, if any
e Compute set of satisfied soft clauses with maximum cost
— Without weights, cost of each falsified soft clause is 1

e Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

95 /115

MaxSAT problem(s)

Hard Clauses?
No Yes
Weights? Plain Partial
Yes Weighted Weighted Partial

Must satisfy hard clauses, if any

Compute set of satisfied soft clauses with maximum cost
— Without weights, cost of each falsified soft clause is 1

e Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !

95 /115

Issues with MaxSAT

e Unit propagation is unsound for MaxSAT

96 /115

Issues with MaxSAT

e Unit propagation is unsound for MaxSAT
— Formula with all clauses soft:

{(x), (=x vn), (ox vV y2), (v =2), (y2 V 22), (2)}

96 /115

Issues with MaxSAT

e Unit propagation is unsound for MaxSAT
— Formula with all clauses soft:

{(X)7 (“X \4 _)/1), ("X 4 }/2)7 (ﬁ}/l Vv “Z)7 ("y2 vV “Z)v (Z)}
— After unit propagation:

{(x), (=x Vv n), (ox V y2), (Vv =2), (y2 V =2), (2)}

96 /115

Issues with MaxSAT

e Unit propagation is unsound for MaxSAT
— Formula with all clauses soft:

{(X)7 (“X \4 _)/1), ("X 4 }/2)7 (ﬁ}/l Vv “z)', (ﬁy2 vV “Z)v (Z)}
— After unit propagation:

{(x), (=x Vv n), (ox V y2), (Vv =2), (y2 V =2), (2)}

— Is 2 the MaxSAT solution??

96 /115

Issues with MaxSAT

e Unit propagation is unsound for MaxSAT
— Formula with all clauses soft:

{(x), (=x vn), (ox vV y2), (v =2), (y2 V 22), (2)}

After unit propagation:

{(x), (=x Vv n), (ox V y2), (Vv =2), (y2 V =2), (2)}

Is 2 the MaxSAT solution??
— No! Enough to either falsify (x) or (z)

96 /115

Issues with MaxSAT

e Unit propagation is unsound for MaxSAT
— Formula with all clauses soft:

{(), (=x V), (=x V y2), (21 V —2), (my2 V 2), (2) }
— After unit propagation:
{(x), (=x V1), (=x V y2), (=1 V =2), (my2 V 2), (2) }

— Is 2 the MaxSAT solution??
— No! Enough to either falsify (x) or (z)

e Cannot use unit propagation

96 /115

Issues with MaxSAT

e Unit propagation is unsound for MaxSAT
— Formula with all clauses soft:

{(), (=x V), (=x V y2), (21 V —2), (my2 V 2), (2) }
— After unit propagation:
{(x), (=x V1), (=x V y2), (=1 V =2), (my2 V 2), (2) }

— Is 2 the MaxSAT solution??
— No! Enough to either falsify (x) or (z)
e Cannot use unit propagation

e Cannot learn clauses (using unit propagation)

96 /115

Issues with MaxSAT

e Unit propagation is unsound for MaxSAT
— Formula with all clauses soft:

{(X)7 (“X \4 _)/1)7 ("X 4 }/2)7 (ﬁ}/l 4 “Z)', (ﬁ}/Z 4 “Z)v (Z)}
— After unit propagation:

{(X)7 (“X \ y1)7 (“X vV }/2)7 (ﬁ}/l \ “z)', (“}’2 4 “Z)a (Z)}
— Is 2 the MaxSAT solution??
— No! Enough to either falsify (x) or (z)
e Cannot use unit propagation
e Cannot learn clauses (using unit propagation)

e Need to solve MaxSAT using different techniques

96 /115

Many MaxSAT approaches

“1 MaxSAT Y‘

Algorithms

- §==

Many MaxSAT approaches

Branch No unit prop;
& Bound No cl. learning
NS EH R Model i All cls relaxed
models Guided Iterative
MaxSAT
Algorithms
Iterative e Core Relax cls given
MHS & SAT MHS Cuities unsat cores

e For practical (industrial) instances: core-guided approaches are
the most effective [MaxSAT14]

97 /115

Core-guided solver performance — partial

Number x of instances solved in y seconds

300) : ' T o ¥ T
Open-WBO-In —— : T
QMaxSATZ-mi-13 -) -
L QMaxSat-g2-12 - ! |
250 QMaxSat0.4-11 & g ;g
] QMaxSat-10 s !
g ¥ F
S 200 ; |
S 150 | j # _
E
z 100 f _
O
50 |
0 - : . . |

0 50 100 150 200 250 300 350 400
Number of instances

Source: [MaxSAT 2014 organizers|
98 /115

Core-guided solver performance — weighted partial

CPU time in seconds

300

250

200

150

100

50

Number x of instances solved in y seconds

Eva500a —— > X
WPM1-2013 - ¥ ;
i WPMA-11 -exeeee b !
pwbo2.1-12 --a @ |
wbo-1.4a-wenf-10 g !
_ i)
g
0 50 100 150 200 250 300 350

Number of instances

Source: [MaxSAT 2014 organizers|

99 /115

Outline

Maximum Satisfiability
Iterative SAT Solving

100 /115

Basic MaxSAT with iterative SAT solving

Xe V Xo —Xg V Xo X2 V X1 X1
—Xg V Xg Xe V —Xg X2 V Xg X4 V Xg
x7 V Xz =x7 V Xs —X5 V X3 —1X3

Example CNF formula

101 /115

Basic MaxSAT with iterative SAT solving

Xe V X0V =X V X2V —x2 VXx1Vr3
—Xg V XgVrsg Xe V —1Xg Vg X V x4V ry

X7 V X5Vrg =x7VxsVrig x5V X3V

ZI lr’S]‘2

Relax all clauses; Set UB =12 + 1

—X1Vry

—Xq V X5Vrg

—x3V 112

101 /115

Basic MaxSAT with iterative SAT solving

Xe V X0V —Xg V X2V —x2 VXx1Vr3 —x1Vry
X6 V XgVrs Xe V —XgVrg X2 V x4V re x4 V X5Vrg

X7 V X5V g —x7VXxsVrg —Xx5V X3V —x3Vrio

Z, 1 Hi <12

Formula is SAT; E.g. all ; =0 and r; = r; = rg = 1 (i.e. cost = 3)

101 /115

Basic MaxSAT with iterative SAT solving

Xe V X0V =Xg V X0V —x2 VXx1Vr3 —x1Viy
=X V XgVrsg Xe V —XgVrg Xo V XqVry —Xg4 V X5Vrg

x7 V x5V rg =x7VXxsVrg —xs5V X3V —x3V o

21121 ri <2

Refine UB = 3

101 /115

Basic MaxSAT with iterative SAT solving

Xe V X0V —1Xg V X0V —x2 VX1V —x1Vrg

X6 V XgVrs Xe V —xgVrg X2 V X4V Iy =X V X5Vrg

X7 V X5V g X7V XxsVrg —X5VXx3Vri —x3V o
Y2y <2
Formula is SAT; Eg. x1i=x =1, x3=...=xs=0andn=r=1

(i.e. cost =2)

101 /115

Basic MaxSAT with iterative SAT solving

Xe V X0V —Xg V X2V —x2 V Xx1Vr3
—Xg V XgVrsg Xe V —XgVrg Xo V xqVry

x7 V X5V rg =x7V XxsVrg —xs5V X3V

Z:lil ri<1

Refine UB = 2

—x1Vry

=X V X5Vrg

X3V ri2

101 /115

Basic MaxSAT with iterative SAT solving

Xe V X0V —Xg V X0V —x2 VXx1Vnr3 —x1Vry
X6 V XgVrs Xe V —XgVrg Xo V xXqVry —xq V X5Vrg

X7 V X5V g —x7 Vx5V —X5V X3V —x3Vrio

Z}il ri <1

Formula is UNSAT; terminate

101 /115

Basic MaxSAT with iterative SAT solving

Xe V X0V —Xg V X2V —x2 V Xx1Vr3
—Xg V XgVrsg Xe V —XgVrg Xo V xqVry

x7 V X5V rg =x7V XxsVrg —xs5V X3V

Z:lil ri<1

MaxSAT solution is last satisfied UB: UB = 2

—x1Vry

=X V X5Vrg

X3V ri2

101 /115

Basic MaxSAT with iterative SAT solving

Xe V X0V —Xg V X2V —x2 V Xx1Vr3
—Xg V XgVrsg Xe V —XgVrg Xo V xqVry

x7 V X5V rg =x7V XxsVrg —xs5V X3V
12
doisiri<1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints
over all relaxation variables

—x1Vry
=X V X5Vrg

—x3Vrio

All (possibly many)
soft clauses relaxed

101 /115

Outline

Maximum Satisfiability

Core-Guided Algorithms

102 /115

MSU3 core-guided algorithm

X6 V Xo —Xg V Xo X2 V X1
—Xg V Xg Xe V —1Xg X2 V Xy
x7 V X5 —x7 V Xs —X5 V X3

Example CNF formula

- X].

X4 V Xg

- X3

103 /115

MSU3 core-guided algorithm

X6 V Xo —Xg V Xo —x2 V X1 X1
—Xg V Xg Xe V —Xg X2 V Xy x4 V Xg
x7 V X5 —x7 V Xs —x5 V X3 —1X3

Formula is UNSAT; OPT < || — 1; Get unsat core

103 /115

MSU3 core-guided algorithm

X6 V Xo —Xg V Xo X2V x1Vn —x1Vr

—Xg V Xg Xe V —1Xg Xo V X4V 13 —Xg4 V X5V

X7 V Xg —x7 V Xz x5 V x3Vrs —x3Vrg
Z?:l ri<1

Add relaxation variables and AtMostk, k = 1, constraint

103 /115

MSU3 core-guided algorithm

@2 —Xg V Xo —x2 Vx1Vn —x1Vh
=X V Xg Xe V —Xg X2 V x4Vr3 =Xq V X5V 1y

—x7 V Xg x5 V X3Vrs —x3Vrg

Formula is (again) UNSAT; OPT < || — 2; Get unsat core

103 /115

MSU3 core-guided algorithm

Xe V X0V ry —Xg V Xo\Vrg X2V x1Vn —x1Vr

—Xg V Xg Xe V —1Xg Xo V X4V 13 —Xg4 V X5V
x7 V X5V rg —x7VXxsVro x5V X3Vrs —x3Vrg
<2

Add new relaxation variables and update AtMostk, k=2, constraint

103 /115

MSU3 core-guided algorithm

Xe V X0V re —Xg V XoVrg —xo V x1Vn —x1Vr

—Xg V Xg Xe V —Xg X2 V x4V 13 =X V X5Vig
X7 V X5V g X7V XxsVrg X5V X3Vry —x3Vrg
2}21 ri <2

Instance is now SAT

103 /115

MSU3 core-guided algorithm

Xe V X0V ry —Xg V Xo\Vrg —x2 VXx1Vn
—Xg V Xg Xe V —1Xg Xo V X4V 13
x7 V x5V rg —x7VXxsVrg X5V X3Vrs

2}21 ri <2

MaxSAT solution is |p| —Z =12 —2 =10

—x1Vh

—Xg4 V X5V

—x3Vrg

103 /115

MSU3 core-guided algorithm

Xe V X0V ry —Xg V Xo\Vrg —x2 VXx1Vn
—Xg V Xg Xe V —1Xg Xo V X4V 13
x7 V x5V rg —x7VXxsVrg X5V X3Vrs

2}21 ri <2

MaxSAT solution is |p| —Z =12 —2 =10

AtMostk/PB

constraints used

—x1Vh

—Xg4 V X5V

—x3Vrg

Relaxed soft clauses

become hard

103 /115

MSU3 core-guided algorithm

Xe V X0V ry —Xg V Xo\Vrg
—1Xg V Xg X6 V —1Xg

x7 V x5V rg —=x7 V X5V rig

2}21 ri <2

—x2 VXx1Vn

Xo V X4V 13

—X5 V X3V s

MaxSAT solution is |p| —Z = 12 —2 =10

AtMostk/PB Some clauses

constraints used not relaxed

—x1Vh

—Xg4 V X5V

—x3Vrg

Relaxed soft clauses

become hard

103 /115

Outline

Maximum Satisfiability

Minimum Hitting Sets

104 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Cog = X7V X5 Clo="Xx7VXs Ci1="XVX3 Cl2 = 7X3

® Find MHS of K:

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Cog = X7V X5 Clo="Xx7VXs Ci1="XVX3 Cl2 = 7X3

® Find MHS of K: 0

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Cog = X7V X5 Clo="Xx7VXs Ci1="XVX3 Cl2 = 7X3

® Find MHS of K: 0
o SAT(F\0)?

105 /115

MHS approach for MaxSAT

=XV Xxo Q="X%Vx G="xVX
Cs = —Xg V Xg Ce = Xp V —Xg g =x2V X4

Co=x7V X5 Cilo= X7 VX5 C11="X5VX3

® Find MHS of K: 0
e SAT(F\ 0)? No

Cqp = X1

Cg = X3 V X5

Clp = X3

105 /115

MHS approach for MaxSAT

C1:X6\/X2 C2:_‘X6\/X2 C3:_‘X2\/X1
C5:—\X6\/X8 CGZXG\/_'Xs C7:X2\/X4

Co = x7 V X5 Clo="X7VXs C11= "XV X3

® Find MHS of K: 0
e SAT(F\0)? No

e Core of F: {c1,, 3,4}

Cqp = X1

g = x4 V X5

Clp = X3

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Cog = X7V X5 Clo="Xx7VXs Ci1="X5V X3 Clp = X3

K= {{C17 C, C3, C4}}

® Find MHS of K:
e SAT(F\ ()? No
e Core of F: {c1, @, c3, ca}. Update K

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K= {{C17 C, C3, C4}}

® Find MHS of K:

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K= {{C17 C, C3, C4}}

e Find MHS of K: E.g. {c1}

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K= {{C17 C, C3, C4}}

® Find MHS of K: E.g. {ci}
o SAT(F\{a})?

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy

Cog = X7V Xz Cilo= X7 VX5 C11="X5VX3

K= {{C17 C, C3, C4}}

e Find MHS of K: E.g. {c1}
e SAT(F\{a})? No

Cq = X1

g = x4 V X5

Cl2 = 7X3

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy

Cog = X7V Xz Clo="X7VXs C11="X5V X3

K= {{C17 C, C3, C4}}

e Find MHS of K: E.g. {c1}
e SAT(F\{a})? No

e Core of F: {cy, c10, C11, C12}

Cq = X1

g = x4 V X5

Cl2 = 7X3

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Cog = X7V X5 Clo="Xx7VXs Ci1="XVX3 Cl2 = 7X3

K={{a, e, c,a},{c,co,c,czt}

e Find MHS of K: E.g. {c1}
e SAT(F\{a})? No
e Core of F: {c, c10, c11, c12}. Update K

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K ={{a, c2, 3, ca}, {co, cr0, c11, cr2}}

® Find MHS of K:

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K ={{a, c2, 3, ca}, {co, cr0, c11, cr2}}

® Find MHS of K: E.g. {c1, 0}

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K ={{a, c2, 3, ca}, {co, cr0, c11, cr2}}

® Find MHS of K: E.g. {c1, 0}
e SAT(F\{c1,c})?

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K ={{a, c2, 3, ca}, {co, cr0, c11, cr2}}

® Find MHS of K: E.g. {c1, 0}
e SAT(F\ {c1,})? No

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K={{a, e, c,a},{c,co,c,czt}

® Find MHS of K: E.g. {c1, 0}
e SAT(F\ {c1,})? No

e Core of F: {c3, ca, c7, Cs, C11, C12}

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K ={{a, e, ca,a},{cw,co, a1, cz},{c,a,c,cs,cr, cia}}

® Find MHS of K: E.g. {c1, 0}
e SAT(F\ {c1,})? No

e Core of F: {3, &, cr, 3, c11, c12}. Update K

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K ={{a, e, ca,a},{cw,co, a1, cz},{c,a,c,cs,cr, cia}}

® Find MHS of K:

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K ={{a, e, ca,a},{cw,co, a1, cz},{c,a,c,cs,cr, cia}}

® Find MHS of K: E.g. {cs, o}

105 /115

MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3

K ={{a, e, ca,a},{cw,co, a1, cz},{c,a,c,cs,cr, cia}}

® Find MHS of K: E.g. {cs, o}
e SAT(F\{cs,c0})?

105 /115

MHS approach for MaxSAT

c1L =X VX2 C = X5 V X2 3= VX Cyp = X1
Cs = —Xg V Xg Ce = Xp V —Xg 7 =XV Xy cg = x4 V Xz
Co = X7V Xz Clo="X7VXs C11="X5VX3 Clp = —X3

K= {{C1> €, C3, C4}7 {C97 €10, C11, C12}7 {C3> C4, C7, C8, C11, Cl?}}

® Find MHS of K: E.g. {cs, o}
® SAT(F\ {cs, c0})? Yes

105 /115

MHS approach for MaxSAT

c1L =X VX2 C = X5 V X2 3= VX Cyp = X1
Cs = —Xg V Xg Ce = Xp V —Xg 7 =XV Xy cg = x4 V Xz
Co = X7V Xz Clo="X7VXs C11="X5VX3 Clp = —X3

K= {{Ch €, C3, C4}7 {C97 C10, C11, C12}7 {C37 C4, C7, Cs, C11, C12}}

® Find MHS of K: E.g. {cs, o}
® SAT(F\ {cs, c0})? Yes

® Terminate & return 2

105/115

MaxSAT solving with SAT oracles — a sample

e A sample of recent algorithms:

Algorithm # Oracle Queries Reference
Linear search SU Exponential*** [e.g. LBP10]
Binary search Linear* [e.g. FMOG6]
FM/WMSU1/WPM1 Exponential** [FM06,MSM08, MMSP09,ABL09a, ABGL12]
WPM?2 Exponential** [ABL10,ABGL13]
Bin-Core-Dis Linear [HMMS11,MHMS12]
Iterative MHS Exponential [DB11,DB13a,DB13b]

* O(log m) queries with SAT oracle, for (partial) unweighted MaxSAT

** Weighted case; depends on computed cores
*¥% On # bits of problem instance (due to weights)

e But also additional recent work:
— Progression
— Soft cardinality constraints (OLL)
— MaxSAT resolution

106 /115

Outline

Additional Exercises

107 /115

Exercise — How many MCSes & MUSes can there be?

e Give example showing that lower bound on largest number of
MCSes is exponential on formula size

— Hint: Simply suggest formula with exponentially large number of
MaxSAT solutions

108 /115

Exercise — How many MCSes & MUSes can there be?

e Give example showing that lower bound on largest number of
MCSes is exponential on formula size

— Hint: Simply suggest formula with exponentially large number of
MaxSAT solutions

e Give example showing that lower bound on largest number of
MUSes is exponential on formula size

108 /115

Solution — number of MCSes

(x1) (=x)
(x) (=x)

) ()

109 /115

Solution — number of MCSes

() ()
() (mx)
(xn) (—xn)
e Foreach i =1,..., n either pick (x;) or (—x;), i.e. 2 cases

109 /115

Solution — number of MCSes

() (=)
() (mx)
(xn) (—xn)
e Foreach i =1,..., n either pick (x;) or (—x;), i.e. 2 cases

e Thus, 2" MCSes

109 /115

Solutions — number of MUSes |

(=x1) A (x1 V z1)
(1) Ay V z1)
. (mz1Vz V...V oz)
—xp) A (Xn V 2)
(=yn) A (¥n V zn)

—~~

110/115

Solutions — number of MUSes |

(ﬁXl) VAN (Xl V Zl)
(y1) A1V z)
. (mz1Vz V...V oz)
—xp) A (Xn V 2)
(=yn) A (¥n V zn)

—~~

e Foreach i =1,..., n either resolve away x; or y;, i.e. 2 cases

110 /115

Solutions — number of MUSes |

(=x1) A (x1V z1)
(y1) A1V z)
. (mz1Vz V...V oz)
—xp) A (Xn V 2)
(=¥n) A (¥n V 2n)

—~~

e Foreach i =1,..., n either resolve away x; or y;, i.e. 2 cases
e Thus, 2" MUSes

110 /115

Solutions — number of MUSes |

(=x1) A (x1V z1)
(y1) AV z)
. (mz1Vz V...V oz)
—xp) A (Xn V 2)
(=¥n) A (¥n V 2n)

—~~

e For each i =1,..., n either resolve away x; or y;, i.e. 2 cases
e Thus, 2" MUSes

e But, there exist formulas with more MUSes. How?

110 /115

Solutions — number of MUSes I

(=x1) A (mx2) Ao A (5xr)
aVzi)AN(eVzi)A...A\(xV z1)
(aVz)ANeVz)A...A(XV 2)

(x1Vza)A(x2Vzp) Ao A(XV zp)
(mz1V -z V...V —z,)

111 /115

Solutions — number of MUSes I

(=x1) A (mx2) Ao A (5xr)
aVzi)AN(eVzi)A...A\(xV z1)
(aVz)ANeVz)A...A(XV 2)

(x1Vza)A(x2Vzp) Ao A(XV zp)
(mz1V -z V...V —z,)

e There are r” MUSes

111 /115

Solutions — number of MUSes I

(=x1) A (mx2) Ao A (xp)
aVz)A(xeVz)A...A(xV 2z)
(aVz)ANeVz)A...A(XV 2)

(x1Vza)A(x2Vzp) Ao A(XV zp)
(—mz1V—ozo V...V —z,)

e There are r” MUSes
e Upper bound by Sperner's theorem: C(m, |7])

111 /115

Exercise — Sudoku puzzle generator

e Randomly generate valid Sudoku puzzles starting from a filled grid

112 /115

Exercise — Sudoku puzzle generator

e Randomly generate valid Sudoku puzzles starting from a filled grid

e How?

112 /115

Exercise — Sudoku puzzle generator

e Randomly generate valid Sudoku puzzles starting from a filled grid

e How?
— Pick a known valid Sudoku puzzle

112 /115

Exercise — Sudoku puzzle generator

e Randomly generate valid Sudoku puzzles starting from a filled grid
e How?

— Pick a known valid Sudoku puzzle
— Complete the Sudoku puzzle

112 /115

Exercise — Sudoku puzzle generator

e Randomly generate valid Sudoku puzzles starting from a filled grid

e How?

— Pick a known valid Sudoku puzzle
— Complete the Sudoku puzzle

» How? Simply call a SAT solver

112 /115

Exercise — Sudoku puzzle generator

e Randomly generate valid Sudoku puzzles starting from a filled grid

e How?
— Pick a known valid Sudoku puzzle
— Complete the Sudoku puzzle
» How? Simply call a SAT solver
— lteratively (and randomly) punch holes in the Sudoku grid

» If Sudoku puzzle is still valid, i.e. number of solutions is 1, then
repeat loop

» Otherwise, output Sudoku grid with most recently punched hole
removed

112 /115

Exercise — Sudoku puzzle generator

e Randomly generate valid Sudoku puzzles starting from a filled grid

e How?
— Pick a known valid Sudoku puzzle
— Complete the Sudoku puzzle
» How? Simply call a SAT solver
— lteratively (and randomly) punch holes in the Sudoku grid

» If Sudoku puzzle is still valid, i.e. number of solutions is 1, then
repeat loop

» Otherwise, output Sudoku grid with most recently punched hole
removed

— How many SAT oracles calls?

112 /115

Exercise — Sudoku puzzle generator

e Randomly generate valid Sudoku puzzles starting from a filled grid

e How?
— Pick a known valid Sudoku puzzle
— Complete the Sudoku puzzle
» How? Simply call a SAT solver
— lteratively (and randomly) punch holes in the Sudoku grid

» If Sudoku puzzle is still valid, i.e. number of solutions is 1, then
repeat loop

» Otherwise, output Sudoku grid with most recently punched hole
removed

— How many SAT oracles calls?

» Linear number of calls on number of cells in Sudoku puzzle

112 /115

Exercise — Sudoku puzzle generator

e Randomly generate valid Sudoku puzzles starting from a filled grid

e How?

— Pick a known valid Sudoku puzzle
Complete the Sudoku puzzle

» How? Simply call a SAT solver
Iteratively (and randomly) punch holes in the Sudoku grid

» If Sudoku puzzle is still valid, i.e. number of solutions is 1, then
repeat loop

» Otherwise, output Sudoku grid with most recently punched hole
removed

How many SAT oracles calls?

» Linear number of calls on number of cells in Sudoku puzzle
Can we do better?

112 /115

Some final notes

e SAT is a low-level, but very powerful problem solving paradigm

e There is an ongoing revolution on problem solving with SAT oracles

e The use of SAT oracles is impacting problem solving for many
different complexity classes

— With well-known representative problems, e.g. QBF, #SAT, etc.

113 /115

Some final notes

SAT is a low-level, but very powerful problem solving paradigm

There is an ongoing revolution on problem solving with SAT oracles

The use of SAT oracles is impacting problem solving for many
different complexity classes

— With well-known representative problems, e.g. QBF, #SAT, etc.

Many fascinating research topics out there !

113 /115

Links for tools

e SAT solvers:

— minisat: https://github.com/niklasso/minisat
— glucose: http://www.labri.fr/perso/lsimon/glucose/

MaxSAT solvers:
— MSCG: http://logos.ucd.ie/web/doku.php?id=mscg
— OpenWBO: http://sat.inesc-id.pt/open-wbo/
— MaxHS: http://www.maxhs.org
MCS extractors:
— mcsXL: http://logos.ucd.ie/wiki/doku.php?id=mcsxl
— LBX: http://logos.ucd.ie/wiki/doku.php?id=1bx
— MCSIs: http://logos.ucd.ie/wiki/doku.php?id=mcsls
MUS extractors:
— MUSer: http://logos.ucd.ie/wiki/doku.php?id=muser

Many other tools available from:
http://logos.ucd.ie/wiki/doku.php?id=soft

114 /115

https://github.com/niklasso/minisat
http://www.labri.fr/perso/lsimon/glucose/
http://logos.ucd.ie/web/doku.php?id=mscg
http://sat.inesc-id.pt/open-wbo/
http://www.maxhs.org
http://logos.ucd.ie/wiki/doku.php?id=mcsxl
http://logos.ucd.ie/wiki/doku.php?id=lbx
http://logos.ucd.ie/wiki/doku.php?id=mcsls
http://logos.ucd.ie/wiki/doku.php?id=muser
http://logos.ucd.ie/wiki/doku.php?id=soft

Thank You

115 /115

	CDCL SAT Solving
	Basic Definitions
	Clause Learning, UIPs & Minimization
	Search Restarts & Lazy Data Structures
	Why CDCL Works?

	Problem Modeling for SAT
	Recap Clausification of Boolean Formulas
	Hard and Soft Constraints
	Linear Constraints
	Encoding CSPs
	Modeling Examples & Exercises

	Problem Solving with SAT Oracles
	Minimal Unsatisfiability
	Maximum Satisfiability
	Iterative SAT Solving
	Core-Guided Algorithms
	Minimum Hitting Sets

	Additional Exercises

