
SAT Tutorial

Joao Marques-Silva

University of Lisbon, Portugal

First Indian SAT+SMT School

TIFR, Mumbai, India

December 04-10 2016

1 / 115

The CDCL SAT disruption

• SAT is NP-complete [C71]

– But, CDCL SAT solving is a success story of Computer Science
– CDCL SAT solving has been truly disruptive
– Hundreds (thousands?) of practical applications

2 / 115

The CDCL SAT disruption

• SAT is NP-complete [C71]

– But, CDCL SAT solving is a success story of Computer Science

– CDCL SAT solving has been truly disruptive
– Hundreds (thousands?) of practical applications

2 / 115

The CDCL SAT disruption

• SAT is NP-complete [C71]

– But, CDCL SAT solving is a success story of Computer Science
– CDCL SAT solving has been truly disruptive
– Hundreds (thousands?) of practical applications

2 / 115

CDCL SAT solver improvement I
[Source: Le Berre 2013]

3 / 115

CDCL SAT solver improvement II
[Source: Simon 2015]

��

����

�����

�����

�����

�����

��� ��� ��� ���� ���� ���� ���� ���� ���� ����

�
�
�
��
�
��
�
���
�
�
�

�
���

�
�
��
�
�
�
�
�
�
�

���

�����������������
���������������

���������������������
��������������

���������������
��������������

��������������������
��������������

�����������������������
��������������������������

4 / 115

CDCL SAT is the engines’ engine

Engines using
SAT engines

Boolean

QBF

MaxSAT

PBO

#SAT

...

FOL SMT

Model
finding

Theorem
proving

...

Other

ASP

LCG

CSP

...

5 / 115

CDCL SAT is ubiquitous in problem solving

Problem Solving
with SAT

Embeddings

PBO
B&B

Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Mod-
els

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR
QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

6 / 115

SAT can make the difference – axiom pinpointing

10−2 10−1 100 101 102 103 104

EL2MUS

10−2

10−1

100

101

102

103

104

E
L

+
SA

T

3600 sec. timeout

36
00

se
c.

tim
eo

ut

• EL+ medical ontologies [SAT’15]

– Minimal unsatisfiability (MUSes) & maximal satisfiability (MCSes)
& Enumeration

7 / 115

SAT can make the difference – model based diagnosis

10−2 10−1 100 101 102 103

wboinc

10−2

10−1

100

101

102

103

sc
ry

pt
o

600 sec. timeout

60
0

se
c.

tim
eo

ut

• Model-based diagnosis problem instances [IJCAI’15]

– Maximum satisfiability (MaxSAT)

8 / 115

This tutorial

• Part #1: Modern SAT solvers
– Conflict-Driven Clause Learning (CDCL) SAT solvers

I Goal: Overview for non-experts

• Part #2: Modeling problems for SAT

– Propositional encodings
– Modeling examples

• Part #3: Problem solving with SAT oracles

– Minimal unsatisfiability (MUS)
– Maximum satisfiability (MaxSAT)
– Maximal satisfiability (MSS/MCS)
– Enumeration problems
– Counting problems
– Quantification problems
– Etc.

9 / 115

This tutorial

• Part #1: Modern SAT solvers
– Conflict-Driven Clause Learning (CDCL) SAT solvers

I Goal: Overview for non-experts

• Part #2: Modeling problems for SAT

– Propositional encodings
– Modeling examples

• Part #3: Problem solving with SAT oracles

– Minimal unsatisfiability (MUS)
– Maximum satisfiability (MaxSAT)
– Maximal satisfiability (MSS/MCS)
– Enumeration problems
– Counting problems
– Quantification problems
– Etc.

9 / 115

This tutorial

• Part #1: Modern SAT solvers
– Conflict-Driven Clause Learning (CDCL) SAT solvers

I Goal: Overview for non-experts

• Part #2: Modeling problems for SAT

– Propositional encodings
– Modeling examples

• Part #3: Problem solving with SAT oracles

– Minimal unsatisfiability (MUS)
– Maximum satisfiability (MaxSAT)
– Maximal satisfiability (MSS/MCS)
– Enumeration problems
– Counting problems
– Quantification problems
– Etc.

9 / 115

Part I

CDCL SAT Solving

10 / 115

Outline

Basic Definitions

Clause Learning, UIPs & Minimization

Search Restarts & Lazy Data Structures

Why CDCL Works?

11 / 115

Preliminaries

• Variables: w , x , y , z , a, b, c , . . .

• Literals: w , x̄ , ȳ , a, . . . , but also ¬w ,¬y , . . .
• Clauses: disjunction of literals or set of literals

• Formula: conjunction of clauses or set of clauses

• Model (satisfying assignment): partial/total mapping from
variables to {0, 1} that satisfies formula

• Formula can be SAT/UNSAT

• Example:

F , (r) ∧ (r̄ ∨ s) ∧ (w̄ ∨ a) ∧ (x̄ ∨ b) ∧ (ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

– Example models:

I {r , s, a, b, c, d}
I {r , s, x̄ , y , w̄ , z , ā, b, c, d}

12 / 115

Preliminaries

• Variables: w , x , y , z , a, b, c , . . .

• Literals: w , x̄ , ȳ , a, . . . , but also ¬w ,¬y , . . .
• Clauses: disjunction of literals or set of literals

• Formula: conjunction of clauses or set of clauses

• Model (satisfying assignment): partial/total mapping from
variables to {0, 1} that satisfies formula

• Formula can be SAT/UNSAT

• Example:

F , (r) ∧ (r̄ ∨ s) ∧ (w̄ ∨ a) ∧ (x̄ ∨ b) ∧ (ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

– Example models:

I {r , s, a, b, c, d}
I {r , s, x̄ , y , w̄ , z , ā, b, c, d}

12 / 115

Resolution

• Resolution rule: [DP60,R65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

– Complete proof system for propositional logic

– Extensively used with (CDCL) SAT solvers

• Self-subsuming resolution (with α′ ⊆ α): [E.g. SP04,EB05]

(α ∨ x) (α′ ∨ x̄)
(α)

– (α) subsumes (α ∨ x)

13 / 115

Resolution

• Resolution rule: [DP60,R65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

– Complete proof system for propositional logic

(x ∨ a) (x̄ ∨ a) (ȳ ∨ ā) (y ∨ ā)

(a) (ā)

⊥
– Extensively used with (CDCL) SAT solvers

• Self-subsuming resolution (with α′ ⊆ α): [E.g. SP04,EB05]

(α ∨ x) (α′ ∨ x̄)
(α)

– (α) subsumes (α ∨ x)

13 / 115

Resolution

• Resolution rule: [DP60,R65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

– Complete proof system for propositional logic

(x ∨ a) (x̄ ∨ a) (ȳ ∨ ā) (y ∨ ā)

(a) (ā)

⊥
– Extensively used with (CDCL) SAT solvers

• Self-subsuming resolution (with α′ ⊆ α): [E.g. SP04,EB05]

(α ∨ x) (α′ ∨ x̄)
(α)

– (α) subsumes (α ∨ x)

13 / 115

Unit propagation

F = (r) ∧ (r̄ ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d

– Associate assignment with decision levels

I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...

14 / 115

Unit propagation

F = (r) ∧ (r̄ ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d

– Associate assignment with decision levels

I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...

14 / 115

Unit propagation

F = (r) ∧ (r̄ ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

Level Dec. Unit Prop.

0

1

2

3

4

∅
w

x

y

z

a

b

c d

r s

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d

– Associate assignment with decision levels

I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...

14 / 115

Unit propagation

F = (r) ∧ (r̄ ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

Level Dec. Unit Prop.

0

1

2

3

4

∅
w

x

y

z

a

b

c d

r s

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d

– Associate assignment with decision levels

I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...

14 / 115

Resolution proofs

• Refutation of unsatisfiable formula by iterated resolution
operations produces resolution proof

• An example:
F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

• Resolution proof:

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

• A modern SAT solver can generate resolution proofs using clauses
learned by the solver [ZM03]

15 / 115

Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Implication graph with conflict

16 / 115

Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Proof trace ⊥: (ā ∨ c) (a ∨ b) (c̄) (b̄)

16 / 115

Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Resolution proof follows structure of conflicts

16 / 115

Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Unsatisfiable subformula (core): (c̄), (b̄), (ā ∨ c), (a ∨ b)

16 / 115

The DPLL algorithm

[DL60,DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule
17 / 115

The DPLL algorithm

[DL60,DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

17 / 115

The DPLL algorithm

[DL60,DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.

0

1

2

3

∅
x

y

a b ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

17 / 115

The DPLL algorithm

[DL60,DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.

0

1

2

3

∅
x

y

ā b̄ ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

17 / 115

The DPLL algorithm

[DL60,DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.

0

1

2

3

∅
x

ȳ

a b ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

17 / 115

The DPLL algorithm

[DL60,DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.

0

1

2

3

∅
x

ȳ

ā b̄ ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

17 / 115

The DPLL algorithm

[DL60,DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.

0

1

2

∅
x̄

a

y

b ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

17 / 115

The DPLL algorithm

[DL60,DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.

0

1

2

∅
x̄

ā

y

b̄ ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

17 / 115

How significant is CDCL SAT solving?

• Sample of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995

2. GRASP: first CDCL SAT solver, state of the art 1995∼2000

3. Minisat: CDCL SAT solver, state of the art until the late 00s

4. Glucose: modern state of the art CDCL SAT solver

5. ...

– Demo 1: model checking example (from IBM)

• Demo 2: cooperative path finding (CPF)

18 / 115

How significant is CDCL SAT solving?

• Sample of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995

2. GRASP: first CDCL SAT solver, state of the art 1995∼2000

3. Minisat: CDCL SAT solver, state of the art until the late 00s

4. Glucose: modern state of the art CDCL SAT solver

5. ...

– Demo 1: model checking example (from IBM)

• Demo 2: cooperative path finding (CPF)

18 / 115

What is a CDCL SAT solver?

• Extend DPLL SAT solver with: [DP60,DLL62]

– Clause learning & non-chronological backtracking [MSS96a,MSS99,BS97,Z97]

I Exploit UIPs [MSS96a,SSS12]

I Minimize learned clauses [SB09,VG09]

I Opportunistically delete clauses [MSS96a,MSS99,GN02]

– Search restarts [GSK98,BMS00,H07,B08]

– Lazy data structures

I Watched literals [MMZZM01]

– Conflict-guided branching

I Lightweight branching heuristics [MMZZM01]

I Phase saving [S00,PD07]

– ...

19 / 115

What is a CDCL SAT solver?

• Extend DPLL SAT solver with: [DP60,DLL62]

– Clause learning & non-chronological backtracking [MSS96a,MSS99,BS97,Z97]

I Exploit UIPs [MSS96a,SSS12]

I Minimize learned clauses [SB09,VG09]

I Opportunistically delete clauses [MSS96a,MSS99,GN02]

– Search restarts [GSK98,BMS00,H07,B08]

– Lazy data structures

I Watched literals [MMZZM01]

– Conflict-guided branching

I Lightweight branching heuristics [MMZZM01]

I Phase saving [S00,PD07]

– ...

19 / 115

Outline

Basic Definitions

Clause Learning, UIPs & Minimization

Search Restarts & Lazy Data Structures

Why CDCL Works?

20 / 115

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅
xx

y

zz a

b

⊥

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
I Decision variable & literals assigned at decision levels less than

current

– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

• Note: GRASP-like clause learning
– Other instantiations of clause learning exist

21 / 115

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅
xx

y

zz a

b

⊥

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
I Decision variable & literals assigned at decision levels less than

current

– Create new clause: (x̄ ∨ z̄)
• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

• Note: GRASP-like clause learning
– Other instantiations of clause learning exist

21 / 115

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅
xx

y

zz a

b

⊥

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
I Decision variable & literals assigned at decision levels less than

current

– Create new clause: (x̄ ∨ z̄)
• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

• Note: GRASP-like clause learning
– Other instantiations of clause learning exist

21 / 115

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅
xx

y

zz a

b

⊥

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
I Decision variable & literals assigned at decision levels less than

current

– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

• Note: GRASP-like clause learning
– Other instantiations of clause learning exist

21 / 115

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅
xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
I Decision variable & literals assigned at decision levels less than

current

– Create new clause: (x̄ ∨ z̄)
• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

• Note: GRASP-like clause learning
– Other instantiations of clause learning exist

21 / 115

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅
xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
I Decision variable & literals assigned at decision levels less than

current

– Create new clause: (x̄ ∨ z̄)
• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

• Note: GRASP-like clause learning
– Other instantiations of clause learning exist

21 / 115

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅
xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
I Decision variable & literals assigned at decision levels less than

current

– Create new clause: (x̄ ∨ z̄)
• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

• Note: GRASP-like clause learning
– Other instantiations of clause learning exist

21 / 115

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅
xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
I Decision variable & literals assigned at decision levels less than

current

– Create new clause: (x̄ ∨ z̄)
• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

• Note: GRASP-like clause learning
– Other instantiations of clause learning exist

21 / 115

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅
xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
I Decision variable & literals assigned at decision levels less than

current

– Create new clause: (x̄ ∨ z̄)
• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

• Note: GRASP-like clause learning
– Other instantiations of clause learning exist

21 / 115

Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅
x

y

zz aa

bb

⊥⊥

z

• Clause (x̄ ∨ z̄) is asserting at decision level 1

• Learned clauses are asserting (with exceptions) [MSS96a,MSS99]

• Backtracking differs from plain DPLL:

– Always bactrack after a conflict [ZMMM01]

22 / 115

Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅
x

y

zz aa

bb

⊥⊥

z

• Clause (x̄ ∨ z̄) is asserting at decision level 1

• Learned clauses are asserting (with exceptions) [MSS96a,MSS99]

• Backtracking differs from plain DPLL:

– Always bactrack after a conflict [ZMMM01]

22 / 115

Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅
x

y

zz aa

bb

⊥⊥

z

Level Dec. Unit Prop.

0

1

∅
x z̄

• Clause (x̄ ∨ z̄) is asserting at decision level 1

• Learned clauses are asserting (with exceptions) [MSS96a,MSS99]

• Backtracking differs from plain DPLL:

– Always bactrack after a conflict [ZMMM01]

22 / 115

Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅
x

y

zz aa

bb

⊥⊥

z

Level Dec. Unit Prop.

0

1

∅
x z̄

• Clause (x̄ ∨ z̄) is asserting at decision level 1

• Learned clauses are asserting (with exceptions) [MSS96a,MSS99]

• Backtracking differs from plain DPLL:

– Always bactrack after a conflict [ZMMM01]

22 / 115

Unique implication points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

∅
www

xxx

yyy

zzz aaa

b ⊥

c

23 / 115

Unique implication points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

∅
www

xxx

yyy

zzz aaa

b ⊥

c

(b̄ ∨ c̄) (w̄ ∨ ā ∨ c) (x̄ ∨ ā ∨ b) (ȳ ∨ z̄ ∨ a)

(w̄ ∨ ā ∨ b̄)

(w̄ ∨ x̄ ∨ ȳ ∨ z̄)

(w̄ ∨ x̄ ∨ ā)(w̄ ∨ x̄ ∨ ā)

• Learn clause (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• But a is an UIP [MSS96a,MSS99]

– Dominator in DAG for decision level 4

23 / 115

Unique implication points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

∅
www

xxx

yyy

zzz aaa

b ⊥

c

(b̄ ∨ c̄) (w̄ ∨ ā ∨ c) (x̄ ∨ ā ∨ b) (ȳ ∨ z̄ ∨ a)

(w̄ ∨ ā ∨ b̄)

(w̄ ∨ x̄ ∨ ȳ ∨ z̄)

(w̄ ∨ x̄ ∨ ā)(w̄ ∨ x̄ ∨ ā)

• Learn clause (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• But a is an UIP [MSS96a,MSS99]

– Dominator in DAG for decision level 4

23 / 115

Unique implication points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

∅
www

xxx

yyy

zzz aaa

b ⊥

c

(b̄ ∨ c̄) (w̄ ∨ ā ∨ c) (x̄ ∨ ā ∨ b) (ȳ ∨ z̄ ∨ a)

(w̄ ∨ ā ∨ b̄)

(w̄ ∨ x̄ ∨ ȳ ∨ z̄)

(w̄ ∨ x̄ ∨ ā)(w̄ ∨ x̄ ∨ ā)

• Learn clause (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• But a is an UIP [MSS96a,MSS99]

– Dominator in DAG for level 4

• Learn clause (w̄ ∨ x̄ ∨ ā)
23 / 115

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅
www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:

– Learn clause (w̄ ∨ ȳ ∨ ā)

• But there can be more than 1
UIP

• Second UIP:

– Learn clause (x̄ ∨ z̄ ∨ a)
– Clause is not asserting

• In practice smaller clauses more
effective

– Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• Multiple UIPs proposed in GRASP [MSS96a,MSS99]

– First UIP learning proposed in Chaff [ZMMM01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on some instances [SSS12]

24 / 115

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅
www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:

– Learn clause (w̄ ∨ ȳ ∨ ā)

• But there can be more than 1
UIP

• Second UIP:

– Learn clause (x̄ ∨ z̄ ∨ a)
– Clause is not asserting

• In practice smaller clauses more
effective

– Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• Multiple UIPs proposed in GRASP [MSS96a,MSS99]

– First UIP learning proposed in Chaff [ZMMM01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on some instances [SSS12]

24 / 115

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅
www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:

– Learn clause (w̄ ∨ ȳ ∨ ā)

• But there can be more than 1
UIP

• Second UIP:

– Learn clause (x̄ ∨ z̄ ∨ a)
– Clause is not asserting

• In practice smaller clauses more
effective

– Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• Multiple UIPs proposed in GRASP [MSS96a,MSS99]

– First UIP learning proposed in Chaff [ZMMM01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on some instances [SSS12]

24 / 115

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅
www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:

– Learn clause (w̄ ∨ ȳ ∨ ā)

• But there can be more than 1
UIP

• Second UIP:

– Learn clause (x̄ ∨ z̄ ∨ a)
– Clause is not asserting

• In practice smaller clauses more
effective

– Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• Multiple UIPs proposed in GRASP [MSS96a,MSS99]

– First UIP learning proposed in Chaff [ZMMM01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on some instances [SSS12]

24 / 115

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅
www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:

– Learn clause (w̄ ∨ ȳ ∨ ā)

• But there can be more than 1
UIP

• Second UIP:

– Learn clause (x̄ ∨ z̄ ∨ a)
– Clause is not asserting

• In practice smaller clauses more
effective

– Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• Multiple UIPs proposed in GRASP [MSS96a,MSS99]

– First UIP learning proposed in Chaff [ZMMM01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on some instances [SSS12]

24 / 115

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅
www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:

– Learn clause (w̄ ∨ ȳ ∨ ā)

• But there can be more than 1
UIP

• Second UIP:

– Learn clause (x̄ ∨ z̄ ∨ a)
– Clause is not asserting

• In practice smaller clauses more
effective

– Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• Multiple UIPs proposed in GRASP [MSS96a,MSS99]

– First UIP learning proposed in Chaff [ZMMM01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on some instances [SSS12]

24 / 115

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅
www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:

– Learn clause (w̄ ∨ ȳ ∨ ā)

• But there can be more than 1
UIP

• Second UIP:

– Learn clause (x̄ ∨ z̄ ∨ a)
– Clause is not asserting

• In practice smaller clauses more
effective

– Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• Multiple UIPs proposed in GRASP [MSS96a,MSS99]

– First UIP learning proposed in Chaff [ZMMM01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on some instances [SSS12]

24 / 115

Clause minimization I

Level Dec. Unit Prop.

0

1

2

3

∅
xxx

yyy

zzz c

bbb

a

⊥

25 / 115

Clause minimization I

Level Dec. Unit Prop.

0

1

2

3

∅
xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

• Learn clause (x̄ ∨ ȳ ∨ z̄ ∨ b̄)

• Apply self-subsuming resolution (i.e. local minimization) [SB09]

25 / 115

Clause minimization I

Level Dec. Unit Prop.

0

1

2

3

∅
xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

(x̄ ∨ b)

• Learn clause (x̄ ∨ ȳ ∨ z̄ ∨ b̄)

• Apply self-subsuming resolution (i.e. local minimization) [SB09]

25 / 115

Clause minimization I

Level Dec. Unit Prop.

0

1

2

3

∅
xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

(x̄ ∨ b)

(x̄ ∨ ȳ ∨ z̄)

• Learn clause (x̄ ∨ ȳ ∨ z̄ ∨ b̄)

• Apply self-subsuming resolution (i.e. local minimization) [SB09]

• Learn clause (x̄ ∨ ȳ ∨ z̄)

25 / 115

Clause minimization I

Level Dec. Unit Prop.

0

1

2

3

∅
xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

(x̄ ∨ b)

(x̄ ∨ ȳ ∨ z̄)

• Learn clause (x̄ ∨ ȳ ∨ z̄ ∨ b̄)

• Apply self-subsuming resolution (i.e. local minimization) [SB09]

• Learn clause (x̄ ∨ ȳ ∨ z̄)

25 / 115

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅
ww a

b

ccc

xx e

d ⊥

•
• Cannot apply self-subsuming

resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

26 / 115

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅
ww a

b

ccc

xx e

d ⊥

• Learn clause (w̄ ∨ x̄ ∨ c̄)

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

26 / 115

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅
ww a

b

ccc

xx e

d ⊥

• Learn clause (w̄ ∨ x̄ ∨ c̄)

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

26 / 115

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅
ww a

b

ccc

xx e

d ⊥

• Learn clause (w̄ ∨ x̄ ∨ c̄)

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

26 / 115

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅
ww a

b

ccc

xx e

d ⊥

• Learn clause (w̄ ∨ x̄ ∨ c̄)

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

26 / 115

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅
ww a

b

ccc

xx e

d ⊥

• Learn clause (w̄ ∨ x̄ ∨ c̄)

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

26 / 115

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅
ww a

b

ccc

xx e

d ⊥

• Learn clause (w̄ ∨ x̄ ∨ c̄)

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

26 / 115

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅
ww a

b

ccc

xx e

d ⊥

• Learn clause (w̄ ∨ x̄ ∨ c̄)

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ ∨ x̄ ∨ ā ∨ b̄)

• Can apply recursive minimization

• Learn clause (w̄ ∨ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes

– Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

26 / 115

Outline

Basic Definitions

Clause Learning, UIPs & Minimization

Search Restarts & Lazy Data Structures

Why CDCL Works?

27 / 115

Search restarts I

• Heavy-tail behavior: [GSK98]

– 10000 runs, branching randomization on satisfiable industrial
instance

• Use rapid randomized restarts (search restarts)

28 / 115

Search restarts II

• Restart search after a number
of conflicts

• Increase cutoff after each
restart

– Guarantees completeness
– Different policies exist

• Works for SAT & UNSAT
instances. Why?

– Not explained by
heavy-tailed behavior

– But there exist proof
complexity arguments

• Learned clauses effective after
restart(s)

solutioncutoffcutoff

29 / 115

Search restarts II

• Restart search after a number
of conflicts

• Increase cutoff after each
restart

– Guarantees completeness
– Different policies exist

• Works for SAT & UNSAT
instances. Why?

– Not explained by
heavy-tailed behavior

– But there exist proof
complexity arguments

• Learned clauses effective after
restart(s)

solutioncutoffcutoff

29 / 115

Search restarts II

• Restart search after a number
of conflicts

• Increase cutoff after each
restart

– Guarantees completeness
– Different policies exist

• Works for SAT & UNSAT
instances. Why?

– Not explained by
heavy-tailed behavior

– But there exist proof
complexity arguments

• Learned clauses effective after
restart(s)

solutioncutoffcutoff

29 / 115

Search restarts II

• Restart search after a number
of conflicts

• Increase cutoff after each
restart

– Guarantees completeness
– Different policies exist

• Works for SAT & UNSAT
instances. Why?

– Not explained by
heavy-tailed behavior

– But there exist proof
complexity arguments

• Learned clauses effective after
restart(s)

29 / 115

Data structures basics

• Each literal l should access clauses containing l

– Why?

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L

– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others

30 / 115

Data structures basics

• Each literal l should access clauses containing l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L

– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others

30 / 115

Data structures basics

• Each literal l should access clauses containing l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L

– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others

30 / 115

Data structures basics

• Each literal l should access clauses containing l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L

– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others

30 / 115

Data structures basics

• Each literal l should access clauses containing l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others

30 / 115

Data structures basics

• Each literal l should access clauses containing l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)

– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others

30 / 115

Data structures basics

• Each literal l should access clauses containing l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others

30 / 115

Data structures basics

• Each literal l should access clauses containing l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others

30 / 115

Data structures basics

• Each literal l should access clauses containing l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation: Watched Literals [MMZZM01]

– Watched literals are one example of lazy data structures

I But there are others

30 / 115

Data structures basics

• Each literal l should access clauses containing l

– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation: Watched Literals [MMZZM01]

– Watched literals are one example of lazy data structures

I But there are others

30 / 115

Watched literals

[MMZZM01]

• Important states of a clause

• Associate 2 references with
each clause

• Deciding unit requires
traversing all literals

• References unchanged when
backtracking

31 / 115

Watched literals

[MMZZM01]

• Important states of a clause

• Associate 2 references with
each clause

• Deciding unit requires
traversing all literals

• References unchanged when
backtracking

31 / 115

Watched literals

[MMZZM01]

• Important states of a clause

• Associate 2 references with
each clause

• Deciding unit requires
traversing all literals

• References unchanged when
backtracking

31 / 115

Watched literals

[MMZZM01]

• Important states of a clause

• Associate 2 references with
each clause

• Deciding unit requires
traversing all literals

• References unchanged when
backtracking

31 / 115

Additional key techniques

• Lightweight branching [MMZZM01]

– Use conflict to bias variables to branch on, associate score with
each variable

– Prefer recent bias by regularly decreasing variable scores
– Recent promising ML-based branching [LGPC16a,LGPC16b]

• Clause deletion policies

– Not practical to keep all learned clauses
– Delete larger clauses [E.g. MSS96a,MSS99]

– Delete less used clauses [E.g. GN02,ES03]

• Other effective techniques:

– Phase saving [S00,PD07]

– Luby restarts [H07]

– Literal blocks distance [AS09]

– Preprocessing/inprocessing [E.g. JHB12,HJLSB15]

32 / 115

Additional key techniques

• Lightweight branching [MMZZM01]

– Use conflict to bias variables to branch on, associate score with
each variable

– Prefer recent bias by regularly decreasing variable scores
– Recent promising ML-based branching [LGPC16a,LGPC16b]

• Clause deletion policies

– Not practical to keep all learned clauses
– Delete larger clauses [E.g. MSS96a,MSS99]

– Delete less used clauses [E.g. GN02,ES03]

• Other effective techniques:

– Phase saving [S00,PD07]

– Luby restarts [H07]

– Literal blocks distance [AS09]

– Preprocessing/inprocessing [E.g. JHB12,HJLSB15]

32 / 115

Additional key techniques

• Lightweight branching [MMZZM01]

– Use conflict to bias variables to branch on, associate score with
each variable

– Prefer recent bias by regularly decreasing variable scores
– Recent promising ML-based branching [LGPC16a,LGPC16b]

• Clause deletion policies

– Not practical to keep all learned clauses
– Delete larger clauses [E.g. MSS96a,MSS99]

– Delete less used clauses [E.g. GN02,ES03]

• Other effective techniques:

– Phase saving [S00,PD07]

– Luby restarts [H07]

– Literal blocks distance [AS09]

– Preprocessing/inprocessing [E.g. JHB12,HJLSB15]

32 / 115

Outline

Basic Definitions

Clause Learning, UIPs & Minimization

Search Restarts & Lazy Data Structures

Why CDCL Works?

33 / 115

Why CDCL works – a practitioner’s view

• GRASP-like clause learning extensively inspired in circuit reasoners

– UIPs mimic unique sensitization points (USPs), from testing
– Analysis of conflicts organized by decision levels

I In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN,
etc.

I Need to find ways to exploit the circuit’s internal structure
I Several ideas originated in earlier work [MSS94a,MSS94b]

• Understanding problem structure is essential
– Clauses are learned locally to each decision level
– UIPs further localize the learned clauses
– GRASP-like clause learning aims at learning small clauses, related

with the sources of conflicts
– Most practical problem instances exhibit the structure GRASP-like

clause learning is most effective on

I Most problems are not natively represented in clausal form [S13]

• There are also proof complexity arguments

34 / 115

Why CDCL works – a practitioner’s view

• GRASP-like clause learning extensively inspired in circuit reasoners

– UIPs mimic unique sensitization points (USPs), from testing
– Analysis of conflicts organized by decision levels

I In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN,
etc.

I Need to find ways to exploit the circuit’s internal structure
I Several ideas originated in earlier work [MSS94a,MSS94b]

• Understanding problem structure is essential
– Clauses are learned locally to each decision level
– UIPs further localize the learned clauses
– GRASP-like clause learning aims at learning small clauses, related

with the sources of conflicts
– Most practical problem instances exhibit the structure GRASP-like

clause learning is most effective on

I Most problems are not natively represented in clausal form [S13]

• There are also proof complexity arguments

34 / 115

Part II

Problem Modeling for SAT

35 / 115

Outline

Recap Clausification of Boolean Formulas

Hard and Soft Constraints

Linear Constraints

Encoding CSPs

Modeling Examples & Exercises

36 / 115

Representing Boolean formulas / circuits I

• Satisfiability problems can be defined on Boolean circuits/formulas

– Can use any logic connective: ∧,∨,¬,→,↔, . . .
• Can represent circuits/formulas as CNF formulas [T68,PG86]

– For each (simple) gate, CNF formula encodes the consistent
assignments to the gate’s inputs and output

I Given z = OP(x , y), represent in CNF z ↔ OP(x , y)

– CNF formula for the circuit is the conjunction of CNF formula for
each gate

Fc = (a ∨ c) ∧ (b ∨ c) ∧ (ā ∨ b̄ ∨ c̄)

Ft = (r̄ ∨ t) ∧ (s̄ ∨ t) ∧ (r ∨ s ∨ t̄)

NAND

OR

a
b

c

r
s t

37 / 115

Representing Boolean formulas / circuits II

NAND
a
b

c

ab
c 00 01 11 10

0

1

1

1 1 1

0 0 0

0

a b c Fc(a,b,c)

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Fc = (a ∨ c) ∧ (b ∨ c) ∧ (ā ∨ b̄ ∨ c̄)

38 / 115

Representing Boolean formulas / circuits III

• CNF formula for the circuit is the conjunction of the CNF formula
for each gate

– Can specify objectives with additional clauses

NAND
AND

OR

a
b c

d

x y
z = 1?

F = (a ∨ x) ∧ (b ∨ x) ∧ (ā ∨ b̄ ∨ x̄) ∧
(x ∨ ȳ) ∧ (c ∨ ȳ) ∧ (x̄ ∨ c̄ ∨ y) ∧
(ȳ ∨ z) ∧ (d̄ ∨ z) ∧ (y ∨ d ∨ z̄) ∧ (z)

• Note: z = d ∨ (c ∧ (¬(a ∧ b)))
– No distinction between Boolean circuits and (non-clausal) formulas,

besides adding new variables

• Easy to do more structures: ITEs; Adders; etc.

39 / 115

Representing Boolean formulas / circuits III

• CNF formula for the circuit is the conjunction of the CNF formula
for each gate

– Can specify objectives with additional clauses

NAND
AND

OR

a
b c

d

x y
z = 1?

F = (a ∨ x) ∧ (b ∨ x) ∧ (ā ∨ b̄ ∨ x̄) ∧
(x ∨ ȳ) ∧ (c ∨ ȳ) ∧ (x̄ ∨ c̄ ∨ y) ∧
(ȳ ∨ z) ∧ (d̄ ∨ z) ∧ (y ∨ d ∨ z̄) ∧ (z)

• Note: z = d ∨ (c ∧ (¬(a ∧ b)))
– No distinction between Boolean circuits and (non-clausal) formulas,

besides adding new variables

• Easy to do more structures: ITEs; Adders; etc.

39 / 115

Representing Boolean formulas / circuits III

• CNF formula for the circuit is the conjunction of the CNF formula
for each gate

– Can specify objectives with additional clauses

NAND
AND

OR

a
b c

d

x y
z = 1?

F = (a ∨ x) ∧ (b ∨ x) ∧ (ā ∨ b̄ ∨ x̄) ∧
(x ∨ ȳ) ∧ (c ∨ ȳ) ∧ (x̄ ∨ c̄ ∨ y) ∧
(ȳ ∨ z) ∧ (d̄ ∨ z) ∧ (y ∨ d ∨ z̄) ∧ (z)

• Note: z = d ∨ (c ∧ (¬(a ∧ b)))
– No distinction between Boolean circuits and (non-clausal) formulas,

besides adding new variables

• Easy to do more structures: ITEs; Adders; etc.
39 / 115

Outline

Recap Clausification of Boolean Formulas

Hard and Soft Constraints

Linear Constraints

Encoding CSPs

Modeling Examples & Exercises

40 / 115

Hard vs. soft constraints

• Hard: Constraints that must be satisfied

• Soft: Constraints that we would like to satisfy, if possible

– Associate a cost (can be unit) with falsifying each soft constraint
– For a hard constraint, the cost can be viewed as ∞

• An example:

– How to model linear cost function optimization?

min
∑n

j=1 cj xj

s.t. ϕ

– Hard constraints: ϕ
– Soft constraints: (xj), each with cost cj

41 / 115

Hard vs. soft constraints

• Hard: Constraints that must be satisfied

• Soft: Constraints that we would like to satisfy, if possible

– Associate a cost (can be unit) with falsifying each soft constraint
– For a hard constraint, the cost can be viewed as ∞

• An example:

– How to model linear cost function optimization?

min
∑n

j=1 cj xj

s.t. ϕ

– Hard constraints: ϕ
– Soft constraints: (xj), each with cost cj

41 / 115

Hard vs. soft constraints

• Hard: Constraints that must be satisfied

• Soft: Constraints that we would like to satisfy, if possible

– Associate a cost (can be unit) with falsifying each soft constraint
– For a hard constraint, the cost can be viewed as ∞

• An example:

– How to model linear cost function optimization?

min
∑n

j=1 cj xj

s.t. ϕ

– Hard constraints: ϕ
– Soft constraints: (xj), each with cost cj

41 / 115

Hard vs. soft constraints

• Hard: Constraints that must be satisfied

• Soft: Constraints that we would like to satisfy, if possible

– Associate a cost (can be unit) with falsifying each soft constraint
– For a hard constraint, the cost can be viewed as ∞

• An example:

– How to model linear cost function optimization?

min
∑n

j=1 cj xj

s.t. ϕ

– Hard constraints: ϕ

– Soft constraints: (xj), each with cost cj

41 / 115

Hard vs. soft constraints

• Hard: Constraints that must be satisfied

• Soft: Constraints that we would like to satisfy, if possible

– Associate a cost (can be unit) with falsifying each soft constraint
– For a hard constraint, the cost can be viewed as ∞

• An example:

– How to model linear cost function optimization?

min
∑n

j=1 cj xj

s.t. ϕ

– Hard constraints: ϕ
– Soft constraints: (xj), each with cost cj

41 / 115

Outline

Recap Clausification of Boolean Formulas

Hard and Soft Constraints

Linear Constraints

Encoding CSPs

Modeling Examples & Exercises

42 / 115

Linear constraints

• Cardinality constraints:
∑n

j=1 xj ≤ k ?

– How to handle AtMost1 constraints,
∑n

j=1 xj ≤ 1 ?

– General form:
∑n

j=1 xj ./ k , with ./ ∈ {<,≤,=,≥, >}

• Pseudo-Boolean constraints:
∑n

j=1 ajxj ./ k , with
./ ∈ {<,≤,=,≥, >}

• If variables are non-Boolean, e.g. with finite domain

– Need to encode variables (more later)

43 / 115

Linear constraints

• Cardinality constraints:
∑n

j=1 xj ≤ k ?

– How to handle AtMost1 constraints,
∑n

j=1 xj ≤ 1 ?

– General form:
∑n

j=1 xj ./ k , with ./ ∈ {<,≤,=,≥, >}

• Pseudo-Boolean constraints:
∑n

j=1 ajxj ./ k , with
./ ∈ {<,≤,=,≥, >}

• If variables are non-Boolean, e.g. with finite domain

– Need to encode variables (more later)

43 / 115

Linear constraints

• Cardinality constraints:
∑n

j=1 xj ≤ k ?

– How to handle AtMost1 constraints,
∑n

j=1 xj ≤ 1 ?

– General form:
∑n

j=1 xj ./ k , with ./ ∈ {<,≤,=,≥, >}

• Pseudo-Boolean constraints:
∑n

j=1 ajxj ./ k , with
./ ∈ {<,≤,=,≥, >}

• If variables are non-Boolean, e.g. with finite domain

– Need to encode variables (more later)

43 / 115

Equals1, AtLeast1 & AtMost1 constraints

• ∑n
j=1 xj = 1: encode with (

∑n
j=1 xj ≤ 1) ∧ (

∑n
j=1 xj ≥ 1)

• ∑n
j=1 xj ≥ 1: encode with (x1 ∨ x2 ∨ . . . ∨ xn)

• ∑n
j=1 xj ≤ 1 encode with:

– Pairwise encoding

I Clauses: O(n2) ; No auxiliary variables

– Sequential counter [S05]

I Clauses: O(n) ; Auxiliary variables: O(n)

– Bitwise encoding [P07,FP01]

I Clauses: O(n log n) ; Auxiliary variables: O(log n)

– ...

44 / 115

Pairwise encoding

• How to (propositionally) encode AtMost1 constraint
a + b + c + d ≤ 1?

– Encoded as: (ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (ā ∨ d̄) ∧ (b̄ ∨ c̄) ∧ (b̄ ∨ d̄) ∧ (c̄ ∨ d̄)

• With N variables, number of clauses becomes n(n−1)
2

– But no additional variables

45 / 115

Pairwise encoding

• How to (propositionally) encode AtMost1 constraint
a + b + c + d ≤ 1?

a→ b̄ ∧ c̄ ∧ d̄ =⇒ (ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (ā ∨ d̄)
b → c̄ ∧ d̄ ∧ ā =⇒ (b̄ ∨ c̄) ∧ (b̄ ∨ d̄)∧(b̄ ∨ ā)
c → d̄ ∧ ā ∧ b̄ =⇒ (c̄ ∨ d̄)∧(c̄ ∨ ā) ∧ (c̄ ∨ b̄)
d → ā ∧ b̄ ∧ c̄ =⇒ (d̄ ∨ ā) ∧ (d̄ ∨ b̄) ∧ (d̄ ∨ c̄)

– Encoded as: (ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (ā ∨ d̄) ∧ (b̄ ∨ c̄) ∧ (b̄ ∨ d̄) ∧ (c̄ ∨ d̄)

• With N variables, number of clauses becomes n(n−1)
2

– But no additional variables

45 / 115

Pairwise encoding

• How to (propositionally) encode AtMost1 constraint
a + b + c + d ≤ 1?

a→ b̄ ∧ c̄ ∧ d̄ =⇒ (ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (ā ∨ d̄)
b → c̄ ∧ d̄ ∧ ā =⇒ (b̄ ∨ c̄) ∧ (b̄ ∨ d̄)∧(b̄ ∨ ā)
c → d̄ ∧ ā ∧ b̄ =⇒ (c̄ ∨ d̄)∧(c̄ ∨ ā) ∧ (c̄ ∨ b̄)
d → ā ∧ b̄ ∧ c̄ =⇒ (d̄ ∨ ā) ∧ (d̄ ∨ b̄) ∧ (d̄ ∨ c̄)

– Encoded as: (ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (ā ∨ d̄) ∧ (b̄ ∨ c̄) ∧ (b̄ ∨ d̄) ∧ (c̄ ∨ d̄)

• With N variables, number of clauses becomes n(n−1)
2

– But no additional variables

45 / 115

Sequential counter encoding

• Encode
∑n

j=1 xj ≤ 1 with sequential counter:

(x̄1 ∨ s1) ∧ (x̄n ∨ s̄n−1)∧∧
1<i<n ((x̄i ∨ si) ∧ (s̄i−1 ∨ si) ∧ (x̄i ∨ s̄i−1))

– If some xj = 1, then all si variables must be assigned

I si = 1 for i ≥ j , and so xi = 0 for i > j
I si = 0 for i < j , and so xi = 0 for i < j
I Thus, all other xi variables must take value 0

– If all xj = 0, can find consistent assignment to si variables

– O(n) clauses ; O(n) auxiliary variables

46 / 115

Bitwise encoding

• Encode
∑n

j=1 xj ≤ 1 with bitwise encoding:

– Auxiliary variables v0, . . . , vr−1 ; r = dlog ne (with n > 1)

– If xj = 1, then v0 . . . vr−1 = b0 . . . br−1, the binary encoding of j − 1

xj → (v0 = b0)∧. . .∧(vr−1 = br−1)⇔ (x̄j∨(v0 = b0)∧. . .∧(vr−1 = br−1))

– Clauses (x̄j ∨ (vi ↔ bi)) = (x̄j ∨ li), i = 0, . . . , r − 1, where

I li ≡ vi , if bi = 1
I li ≡ v̄i , otherwise

– If xj = 1, assignment to vi variables must encode j − 1

I For consistency, all other x variables must not take value 1

– If all xj = 0, any assignment to vi variables is consistent

– O(n log n) clauses ; O(log n) auxiliary variables

• An example: x1 + x2 + x3 ≤ 1

47 / 115

Bitwise encoding

• Encode
∑n

j=1 xj ≤ 1 with bitwise encoding:

– Auxiliary variables v0, . . . , vr−1 ; r = dlog ne (with n > 1)

– If xj = 1, then v0 . . . vr−1 = b0 . . . br−1, the binary encoding of j − 1

xj → (v0 = b0)∧. . .∧(vr−1 = br−1)⇔ (x̄j∨(v0 = b0)∧. . .∧(vr−1 = br−1))

– Clauses (x̄j ∨ (vi ↔ bi)) = (x̄j ∨ li), i = 0, . . . , r − 1, where

I li ≡ vi , if bi = 1
I li ≡ v̄i , otherwise

– If xj = 1, assignment to vi variables must encode j − 1

I For consistency, all other x variables must not take value 1

– If all xj = 0, any assignment to vi variables is consistent

– O(n log n) clauses ; O(log n) auxiliary variables

• An example: x1 + x2 + x3 ≤ 1

j − 1 v1v0

x1 0 00
x2 1 01
x3 2 10

47 / 115

Bitwise encoding

• Encode
∑n

j=1 xj ≤ 1 with bitwise encoding:

– Auxiliary variables v0, . . . , vr−1 ; r = dlog ne (with n > 1)

– If xj = 1, then v0 . . . vr−1 = b0 . . . br−1, the binary encoding of j − 1

xj → (v0 = b0)∧. . .∧(vr−1 = br−1)⇔ (x̄j∨(v0 = b0)∧. . .∧(vr−1 = br−1))

– Clauses (x̄j ∨ (vi ↔ bi)) = (x̄j ∨ li), i = 0, . . . , r − 1, where

I li ≡ vi , if bi = 1
I li ≡ v̄i , otherwise

– If xj = 1, assignment to vi variables must encode j − 1

I For consistency, all other x variables must not take value 1

– If all xj = 0, any assignment to vi variables is consistent

– O(n log n) clauses ; O(log n) auxiliary variables

• An example: x1 + x2 + x3 ≤ 1

j − 1 v1v0

x1 0 00
x2 1 01
x3 2 10

(x̄1 ∨ v̄1) ∧ (x̄1 ∨ v̄0)
(x̄2 ∨ v̄1) ∧ (x̄2 ∨ v0)
(x̄3 ∨ v1) ∧ (x̄3 ∨ v̄0)

47 / 115

Bitwise encoding

• Encode
∑n

j=1 xj ≤ 1 with bitwise encoding:

– Auxiliary variables v0, . . . , vr−1 ; r = dlog ne (with n > 1)

– If xj = 1, then v0 . . . vr−1 = b0 . . . br−1, the binary encoding of j − 1

xj → (v0 = b0)∧. . .∧(vr−1 = br−1)⇔ (x̄j∨(v0 = b0)∧. . .∧(vr−1 = br−1))

– Clauses (x̄j ∨ (vi ↔ bi)) = (x̄j ∨ li), i = 0, . . . , r − 1, where

I li ≡ vi , if bi = 1
I li ≡ v̄i , otherwise

– If xj = 1, assignment to vi variables must encode j − 1

I For consistency, all other x variables must not take value 1

– If all xj = 0, any assignment to vi variables is consistent

– O(n log n) clauses ; O(log n) auxiliary variables

• An example: x1 + x2 + x3 ≤ 1

j − 1 v1v0

x1 0 00
x2 1 01
x3 2 10

(x̄1 ∨ v̄1) ∧ (x̄1 ∨ v̄0)
(x̄2 ∨ v̄1) ∧ (x̄2 ∨ v0)
(x̄3 ∨ v1) ∧ (x̄3 ∨ v̄0)

47 / 115

General cardinality constraints

• General form:
∑n

j=1 xj ≤ k (or
∑n

j=1 xj ≥ k)

– Operational encoding [W98]

I Clauses/Variables: O(n)
I Does not guarantee arc-consistency

– Generalized pairwise

I Clauses: O(2n) ; no auxiliary variables

– Sequential counters [S05]

I Clauses/Variables: O(n k)

– BDDs [ES06]

I Clauses/Variables: O(n k)

– Sorting networks [ES06]

I Clauses/Variables: O(n log2 n)

– Cardinality Networks: [ANORC09,ANORC11a]

I Clauses/Variables: O(n log2 k)

– Pairwise Cardinality Networks: [CZI10]

– ...

48 / 115

Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k + 1 true variables is disallowed

• Example: a + b + c + d ≤ 2

– Encoded as: (ā ∨ b̄ ∨ c̄) ∧ (ā ∨ b̄ ∨ d̄) ∧ (ā ∨ c̄ ∨ d̄) ∧ (b̄ ∨ c̄ ∨ d̄)

• In general, number of clauses is Cn
k+1

– Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2

49 / 115

Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k + 1 true variables is disallowed

• Example: a + b + c + d ≤ 2

– Encoded as: (ā ∨ b̄ ∨ c̄) ∧ (ā ∨ b̄ ∨ d̄) ∧ (ā ∨ c̄ ∨ d̄) ∧ (b̄ ∨ c̄ ∨ d̄)

• In general, number of clauses is Cn
k+1

– Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2

49 / 115

Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k + 1 true variables is disallowed

• Example: a + b + c + d ≤ 2

a ∧ b → c̄ =⇒ (ā ∨ b̄ ∨ c̄)
a ∧ b → d̄ =⇒ (ā ∨ b̄ ∨ d̄)
a ∧ c → d̄ =⇒ (ā ∨ c̄ ∨ d̄)
b ∧ c → d̄ =⇒ (b̄ ∨ c̄ ∨ d̄)

– Encoded as: (ā ∨ b̄ ∨ c̄) ∧ (ā ∨ b̄ ∨ d̄) ∧ (ā ∨ c̄ ∨ d̄) ∧ (b̄ ∨ c̄ ∨ d̄)

• In general, number of clauses is Cn
k+1

– Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2

49 / 115

Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k + 1 true variables is disallowed

• Example: a + b + c + d ≤ 2

a ∧ b → c̄ =⇒ (ā ∨ b̄ ∨ c̄)
a ∧ b → d̄ =⇒ (ā ∨ b̄ ∨ d̄)
a ∧ c → d̄ =⇒ (ā ∨ c̄ ∨ d̄)
b ∧ c → d̄ =⇒ (b̄ ∨ c̄ ∨ d̄)

– Encoded as: (ā ∨ b̄ ∨ c̄) ∧ (ā ∨ b̄ ∨ d̄) ∧ (ā ∨ c̄ ∨ d̄) ∧ (b̄ ∨ c̄ ∨ d̄)

• In general, number of clauses is Cn
k+1

– Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2

49 / 115

Another example

• Example: a + b + c + d + e ≤ 2

• Encoding will contain C 5
3 = 10 clauses:

a ∧ b → c̄ =⇒ (ā ∨ b̄ ∨ c̄)
a ∧ b → d̄ =⇒ (ā ∨ b̄ ∨ d̄)
a ∧ b → ē =⇒ (ā ∨ b̄ ∨ ē)
a ∧ c → d̄ =⇒ (ā ∨ c̄ ∨ d̄)
a ∧ c → ē =⇒ (ā ∨ c̄ ∨ ē)
a ∧ d → ē =⇒ (ā ∨ d̄ ∨ ē)
b ∧ c → d̄ =⇒ (b̄ ∨ c̄ ∨ d̄)
b ∧ c → ē =⇒ (b̄ ∨ c̄ ∨ ē)
b ∧ d → ē =⇒ (b̄ ∨ d̄ ∨ ē)
c ∧ d → ē =⇒ (c̄ ∨ d̄ ∨ ē)

50 / 115

Sequential counter – revisited I

• Encode
∑n

j=1 xj ≤ k with sequential counter:

x1 x2 xn

v1 v2 vn

s1,1

s1,2

s1,k s2,k

s2,2

s2,1

sn�1,k

sn�1,2

sn�1,1

• Equations for each block 1 < i < n , 1 < j < k :

si =
∑i

j=1 xj

si represented in unary

si ,1 = si−1,1 ∨ xi
si ,j = si−1,j ∨ si−1,j−1 ∧ xi
vi = (si−1,k ∧ xi) = 0

51 / 115

Sequential counter – revisited II

• CNF formula for
∑n

j=1 xj ≤ k :

– Assume: k > 0 ∧ n > 1

– Indeces: 1 < i < n , 1 < j ≤ k

(¬x1 ∨ x1,1)
(¬s1,j)
(¬xi ∨ si,1)
(¬si−1,1 ∨ si,1)
(¬xi ∨ ¬si−1,j−1 ∨ si,j)
(¬si−1,j ∨ si,j)
(¬xi ∨ ¬si−1,k)
(¬xn ∨ ¬sn−1,k)

• O(n k) clauses & variables

52 / 115

Pseudo-Boolean constraints

• General form:
∑n

j=1 aj xj ≤ b

– Operational encoding [W98]

I Clauses/Variables: O(n)
I Does not guarantee arc-consistency

– BDDs [ES06]

I Worst-case exponential number of clauses

– Polynomial watchdog encoding [BBR09]

I Let ν(n) = log(n) log(amax)
I Clauses: O(n3ν(n)) ; Aux variables: O(n2ν(n))

– Improved polynomial watchdog encoding [ANORC11b]

I Clauses & aux variables: O(n3 log(amax))

– ...

53 / 115

Pseudo-Boolean constraints

• General form:
∑n

j=1 aj xj ≤ b

– Operational encoding [W98]

I Clauses/Variables: O(n)
I Does not guarantee arc-consistency

– BDDs [ES06]

I Worst-case exponential number of clauses

– Polynomial watchdog encoding [BBR09]

I Let ν(n) = log(n) log(amax)
I Clauses: O(n3ν(n)) ; Aux variables: O(n2ν(n))

– Improved polynomial watchdog encoding [ANORC11b]

I Clauses & aux variables: O(n3 log(amax))

– ...

53 / 115

Pseudo-Boolean constraints

• General form:
∑n

j=1 aj xj ≤ b

– Operational encoding [W98]

I Clauses/Variables: O(n)
I Does not guarantee arc-consistency

– BDDs [ES06]

I Worst-case exponential number of clauses

– Polynomial watchdog encoding [BBR09]

I Let ν(n) = log(n) log(amax)
I Clauses: O(n3ν(n)) ; Aux variables: O(n2ν(n))

– Improved polynomial watchdog encoding [ANORC11b]

I Clauses & aux variables: O(n3 log(amax))

– ...

53 / 115

Encoding PB constraints with BDDs I

• Encode 3x1 + 3x2 + x3 ≤ 3
• Construct BDD

– E.g. analyze variables by decreasing coefficients

• Extract ITE-based circuit from BDD

x1

x2

0 x3

0 1

x2

x3

0 1

1

1 0

1 0

1 0

1 0

1 0

54 / 115

Encoding PB constraints with BDDs I

• Encode 3x1 + 3x2 + x3 ≤ 3
• Construct BDD

– E.g. analyze variables by decreasing coefficients

• Extract ITE-based circuit from BDD

x1

x2

0 x3

0 1

x2

x3

0 1

1

1 0

1 0

1 0

1 0

1 0

ITE
0 1

s

ba

z

ITE
0 1

s

ba

z

ITE
1 0

s

ba

z

ITE
0 1

s

ba

z

ITE
0 1

s

ba

z

01 1 0

0 1

1

x1

x2

x3

x2

x3

54 / 115

Encoding PB constraints with BDDs II

• Encode 3x1 + 3x2 + x3 ≤ 3

• Extract ITE-based circuit from BDD

• Simplify and create final circuit:

ITE
1 0

s

ba

z

NO
R

1

NA
ND

x1

x2 x3 x2x3

55 / 115

More on PB constraints

• How about
∑n

j=1 aj xj = k ?

– Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

I
∑n

j=1 aj xj = k is a subset-sum constraint

(special case of a knapsack constraint)
I Cannot find all consequences in polynomial time [S03,FS02,T03]

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both

56 / 115

More on PB constraints

• How about
∑n

j=1 aj xj = k ?

– Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

I
∑n

j=1 aj xj = k is a subset-sum constraint

(special case of a knapsack constraint)

I Cannot find all consequences in polynomial time [S03,FS02,T03]

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both

56 / 115

More on PB constraints

• How about
∑n

j=1 aj xj = k ?

– Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

I
∑n

j=1 aj xj = k is a subset-sum constraint

(special case of a knapsack constraint)
I Cannot find all consequences in polynomial time [S03,FS02,T03]

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both

56 / 115

More on PB constraints

• How about
∑n

j=1 aj xj = k ?

– Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

I
∑n

j=1 aj xj = k is a subset-sum constraint

(special case of a knapsack constraint)
I Cannot find all consequences in polynomial time [S03,FS02,T03]

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both

56 / 115

More on PB constraints

• How about
∑n

j=1 aj xj = k ?

– Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

I
∑n

j=1 aj xj = k is a subset-sum constraint

(special case of a knapsack constraint)
I Cannot find all consequences in polynomial time [S03,FS02,T03]

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)

– Let x2 = 0
– Either constraint can still be satisfied, but not both

56 / 115

More on PB constraints

• How about
∑n

j=1 aj xj = k ?

– Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

I
∑n

j=1 aj xj = k is a subset-sum constraint

(special case of a knapsack constraint)
I Cannot find all consequences in polynomial time [S03,FS02,T03]

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)
– Let x2 = 0

– Either constraint can still be satisfied, but not both

56 / 115

More on PB constraints

• How about
∑n

j=1 aj xj = k ?

– Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

I
∑n

j=1 aj xj = k is a subset-sum constraint

(special case of a knapsack constraint)
I Cannot find all consequences in polynomial time [S03,FS02,T03]

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both

56 / 115

Outline

Recap Clausification of Boolean Formulas

Hard and Soft Constraints

Linear Constraints

Encoding CSPs

Modeling Examples & Exercises

57 / 115

CSP constraints

• Many possible encodings:

– Direct encoding [dK89,GJ96,W00]

– Log encoding [W00]

– Support encoding [K90,G02]

– Log-Support encoding [G07]

– Order encoding for finite linear CSPs [TTKB09]

58 / 115

Direct encoding for CSP w/ binary constraints

• Variable xi with domain Di , with mi = |Di |
• Constraints are relations over domains of variables

– For a constraint over x1, . . . , xk , define relation R ⊆ D1 × · · · × Dk

– Need to encode elements not in the relation
– For a binary relation, use set of binary clauses, one for each element

not in R

• Represent values of xi with Boolean variables xi ,1, . . . , xi ,mi

• Require
∑mi

k=1 xi ,k = 1

– Suffices to require
∑mi

k=1 xi,k ≥ 1 [W00]

• If the pair of assignments xi = vi ∧ xj = vj is not allowed, add
binary clause (x̄i ,vi ∨ x̄j ,vj)

59 / 115

Additional topics

• Encoding problems to SAT is ubiquitous:

– Many more encodings of finite domain CSP into SAT

– Encodings of Answer Set Programming (ASP) into SAT

– Eager SMT solving

– Theorem provers iteratively encode problems into SAT

– Model finders interatively encode problems into SAT

– ...

60 / 115

Outline

Recap Clausification of Boolean Formulas

Hard and Soft Constraints

Linear Constraints

Encoding CSPs

Modeling Examples & Exercises

61 / 115

Minimum vertex cover

• The problem:

– Graph G = (V ,E)
– Vertex cover U ⊆ V

I For each (vi , vj) ∈ E , either vi ∈ U or vj ∈ U

– Minimum vertex cover: vertex cover U of minimum size

v1

v2

v3

v4

Vertex cover: {v2, v3, v4}
Min vertex cover: {v1}

62 / 115

Minimum vertex cover

• The problem:

– Graph G = (V ,E)
– Vertex cover U ⊆ V

I For each (vi , vj) ∈ E , either vi ∈ U or vj ∈ U

– Minimum vertex cover: vertex cover U of minimum size

v1

v2

v3

v4

Vertex cover: {v2, v3, v4}

Min vertex cover: {v1}

62 / 115

Minimum vertex cover

• The problem:

– Graph G = (V ,E)
– Vertex cover U ⊆ V

I For each (vi , vj) ∈ E , either vi ∈ U or vj ∈ U

– Minimum vertex cover: vertex cover U of minimum size

v1

v2

v3

v4

Vertex cover: {v2, v3, v4}
Min vertex cover: {v1}

62 / 115

Minimum vertex cover

• Modeling with Pseudo-Boolean Optimization (PBO):

– Variables: xi for each vi ∈ V , with xi = 1 iff vi ∈ U
– Clauses: (xi ∨ xj) for each (vi , vj) ∈ E
– Objective function: minimize number of true xi variables

I I.e. minimize vertices included in U

• Alternative propositional encoding:

ϕS = {(¬x1), (¬x2), (¬x3), (¬x4)}
ϕH = {(x1 ∨ x2), (x1 ∨ x3), (x1 ∨ x4)}

63 / 115

Minimum vertex cover

• Modeling with Pseudo-Boolean Optimization (PBO):

– Variables: xi for each vi ∈ V , with xi = 1 iff vi ∈ U
– Clauses: (xi ∨ xj) for each (vi , vj) ∈ E
– Objective function: minimize number of true xi variables

I I.e. minimize vertices included in U

v1

v2

v3

v4

minimize x1 + x2 + x3 + x4

subject to (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4)

• Alternative propositional encoding:

ϕS = {(¬x1), (¬x2), (¬x3), (¬x4)}
ϕH = {(x1 ∨ x2), (x1 ∨ x3), (x1 ∨ x4)}

63 / 115

Minimum vertex cover

• Modeling with Pseudo-Boolean Optimization (PBO):

– Variables: xi for each vi ∈ V , with xi = 1 iff vi ∈ U
– Clauses: (xi ∨ xj) for each (vi , vj) ∈ E
– Objective function: minimize number of true xi variables

I I.e. minimize vertices included in U

v1

v2

v3

v4

minimize x1 + x2 + x3 + x4

subject to (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4)

• Alternative propositional encoding:

ϕS = {(¬x1), (¬x2), (¬x3), (¬x4)}
ϕH = {(x1 ∨ x2), (x1 ∨ x3), (x1 ∨ x4)}

63 / 115

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}

• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

64 / 115

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}

• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

64 / 115

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}
• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}

• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

64 / 115

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}

• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

64 / 115

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}
• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}
• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

64 / 115

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}
• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}

• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

64 / 115

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}
• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}
• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

64 / 115

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}
• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}
• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

64 / 115

Graph coloring

• Given undirected graph G = (V ,E) and k colors:
– Can we assign colors to vertices of G s.t. any pair of adjacent

vertices are assigned different colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

– xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}
• How to model adjacent vertices with different colors?

– (¬xi,j ∨ ¬xl,j) if (vi , vl) ∈ E , with j ∈ {1, . . . , k}
• How to model vertices get some color?

–
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

– Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

64 / 115

The N-Queens problem I

• The N-Queens Problem:
Place N queens on a N ×N board, such that no two queens attack
each other

• Example for a 5× 5 board:

Q

Q

Q

Q

Q

65 / 115

The N-Queens problem II

• xij : 1 if queen placed in position (i , j); 0 otherwise

• Each row must have exactly one queen:

1 ≤ i ≤ N,
N∑
j=1

xij = 1

• Each column must have exactly one queen:

1 ≤ j ≤ N,
N∑
i=1

xij = 1

• Also, need to define constraints on diagonals...

66 / 115

The N-Queens problem III

• Each diagonal can have at most one queen:

↘ ↙ ↙ ↙
↘ ↖
↘ ↖
↘ ↖
↗ ↗ ↗ ↗

i = 1, 2 ≤ j < N,

j−1∑
k=0

xi+k j−k ≤ 1

i = N, 1 ≤ j < N,

N−j∑
k=0

xi−k j+k ≤ 1

j = 1, 1 ≤ i < N,
N−i∑
k=0

xi+k j+k ≤ 1

j = N, 2 ≤ i < N,
i−1∑
k=0

xi−k j−k ≤ 1

67 / 115

Design debugging

[SMVLS’07]

Correct circuit

AND

AND

r
s

y

z

Input stimuli: 〈r , s〉 = 〈0, 1〉
Valid output: 〈y , z〉 = 〈0, 0〉

Faulty circuit

AND
r
s

y

zOR

Input stimuli: 〈r , s〉 = 〈0, 1〉
Invalid output: 〈y , z〉 = 〈0, 0〉

• The model:
– Hard clauses: Input and output values
– Soft clauses: CNF representation of circuit

• The problem:
– Maximize number of satisfied clauses (i.e. circuit gates)

68 / 115

Software package upgrades

[MBCV’06,TSJL’07,AL’08,ALMS’09,ALBL’10]

• Universe of software packages: {p1, . . . , pn}
• Associate xi with pi : xi = 1 iff pi is installed

• Constraints associated with package pi : (pi ,Di ,Ci)

– Di : dependencies (required packages) for installing pi
– Ci : conflicts (disallowed packages) for installing pi

• Example problem: Maximum Installability

– Maximum number of packages that can be installed

– Package constraints represent hard clauses
– Soft clauses: (xi)

Package constraints:

(p1, {p2 ∨ p3}, {p4})
(p2, {p3}, {p4})
(p3, {p2}, ∅)
(p4, {p2, p3}, ∅)

69 / 115

Software package upgrades

[MBCV’06,TSJL’07,AL’08,ALMS’09,ALBL’10]

• Universe of software packages: {p1, . . . , pn}
• Associate xi with pi : xi = 1 iff pi is installed

• Constraints associated with package pi : (pi ,Di ,Ci)

– Di : dependencies (required packages) for installing pi
– Ci : conflicts (disallowed packages) for installing pi

• Example problem: Maximum Installability

– Maximum number of packages that can be installed

– Package constraints represent hard clauses
– Soft clauses: (xi)

Package constraints:

(p1, {p2 ∨ p3}, {p4})
(p2, {p3}, {p4})
(p3, {p2}, ∅)
(p4, {p2, p3}, ∅)

MaxSAT formulation:

ϕH = {(¬x1 ∨ x2 ∨ x3), (¬x1 ∨ ¬x4),
(¬x2 ∨ x3), (¬x2 ∨ ¬x4), (¬x3 ∨ x2),
(¬x4 ∨ x2), (¬x4 ∨ x3)}

ϕS = {(x1), (x2), (x3), (x4)}
69 / 115

Exercise: knapsack

• Given list of pairs (vi ,wi), i = 1, . . . , n

– Each pair (vi ,wi), represents the value and weight of object i

• Pick subset of objects with the maximum sum of values, such that
the sum of weights does not exceed W

• Propositional encoding for the knapsack problem?

• Hint: consider 0-1 ILP (or PBO) formulation:

– Associate propositional variable xi with each objet i
– xi = 1 iff object i is picked

max
∑n

i=1 vi · xi
s.t

∑n
i=1 wi · xi ≤W

70 / 115

Exercise: knapsack

• Given list of pairs (vi ,wi), i = 1, . . . , n

– Each pair (vi ,wi), represents the value and weight of object i

• Pick subset of objects with the maximum sum of values, such that
the sum of weights does not exceed W

• Propositional encoding for the knapsack problem?

• Hint: consider 0-1 ILP (or PBO) formulation:

– Associate propositional variable xi with each objet i
– xi = 1 iff object i is picked

max
∑n

i=1 vi · xi
s.t

∑n
i=1 wi · xi ≤W

70 / 115

Exercise: knapsack

• Given list of pairs (vi ,wi), i = 1, . . . , n

– Each pair (vi ,wi), represents the value and weight of object i

• Pick subset of objects with the maximum sum of values, such that
the sum of weights does not exceed W

• Propositional encoding for the knapsack problem?

• Hint: consider 0-1 ILP (or PBO) formulation:

– Associate propositional variable xi with each objet i
– xi = 1 iff object i is picked

max
∑n

i=1 vi · xi
s.t

∑n
i=1 wi · xi ≤W

70 / 115

Exercise: solving Sudoku I

71 / 115

Exercise: solving Sudoku II

• How to solve Sudoku with SAT?

72 / 115

Exercise: solving Sudoku II

• How to solve Sudoku with SAT?

72 / 115

Solving Sudoku – with constraints

• Modeling the problem with integer variables:

– Rows: i = 1, . . . , 9
– Columns: j = 1, . . . , 9
– Variables: vi,j ∈ {1, 2, . . . , 9}, i , j ∈ {1, . . . , 9}

• Constraints:

– Each value used exactly once in each row:

I For i ∈ {1, . . . , 9}: alldifferent(vi,1, . . . , vi,9)

– Each value used exactly once in each column:

I For j ∈ {1, . . . , 9}: alldifferent(v1,j , . . . , v9,j)

– Each value used exactly once in each 3× 3 sub-grid:

I For i , j ∈ {0, 1, 2}:
alldifferent(v3i+1,3j+1, v3i+1,3j+2, v3i+1,3j+3, v3i+2,3j+1, . . . , v3i+3,3j+1, . . .)

73 / 115

Solving Sudoku – with constraints

• Modeling the problem with integer variables:

– Rows: i = 1, . . . , 9
– Columns: j = 1, . . . , 9
– Variables: vi,j ∈ {1, 2, . . . , 9}, i , j ∈ {1, . . . , 9}

• Constraints:
– Each value used exactly once in each row:

I For i ∈ {1, . . . , 9}: alldifferent(vi,1, . . . , vi,9)

– Each value used exactly once in each column:

I For j ∈ {1, . . . , 9}: alldifferent(v1,j , . . . , v9,j)

– Each value used exactly once in each 3× 3 sub-grid:

I For i , j ∈ {0, 1, 2}:
alldifferent(v3i+1,3j+1, v3i+1,3j+2, v3i+1,3j+3, v3i+2,3j+1, . . . , v3i+3,3j+1, . . .)

73 / 115

Solving Sudoku – with constraints

• Modeling the problem with integer variables:

– Rows: i = 1, . . . , 9
– Columns: j = 1, . . . , 9
– Variables: vi,j ∈ {1, 2, . . . , 9}, i , j ∈ {1, . . . , 9}

• Constraints:
– Each value used exactly once in each row:

I For i ∈ {1, . . . , 9}: alldifferent(vi,1, . . . , vi,9)

– Each value used exactly once in each column:

I For j ∈ {1, . . . , 9}: alldifferent(v1,j , . . . , v9,j)

– Each value used exactly once in each 3× 3 sub-grid:

I For i , j ∈ {0, 1, 2}:
alldifferent(v3i+1,3j+1, v3i+1,3j+2, v3i+1,3j+3, v3i+2,3j+1, . . . , v3i+3,3j+1, . . .)

73 / 115

Solving Sudoku – with constraints

• Modeling the problem with integer variables:

– Rows: i = 1, . . . , 9
– Columns: j = 1, . . . , 9
– Variables: vi,j ∈ {1, 2, . . . , 9}, i , j ∈ {1, . . . , 9}

• Constraints:
– Each value used exactly once in each row:

I For i ∈ {1, . . . , 9}: alldifferent(vi,1, . . . , vi,9)

– Each value used exactly once in each column:

I For j ∈ {1, . . . , 9}: alldifferent(v1,j , . . . , v9,j)

– Each value used exactly once in each 3× 3 sub-grid:

I For i , j ∈ {0, 1, 2}:
alldifferent(v3i+1,3j+1, v3i+1,3j+2, v3i+1,3j+3, v3i+2,3j+1, . . . , v3i+3,3j+1, . . .)

73 / 115

Solving Sudoku – propositional logic – variables

• Modeling with propositional variables:

– Rows: i = 1, . . . , 9
– Columns: j = 1, . . . , 9
– Variables: vi,j,k ∈ {0, 1}, i , j , k ∈ {1, . . . , 9}

74 / 115

Solving Sudoku – propositional logic – constraints

• Value in each cell is valid:

– For i , j ∈ {1, . . . , 9}: ∑9
k=1 vi,j,k = 1

• Each value used exactly once in each row:

– For i ∈ {1, . . . , 9}, k ∈ {1, . . . , 9}:∑9
j=1 vi,j,k = 1

• Each value used exactly once in each column:

– For j ∈ {1, . . . , 9}, k ∈ {1, . . . , 9}:∑9
i=1 vi,j,k = 1

• Each value used exactly once in each 3× 3 sub-grid:

– For i , j ∈ {0, 1, 2}, k ∈ {1, . . . , 9}:∑3
r=1

∑3
s=1 v3i+r ,3j+s,k = 1

• Q: how to encode Equals1 constraints?

75 / 115

Solving Sudoku – propositional logic – constraints

• Value in each cell is valid:

– For i , j ∈ {1, . . . , 9}: ∑9
k=1 vi,j,k = 1

• Each value used exactly once in each row:

– For i ∈ {1, . . . , 9}, k ∈ {1, . . . , 9}:∑9
j=1 vi,j,k = 1

• Each value used exactly once in each column:

– For j ∈ {1, . . . , 9}, k ∈ {1, . . . , 9}:∑9
i=1 vi,j,k = 1

• Each value used exactly once in each 3× 3 sub-grid:

– For i , j ∈ {0, 1, 2}, k ∈ {1, . . . , 9}:∑3
r=1

∑3
s=1 v3i+r ,3j+s,k = 1

• Q: how to encode Equals1 constraints?
75 / 115

Constraints for fixed cells

• Integer variables:

v1,1 = 5, v1,2 = 3, v1,5 = 7, v2,1 = 6, v2,4 = 1, v2,5 = 9
v2,6 = 5, v3,2 = 9, v3,3 = 8, v3,8 = 6, v4,1 = 8, v4,5 = 6, . . .

• Propositional variables:

v1,1,5 = 1, v1,2,3 = 1, v1,5,7 = 1, v2,1,6 = 1, v2,4,1 = 1, v2,5,9 = 1
v2,6,5 = 1, v3,2,9 = 1, v3,3,8 = 1, v3,8,6 = 1, v4,1,8 = 1, v4,5,6 = 1, . . .

76 / 115

Constraints for fixed cells

• Integer variables:

v1,1 = 5, v1,2 = 3, v1,5 = 7, v2,1 = 6, v2,4 = 1, v2,5 = 9
v2,6 = 5, v3,2 = 9, v3,3 = 8, v3,8 = 6, v4,1 = 8, v4,5 = 6, . . .

• Propositional variables:

v1,1,5 = 1, v1,2,3 = 1, v1,5,7 = 1, v2,1,6 = 1, v2,4,1 = 1, v2,5,9 = 1
v2,6,5 = 1, v3,2,9 = 1, v3,3,8 = 1, v3,8,6 = 1, v4,1,8 = 1, v4,5,6 = 1, . . .

76 / 115

Constraints for fixed cells

• Integer variables:

v1,1 = 5, v1,2 = 3, v1,5 = 7, v2,1 = 6, v2,4 = 1, v2,5 = 9
v2,6 = 5, v3,2 = 9, v3,3 = 8, v3,8 = 6, v4,1 = 8, v4,5 = 6, . . .

• Propositional variables:

v1,1,5 = 1, v1,2,3 = 1, v1,5,7 = 1, v2,1,6 = 1, v2,4,1 = 1, v2,5,9 = 1
v2,6,5 = 1, v3,2,9 = 1, v3,3,8 = 1, v3,8,6 = 1, v4,1,8 = 1, v4,5,6 = 1, . . .

76 / 115

Part III

Problem Solving with SAT Oracles

77 / 115

Computing a model

• Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F , using an
NP oracle

– A possible algorithm:

I Analyze each variable xi ∈ {x1, . . . , xn} = var(F)
I Consider F ∧ (xi). Call NP oracle. If answer is yes, then add (xi) to
F . If answer is no, then add (¬xi) to F

– Algorithm needs |var(F)| calls to an NP oracle

– Note: Cannot solve FSAT with logarithmic number of NP oracle
calls, unless P = NP [GF93]

• FSAT is an example of a function problem

– Note: FSAT can be solved with one SAT oracle call

78 / 115

Computing a model

• Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F , using an
NP oracle

– A possible algorithm:

I Analyze each variable xi ∈ {x1, . . . , xn} = var(F)
I Consider F ∧ (xi). Call NP oracle. If answer is yes, then add (xi) to
F . If answer is no, then add (¬xi) to F

– Algorithm needs |var(F)| calls to an NP oracle

– Note: Cannot solve FSAT with logarithmic number of NP oracle
calls, unless P = NP [GF93]

• FSAT is an example of a function problem

– Note: FSAT can be solved with one SAT oracle call

78 / 115

Computing a model

• Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F , using an
NP oracle

– A possible algorithm:

I Analyze each variable xi ∈ {x1, . . . , xn} = var(F)
I Consider F ∧ (xi). Call NP oracle. If answer is yes, then add (xi) to
F . If answer is no, then add (¬xi) to F

– Algorithm needs |var(F)| calls to an NP oracle

– Note: Cannot solve FSAT with logarithmic number of NP oracle
calls, unless P = NP [GF93]

• FSAT is an example of a function problem

– Note: FSAT can be solved with one SAT oracle call

78 / 115

Computing a model

• Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F , using an
NP oracle

– A possible algorithm:

I Analyze each variable xi ∈ {x1, . . . , xn} = var(F)
I Consider F ∧ (xi). Call NP oracle. If answer is yes, then add (xi) to
F . If answer is no, then add (¬xi) to F

– Algorithm needs |var(F)| calls to an NP oracle

– Note: Cannot solve FSAT with logarithmic number of NP oracle
calls, unless P = NP [GF93]

• FSAT is an example of a function problem

– Note: FSAT can be solved with one SAT oracle call

78 / 115

Computing a model

• Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F , using an
NP oracle

– A possible algorithm:

I Analyze each variable xi ∈ {x1, . . . , xn} = var(F)
I Consider F ∧ (xi). Call NP oracle. If answer is yes, then add (xi) to
F . If answer is no, then add (¬xi) to F

– Algorithm needs |var(F)| calls to an NP oracle

– Note: Cannot solve FSAT with logarithmic number of NP oracle
calls, unless P = NP [GF93]

• FSAT is an example of a function problem

– Note: FSAT can be solved with one SAT oracle call

78 / 115

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions Counting Problems

79 / 115

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions Counting Problems

79 / 115

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution

Function Problems

All solutions Enumeration Problems

solutions Counting Problems

79 / 115

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions Counting Problems

79 / 115

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions

Enumeration Problems

solutions Counting Problems

79 / 115

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions Counting Problems

79 / 115

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions

Counting Problems

79 / 115

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions Counting Problems

79 / 115

... and beyond NP – decision and function problems

∆p
0 = Σp

0 = P = Πp
0 = ∆p

1

NP = Σp
1 Πp

1 = coNP

PNP = ∆p
2

Σp
2 Πp

2

∆p
3

Σp
3 Πp

3

...

F∆p
0 = FΣp

0 = FP = FΠp
0 = F∆p

1

FNP = FΣp
1 FΠp

1 = coFNP

FPNP = F∆p
2

FΣp
2 FΠp

2

F∆p
3

FΣp
3 FΠp

3

...

80 / 115

... and beyond NP – our current range

LOG
Time

LOG
Space

PTIME
NPTIM

E

NPC

co
-N

PTIM
E

PSPACE

EXPTIME

EXPSPACE

...

ELEMENTARY
...

2EXPTIME

R

81 / 115

Oracle-based problem solving – ideal scenario

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

82 / 115

Oracle-based problem solving – in some settings

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

83 / 115

Many problems to solve – within FPNP

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

84 / 115

Many problems to solve – within FPNP

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

Function Problems on Propositional Formulas

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...

84 / 115

Many problems to solve – within FPNP

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

Function Problems on Propositional Formulas

Optimization Problems

Minimal Sets

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...

84 / 115

Selection of topics

Problem Solving
with SAT

Embeddings

PBO
B&B

Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Mod-
els

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR
QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

MaxSAT solvingMUS extraction
85 / 115

Outline

Minimal Unsatisfiability

Maximum Satisfiability

Additional Exercises

86 / 115

Analyzing inconsistency – timetabling

Subject Day Time Room

Intro Prog Mon 9:00-10:00 6.2.46

Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Linear Alg Mon 9:00-10:00 6.2.46

Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable?

• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

87 / 115

Analyzing inconsistency – timetabling

Subject Day Time Room

Intro Prog Mon 9:00-10:00 6.2.46

Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Linear Alg Mon 9:00-10:00 6.2.46

Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No

• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

87 / 115

Analyzing inconsistency – timetabling

Subject Day Time Room

Intro Prog Mon 9:00-10:00 6.2.46

Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Linear Alg Mon 9:00-10:00 6.2.46

Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No

• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

87 / 115

Analyzing inconsistency – timetabling

Subject Day Time Room

Intro Prog Mon 9:00-10:00 6.2.46

Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Linear Alg Mon 9:00-10:00 6.2.46

Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No

• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

87 / 115

Analyzing inconsistency – timetabling

Subject Day Time Room

Intro Prog Mon 9:00-10:00 6.2.46

Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Linear Alg Mon 9:00-10:00 6.2.46

Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No

• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

87 / 115

Analyzing inconsistency – timetabling

Subject Day Time Room

Intro Prog Mon 9:00-10:00 6.2.46

Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Linear Alg Mon 9:00-10:00 6.2.46

Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No

• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

87 / 115

Analyzing inconsistency – timetabling

Subject Day Time Room

Intro Prog Mon 9:00-10:00 6.2.46

Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Linear Alg Mon 9:00-10:00 6.2.46

Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06

... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No

• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?
87 / 115

Unsatisfiable formulas – MUSes & MCSes

• Given F (� ⊥), M⊆ F is a Minimal Unsatisfiable Subset (MUS)
iff M� ⊥ and ∀M′(M,M′ 2 ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (� ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C 2 ⊥ and ∀C′(C ,F \ C′ � ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [R87,...]

• How to compute MUSes & MCSes efficiently with SAT oracles?

88 / 115

Unsatisfiable formulas – MUSes & MCSes

• Given F (� ⊥), M⊆ F is a Minimal Unsatisfiable Subset (MUS)
iff M� ⊥ and ∀M′(M,M′ 2 ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (� ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C 2 ⊥ and ∀C′(C ,F \ C′ � ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [R87,...]

• How to compute MUSes & MCSes efficiently with SAT oracles?

88 / 115

Unsatisfiable formulas – MUSes & MCSes

• Given F (� ⊥), M⊆ F is a Minimal Unsatisfiable Subset (MUS)
iff M� ⊥ and ∀M′(M,M′ 2 ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (� ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C 2 ⊥ and ∀C′(C ,F \ C′ � ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [R87,...]

• How to compute MUSes & MCSes efficiently with SAT oracles?

88 / 115

Unsatisfiable formulas – MUSes & MCSes

• Given F (� ⊥), M⊆ F is a Minimal Unsatisfiable Subset (MUS)
iff M� ⊥ and ∀M′(M,M′ 2 ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (� ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C 2 ⊥ and ∀C′(C ,F \ C′ � ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [R87,...]

• How to compute MUSes & MCSes efficiently with SAT oracles?

88 / 115

Unsatisfiable formulas – MUSes & MCSes

• Given F (� ⊥), M⊆ F is a Minimal Unsatisfiable Subset (MUS)
iff M� ⊥ and ∀M′(M,M′ 2 ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (� ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C 2 ⊥ and ∀C′(C ,F \ C′ � ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [R87,...]

• How to compute MUSes & MCSes efficiently with SAT oracles?

88 / 115

Unsatisfiable formulas – MUSes & MCSes

• Given F (� ⊥), M⊆ F is a Minimal Unsatisfiable Subset (MUS)
iff M� ⊥ and ∀M′(M,M′ 2 ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (� ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C 2 ⊥ and ∀C′(C ,F \ C′ � ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [R87,...]

• How to compute MUSes & MCSes efficiently with SAT oracles?

88 / 115

Why it matters?

• Analysis of over-constrained systems

– Model-based diagnosis [R87,...]

I Software fault localization
I Spreadsheet debugging
I Debugging relational specifications (e.g. Alloy)
I Type error debugging
I Axiom pinpointing in description logics
I ...

– Model checking of software & hardware systems
– Inconsistency measurement
– Minimal models; MinCost SAT; ...
– ...

• Find minimal relaxations to recover consistency

– But also minimum relaxations to recover consistency, eg. MaxSAT

• Find minimal explanations of inconsistency

– But also minimum explanations of inconsistency, eg. Smallest MUS

89 / 115

Deletion-based algorithm

Input : Set F
Output: Minimal subset M
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // If ¬SAT(M\ {c}), then c 6∈ MUS

return M // Final M is MUS

end

• Number of oracles calls: O(m) [CD91,BDTW93]

90 / 115

Deletion-based algorithm

Input : Set F
Output: Minimal subset M
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // Remove c from M

return M // Final M is MUS

end

• Number of oracles calls: O(m) [CD91,BDTW93]

90 / 115

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

91 / 115

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

91 / 115

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

91 / 115

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

91 / 115

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

91 / 115

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

91 / 115

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

91 / 115

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

91 / 115

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7

(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

91 / 115

Many MUS algorithms

• Formula F with m clauses k the size of largest minimal subset

Algorithm Oracle Calls Reference

Insertion-based O(k m) [PS88,vMW08]

MCS MUS O(k m) [BK15]

Deletion-based O(m) [CD91,BDTW93]

Linear insertion O(m) [MSL’11,BLMS’12]

Dichotomic O(k log(m)) [HLSB06]

QuickXplain O(k + k log(m
k)) [J01,J04]

Progression O(k log(1 + m
k)) [MSJB13,L14]

• Note: Lower bound in FPNP
|| and upper bound in FPNP

[CT95]

• Oracle calls correspond to testing unsatisfiability with SAT solver

• Practical optimizations: clause set trimming; clause set refinement;
redundancy removal; (recursive) model rotation

92 / 115

Outline

Minimal Unsatisfiability

Maximum Satisfiability

Additional Exercises

93 / 115

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest cost MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications

94 / 115

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest cost MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications

94 / 115

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications

94 / 115

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications

94 / 115

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest cost MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications

94 / 115

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest cost MCSes

– Note: Clauses can have weights & there can be hard clauses

• Many practical applications

94 / 115

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No

Yes

95 / 115

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

95 / 115

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any

• Compute set of satisfied soft clauses with maximum cost

– Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !

95 / 115

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any

• Compute set of satisfied soft clauses with maximum cost

– Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !

95 / 115

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT

– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??
– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

96 / 115

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??
– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

96 / 115

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??
– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

96 / 115

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??

– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

96 / 115

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??
– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

96 / 115

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??
– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

96 / 115

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??
– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

96 / 115

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
– Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

– Is 2 the MaxSAT solution??
– No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

96 / 115

Many MaxSAT approaches

MaxSAT
Algorithms

Branch
& Bound

Iterative

Core
Guided

Iterative
MHS

Model
Guided

No unit prop;
No cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided approaches are
the most effective [MaxSAT14]

97 / 115

Many MaxSAT approaches

MaxSAT
Algorithms

Branch
& Bound

Iterative

Core
Guided

Iterative
MHS

Model
Guided

No unit prop;
No cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided approaches are
the most effective [MaxSAT14]

97 / 115

Core-guided solver performance – partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Open-WBO-In
QMaxSAT2-mt-13

QMaxSat-g2-12
QMaxSat0.4-11

QMaxSat-10

Source: [MaxSAT 2014 organizers]
98 / 115

Core-guided solver performance – weighted partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances

Number x of instances solved in y seconds

Eva500a
WPM1-2013

WPM1-11
pwbo2.1-12

wbo-1.4a-wcnf-10

Source: [MaxSAT 2014 organizers]
99 / 115

Outline

Minimal Unsatisfiability

Maximum Satisfiability
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

Additional Exercises

100 / 115

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Example CNF formula

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

101 / 115

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Relax all clauses; Set UB = 12 + 1

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

101 / 115

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 12

Formula is SAT; E.g. all xi = 0 and r1 = r7 = r9 = 1 (i.e. cost = 3)

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

101 / 115

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 2

Refine UB = 3

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

101 / 115

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 2

Formula is SAT; E.g. x1 = x2 = 1; x3 = ... = x8 = 0 and r4 = r9 = 1
(i.e. cost = 2)

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

101 / 115

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

Refine UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

101 / 115

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

Formula is UNSAT; terminate

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

101 / 115

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

101 / 115

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed

101 / 115

Outline

Minimal Unsatisfiability

Maximum Satisfiability
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

Additional Exercises

102 / 115

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

103 / 115

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Formula is UNSAT; OPT ≤ |ϕ| − 1; Get unsat core

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

103 / 115

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6∑6
i=1 ri ≤ 1

Add relaxation variables and AtMostk , k = 1, constraint

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

103 / 115

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6∑6
i=1 ri ≤ 1

Formula is (again) UNSAT; OPT ≤ |ϕ| − 2; Get unsat core

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

103 / 115

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

Add new relaxation variables and update AtMostk , k=2, constraint

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

103 / 115

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

Instance is now SAT

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

103 / 115

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

103 / 115

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

103 / 115

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed

103 / 115

Outline

Minimal Unsatisfiability

Maximum Satisfiability
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

Additional Exercises

104 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K:

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅
• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅
• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅
• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: ∅
• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}. Update K

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K:

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}
• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}
• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}
• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1}
• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}. Update K

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K:

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}
• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}
• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}
• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c1, c9}
• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}. Update K

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K:

• SAT(F \ {c4, c9})?

• Terminate & return 2

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}

• SAT(F \ {c4, c9})?

• Terminate & return 2

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}
• SAT(F \ {c4, c9})?

• Terminate & return 2

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}
• SAT(F \ {c4, c9})? Yes

• Terminate & return 2

105 / 115

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}
• SAT(F \ {c4, c9})? Yes

• Terminate & return 2

105 / 115

MaxSAT solving with SAT oracles – a sample

• A sample of recent algorithms:

Algorithm # Oracle Queries Reference

Linear search SU Exponential*** [e.g. LBP10]

Binary search Linear* [e.g. FM06]

FM/WMSU1/WPM1 Exponential** [FM06,MSM08,MMSP09,ABL09a,ABGL12]

WPM2 Exponential** [ABL10,ABGL13]

Bin-Core-Dis Linear [HMMS11,MHMS12]

Iterative MHS Exponential [DB11,DB13a,DB13b]

* O(logm) queries with SAT oracle, for (partial) unweighted MaxSAT

** Weighted case; depends on computed cores
*** On # bits of problem instance (due to weights)

• But also additional recent work:
– Progression
– Soft cardinality constraints (OLL)
– MaxSAT resolution
– ...

106 / 115

Outline

Minimal Unsatisfiability

Maximum Satisfiability

Additional Exercises

107 / 115

Exercise – How many MCSes & MUSes can there be?

• Give example showing that lower bound on largest number of
MCSes is exponential on formula size

– Hint: Simply suggest formula with exponentially large number of
MaxSAT solutions

• Give example showing that lower bound on largest number of
MUSes is exponential on formula size

108 / 115

Exercise – How many MCSes & MUSes can there be?

• Give example showing that lower bound on largest number of
MCSes is exponential on formula size

– Hint: Simply suggest formula with exponentially large number of
MaxSAT solutions

• Give example showing that lower bound on largest number of
MUSes is exponential on formula size

108 / 115

Solution – number of MCSes

(x1) (¬x1)

(x2) (¬x2)

.

(xn) (¬xn)

• For each i = 1, . . . , n either pick (xi) or (¬xi), i.e. 2 cases

• Thus, 2n MCSes

109 / 115

Solution – number of MCSes

(x1) (¬x1)

(x2) (¬x2)

.

(xn) (¬xn)

• For each i = 1, . . . , n either pick (xi) or (¬xi), i.e. 2 cases

• Thus, 2n MCSes

109 / 115

Solution – number of MCSes

(x1) (¬x1)

(x2) (¬x2)

.

(xn) (¬xn)

• For each i = 1, . . . , n either pick (xi) or (¬xi), i.e. 2 cases

• Thus, 2n MCSes

109 / 115

Solutions – number of MUSes I

(¬x1) ∧ (x1 ∨ z1)

(¬y1) ∧ (y1 ∨ z1)

. . . (¬z1 ∨ ¬z2 ∨ . . . ∨ ¬zn)

(¬xn) ∧ (xn ∨ zn)

(¬yn) ∧ (yn ∨ zn)

• For each i = 1, . . . , n either resolve away xi or yi , i.e. 2 cases

• Thus, 2n MUSes

• But, there exist formulas with more MUSes. How?

110 / 115

Solutions – number of MUSes I

(¬x1) ∧ (x1 ∨ z1)

(¬y1) ∧ (y1 ∨ z1)

. . . (¬z1 ∨ ¬z2 ∨ . . . ∨ ¬zn)

(¬xn) ∧ (xn ∨ zn)

(¬yn) ∧ (yn ∨ zn)

• For each i = 1, . . . , n either resolve away xi or yi , i.e. 2 cases

• Thus, 2n MUSes

• But, there exist formulas with more MUSes. How?

110 / 115

Solutions – number of MUSes I

(¬x1) ∧ (x1 ∨ z1)

(¬y1) ∧ (y1 ∨ z1)

. . . (¬z1 ∨ ¬z2 ∨ . . . ∨ ¬zn)

(¬xn) ∧ (xn ∨ zn)

(¬yn) ∧ (yn ∨ zn)

• For each i = 1, . . . , n either resolve away xi or yi , i.e. 2 cases

• Thus, 2n MUSes

• But, there exist formulas with more MUSes. How?

110 / 115

Solutions – number of MUSes I

(¬x1) ∧ (x1 ∨ z1)

(¬y1) ∧ (y1 ∨ z1)

. . . (¬z1 ∨ ¬z2 ∨ . . . ∨ ¬zn)

(¬xn) ∧ (xn ∨ zn)

(¬yn) ∧ (yn ∨ zn)

• For each i = 1, . . . , n either resolve away xi or yi , i.e. 2 cases

• Thus, 2n MUSes

• But, there exist formulas with more MUSes. How?

110 / 115

Solutions – number of MUSes II

(¬x1) ∧ (¬x2) ∧ . . . ∧ (¬xr)

(x1 ∨ z1) ∧ (x2 ∨ z1) ∧ . . . ∧ (xr ∨ z1)

(x1 ∨ z2) ∧ (x2 ∨ z2) ∧ . . . ∧ (xr ∨ z2)

. . .

(x1 ∨ zn) ∧ (x2 ∨ zn) ∧ . . . ∧ (xr ∨ zn)

(¬z1 ∨ ¬z2 ∨ . . . ∨ ¬zn)

• There are rn MUSes

• Upper bound by Sperner’s theorem: C (m, bm2 c)

111 / 115

Solutions – number of MUSes II

(¬x1) ∧ (¬x2) ∧ . . . ∧ (¬xr)

(x1 ∨ z1) ∧ (x2 ∨ z1) ∧ . . . ∧ (xr ∨ z1)

(x1 ∨ z2) ∧ (x2 ∨ z2) ∧ . . . ∧ (xr ∨ z2)

. . .

(x1 ∨ zn) ∧ (x2 ∨ zn) ∧ . . . ∧ (xr ∨ zn)

(¬z1 ∨ ¬z2 ∨ . . . ∨ ¬zn)

• There are rn MUSes

• Upper bound by Sperner’s theorem: C (m, bm2 c)

111 / 115

Solutions – number of MUSes II

(¬x1) ∧ (¬x2) ∧ . . . ∧ (¬xr)

(x1 ∨ z1) ∧ (x2 ∨ z1) ∧ . . . ∧ (xr ∨ z1)

(x1 ∨ z2) ∧ (x2 ∨ z2) ∧ . . . ∧ (xr ∨ z2)

. . .

(x1 ∨ zn) ∧ (x2 ∨ zn) ∧ . . . ∧ (xr ∨ zn)

(¬z1 ∨ ¬z2 ∨ . . . ∨ ¬zn)

• There are rn MUSes

• Upper bound by Sperner’s theorem: C (m, bm2 c)

111 / 115

Exercise – Sudoku puzzle generator

• Randomly generate valid Sudoku puzzles starting from a filled grid

• How?

– Pick a known valid Sudoku puzzle
– Complete the Sudoku puzzle

I How? Simply call a SAT solver

– Iteratively (and randomly) punch holes in the Sudoku grid

I If Sudoku puzzle is still valid, i.e. number of solutions is 1, then
repeat loop

I Otherwise, output Sudoku grid with most recently punched hole
removed

– How many SAT oracles calls?

I Linear number of calls on number of cells in Sudoku puzzle

– Can we do better?

112 / 115

Exercise – Sudoku puzzle generator

• Randomly generate valid Sudoku puzzles starting from a filled grid

• How?

– Pick a known valid Sudoku puzzle
– Complete the Sudoku puzzle

I How? Simply call a SAT solver

– Iteratively (and randomly) punch holes in the Sudoku grid

I If Sudoku puzzle is still valid, i.e. number of solutions is 1, then
repeat loop

I Otherwise, output Sudoku grid with most recently punched hole
removed

– How many SAT oracles calls?

I Linear number of calls on number of cells in Sudoku puzzle

– Can we do better?

112 / 115

Exercise – Sudoku puzzle generator

• Randomly generate valid Sudoku puzzles starting from a filled grid

• How?

– Pick a known valid Sudoku puzzle

– Complete the Sudoku puzzle

I How? Simply call a SAT solver

– Iteratively (and randomly) punch holes in the Sudoku grid

I If Sudoku puzzle is still valid, i.e. number of solutions is 1, then
repeat loop

I Otherwise, output Sudoku grid with most recently punched hole
removed

– How many SAT oracles calls?

I Linear number of calls on number of cells in Sudoku puzzle

– Can we do better?

112 / 115

Exercise – Sudoku puzzle generator

• Randomly generate valid Sudoku puzzles starting from a filled grid

• How?

– Pick a known valid Sudoku puzzle
– Complete the Sudoku puzzle

I How? Simply call a SAT solver

– Iteratively (and randomly) punch holes in the Sudoku grid

I If Sudoku puzzle is still valid, i.e. number of solutions is 1, then
repeat loop

I Otherwise, output Sudoku grid with most recently punched hole
removed

– How many SAT oracles calls?

I Linear number of calls on number of cells in Sudoku puzzle

– Can we do better?

112 / 115

Exercise – Sudoku puzzle generator

• Randomly generate valid Sudoku puzzles starting from a filled grid

• How?

– Pick a known valid Sudoku puzzle
– Complete the Sudoku puzzle

I How? Simply call a SAT solver

– Iteratively (and randomly) punch holes in the Sudoku grid

I If Sudoku puzzle is still valid, i.e. number of solutions is 1, then
repeat loop

I Otherwise, output Sudoku grid with most recently punched hole
removed

– How many SAT oracles calls?

I Linear number of calls on number of cells in Sudoku puzzle

– Can we do better?

112 / 115

Exercise – Sudoku puzzle generator

• Randomly generate valid Sudoku puzzles starting from a filled grid

• How?

– Pick a known valid Sudoku puzzle
– Complete the Sudoku puzzle

I How? Simply call a SAT solver

– Iteratively (and randomly) punch holes in the Sudoku grid

I If Sudoku puzzle is still valid, i.e. number of solutions is 1, then
repeat loop

I Otherwise, output Sudoku grid with most recently punched hole
removed

– How many SAT oracles calls?

I Linear number of calls on number of cells in Sudoku puzzle

– Can we do better?

112 / 115

Exercise – Sudoku puzzle generator

• Randomly generate valid Sudoku puzzles starting from a filled grid

• How?

– Pick a known valid Sudoku puzzle
– Complete the Sudoku puzzle

I How? Simply call a SAT solver

– Iteratively (and randomly) punch holes in the Sudoku grid

I If Sudoku puzzle is still valid, i.e. number of solutions is 1, then
repeat loop

I Otherwise, output Sudoku grid with most recently punched hole
removed

– How many SAT oracles calls?

I Linear number of calls on number of cells in Sudoku puzzle

– Can we do better?

112 / 115

Exercise – Sudoku puzzle generator

• Randomly generate valid Sudoku puzzles starting from a filled grid

• How?

– Pick a known valid Sudoku puzzle
– Complete the Sudoku puzzle

I How? Simply call a SAT solver

– Iteratively (and randomly) punch holes in the Sudoku grid

I If Sudoku puzzle is still valid, i.e. number of solutions is 1, then
repeat loop

I Otherwise, output Sudoku grid with most recently punched hole
removed

– How many SAT oracles calls?

I Linear number of calls on number of cells in Sudoku puzzle

– Can we do better?

112 / 115

Exercise – Sudoku puzzle generator

• Randomly generate valid Sudoku puzzles starting from a filled grid

• How?

– Pick a known valid Sudoku puzzle
– Complete the Sudoku puzzle

I How? Simply call a SAT solver

– Iteratively (and randomly) punch holes in the Sudoku grid

I If Sudoku puzzle is still valid, i.e. number of solutions is 1, then
repeat loop

I Otherwise, output Sudoku grid with most recently punched hole
removed

– How many SAT oracles calls?

I Linear number of calls on number of cells in Sudoku puzzle

– Can we do better?

112 / 115

Some final notes

• SAT is a low-level, but very powerful problem solving paradigm

• There is an ongoing revolution on problem solving with SAT oracles

• The use of SAT oracles is impacting problem solving for many
different complexity classes

– With well-known representative problems, e.g. QBF, #SAT, etc.

• Many fascinating research topics out there !

113 / 115

Some final notes

• SAT is a low-level, but very powerful problem solving paradigm

• There is an ongoing revolution on problem solving with SAT oracles

• The use of SAT oracles is impacting problem solving for many
different complexity classes

– With well-known representative problems, e.g. QBF, #SAT, etc.

• Many fascinating research topics out there !

113 / 115

Links for tools

• SAT solvers:

– minisat: https://github.com/niklasso/minisat

– glucose: http://www.labri.fr/perso/lsimon/glucose/

• MaxSAT solvers:

– MSCG: http://logos.ucd.ie/web/doku.php?id=mscg
– OpenWBO: http://sat.inesc-id.pt/open-wbo/
– MaxHS: http://www.maxhs.org

• MCS extractors:

– mcsXL: http://logos.ucd.ie/wiki/doku.php?id=mcsxl
– LBX: http://logos.ucd.ie/wiki/doku.php?id=lbx
– MCSls: http://logos.ucd.ie/wiki/doku.php?id=mcsls

• MUS extractors:

– MUSer: http://logos.ucd.ie/wiki/doku.php?id=muser

• Many other tools available from:
http://logos.ucd.ie/wiki/doku.php?id=soft

114 / 115

https://github.com/niklasso/minisat
http://www.labri.fr/perso/lsimon/glucose/
http://logos.ucd.ie/web/doku.php?id=mscg
http://sat.inesc-id.pt/open-wbo/
http://www.maxhs.org
http://logos.ucd.ie/wiki/doku.php?id=mcsxl
http://logos.ucd.ie/wiki/doku.php?id=lbx
http://logos.ucd.ie/wiki/doku.php?id=mcsls
http://logos.ucd.ie/wiki/doku.php?id=muser
http://logos.ucd.ie/wiki/doku.php?id=soft

Thank You

115 / 115

	CDCL SAT Solving
	Basic Definitions
	Clause Learning, UIPs & Minimization
	Search Restarts & Lazy Data Structures
	Why CDCL Works?

	Problem Modeling for SAT
	Recap Clausification of Boolean Formulas
	Hard and Soft Constraints
	Linear Constraints
	Encoding CSPs
	Modeling Examples & Exercises

	Problem Solving with SAT Oracles
	Minimal Unsatisfiability
	Maximum Satisfiability
	Iterative SAT Solving
	Core-Guided Algorithms
	Minimum Hitting Sets

	Additional Exercises

