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The CDCL SAT disruption

e SAT is NP-complete [c71]

— But, CDCL SAT solving is a success story of Computer Science
— CDCL SAT solving has been truly disruptive
— Hundreds (thousands?) of practical applications
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CDCL SAT solver improvement |

CPU Time (in seconds)
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CDCL SAT solver improvement |l

Maximal allowed time (seconds)
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CDCL SAT is the engines’ engine

Engines using
SAT engines

Other Boolean

Theorem Model

proving finding
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CDCL SAT is ubiquitous in problem
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SAT can make the difference — axiom pinpointing
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e £L£1 medical ontologies [SAT'15]
— Minimal unsatisfiability (MUSes) & maximal satisfiability (MCSes)
& Enumeration
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SAT can make the difference — model based diagnosis
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e Model-based diagnosis problem instances [1JCAI'L5]
— Maximum satisfiability (MaxSAT)
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This tutorial

e Part #1: Modern SAT solvers
— Conflict-Driven Clause Learning (CDCL) SAT solvers
» Goal: Overview for non-experts
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This tutorial

e Part #1: Modern SAT solvers
— Conflict-Driven Clause Learning (CDCL) SAT solvers
» Goal: Overview for non-experts

e Part #2: Modeling problems for SAT

— Propositional encodings
— Modeling examples

e Part #3: Problem solving with SAT oracles

— Minimal unsatisfiability (MUS)
— Maximum satisfiability (MaxSAT)

— Maximatsatisfiabiity (MSS/MCS)
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Part |

CDCL SAT Solving
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Outline

Basic Definitions
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Preliminaries

e Variables: w,x,y,z,a,b,c,...

e Literals: w,X,y,a,..., but also ~w,—y, ...

e Clauses: disjunction of literals or set of literals

e Formula: conjunction of clauses or set of clauses

e Model (satisfying assignment): partial /total mapping from
variables to {0, 1} that satisfies formula

e Formula can be SAT/UNSAT
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Preliminaries

e Variables: w,x,y,z,a,b,c,...

e Literals: w,X,y,a,..., but also ~w,—y, ...

e Clauses: disjunction of literals or set of literals

e Formula: conjunction of clauses or set of clauses

e Model (satisfying assignment): partial /total mapping from
variables to {0, 1} that satisfies formula
e Formula can be SAT/UNSAT

e Example:

— Example models:
» {r,s,a,b,c,d}
» {r,s,X,y,w,z,3,b,c,d}
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Resolution

e Resolution rule: [DP60,R65]

(aVx) (BVX)
(avp)

— Complete proof system for propositional logic
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Resolution

e Resolution rule: [DP60,R65]
(aV x) (BV%)
(aVp)
— Complete proof system for propositional logic
(x\/a (xV a) (yVa) (yVa)
|
(3

|~ N
\/

— Extensively used with (CDCL) SAT solvers
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Resolution

e Resolution rule: [DP60,R65]
(aV x) (BV%)
(aVp)
— Complete proof system for propositional logic
(x\/a (xV a) (yVa) (yVa)
|
(3

— Extensively used with (CDCL) SAT solvers

e Self-subsuming resolution (with o/ C «): [E.g. SP04,EBOS]

(aVx) (o VX)

(@)

— («) subsumes («a V x)
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Unit propagation

F = (r)A(FVs)A
(wVa)A(XV3aVb)A
(FVZVc)A(bVEV)
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Unit propagation

F = (r)A(FVs)A
(WVa)A(XV 3V b)A
(FVZVc)A(bVEV)

e Decisions / Variable Branchings:

w=1lx=1y=1z=1
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Unit propagation

Level
F = (NAFVS)A ‘1)
(wVva)A(xVaVvb)A
(FVZVc)A(bVEV) 2
3
e Decisions / Variable Branchings:
w=1lx=1y=1z=1 4

Dec. Unit Prop.

0 f———> S

w

o — o

_
X —>
y\

Z—> Cc—>
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Unit propagation

Level Dec. Unit Prop.

F = (NA(FVS)A oY A
(wVva)A(xVaVvb)A T i
(yVzVve)A(bvevd) 2 x—b

3y
e Decisions / Variable Branchings: \
w=1lx=1y=1z=1 4 Z———>c—> 4

e Additional definitions:
— Antecedent (or reason) of an implied assignment
» (bvEvd)ford
— Associate assignment with decision levels
» w=101, x=102, y=103,z=104
» r=100,d=104, ..
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Resolution proofs

e Refutation of unsatisfiable formula by iterated resolution
operations produces resolution proof

e An example:
F=@)AMb)A(GVc)A(aVb)A(aVd)A(aVd)
e Resolution proof:
(aV b) (3Vc)

N/
(¢) (bVc)
N/
(b) (b)
N/

L

e A modern SAT solver can generate resolution proofs using clauses

learned by the solver (ZM03]
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Unsatisfiable cores & proof traces

e CNF formula:

Level Dec. Unit Prop.
0 0 b —>

Implication graph with conflict
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Unsatisfiable cores & proof traces

e CNF formula:

Level Dec. Unit Prop.
0 0 b —>

Proof trace L: (3V c) (aV b) (&) (b)
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Unsatisfiable cores & proof traces

e CNF formula:

Level Dec. Unit Prop. (aVv b) (3Ve)
- N/
e @  (bvo)
1 SO
o CREPC
1

Resolution proof follows structure of conflicts
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Unsatisfiable cores & proof traces

e CNF formula:

Level Dec. Unit Prop. (aVv b) (3Ve)
- N/
e @  (bvo)
1 SO
o CREPC
1

Unsatisfiable subformula (core): (), (b),(aV c),(aV b)
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The DPLL algorithm

[DL60,DLL62]

Unassigned N

variables ?
lY
Satisfiable
Assign value
to variable
Unit

propagation

Conflict ?

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Unsatisfiable

e Optional: pure literal rule
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The DPLL algorithm

[DL60,DLL62)

F = (xVy)A(aVb)A(3Vb)A(aVb)A(3V D)
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The DPLL algorithm

—

Unassigned N

variables ?
lY
Satisfiable
Assign value
to variable
Unit

propagation

N

Conflict ?

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Unsatisfiable

e Optional: pure literal rule

[DL60,DLL62)

F = (xVy)A(aVb)A(3Vb)A(aVb)A(3V D)

Level

0
1
2

0

X

y

Dec. Unit Prop.

~N_
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The DPLL algorithm

[DL60‘DLL62]
— F = (xVy)A(aVb)A(3Vb)A(aVb)A(3VD)

Unassigned N

variables ?
1Y Level Dec. Unit Prop.
Satisfiable
Assign value 0 @
to variable
Unit 2 Y

propagation

N

Conflict ?

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Unsatisfiable

e Optional: pure literal rule
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The DPLL algorithm

—

Unassigned
variables ?

lY
Assign value
to variable

Unit
propagation

N

Conflict ?

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Unsatisfiable

l.—

N

Satisfiable

e Optional: pure literal rule

Level

0
1
2

3

[DL60,DLL62)

F = (xVy)A(aVb)A(3Vb)A(aVb)A(3V D)
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The DPLL algorithm

—

Unassigned
variables ?

lY
Assign value
to variable

Unit
propagation

N

Conflict ?

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Unsatisfiable

l.—

N

Satisfiable

e Optional: pure literal rule

[DL60,DLL62)

F = (xVy)A(aVb)A(3Vb)A(aVb)A(3V D)

Level Dec. Unit Prop.
0 0
1 X
2 y
3 a 1
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The DPLL algorithm

[DL60‘DLL62]
— F = (xVy)A(aVb)A(3Vb)A(aVb)A(3VD)
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The DPLL algorithm

[DL60‘DLL62]
— F = (xVy)A(aVb)A(3Vb)A(aVb)A(3VD)
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variables ?
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Assign value 0 @
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Unit
propagation

N

Conflict ?
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Backtrack &
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How significant is CDCL SAT solving?

e Sample of solvers:

POSIT: state of the art DPLL SAT solver in 1995

GRASP: first CDCL SAT solver, state of the art 1995~2000
Minisat: CDCL SAT solver, state of the art until the late 00s
Glucose: modern state of the art CDCL SAT solver

A

— Demo 1: model checking example (from IBM)
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How significant is CDCL SAT solving?

e Sample of solvers:

POSIT: state of the art DPLL SAT solver in 1995

GRASP: first CDCL SAT solver, state of the art 1995~2000
Minisat: CDCL SAT solver, state of the art until the late 00s
Glucose: modern state of the art CDCL SAT solver

A

— Demo 1: model checking example (from IBM)

e Demo 2: cooperative path finding (CPF)
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What is a CDCL SAT solver?

e Extend DPLL SAT solver with: [DP60,DLL62]

— Clause learning & non-chronological backtracking [mssosamssoo 8so7,207]

Search restarts [GSK98,BMS00,H07,B08]

Lazy data structures

Conflict-guided branching
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What is a CDCL SAT solver?

e Extend DPLL SAT solver with: [DP60,DLL62]
— Clause learning & non-chronological backtracking [mssosamssoo 8so7,207]

» Exploit UIPs [MSS96a,55512)

» Minimize learned clauses [SB09,VG09]

» Opportunistically delete clauses [MSS96a,MSS99,GNO2)]

— Search restarts [GSK98,BMS00,H07,B08]

Lazy data structures
» Watched literals [MMZZMo1]

Conflict-guided branching

» Lightweight branching heuristics [MMZZMo1]
» Phase saving [S00,PDO7]
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Outline

Clause Learning, UIPs & Minimization
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Clause learning

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z\a 1
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Clause learning

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z \ a 1
b
e Analyze conflict [MSS96a,MSS96b, MSS96c, MSS96d,MSS99]
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Clause learning

Level Dec. Unit Prop.

0 0
1 x
2 y
3 z \: & > |
b
e Analyze conflict [MSS96a,MSS96b, MSS96c, MSS96d,MSS99]

— Reasons: x and z
» Decision variable & literals assigned at decision levels less than
current
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Clause learning

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z \: & > |
b
e Analyze conflict [MSS96a,MSS96b, MSS96c, MSS96d,MSS99]

— Reasons: x and z
» Decision variable & literals assigned at decision levels less than
current
— Create new clause: (xV z)

21/115



Clause learning

Level Dec. Unit Prop.

0 1] _
(5VE) (2vb) (Rvzva)
1 X
2 y
3 z \: a > |
b
e Analyze conflict [MSS96a,MSS96b, MSS96c, MSS96d,MSS99]

— Reasons: x and z
» Decision variable & literals assigned at decision levels less than

current
— Create new clause: (xV z)
e Can relate clause learning with resolution
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Clause learning

Level Dec. Unit Prop.

0 0

(3Vv b) (zvb) (RVZVa)
1 X |
5 P (3Vv2)
3 z \: a > |
b
e Analyze conflict [MSS96a,MSS96b, MSS96c, MSS96d,MSS99]

— Reasons: x and z
» Decision variable & literals assigned at decision levels less than

current
— Create new clause: (xV z)
e Can relate clause learning with resolution
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Clause learning

Level Dec. Unit Prop.
0 0

(3Vv b) (zvb) (RVZVa)
L v
2 y T z)
3 “ \i ? /5 - (xV2)
b
e Analyze conflict [MSS96a,MSS96b, MSS96c, MSS96d,MSS99]

— Reasons: x and z
» Decision variable & literals assigned at decision levels less than

current
— Create new clause: (xV z)
e Can relate clause learning with resolution
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Clause learning

Level Dec. Unit Prop.
0 0

(3Vv b) (zvb) (RVZVa)
1 X | /
2 y T z)
3 “ \i ? /:, - (xV2)
b
e Analyze conflict [MSS96a,MSS96b, MSS96c, MSS96d,MSS99]

— Reasons: x and z
» Decision variable & literals assigned at decision levels less than

current
— Create new clause: (xV z)
e Can relate clause learning with resolution
— Learned clauses result from (selected) resolution operations
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Clause learning

Level Dec. Unit Prop.
0 0

(3Vv b) (zvb) (RVZVa)
1 X | /
2 y T z)
3 “ \i ? /:, - (xV2)
b
e Analyze conflict [MSS96a,MSS96b, MSS96c, MSS96d,MSS99]

— Reasons: x and z
» Decision variable & literals assigned at decision levels less than

current
— Create new clause: (xV z)
e Can relate clause learning with resolution
— Learned clauses result from (selected) resolution operations

¢ Note: GRASP-like clause learning

— Otbher instantiations of clause learning exist
21 /115



Clause learning — after backtracking

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z a 1
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Clause learning — after backtracking

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z

e Clause (X V Z) is asserting at decision level 1
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Clause learning — after backtracking

Level Dec. Unit Prop. Level Dec. Unit Prop.
0 0 0 0
1 X 1 X —> Z
2 y
3 V4

e Clause (X V Z) is asserting at decision level 1
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Clause learning — after backtracking

Level Dec. Unit Prop. Level Dec. Unit Prop.
0 0 0 0
1 X 1 X —> Z
2 y
3 z
e Clause (X V Z) is asserting at decision level 1
e Learned clauses are asserting (with exceptions) [MSS96a,MSS99]
[ ]

Backtracking differs from plain DPLL:

— Always bactrack after a conflict [ZMMMo1]
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Unique implication points (UIPs)

Level Dec. Unit Prop.

0 0
1 w
2 X
3 y\

4 z /
_—

J

o «— o
- <—no
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Unique implication points (UIPs)

Level Dec.  Unit Prop. (bve) (wvave) (xvavb) (7vzVa)
0 0 l
1 w (wV3avb)
2 x (wVxVa)
- |
x (wvxVyVZ)
4 z >

o €0

|
Y

- €=—o

e Learn clause (W VXV yV2Z)
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Unique implication points (UIPs)

Level Dec.  Unit Prop. (bve) (wvave) (xvavb) (7vzVa)
0 0 l
1 w (wV3avb)
2 x (wVxVa)
- |
x (wvxVyVZ)
4 z > a >

o €

i

- €=—o

e Learn clause (W VXV yV2Z)
e But ais an UIP [MSS96a,MSS99]
— Dominator in DAG for decision level 4

23/115



Unique implication points (UIPs)

Level Dec. Unit Prop. (E

B)
<

< € x € g — <

< o
\li)l

B

<

W

<

9

-

<

L8]

<

E:

=

<

N

<

&

<
<
w

e But ais an UIP [MSS96a,MSS99]
— Dominator in DAG for level 4

e Learn clause (w V XV a)
23/115



Multiple UIPs

Level Dec. Unit Prop.

0 0
1 w
2 X
3 y

~
N
/
s
X
o —
- «<—n
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Multiple UIPs

Level  Dec.  Unit Prop. e First UIP:
0 0 - Learn clause (w V y V 3)
1 w
2 X
3 y

Y

- €—o
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Multiple UIPs

Level Dec. Unit Prop. e First UIP:
0 0 - Learn clause (w V y V 3)
1 w e But there can be more than 1
UIP
2 X
3 y

- <— 0o

24 /115



Multiple UIPs

Level  Dec.  Unit Prop. e First UIP:
0 0 - Learn clause (w V y V 3)
LW e But there can be more than 1
ulp
2 - e Second UIP:
— Learn clause (x Vz V a)
¢ Y — Clause is not asserting

4 z\:\r)i

S

o <— o
- <—no
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Multiple UIPs

Level - Dec. Unit Prop e First UIP:
0 0 - Learn clause (w V y V 3)
LI e But there can be more than 1
ulp

2 * e Second UIP:

— Learn clause (x Vz V a)
¢ Y — Clause is not asserting

e In practice smaller clauses more

4 VA e _—

— Compare with (w VXV yVZ)

o — o

I effective
1
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Multiple UIPs

0
1

Level Dec. Unit Prop. e First UIP:
0 - Learn clause (w V y V 3)
w e But there can be more than 1
UlP
x e Second UIP:

— Learn clause (x Vz V a)
Y — Clause is not asserting

e In practice smaller clauses more

VA e _

i effective
s 1

SN
e Multiple UIPs proposed in GRASP

— First UIP learning proposed in Chaff
e Not used in recent state of the art CDCL SAT solvers

— Compare with (w VXV yVZ)

[MSS96a,MSS99]

[ZMMMO1]
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Multiple UIPs

Level Dec. Unit Prop.

0
1

e First UIP:
0 — Learn clause (w V y V 3)
w e But there can be more than 1
UIP
- e Second UIP:
— Learn clause (x Vz V a)
Y — Clause is not asserting
e In practice smaller clauses more
‘ > ! T effective
\ l l — Compare with (w VXV yV2Z)
s b—> L
e Multiple UIPs proposed in GRASP [MSS962,MSS99]

— First UIP learning proposed in Chaff
e Not used in recent state of the art CDCL SAT solvers

e Recent results show it can be beneficial on some instances

[ZMMMO1]

[55512]
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Clause minimization |

Level Dec. Unit Prop.

0 0
b
c

N7

e
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Clause minimization |

Level Dec. Unit Prop. (3ve) (2vbve) (xvyvzva)
o 0 |
1 xX——> b (zvbva)
- | -
(XVyVZzVh)

o Learn clause (X VyV ZVb)
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Clause minimization |

Level Dec. Unit Prop. (3ve) (2vbve) (xvyvzva) (xVb)
o 0 |
1 xX——> b (zvbva)
- R
(xVyVzVvb)

o Learn clause (X VyV ZVb)

e Apply self-subsuming resolution (i.e. local minimization) [SB09]
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Clause minimization |

—
X1
<

<1
NI
<

SI

Level Dec. Unit Prop. (3ve) (2vbve) (xvyvzva) (xVb)
o 0 |
1 X—— b (zv bV a)
. m 1
V
y

=
<
<
L\J/I

e Apply self-subsuming resolution (i.e. local minimization) [SB09]
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Clause minimization |

—
X1
<

<1
NI
<

SI

Level Dec. Unit Prop. (3ve) (2vbve) (xvyvzva) (xVb)
o 0 |
1 X—— b (zv bV a)
. m 1
V
y

=
<
<
L\J/I

e Apply self-subsuming resolution (i.e. local minimization) [5B09]

e Learn clause (xVyV 2)
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Clause minimization Il

Level Dec. Unit Prop.
0 0
1

e
| \Zi
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Clause minimization Il

Level Dec. Unit Prop.
0 0
1

e
| *\2<

e Learn clause (w V X V €)
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Clause minimization Il

Level Dec. Unit Prop.

. ) e Learn clause (w V X V C)

e Cannot apply self-subsuming
L resolution

w a Cc
\ / — Resolving with reason of c yields
b (WVXV3aVvhb)
2 X e \
\\' d— L
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Clause minimization Il

Level Dec. Unit Prop.

. ) e Learn clause (w V X V C)

e Cannot apply self-subsuming
L resolution

w a Cc
\ / — Resolving with reason of c yields
b (WVXVavhb)
) e Can apply recursive minimization
X &
\\' d— L
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Clause minimization Il

Level Dec. Unit Prop.

o s (RN

0 0 .
e Cannot apply self-subsuming
L v ? < resolution
\ / — Resolving with reason of c yields
b (WVXV3aVvhb)
) e Can apply recursive minimization
X &
\\' d—> 1
e Marked nodes: literals in learned clause [SBO9]
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Clause minimization Il

Level Dec. Unit Prop.

. I ATV,
0 0 .
e Cannot apply self-subsuming
L v =& . resolution
\ / — Resolving with reason of ¢ yields
b

(WwVXV3aVhb)

) e Can apply recursive minimization
X &

NN

—>J_

e Marked nodes: literals in learned clause [SBO9]
e Trace back from ¢ until marked nodes or new decision nodes

— Drop literal c if only marked nodes visited
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Clause minimization Il

Level Dec. Unit Prop. _ o
o Learn—elause{w 3 €}
0 0

Cannot apply self-subsuming

& v = . resolution
\ / — Resolving with reason of c yields
b (WVXVavhb)
) e Can apply recursive minimization
X &

Learn clause (w V X)

N

e Marked nodes: literals in learned clause [SBO9]

e Trace back from ¢ until marked nodes or new decision nodes
— Drop literal c if only marked nodes visited
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Clause minimization Il

Level Dec. Unit Prop. _ o
o Learn—elause{w 3 €}
0 0

Cannot apply self-subsuming
1 A e s N

resolution
\ / — Resolving with reason of c yields

b (WwVXV3aVhb)

) Can apply recursive minimization
X &

N

Learn clause (w V X)

e Marked nodes: literals in learned clause [SBO9]

e Trace back from ¢ until marked nodes or new decision nodes
— Drop literal c if only marked nodes visited

¢ Recursive minimization runs in (amortized) linear time
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Outline

Search Restarts & Lazy Data Structures
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Search restarts |

e Heavy-tail behavior: [GSK98]

%below

o
©

o
®

0.7 1

0.6 1

0.5 1

0.4 1

0.3

0 2000 4000 6000 8000 10000 12000 *oackiracks

— 10000 runs, branching randomization on satisfiable industrial
instance

e Use rapid randomized restarts (search restarts)
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Search restarts Il

e Restart search after a number
of conflicts

cutoff cutoff solution
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Search restarts Il

Restart search after a number
of conflicts

Increase cutoff after each
restart

— Guarantees completeness
— Different policies exist JUECELES .

5 A
Works for SAT & UNSAT ol
instances. Why?
— Not explained by ﬂoff

heavy-tailed behavior
— But there exist proof
complexity arguments
Learned clauses effective after
restart(s)

29
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Data structures basics

e Each literal / should access clauses containing /
— Why?
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Data structures basics

e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause
e Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)
— Worst-case number of literals: O(m n)
— In practice,

Unit propagation slow-down worse than linear as clauses are learned !

e Clause learning to be effective requires a more efficient
representation: Watched Literals [MMZZMo1]

— Watched literals are one example of lazy data structures

» But there are others
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Watched literals

e Important states of a clause

[MMZZMo1]

literalsO = 4
literals1=0
size=5

EONEN

unit

literalsO = 4
literals1= 1
size=5

DX A

satisfied

literalsO = 5
literals1=0
size=5

ROXEO20N

unsatisfied
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Watched literals

[MMZZMo1]
' '
e Important states of a clause ’ N ‘ N
unresolved
e Associate 2 references with @3 @1
each clause L
W ‘ N unresolved
@5 @3 @1
,,,,,,,,,,,, i e
@5 @3 @7 @1
v
satisfied
@5 @3 @ @7 @1
v
’ N ‘ N after backtracking to level 4
@3 @1
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[MMZZMo1]
' '
e Important states of a clause ’ N ‘ N
unresolved
e Associate 2 references with @3 @1
each clause L
e Deciding unit requires M ‘ N unresolved
traversing all literals e @3 e1
R R
@5 @3 @7 @1
y
satisfied
@5 @3 @ @7 @1
v
’ N ‘ N after backtracking to level 4
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Watched literals

[MMZZMo1]
| |
e Important states of a clause ’ N ‘ N
unresolved
e Associate 2 references with @ @l
each clause L
e Deciding unit requires W ‘ N unresolved
traversing all literals @5 @3 @1
e References unchanged when = [
backtracking W w i
@5 @3 @7 @1
||
satisfied
@ @3 @ @7 @l
(I
’ N ‘ N after backtracking to level 4
@3 @1
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Additional key techniques

e Lightweight branching [MMZZMo1]
— Use conflict to bias variables to branch on, associate score with
each variable
— Prefer recent bias by regularly decreasing variable scores
— Recent promising ML-based branching [LGPC16a,LGPC16b]
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Additional key techniques

e Lightweight branching [MMZZMo1]
— Use conflict to bias variables to branch on, associate score with
each variable
— Prefer recent bias by regularly decreasing variable scores
— Recent promising ML-based branching [LGPC16a,LGPC16b]

e Clause deletion policies

— Not practical to keep all learned clauses
— Delete larger clauses [E.g. MSS96a,MS599]
— Delete less used clauses [E.g. GN02,ES03]

e Other effective techniques:

— Phase saving [500,PDO7]
— Luby restarts [HO7]
— Literal blocks distance [AS09]
— Preprocessing/inprocessing [Eg. JHB12,HJLSB15]
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Outline

Why CDCL Works?
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Why CDCL works — a practitioner’s view

e GRASP-like clause learning extensively inspired in circuit reasoners

— UIPs mimic unique sensitization points (USPs), from testing
— Analysis of conflicts organized by decision levels

» In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN,

etc.
» Need to find ways to exploit the circuit's internal structure
» Several ideas originated in earlier work [MSS94a,MSS94b]

e There are also proof complexity arguments
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Why CDCL works — a practitioner’s view

e GRASP-like clause learning extensively inspired in circuit reasoners

— UIPs mimic unique sensitization points (USPs), from testing
— Analysis of conflicts organized by decision levels

» In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN,

etc.
» Need to find ways to exploit the circuit's internal structure
» Several ideas originated in earlier work [MSS94a,MSS94b]

e Understanding problem structure is essential

— Clauses are learned locally to each decision level
— UIPs further localize the learned clauses
— GRASP-like clause learning aims at learning small clauses, related

with the sources of conflicts
— Most practical problem instances exhibit the structure GRASP-like
clause learning is most effective on

» Most problems are not natively represented in clausal form [513]

e There are also proof complexity arguments
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Part Il

Problem Modeling for SAT
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Outline

Recap Clausification of Boolean Formulas
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Representing Boolean formulas / circuits |

e Satisfiability problems can be defined on Boolean circuits/formulas
— Can use any logic connective: A, V, =, — 4>, ...
e Can represent circuits/formulas as CNF formulas [T68,PG86]

— For each (simple) gate, CNF formula encodes the consistent
assignments to the gate's inputs and output

» Given z = OP(x, y), represent in CNF z <> OP(x, y)

— CNF formula for the circuit is the conjunction of CNF formula for
each gate

Fe=(aVvVe)A(bVc)A(aVbVT) 2:@0
Fe=(FVEANGEVEA(rVsVi) rst
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Representing Boolean formulas / circuits |l

a b c| Feabe)
2:@0 00 0] 0
00 1 1
01 0 0
01 1 1
ab 1 00 0
P00 01 11 10 Lo 1 x
olfell ol| 1 ((o 110 1
— 1 1 1 0

Fe=(aVec)A(bVc)A(aVbVE)
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Representing Boolean formulas / circuits Il

e CNF formula for the circuit is the conjunction of the CNF formula
for each gate
— Can specify objectives with additional clauses

a — X
b_NAND c AND Y z=17?
P "D
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e CNF formula for the circuit is the conjunction of the CNF formula
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— Can specify objectives with additional clauses

a — X
b_NAND c AND Y z=17?
P "D

F = (aVx)A(bVx)A(3VbVX)A
(xVy)A(cVy)N(XVEVY)A
FV2)A(dVZ)A(yVdVZ)A(2)

e Note: z=d V (cA(=(anb)))
— No distinction between Boolean circuits and (non-clausal) formulas,
besides adding new variables
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Representing Boolean formulas / circuits Il

e CNF formula for the circuit is the conjunction of the CNF formula
for each gate
— Can specify objectives with additional clauses

a — X
b_NAND c AND Y z=17?
Dy )

F = (@aVvx)A(bVx)A(a3VDVEX)A
(xVy)A(cVy)N(XVEVY)A
FV2)A(dVZ)A(yVdVZ)A(2)

e Note: z=d V (cA(=(anb)))
— No distinction between Boolean circuits and (non-clausal) formulas,
besides adding new variables

e Easy to do more structures: ITEs; Adders; etc.
39 /115



Outline

Hard and Soft Constraints
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Hard vs. soft constraints

e Hard: Constraints that must be satisfied
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— Associate a cost (can be unit) with falsifying each soft constraint
— For a hard constraint, the cost can be viewed as co

e An example:
— How to model linear cost function optimization?

g n
min Y0, 6%

s.t. ©
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— For a hard constraint, the cost can be viewed as co

e An example:
— How to model linear cost function optimization?

. n
min 7Gx
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— Hard constraints: ¢
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Hard vs. soft constraints

e Hard: Constraints that must be satisfied
e Soft: Constraints that we would like to satisfy, if possible

— Associate a cost (can be unit) with falsifying each soft constraint
— For a hard constraint, the cost can be viewed as co

e An example:
— How to model linear cost function optimization?
g n
i 2 j=1 G X
s.t. ©

— Hard constraints: ¢
— Soft constraints: (x;), each with cost ¢;

41 /115



Outline

Linear Constraints
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Linear constraints

o Cardinality constraints: Z}’Zl xi < k?
— How to handle AtMost1 constraints, Z}':lxj <17
— General form: 377, x; >a k, with 1 € {<, <, =, >, >}
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Linear constraints

o Cardinality constraints: Z}’Zl xi < k?
— How to handle AtMost1 constraints, Z}':lxj <17
— General form: 377, x; >a k, with 1 € {<, <, =, >, >}

e Pseudo-Boolean constraints: EJ’-’ZI ajx; > k, with
> € {<, <, =,2,>)

e If variables are non-Boolean, e.g. with finite domain
— Need to encode variables (more later)
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Equalsl, AtlLeastl & AtMostl constraints

o > 7 1x =1 encode with (37, x < 1) A (D7, x5 > 1)

. f:lxj > 1: encode with (x1 Vxo V...V x;)

° J 1 Xj < 1 encode with:

— Pairwise encoding

» Clauses: O(n®) ; No auxiliary variables

— Sequential counter [S05]
» Clauses: O(n) ; Auxiliary variables: O(n)
— Bitwise encoding [PO7,FPO1]

» Clauses: O(nlogn) ; Auxiliary variables: O(log n)
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Pairwise encoding

e How to (propositionally) encode AtMost1 constraint
at+b+c+d<17?
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Pairwise encoding

e How to (propositionally) encode AtMostl constraint
at+b+c+d<17

a—>bAEAd
b—cAdAZ
c—>dAaAD
d—>3AbAC

LEl

— Encoded as: (3Vb)A(3VE

>
o
<
E;l
>
ol
<
\('LI
>
=
<
Q.
N—r
>
o
<
e;l
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Pairwise encoding

e How to (propositionally) encode AtMost1 constraint
at+b+c+d<17?

a—>bAEAd
b—cAdAZ
c—>dAaAD
d—3aAbAC

LEl

— Encoded as: (3Vb)A(3VE

e With N variables, number of clauses becomes 7"(";1)

— But no additional variables

>
m
<
S:I
>
=
<
\(?/I
>
=
<
Q)
N—r
>
o
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Sequential counter encoding

e Encode Elexj' < 1 with sequential counter:
(x1Vs1) A (% V 5p_1)A
/\1<i<n (()_(I \ Si) A (§i71 \ Si) A ()_<,' V §,‘,1))

— If some x; = 1, then all s; variables must be assigned
» si=1fori>j,andso x; =0 fori>j
» si=0fori<j,andso x; =0 for i <j
» Thus, all other x; variables must take value 0

— If all x; =0, can find consistent assighment to s; variables

— O(n) clauses ; O(n) auxiliary variables
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Bitwise encoding

e Encode ZJ'-’:lxj < 1 with bitwise encoding:

o An example: x3 +x +x3 <1
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Bitwise encoding

e Encode ZJ'-’:lxj < 1 with bitwise encoding:

- Auxiliary variables vp, ..., v, r = [log n] (with n > 1)

- Ifx; =1, then vy...v,_1 = by...b,_1, the binary encoding of j — 1
Xj — (V() = bo)/\. . ./\(V,71 = b,fl) = ()_g\/(VO = bg)/\. . ./\(Vrfl = brfl))

o An example: x3 +x +x3 <1

J—1 wvivw

X1 0 00
X2 1 01
X3 2 10
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Bitwise encoding

e Encode ZJ'-’:lxj < 1 with bitwise encoding:
— Auxiliary variables vo,...,v,—1 ; r = [logn] (with n > 1)
- Ifx; =1, then vy...v,_1 = by...b,_1, the binary encoding of j — 1
xi = (vo = bo)A.. . A(vic1 = br—1) < (XV(vo = bo)A. . A(Vr—1 = br—1))
— Clauses (x; V (vi <+ b)) = (X V [;), i=0,...,r — 1, where
» i=v,ifb=1
» [ = Vj, otherwise

o An example: x3 +x +x3 <1

J—1 wvivw

X1 0 00 (Vi) A (X V)
X0 1 01 (% Vi) A (% Vw)
x3 2 10 (3Vwvi)A(R3Vin)
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Bitwise

encoding

e Encode ZJ'-’:lxj < 1 with bitwise encoding:

Auxiliary variables vo,...,v,_1 ; r = [logn] (with n > 1)
If x; =1, then vo...v,—1 = by...b,_1, the binary encoding of j — 1
xi = (vo = bo)A.. . A(vic1 = br—1) < (XV(vo = bo)A. . A(Vr—1 = br—1))
Clauses (xj V (vi <+ b)) = (X V i), i=0,...,r — 1, where

> =y, ifb=1

» i = v;, otherwise
If x; = 1, assignment to v; variables must encode j — 1

» For consistency, all other x variables must not take value 1
If all x; =0, any assignment to v; variables is consistent

O(nlogn) clauses ; O(logn) auxiliary variables

e An example: x3 +x +x3 <1

J—1 wviv

x1 0 00 (V) A (Vi)
X0 1 01 (% Vi) A (% Vw)
x3 2 10 (%3 V V1) A (X V %)
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General cardinality constraints

o General form: 3 7, x; < k (or X2 x; > k)

— Operational encoding [Wos]

» Clauses/Variables: O(n)
» Does not guarantee arc-consistency

Generalized pairwise

» Clauses: O(2") ; no auxiliary variables

— Sequential counters [S05]
» Clauses/Variables: O(n k)

— BDDs [ES06]
» Clauses/Variables: O(n k)

— Sorting networks [ESO6]
» Clauses/Variables: O(nlog” n)

— Cardinality Networks: [ANORC09,ANORC11a]
» Clauses/Variables: O(nlog” k)

— Pairwise Cardinality Networks: [czI10]
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Generalized pairwise encoding

o General form: > 7, x; < k

e Any combination of k 4 1 true variables is disallowed
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Generalized pairwise encoding

o General form: > 7, x; < k

e Any combination of k 4 1 true variables is disallowed

e Example: a+b+c+d <2

aANb—¢ = (a3VbVvi)
aANb—d = (aVvbVvd)
ahc—d = (avevd)
bAc—d = (bVvEVvd)

— Encoded as: (3VbVE)A(ZVbVd)A(ZVEV

E;I
>
=
<
ol
<
&I
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Generalized pairwise encoding

o General form: > 7, x; < k

e Any combination of k 4 1 true variables is disallowed

e Example: a+b+c+d <2

aANb—¢ = (a3VbVvi)
aANb—d = (aVvbVvd)
ahc—d = (avevd)
bAc—d = (bVvcVd)

e In general, number of clauses is Cl?+1

— Recall: for AtMostl1 (i.e. for k = 1), number of clauses is: @

49 /115



Another example

e Example: a+b+c+d+e<2
e Encoding will contain C3 = 10 clauses:

aANb—¢C
aAb—d
aNb—eé
ahc—d
aNnc— €
aNd — €
bAc—d
bAc— &
bAd — &
chNd—é

L L L W
™ Q| @™ QO

~— N e N e N e

FERLLLEiey

P e e P ey

Ol T oI T LIy

<< <K<K LKL
Q Q0 O Q0 O OITI T
<< << KKK KK KL

M| ™|

50 /115



Sequential counter — revisited |

e Encode 7 ; x; < k with sequential counter:
z1 |‘T2 Tn
S1,1 521 Sp—1,1
51,2 52,2 Sn—1,2
1 ] 1
] I ]
1 ] 1
| | e e mmm o 1
1 ] 1
1 ] 1
1 | 1
S1,k 52,k Sn—1,k
| 1 | Vo Un

e Equations for each block 1 < /< n, 1<) < k:

s = ZJ’ 1 X Si1=Si—11 VX
Sij = Si—1j V Si—1j-1 N\ Xj
s; represented in unary vi=(sii1k Ax;) =0

51/
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Sequential counter — revisited Il

o CNF formula for 37, x; < k:

— Assume: k>0An>1
— Indeces: 1 <i<n,1<j<k

X1 \/X171)

=51,)

- V Si1)

—si—11 V' Si1)

X Vst i1V S,'J)
oS5V S;,J‘)

=X V TSi—1 k)

—Xp V jSnfl,k)

PR

e O(n k) clauses & variables
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Pseudo-Boolean constraints

e General form: 21’7:1 ajxj <b

— Operational encoding [Wos]

» Clauses/Variables: O(n)
» Does not guarantee arc-consistency

— BDDs [ES06]

» Worst-case exponential number of clauses
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e General form: 21’7:1 ajxj <b

— Operational encoding [Wos]

» Clauses/Variables: O(n)
» Does not guarantee arc-consistency

— BDDs [ES06]
» Worst-case exponential number of clauses
— Polynomial watchdog encoding [BBROY]

» Let v(n) = log(n) log(amax)
» Clauses: O(n’v(n)) ; Aux variables: O(n’v(n))
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Pseudo-Boolean constraints

e General form: 21’7:1 ajxj <b

— Operational encoding [Wos]

» Clauses/Variables: O(n)
» Does not guarantee arc-consistency

— BDDs [ES06]
» Worst-case exponential number of clauses
— Polynomial watchdog encoding [BBROY]

» Let v(n) = log(n) log(amax)
» Clauses: O(n’v(n)) ; Aux variables: O(n’v(n))

Improved polynomial watchdog encoding [ANORC11b]

» Clauses & aux variables: O(n*log(amax))
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Encoding PB constraints with BDDs |

e Encode 3x1 +3x +x3 <3
e Construct BDD

— E.g. analyze variables by decreasing coefficients
e Extract ITE-based circuit from BDD
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Encoding PB constraints with BDDs |

e Encode 3x1 +3x +x3 <3
e Construct BDD

— E.g. analyze variables by decreasing coefficients
e Extract ITE-based circuit from BDD

x1 S Ime
10
al bf
¥4 z
x2 3 e x S mE
0 1 0 1
a b a b
0 1
z z
x5 3 e x3 3 ImE
0o 1 0 1
al b al b]
1 0 1 0
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Encoding PB constraints with BDDs ||

e Encode 3x; +3xp +x3 <3
e Extract ITE-based circuit from BDD

e Simplify and create final circuit:

x| e

X2 X3 X3 X2
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More on PB constraints

o How about Y 7 ; a;x; = k ?
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» Cannot find all consequences in polynomial time [S03,FS02,T03]

e Example:

dx1 + 3x0 + 2X3 =¥

- Replace by (4X1 + 3X2 + 2X3 2 5) N (4X1 + 3X2 + 2X3 S 5)
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More on PB constraints

o How about Y 7 ; a;x; = k ?
- Canuse (37, 3% > k) A (X 3% < k), but...

> >.i;1 2 X = k is a subset-sum constraint
(special case of a knapsack constraint)
» Cannot find all consequences in polynomial time [S03,FS02,T03]

e Example:

4x1 +3x0 +2x3 =5
- Replace by (4X1 + 3X2 + 2X3 2 5) N (4X1 + 3X2 + 2X3 S 5)

— Let X = 0
— Either constraint can still be satisfied, but not both

56 /115



Outline

Encoding CSPs
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CSP constraints

e Many possible encodings:

— Direct encoding [dK89,GJ96,W00]
— Log encoding [Wo0]
— Support encoding [K90,G02]
— Log-Support encoding [G07]
— Order encoding for finite linear CSPs [TTKBO9]
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Direct encoding for CSP w/ binary constraints

Variable x; with domain D;, with m; = |Dj|

Constraints are relations over domains of variables
— For a constraint over xi, ..., xk, define relation R C Dy X --- x Dy
— Need to encode elements not in the relation
— For a binary relation, use set of binary clauses, one for each element
not in R

Represent values of x; with Boolean variables x; 1, ..., X m,

Require 7" xjx =1
— Suffices to require > " x; , > 1 [Woo]

If the pair of assignments x; = v; A x; = v; is not allowed, add
binary clause (i, V X.,)
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Additional topics

e Encoding problems to SAT is ubiquitous:

Many more encodings of finite domain CSP into SAT

Encodings of Answer Set Programming ( ) into SAT

Eager SMT solving

Theorem provers iteratively encode problems into SAT

Model finders interatively encode problems into SAT
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Outline

Modeling Examples & Exercises
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Minimum vertex cover

e The problem:
— Graph G =(V,E)
— Vertex cover U C V
» For each (vi, v;) € E, either vi € Uor v; € U

— Minimum vertex cover: vertex cover U of minimum size
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Minimum vertex cover

e The problem:
— Graph G =(V,E)
— Vertex cover U C V
» For each (vi, v;) € E, either vi € Uor v; € U

— Minimum vertex cover: vertex cover U of minimum size

Vertex cover: {vo, v3, va}
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Minimum vertex cover

e The problem:
— Graph G =(V,E)
— Vertex cover U C V
» For each (vi, v;) € E, either vi € Uor v; € U

— Minimum vertex cover: vertex cover U of minimum size

Vertex cover: {vo, v3, va}

@ ° Min vertex cover: {vi}
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Minimum vertex cover

¢ Modeling with Pseudo-Boolean Optimization (PBO):
— Variables: x; for each v; € V, with x; = 1 iff v; € U
— Clauses: (x; V x;) for each (vi,v;) € E
— Objective function: minimize number of true x; variables

» l.e. minimize vertices included in U
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Minimum vertex cover

¢ Modeling with Pseudo-Boolean Optimization (PBO):
— Variables: x; for each v; € V, with x; = 1 iff v; € U
— Clauses: (x; V x;) for each (vi,v;) € E
— Objective function: minimize number of true x; variables

» l.e. minimize vertices included in U

@ @ minimize X1+ X2 + X3 + x4
subject to (X1 Vx2) A (x1 V x3) A (X1 V xa)
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Minimum vertex cover

¢ Modeling with Pseudo-Boolean Optimization (PBO):
— Variables: x; for each v; € V, with x; = 1 iff v; € U
— Clauses: (x; V x;) for each (vi,v;) € E
— Objective function: minimize number of true x; variables

» l.e. minimize vertices included in U

@ @ minimize X1+ X2 + X3 + x4
subject to (X1 Vx2) A (x1 V x3) A (X1 V xa)

e Alternative propositional encoding:

{(=x1), (mx2), (=x3), (—xa) }

{(x1 Vx2),(x1Vx3),(x1V xq)}

¥s
PH
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Graph coloring
e Given undirected graph G = (V, E) and k colors:

— Can we assign colors to vertices of G s.t. any pair of adjacent
vertices are assigned different colors?
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Graph coloring

e Given undirected graph G = (V, E) and k colors:
— Can we assign colors to vertices of G s.t. any pair of adjacent
vertices are assigned different colors?

Valid coloring Invalid coloring

e How to model color assignments to vertices?

- xjj = 1 iff vertex v; € V is assigned color j € {1,... k}
e How to model adjacent vertices with different colors?

= (ﬁX,',j V ﬁX/J) if (V,'7 V/) € E, with j € {1, ey k}
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Graph coloring

e Given undirected graph G = (V, E) and k colors:
— Can we assign colors to vertices of G s.t. any pair of adjacent
vertices are assigned different colors?

Valid coloring Invalid coloring

e How to model color assignments to vertices?

- xjj = 1 iff vertex v; € V is assigned color j € {1,... k}
e How to model adjacent vertices with different colors?

= (=xij Vi) if (vi,vy) € E, with j € {1,... k}
e How to model vertices get some color?

- Yjeqt,.kXij =1 forvieV

- Note: it suffices to use <\/je{1,...,k} Xi,j)
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The N-Queens problem |

e The N-Queens Problem:

Place N queens on a N x N board, such that no two queens attack
each other

e Example for a 5 x 5 board:

Q
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The N-Queens problem |l

xjj: 1 if queen placed in position (/,/); 0 otherwise

Each row must have exactly one queen:

N
1<i<N, D xj=1
Jj=1

Each column must have exactly one queen:

N
L<j<N, > %=1
i=1

Also, need to define constraints on diagonals...
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The N-Queens problem Il

e Each diagonal can have at most one queen:

j—1
i=1 2<j<N, in+kj—k <1
k=0

N—j
N i=N, 1<j<N, Y xijk<1
N\ N k=0
Y AN N—i
N\ N : :
j=1 1<i<N, Xivk jrk <1
/\ /\ /\ /\ ; +k j+k

i—1
J=N, 2<i<N, in—kj—kgl
k=0
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Design debugging

[SMVLS'07]

Correct circuit Faulty circuit
r r

AND y AND y
s s

AND z z
Input stimuli: (r,s) = (0,1) Input stimuli: {r,s) = (0,1)
Valid output: (y, z) = (0,0) Invalid output: (y,z) = (0,0)

e The model:
— Hard clauses: Input and output values
— Soft clauses: CNF representation of circuit

e The problem:
— Maximize number of satisfied clauses (i.e. circuit gates)
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Software package upgrades

[MBCV'06,TSJL'07,AL'08,ALMS’09,ALBL"10]

Universe of software packages: {p1,...,pn}

Associate x; with p;: x; = 1 iff p; is installed
Constraints associated with package p;i: (p;, D;, C;)

— D;: dependencies (required packages) for installing p;
— C;: conflicts (disallowed packages) for installing p;

Example problem: Maximum Installability
— Maximum number of packages that can be installed

— Package constraints represent hard clauses
— Soft clauses: (x;)

Package constraints:

p1,{p2V p3}, {ps})
p2,{ps}; {ps})

P3, {p2}7 (Z))

Pa, {P27 P3}» (Z))

N e =N =y
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Software package upgrades

[MBCV'06,TSJL'07,AL'08,ALMS’09,ALBL"10]

Universe of software packages: {p1,...,pn}

Associate x; with p;: x; = 1 iff p; is installed

Constraints associated with package p;i: (p;, D;, C;)
— D;: dependencies (required packages) for installing p;
— C;: conflicts (disallowed packages) for installing p;

Example problem: Maximum Installability
— Maximum number of packages that can be installed

— Package constraints represent hard clauses
— Soft clauses: (x;)

Package constraints: MaxSAT formulation:

(plv{PZ VP3}7{P4}) PH = {(ﬁxl V X2 VX3),(ﬁX1 \/ﬁX4),
(p27{p3}7{p4}) (_‘X2 \/X3)7(_‘X2 \/_|X4),(_\X3 \/X2)7
(p3, {p2},0) (Vv x2), (—xa V x3)}
(P47{P27P3},@) ps = {(Xl)v(XQ)v(X3)7(X4)}
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Exercise: knapsack

e Given list of pairs (v, w;), i=1,...,n
— Each pair (v;, w;), represents the value and weight of object /
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Exercise: knapsack

e Given list of pairs (v, w;), i=1,...,n
— Each pair (v;, w;), represents the value and weight of object /

e Pick subset of objects with the maximum sum of values, such that
the sum of weights does not exceed W
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Exercise: knapsack

Given list of pairs (vj,w;), i=1,...,n
— Each pair (v;, w;), represents the value and weight of object /

Pick subset of objects with the maximum sum of values, such that
the sum of weights does not exceed W

Propositional encoding for the knapsack problem?

e Hint: consider 0-1 ILP (or PBO) formulation:
— Associate propositional variable x; with each objet /
— x; = 1 iff object i is picked
max S VieXi
s.t 27:1 wi-xi < W
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Exercise: solving Sudoku |

5(3 7
6 1195
9|8 6
8 6 3
4 8 3 1
7 2 6
6 2(8
411(9 5
8 719

71/115



Exercise: solving Sudoku Il

N[O|~NIM|A|OT N
=T |O|N | |0 | M|~
M|t |r~|O|IN|O|
DN |N|j—H M|~ | O
NSO | <|O(n|N|M |~ |co
O~ ||
F|N|O| (O M|~ |0
M|~ | N[O |00 | <
N0 (T~ |N|M
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Exercise: solving Sudoku Il

N[O|~NIM|A|OT N
=T |O|N | |0 | M|~
M|t |r~|O|IN|O|
DN |N|j—H M|~ | O
NSO | <|O(n|N|M |~ |co
O~ ||
F|N|O| (O M|~ |0
M|~ | N[O |00 | <
N0 (T~ |N|M

e How to solve Sudoku with SAT?
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Solving Sudoku — with constraints

o Modeling the problem with integer variables:
— Rows: i=1,...,9
— Columns: j=1,...,9
— Variables: v;j € {1,2,...,9}, i,j € {1,...,9}

e Constraints:
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— Each value used exactly once in each row:
» Forie{1,...,9}: alldifferent(vj1,...,Vig)
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Solving Sudoku — with constraints

e Modeling the problem with integer variables:
— Rows: i=1,...,9
— Columns: j=1,...,9
— Variables: v;j € {1,2,...,9}, i,j € {1,...,9}

o Constraints:
— Each value used exactly once in each row:
» Forie{1,...,9}: alldifferent(vj1,...,Vig)
— Each value used exactly once in each column:
» Forje {1,...,9}: alldifferent(vij, ..., vo )
— Each value used exactly once in each 3 x 3 sub-grid:
» Fori,je{0,1,2}:
alldifferent(Vais1,3j41, V3i41,3j425 V3it1,3j435 V3it2,3j41s - - - 5 V3i+3,3j41s - - -)
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Solving Sudoku — propositional logic — variables

e Modeling with propositional variables:

— Rows: i=1,...,9
— Columns: j—l ,9
— Variables: v,Jke{O 1}, i,j,ke{l,...,9}
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Solving Sudoku — propositional logic — constraints

e Value in each cell is valid:
- Fori,je{l,...,9}:

Pkt Vidgk = 1

e Each value used exactly once in each row:
- Forie{l,...,9}, ke{l,...,9}:

S Vigk =1

e Each value used exactly once in each column:
- Forje{l,..., 9}, ke {1,...,9}:

> i Vigik = 1

e Each value used exactly once in each 3 x 3 sub-grid:
- Fori,j€{0,1,2}, ke {1,...,9}h

3 3
Y or1 D e Vitr3jtsk =1
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Solving Sudoku — propositional logic — constraints

e Value in each cell is valid:
- Fori,je{l,...,9}:

9
D k=1 Vigk =1
Each value used exactly once in each row:
- Forie{l,...,9}, ke{l,...,9}:
S Vigk =1

Each value used exactly once in each column:
- Forje{l,..., 9}, ke {1,...,9}:

> i Vigik = 1

Each value used exactly once in each 3 x 3 sub-grid:
- Fori,j€{0,1,2}, ke {1,...,9}h

3 3
Y or1 D e Vitr3jtsk =1

Q: how to encode Equalsl constraints?
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Constraints for fixed cells

5|3 7
6 1]9]5
98 6
8 6 3
4 8 3 1
7 2 6
6 2|8
4119 5
8 719
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Constraints for fixed cells

5|3 7
6 1]9]5
98 6
8 6 3
4 8 3 1
7 2 6
6 2|8
4119 5
8 719

e Integer variables:

vit=5wvi2=3,vis=7,v21 =06,v24=1,v25 =9
va6 =5v32=9,v33=8,v38=06,v41=38,v5=6,...

76 /115



Constraints for fixed cells

5|3 7
6 1]9]5
98 6
8 6 3
4 8 3 1
7 2 6
6 2|8
4119 5
8 719

e Integer variables:
vit=5wvi2=3,vis=7,v21 =06,v24=1,v25 =9
va6 =5v32=9,v33=8,v38=06,v41=38,v5=6,...
e Propositional variables:

vits=1,vips3=1vis7=1,v16=1,vo41=1v2509=1
vae5 = 1,v320=1,v338=1,v386=1,v418=1,vu56=1,.
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Part Il

Problem Solving with SAT Oracles
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Computing a model

e (: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F, using an
NP oracle
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Computing a model

e (: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F, using an
NP oracle
— A possible algorithm:

» Analyze each variable x; € {x1,...,x,} = var(F)
» Consider F A (x;). Call NP oracle. If answer is yes, then add (x;) to
F. If answer is no, then add (—x;) to F
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F. If answer is no, then add (—x;) to F

— Algorithm needs |var(F)| calls to an NP oracle

— Note: Cannot solve FSAT with logarithmic number of NP oracle
calls, unless P = NP [GF93]

e FSAT is an example of a function problem
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Computing a model

e (: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F, using an
NP oracle
— A possible algorithm:

» Analyze each variable x; € {x1,...,x,} = var(F)
» Consider F A (x;). Call NP oracle. If answer is yes, then add (x;) to
F. If answer is no, then add (—x;) to F

— Algorithm needs |var(F)| calls to an NP oracle

— Note: Cannot solve FSAT with logarithmic number of NP oracle
calls, unless P = NP [GF93]

e FSAT is an example of a function problem
— Note: FSAT can be solved with one SAT oracle call

78 /115



Beyond decision problems

Answer Problem Type

79 /115



Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

79 /115



Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution

79 /115



Beyond decision problems

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

79 /115



Beyond decision problems

Answer

Problem Type

Yes/No
Some solution

All solutions

Decision Problems

Function Problems

79 /115



Beyond decision problems

Answer

Problem Type

Yes/No
Some solution

All solutions

Decision Problems
Function Problems

Enumeration Problems

79 /115



Beyond decision problems
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Problem Type

Yes/No
Some solution
All solutions

# solutions

Decision Problems
Function Problems

Enumeration Problems
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Beyond decision problems

Answer

Problem Type

Yes/No
Some solution
All solutions

# solutions

Decision Problems
Function Problems
Enumeration Problems

Counting Problems

79 /115



.. and beyond NP — decision and function problems

> ng FX  FMg

%
N
N

N ng Fx5

PNP = AP FPNP = FAS
NP = MY = coNP FNP = FX} FM$ = coFNP

N S N S

AD =3P =P =n5=A° FAP = FXh = FP = FM5 = FA}
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and beyond NP — our current range

R

ELEMENTARY

2EXPTIME
EXPSPACE

EXPTIME

PSPACE
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Oracle-based problem solving — ideal scenario

Bounded # of
calls / queries

Poly-time Yes/No + Decision
Algorithm Witness Procedure

SAT, SMT, CSP, ...
Solver / Oracle
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Oracle-based problem solving — in some settings

Bounded # of
calls / queries

Poly-time Yes/No + Decision
Algorithm Witness Procedure

SAT, SMT, CSP, ...
Solver / Oracle
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Many problems to solve — within FPNP

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

All solutions Enumeration Problems
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Many problems to solve — within FPNP

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

All solutions Enumeration Problems

~
Function Problems on Propositional Formulas

MaxSAT MinSAT
PBO WBO

Minimal Models . N
Prime Implicants

Maximal Models Autarkies
Backbones Prime Implicates
MUSes MCSes MESes Indep. Vars
FSes MSSes MDSes Implicant Ext.
MNSes Implicate Ext.
MCFSes
(. J

84 /115



Many problems to solve — within FPNP

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

All solutions Enumeration Problems

'd N\
Function Problems on Propositional Formulas

// Optimization Problems )
\ MaxSAT MinSAT |

z Minimal Sets S

7RnImalModEle Prime Implicants \

Maximal Models Autarkies \

Backbones Prime Implicates

MCSes

)
\
| Muses MESes incepyVars

\ MDSes Implicant Ext. /

MSSes
\ /
\ MESSS MNSes Implicate Ext. 7
N MCFSes 4
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Selection of topics

Eager SMT

Planning

Encodings

MUS extraction

Counting

Problem Solving

Enumeratiol

with SAT

Oracles

MaxSAT

B&B
Search

Enumeratiol

Embeddings OPT SAT

Lazy SMT

Backbones

MaxSAT solving
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Outline

Minimal Unsatisfiability
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Analyzing inconsistency — timetabling

Subject Day Time Room
Intro Prog Mon  9:00-10:00 6.2.46
Intro Al Tue 10:00-11:00 8.2.37
Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon  9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37
Adv Calculus  Mon  9:00-10:00 8.2.06

... (hundreds of consistent constraints)

e Set of constraints consistent / satisfiable?
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Analyzing inconsistency — timetabling

Subject Day

Time Room

Intro Prog Mon
Intro Al Tue

Databases Tue

9:00-10:00 6.2.46
10:00-11:00 8.2.37
11:00-12:00 8.2.37

... (hundreds of consistent constraints)

Adv Calculus Mon

9:00-10:00  8.2.06

... (hundreds of consistent constraints)

constraints consistent?

Set of constraints consistent / satisfiable? No
Minimal subset of constraints that is inconsistent / unsatisfiable?

Minimal subset of constraints whose removal makes remaining

How to compute these minimal sets?
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Unsatisfiable formulas — MUSes & MCSes

e Given F (F L), M C Fis a Minimal Unsatisfiable Subset (MUS)
iff M E L and VMIQM,M,# 1

(_\Xl V _\X2) A\ (Xl) N (XQ)/\(_\X3 V _\X4) A\ (X3) A\ (X4) A\ (X5 V X6)

88 /115



Unsatisfiable formulas — MUSes & MCSes

e Given F (F L), M C Fis a Minimal Unsatisfiable Subset (MUS)
iff M E L and VMIQM,M,# 1

(_\Xl V _\X2) A\ (Xl) A (Xz)

88 /115



Unsatisfiable formulas — MUSes & MCSes

e Given F (F L), M C Fis a Minimal Unsatisfiable Subset (MUS)
iff M E L and VMIQM,M,# 1

(_\Xl V _\X2) A\ (Xl) A (Xz)

e Given F (F L), C C Fis a Minimal Correction Subset (MCS) iff
F\CE Land Yeoce, F\C'E L. S =F\Cis MSS

(=x1 V =x2) A (x1) A ()A(—x3 V =xa) A (x3) A (xa) A (X5 V X6)
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Unsatisfiable formulas — MUSes & MCSes

Given F (F L), M C F is a Minimal Unsatisfiable Subset (MUS)
iff M E L and VM/QM,M,% 1

(ﬁXl V ﬁXQ) AN (Xl) N (XQ)

Given F (F L), C C F is a Minimal Correction Subset (MCS) iff
F\CE Land Yeoce, F\C'E L. S =F\Cis MSS

A (x1) A (x2) A (x3) A (xa) A (x5 V X6)

e MUSes and MCSes are (subset-)minimal sets

e MUSes and minimal hitting sets of MCSes and vice-versa  [re7,. ]

How to compute MUSes & MCSes efficiently with SAT oracles?
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Why it matters?

e Analysis of over-constrained systems

— Model-based diagnosis [R87...]
Software fault localization

Spreadsheet debugging

Debugging relational specifications (e.g. Alloy)

Type error debugging

Axiom pinpointing in description logics

vVvyVvYyVvYVvyy

Model checking of software & hardware systems

Inconsistency measurement
— Minimal models; MinCost SAT; ...

e Find minimal relaxations to recover consistency

— But also minimum relaxations to recover consistency, eg. MaxSAT

e Find minimal explanations of inconsistency

— But also minimum explanations of inconsistency, eg. Smallest MUS
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Deletion-based algorithm

Input : Set F
Output: Minimal subset M
begin

M~ F

foreach c € M do

if =SAT(M \ {c}) then
L | MM\ {c} // If =SAT(M \ {c}), then c & MUS

return M // Final M is MUS

end

e Number of oracles calls: O(m) [CD91,BDTWO3]
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Deletion-based algorithm

Input : Set F
Output: Minimal subset M
begin
M~ F
foreach c € M do
if =SAT(M \ {c}) then
L M — M\ {c} // Remove ¢ from M

return M // Final M is MUS
end

e Number of oracles calls: O(m) [CD91,BDTWO3]
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Deletion — MUS example

a (&5} C3 Cy Cs C6 7
(aVoxe) (a) () (xsVox) (k) (k) (x5VX)

M M\ {c} —-SAT(M\ {c}) Outcome
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Deletion — MUS example

@i C)) (o} Cy4 Cs Co cr

(aVoxe) (a) () (xsVox) (k) (k) (x5VX)

M M\ {c} —-SAT(M\ {c}) Outcome

C1..C;  C..Cy 1 Drop ¢

C..C7 C3..C7 1 Drop o

91 /115



Deletion — MUS example

a o)) o) Ca Cs Co lor.
(Vo) (a) () (txsVox) (3) (k) (x6Vx)
M M\ {c} —-SAT(M\{c}) Outcome
C1..C;  C..Cy 1 Drop ¢
C..C7 C3..C7 1 Drop o
C3..C7  C4..C7 1 Drop c3
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Deletion — MUS example

a o)) o) Ca Cs Co lor.
(Vo) (a) () (txsVox) (3) (k) (x6Vx)
M M\ {c} —-SAT(M\{c}) Outcome
C1..C;  C..Cy 1 Drop ¢
C..C7 C3..C7 1 Drop o
C3..C7  C4..C7 1 Drop c3
C4..C7  C5..C7 0 Keep ¢
C4..C7  C4CeC7 0 Keep cs
C4..C7 C4C5Cy 0 Keep ¢
C4..C7  C4..Co 1 Drop ¢

e MUS: {C47 Cs, C6}

91 /115



Many MUS algorithms

e Formula F with m clauses k the size of largest minimal subset

Algorithm Oracle Calls Reference
Insertion-based O(k m) [PS88,vMW08]
MCS_MUS O(k m) [BK15]
Deletion-based O(m) [CD91,BDTWO3]
Linear insertion O(m) [MSL'11,BLMS'12]
Dichotomic O(k log(m)) [HLSBOG]
QuickXplain O(k + k log(7)) [J01,J04]
Progression O(k log(1+ 7)) [MSJB13,L14]

e Note: Lower bound in FPI\I'P and upper bound in F

PNP

[CTo5]

e Oracle calls correspond to testing unsatisfiability with SAT solver

o Practical optimizations: clause set trimming; clause set refinement;
redundancy removal; (recursive) model rotation
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Recap MaxSAT

X6 V Xo —1Xg V Xo —1x2 V X1 X1
—Xg V Xg X6 V —1Xg X2 V Xq —X4 V Xp
x7 V X5 —x7 V Xg —X5 V X3 X3

¢ Given unsatisfiable formula, find largest subset of clauses that is

satisfiable
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Recap MaxSAT

X V Xo —1Xg V Xo —1x2 V X1 X1
—Xg V Xg X6 V —1Xg X2 V Xg —Xa V Xs
x7 V Xg —x7 V Xg —X5 V X3 X3

¢ Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

e A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula
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Recap MaxSAT

X6 V Xo —1Xg V Xo —1x2 V X1 X1
—Xg V Xg X6 V —1Xg X2 V Xg —X4 V Xg
x7 V X5 —x7 V Xg —X5 V X3 X3

¢ Given unsatisfiable formula, find largest subset of clauses that is
satisfiable
e A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula
The MaxSAT solution is one of the smallest cost MCSes
— Note: Clauses can have weights & there can be hard clauses

e Many practical applications
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MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?

Yes
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Plain Partial
Yes Weighted Weighted Partial
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MaxSAT problem(s)

Hard Clauses?
No Yes
Weights? Plain Partial
Yes Weighted Weighted Partial

e Must satisfy hard clauses, if any
e Compute set of satisfied soft clauses with maximum cost
— Without weights, cost of each falsified soft clause is 1

e Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)
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MaxSAT problem(s)

Hard Clauses?
No Yes
Weights? Plain Partial
Yes Weighted Weighted Partial

Must satisfy hard clauses, if any

Compute set of satisfied soft clauses with maximum cost
— Without weights, cost of each falsified soft clause is 1

e Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !
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Issues with MaxSAT

e Unit propagation is unsound for MaxSAT
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— Formula with all clauses soft:

{(x), (=x vn), (ox vV y2), (v =2), (y2 V 22), (2)}
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Issues with MaxSAT

e Unit propagation is unsound for MaxSAT
— Formula with all clauses soft:

{(), (=x V), (=x V y2), (21 V —2), (my2 V 2), (2) }
— After unit propagation:
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— No! Enough to either falsify (x) or (z)

e Cannot use unit propagation
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Issues with MaxSAT

e Unit propagation is unsound for MaxSAT
— Formula with all clauses soft:

{(X)7 (“X \4 _)/1)7 ("X 4 }/2)7 (ﬁ}/l 4 “Z)', (ﬁ}/Z 4 “Z)v (Z)}
— After unit propagation:

{(X)7 (“X \ y1)7 (“X vV }/2)7 (ﬁ}/l \ “z)', (“}’2 4 “Z)a (Z)}
— Is 2 the MaxSAT solution??
— No! Enough to either falsify (x) or (z)
e Cannot use unit propagation
e Cannot learn clauses (using unit propagation)

e Need to solve MaxSAT using different techniques
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Many MaxSAT approaches

“1 MaxSAT Y‘

Algorithms
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Many MaxSAT approaches

Branch No unit prop;
& Bound No cl. learning
NS EH R Model i All cls relaxed
models Guided Iterative
MaxSAT
Algorithms
Iterative e Core Relax cls given
MHS & SAT MHS Cuities unsat cores

e For practical (industrial) instances: core-guided approaches are
the most effective [MaxSAT14]
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Core-guided solver performance — partial

Number x of instances solved in y seconds
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Number of instances

Source: [MaxSAT 2014 organizers|
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Core-guided solver performance — weighted partial

CPU time in seconds
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Source: [MaxSAT 2014 organizers|
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Basic MaxSAT with iterative SAT solving

Xe V Xo —Xg V Xo X2 V X1 X1
—Xg V Xg Xe V —Xg X2 V Xg X4 V Xg
x7 V Xz =x7 V Xs —X5 V X3 —1X3

Example CNF formula
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Basic MaxSAT with iterative SAT solving

Xe V X0V =X V X2V —x2 VXx1Vr3
—Xg V XgVrsg Xe V —1Xg Vg X V x4V ry

X7 V X5Vrg =x7VxsVrig x5V X3V

ZI lr’S]‘2

Relax all clauses; Set UB =12 + 1

—X1Vry

—Xq V X5Vrg

—x3V 112

101 /115



Basic MaxSAT with iterative SAT solving

Xe V X0V —Xg V X2V —x2 VXx1Vr3 —x1Vry
X6 V XgVrs Xe V —XgVrg X2 V x4V re x4 V X5Vrg

X7 V X5V g —x7VXxsVrg —Xx5V X3V —x3Vrio

Z, 1 Hi <12

Formula is SAT; E.g. all ; =0 and r; = r; = rg = 1 (i.e. cost = 3)
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Basic MaxSAT with iterative SAT solving

Xe V X0V =Xg V X0V —x2 VXx1Vr3 —x1Viy
=X V XgVrsg Xe V —XgVrg Xo V XqVry —Xg4 V X5Vrg

x7 V x5V rg =x7VXxsVrg —xs5V X3V —x3V o

21121 ri <2

Refine UB = 3
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Basic MaxSAT with iterative SAT solving

Xe V X0V —1Xg V X0V —x2 VX1V —x1Vrg

X6 V XgVrs Xe V —xgVrg X2 V X4V Iy =X V X5Vrg

X7 V X5V g X7V XxsVrg —X5VXx3Vri —x3V o
Y2y <2
Formula is SAT; Eg. x1i=x =1, x3=...=xs=0andn=r=1

(i.e. cost =2)
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Basic MaxSAT with iterative SAT solving

Xe V X0V —Xg V X2V —x2 V Xx1Vr3
—Xg V XgVrsg Xe V —XgVrg Xo V xqVry

x7 V X5V rg =x7V XxsVrg —xs5V X3V

Z:lil ri<1

Refine UB = 2

—x1Vry

=X V X5Vrg

X3V ri2
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Basic MaxSAT with iterative SAT solving

Xe V X0V —Xg V X0V —x2 VXx1Vnr3 —x1Vry
X6 V XgVrs Xe V —XgVrg Xo V xXqVry —xq V X5Vrg

X7 V X5V g —x7 Vx5V —X5V X3V —x3Vrio

Z}il ri <1

Formula is UNSAT; terminate
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Basic MaxSAT with iterative SAT solving

Xe V X0V —Xg V X2V —x2 V Xx1Vr3
—Xg V XgVrsg Xe V —XgVrg Xo V xqVry

x7 V X5V rg =x7V XxsVrg —xs5V X3V

Z:lil ri<1

MaxSAT solution is last satisfied UB: UB = 2

—x1Vry

=X V X5Vrg

X3V ri2
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Basic MaxSAT with iterative SAT solving

Xe V X0V —Xg V X2V —x2 V Xx1Vr3
—Xg V XgVrsg Xe V —XgVrg Xo V xqVry

x7 V X5V rg =x7V XxsVrg —xs5V X3V
12
doisiri<1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints
over all relaxation variables

—x1Vry
=X V X5Vrg

—x3Vrio

All (possibly many)
soft clauses relaxed
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MSU3 core-guided algorithm

X6 V Xo —Xg V Xo X2 V X1
—Xg V Xg Xe V —1Xg X2 V Xy
x7 V X5 —x7 V Xs —X5 V X3

Example CNF formula

- X].

X4 V Xg

- X3
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MSU3 core-guided algorithm

X6 V Xo —Xg V Xo —x2 V X1 X1
—Xg V Xg Xe V —Xg X2 V Xy x4 V Xg
x7 V X5 —x7 V Xs —x5 V X3 —1X3

Formula is UNSAT; OPT < || — 1; Get unsat core
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MSU3 core-guided algorithm

X6 V Xo —Xg V Xo X2V x1Vn —x1Vr

—Xg V Xg Xe V —1Xg Xo V X4V 13 —Xg4 V X5V

X7 V Xg —x7 V Xz x5 V x3Vrs —x3Vrg
Z?:l ri<1

Add relaxation variables and AtMostk, k = 1, constraint
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MSU3 core-guided algorithm

@2 —Xg V Xo —x2 Vx1Vn —x1Vh
=X V Xg Xe V —Xg X2 V x4Vr3 =Xq V X5V 1y

—x7 V Xg x5 V X3Vrs —x3Vrg

Formula is (again) UNSAT; OPT < || — 2; Get unsat core
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MSU3 core-guided algorithm

Xe V X0V ry —Xg V Xo\Vrg X2V x1Vn —x1Vr

—Xg V Xg Xe V —1Xg Xo V X4V 13 —Xg4 V X5V
x7 V X5V rg —x7VXxsVro x5V X3Vrs —x3Vrg
<2

Add new relaxation variables and update AtMostk, k=2, constraint
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MSU3 core-guided algorithm

Xe V X0V re —Xg V XoVrg —xo V x1Vn —x1Vr

—Xg V Xg Xe V —Xg X2 V x4V 13 =X V X5Vig
X7 V X5V g X7V XxsVrg X5V X3Vry —x3Vrg
2}21 ri <2

Instance is now SAT
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MSU3 core-guided algorithm

Xe V X0V ry —Xg V Xo\Vrg —x2 VXx1Vn
—Xg V Xg Xe V —1Xg Xo V X4V 13
x7 V x5V rg —x7VXxsVrg X5V X3Vrs

2}21 ri <2

MaxSAT solution is |p| —Z =12 —2 =10

—x1Vh

—Xg4 V X5V

—x3Vrg
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MSU3 core-guided algorithm

Xe V X0V ry —Xg V Xo\Vrg —x2 VXx1Vn
—Xg V Xg Xe V —1Xg Xo V X4V 13
x7 V x5V rg —x7VXxsVrg X5V X3Vrs

2}21 ri <2

MaxSAT solution is |p| —Z =12 —2 =10

AtMostk/PB

constraints used

—x1Vh

—Xg4 V X5V

—x3Vrg

Relaxed soft clauses

become hard
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MSU3 core-guided algorithm

Xe V X0V ry —Xg V Xo\Vrg
—1Xg V Xg X6 V —1Xg

x7 V x5V rg —=x7 V X5V rig

2}21 ri <2

—x2 VXx1Vn

Xo V X4V 13

—X5 V X3V s

MaxSAT solution is |p| —Z = 12 —2 =10

AtMostk/PB Some clauses

constraints used not relaxed

—x1Vh

—Xg4 V X5V

—x3Vrg

Relaxed soft clauses

become hard
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MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Cog = X7V X5 Clo="Xx7VXs Ci1="XVX3 Cl2 = 7X3

® Find MHS of K:
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MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Cog = X7V X5 Clo="Xx7VXs Ci1="XVX3 Cl2 = 7X3

® Find MHS of K: 0
o SAT(F\0)?
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MHS approach for MaxSAT

=XV Xxo Q="X%Vx G="xVX
Cs = —Xg V Xg Ce = Xp V —Xg g =x2V X4

Co=x7V X5 Cilo= X7 VX5 C11="X5VX3

® Find MHS of K: 0
e SAT(F\ 0)? No

Cqp = X1

Cg = X3 V X5

Clp = X3
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MHS approach for MaxSAT

C1:X6\/X2 C2:_‘X6\/X2 C3:_‘X2\/X1
C5:—\X6\/X8 CGZXG\/_'Xs C7:X2\/X4

Co = x7 V X5 Clo="X7VXs C11= "XV X3

® Find MHS of K: 0
e SAT(F\0)? No

e Core of F: {c1,, 3,4}

Cqp = X1

g = x4 V X5

Clp = X3
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MHS approach for MaxSAT

Cc1L =X V X2 G = X5 V X2 3= VX Cqp = X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =XV Xy cg = x4 V Xz
Cog = X7V X5 Clo="Xx7VXs Ci1="X5V X3 Clp = X3

K= {{C17 C, C3, C4}}

® Find MHS of K:
e SAT(F\ ()? No
e Core of F: {c1, @, c3, ca}. Update K
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Co = X7V X5 Clo="Xx7VXs Ci1="X5VX3 Ci2 = 7X3
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MHS approach for MaxSAT

c1L =X VX2 C = X5 V X2 3= VX Cyp = X1
Cs = —Xg V Xg Ce = Xp V —Xg 7 =XV Xy cg = x4 V Xz
Co = X7V Xz Clo="X7VXs C11="X5VX3 Clp = —X3

K= {{C1> €, C3, C4}7 {C97 €10, C11, C12}7 {C3> C4, C7, C8, C11, Cl?}}

® Find MHS of K: E.g. {cs, o}
® SAT(F\ {cs, c0})? Yes
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MHS approach for MaxSAT

c1L =X VX2 C = X5 V X2 3= VX Cyp = X1
Cs = —Xg V Xg Ce = Xp V —Xg 7 =XV Xy cg = x4 V Xz
Co = X7V Xz Clo="X7VXs C11="X5VX3 Clp = —X3

K= {{Ch €, C3, C4}7 {C97 C10, C11, C12}7 {C37 C4, C7, Cs, C11, C12}}

® Find MHS of K: E.g. {cs, o}
® SAT(F\ {cs, c0})? Yes

® Terminate & return 2
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MaxSAT solving with SAT oracles — a sample

e A sample of recent algorithms:

Algorithm # Oracle Queries Reference
Linear search SU Exponential*** [e.g. LBP10]
Binary search Linear* [e.g. FMOG6]
FM/WMSU1/WPM1  Exponential** [FM06,MSM08, MMSP09,ABL09a, ABGL12]
WPM?2 Exponential** [ABL10,ABGL13]
Bin-Core-Dis Linear [HMMS11,MHMS12]
Iterative MHS Exponential [DB11,DB13a,DB13b]

* O(log m) queries with SAT oracle, for (partial) unweighted MaxSAT

** Weighted case; depends on computed cores
*¥% On # bits of problem instance (due to weights)

e But also additional recent work:
— Progression
— Soft cardinality constraints (OLL)
— MaxSAT resolution
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Outline

Additional Exercises
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Exercise — How many MCSes & MUSes can there be?

e Give example showing that lower bound on largest number of
MCSes is exponential on formula size

— Hint: Simply suggest formula with exponentially large number of
MaxSAT solutions
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Solution — number of MCSes

(x1)  (=x)
(x)  (=x)

) ()
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Solutions — number of MUSes |

(=x1) A (x1 V z1)
(1) Ay V z1)
. (mz1Vz V...V oz)
—xp) A (Xn V 2)
(=yn) A (¥n V zn)

—~~
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(=yn) A (¥n V zn)

—~~

e Foreach i =1,..., n either resolve away x; or y;, i.e. 2 cases
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Solutions — number of MUSes |

(=x1) A (x1V z1)
(y1) AV z)
. (mz1Vz V...V oz)
—xp) A (Xn V 2)
(=¥n) A (¥n V 2n)

—~~

e For each i =1,..., n either resolve away x; or y;, i.e. 2 cases
e Thus, 2" MUSes

e But, there exist formulas with more MUSes. How?
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Solutions — number of MUSes I

(=x1) A (mx2) Ao A (5xr)
aVzi)AN(eVzi)A...A\(xV z1)
(aVz)ANeVz)A...A(XV 2)

(x1Vza)A(x2Vzp) Ao A(XV zp)
(mz1V -z V...V —z,)
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Solutions — number of MUSes I

(=x1) A (mx2) Ao A (xp)
aVz)A(xeVz)A...A(xV 2z)
(aVz)ANeVz)A...A(XV 2)

(x1Vza)A(x2Vzp) Ao A(XV zp)
(—mz1V—ozo V...V —z,)

e There are r” MUSes
e Upper bound by Sperner's theorem: C(m, |7 ])
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Exercise — Sudoku puzzle generator

e Randomly generate valid Sudoku puzzles starting from a filled grid
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removed
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Exercise — Sudoku puzzle generator

e Randomly generate valid Sudoku puzzles starting from a filled grid

e How?

— Pick a known valid Sudoku puzzle
Complete the Sudoku puzzle

» How? Simply call a SAT solver
Iteratively (and randomly) punch holes in the Sudoku grid

» If Sudoku puzzle is still valid, i.e. number of solutions is 1, then
repeat loop

» Otherwise, output Sudoku grid with most recently punched hole
removed

How many SAT oracles calls?

» Linear number of calls on number of cells in Sudoku puzzle
Can we do better?
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Some final notes

e SAT is a low-level, but very powerful problem solving paradigm

e There is an ongoing revolution on problem solving with SAT oracles

e The use of SAT oracles is impacting problem solving for many
different complexity classes

— With well-known representative problems, e.g. QBF, #SAT, etc.
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Some final notes

SAT is a low-level, but very powerful problem solving paradigm

There is an ongoing revolution on problem solving with SAT oracles

The use of SAT oracles is impacting problem solving for many
different complexity classes

— With well-known representative problems, e.g. QBF, #SAT, etc.

Many fascinating research topics out there !
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Links for tools

e SAT solvers:

— minisat: https://github.com/niklasso/minisat
— glucose: http://www.labri.fr/perso/lsimon/glucose/

MaxSAT solvers:
— MSCG: http://logos.ucd.ie/web/doku.php?id=mscg
— OpenWBO: http://sat.inesc-id.pt/open-wbo/
— MaxHS: http://www.maxhs.org
MCS extractors:
— mcsXL: http://logos.ucd.ie/wiki/doku.php?id=mcsxl
— LBX: http://logos.ucd.ie/wiki/doku.php?id=1bx
— MCSIs: http://logos.ucd.ie/wiki/doku.php?id=mcsls
MUS extractors:
— MUSer: http://logos.ucd.ie/wiki/doku.php?id=muser

Many other tools available from:
http://logos.ucd.ie/wiki/doku.php?id=soft
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Thank You
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