

GRBs AND FRBs: SUPRAMASSIVE MAGNETAR AS A COMMON PROGENITOR?

Patrick Das Gupta,
Department of Physics and Astrophysics,
University of Delhi, Delhi - 110007

Workshop on
Gamma Ray Bursts - from
Prompt emission to Afterglows, July 4-7, 2017
NCRA (TIFR), Pune

GAMMA-RAY BURST SOURCES:

- Long GRBs are associated with supernovae of type Ib/c \Rightarrow Progenitors are likely to be massive Wolf-Rayet (WR) stars (i.e. stars that have lost their H envelope) \Rightarrow Relatively small helium stars with size \sim few $\times 10^{10}$ cm
- Long GRB rates are only $\sim 4 \times 10^{-3} - 10^{-2}$ times rates of SN Ib/c (Frail et al. 2001)
- Rate per volume of long GRBs has been estimated to be $\sim 10^2 - 10^3$ Gpc $^{-3}$ yr $^{-1}$
- Prompt γ emission is along bi-polar narrow jets with $\Delta\Omega \sim 0.01$ str (or, equivalently, $\theta_j \sim 0.1$ radian)

High Lorentz factor of the jet, $\Gamma_j \sim 100 \Rightarrow$ relativistic beaming, $\Delta\theta \sim 0.01 \Rightarrow$ In the prompt emission phase, we see only a tiny fraction of the jet

- Short GRBs ($T_{90} < 2$ s) form only 30% of the total population (in this context, see Rezzolla and Kumar, 2015, for extended X-Ray emissions and magnetars)

FAST RADIO BURSTS:

- Flux density $\sim 0.1 - 10$ Jy at ~ 1 GHz, lasting for \sim few ms

FRBs have been seen at ~ 800 MHz - ~ 2 GHz

- High dispersion measure (DM) $\sim 500 - 1200$ pc cm⁻³

- Many of them seen at high Galactic latitudes; **FRB 131104** ($E_{rad} \sim 4 \times 10^{41}$ erg) has been identified with a GRB ($E_{\gamma} \sim 4 \times 10^{50}$ erg; DeLauney et al. 2016; Murase et al. 2017)
- If the measured DM is attributed to IGM then FRBs have $z \sim 0.45 - 1 \Rightarrow$ Radio luminosity $\sim 10^{41} - 10^{43}$ erg s⁻¹ and radio energy $\sim 10^{38} - 10^{42}$ erg
- Only one FRB so far exhibits repeated bursts
 - **FRB 121102.**
- **FRB 121102** is localized within a dwarf galaxy at $z \cong 0.193$ that contains a persistent compact radio-source (Chatterjee et al. 2017; Tendulkar et al. 2017)

- The persistent radio-source ($S_\nu \sim 200 \mu\text{Jy}$) and FRB 121102 (flux densities at 1.7 GHz on different occasions range from $\sim 0.1 \text{ Jy}$ to $\sim 4 \text{ Jy}$) are separated by a projected distance less than $\sim 40 \text{ pc}$ (Marcote et al. 2017)
- Exploiting $t_{FF} \sim 1/\sqrt{G\rho_{nuc}} \sim 10^{-3} \text{ s}$, Falcke and Rezzolla (2014) have proposed a natural model for FRBs invoking collapse of initially rapidly rotating supra-neutron stars that get spun down due to magnetic braking:
 - * The supra-NS collapses into a black hole leaving its high magnetic field ‘hair’ and the associated magnetosphere outside the event horizon
 - * Curvature radio-emission due to bunched electrons (positrons) flowing out along the magnetic field lines:

$$L_{curv} = \frac{2\gamma^4 N_{bunch}^2 e^2 c}{3R^2}$$

$$\approx 10^{42} \left(\frac{N_{bunch}}{1.5 \times 10^{27}} \right)^2 \left(\frac{\gamma}{10^2} \right)^4 \left(\frac{R}{10 \text{ km}} \right)^{-2} \text{ erg s}^{-1}$$

* Characteristic frequency:

$$\nu_{curv} = \frac{3\gamma^3 c}{4\pi R} \approx 7.2 \left(\frac{\gamma}{10^2} \right)^3 \left(\frac{R}{10 \text{ km}} \right)^{-1} \text{ GHz}$$

- Estimated FRB rate $\sim 0.25 \text{ deg}^{-2} \text{ day}^{-1}$ (Thorn-ton et al. 2013)

All sky rate $\sim 2100 \text{ day}^{-1}$ for FRBs brighter than $\sim 2 \text{ Jy}$ (Champion et al. 2016)

⇒ FRB rate per volume $\sim 10^4 - 10^5 \text{ Gpc}^{-3} \text{ yr}^{-1}$

While long GRB rate per volume $\sim 10^2 - 10^3 \text{ Gpc}^{-3} \text{ yr}^{-1}$

- Zhang (2013), invoking Falcke-Rezzolla model, has proposed that some FRBs are physically

associated with GRBs

- In this work, we explore a scenario in which all FRBs and majority of long GRBs are associated with collapse of the central iron core of initial size $\sim 10^8$ cm of massive, rotating Wolf-Rayet stars that leads to a supra-massive neutron star with large kick velocity, high B and rapid rotation, which eventually collapses to form a black hole after $10^3 - 10^4$ s
- Motivation:
 - * Anomalous X-Ray pulsars (AXPs) as well as Soft Gamma Repeaters (SGRs) are widely believed to be part of unified class (Kaspi, 2003; Woods and Thompson, 2006; Turolla, Zane and Watts, 2015) \Rightarrow Magnetars (Duncan and Thompson, 1992)

- * X-Ray plateau followed by steep decay is naturally explained by magnetic braking of a rapidly spinning magnetar (Metzger et al., 2011; Granot et al. 2015)
- * Can magnetars be the basis for all long GRBs? (For critical analyses, see Granot et al., 2015, Kumar and Zhang, 2015)
- * SN Ib/c rates and FRB rates are comparable

• Basic Picture:

- * Progenitor of long GRBs and FRBs are massive, rotating WR stars
- * A rapidly rotating, unstable Fe core of mass

$2 - 3 M_{\odot}$ collapses on a time scale of ~ 1 s to form a fast spinning supra-massive proto-neutron star (SPNS) with kick velocity ranging from 0 to ~ 1000 km/s

- * Because of the rotation and core collapse a spherical region of size $\sim 10^8$ cm along with two narrow funnel shaped regions around the spin axis straddling the spherical region are essentially cleared out of baryonic stellar matter of the WR star
- * If the kick velocity direction of the SPNS lies within the funnel shaped openings, there is no baryon loading problem \Rightarrow gamma ray jet can break out of the He envelope giving rise to a long GRB

If the opening angle θ_F of the funnel shaped

region of the WR star is also ~ 0.1 corresponding to $\Delta\Omega_F \sim 0.01$ then the probability that the prompt gamma rays are not quenched is,

$$\approx 2 \frac{\Delta\Omega_F}{4\pi} \approx 5 \times 10^{-3}$$

- * If the SPNS moves in any other direction it will encounter the stellar material, and due to baryon loading the γ -rays resulting from electron-positron pairs generated by the neutrino wind would get degraded to softer photons, and there will be no prompt gamma-emission
- * The SPNS cools and contracts to form the supra-massive neutron star (NS) in $\sim 5 - 10$ s
- * If $v_{kick} \sim 100$ km/s then the supra-massive NS crosses the spherical evacuated region of size ~ 1000 km in ~ 10 s, before the SPNS becomes

transparent to the neutrinos

* Magnetars with high kick velocities have been observed

Example: For the magnetar Swift J 1834.9-0846, the kick velocity component perpendicular to the line of sight is ~ 580 km/s if it is at a distance 15 kpc (Granot et al. 2006; Granot et al., 2016)

* The supra-massive magnetar collapses due to the spin down after about $10^3 - 10^4$ s and forms a black hole giving rise to a transient radio-burst

- Magnetar spin down:

Dipole Radiation implies (Granot et al. 2015),

$$P_{em}(t) = \frac{E}{t_{sd}(1 + t/t_{sd})^2}$$

where,

$$E = \frac{1}{2} I \omega_0^2, \quad t_{sd} = \frac{3c^3 I}{(B_p \omega R^3 \sin \chi)^2}$$

If $M = 2.5 M_\odot$,

$$E = 10^{53} (P/1 \text{ ms})^{-2} (M/2.5 M_\odot)^{3/2} \text{ erg}$$

where one has used (Lattimer and Schutz, 2005),

$$R = 15(M/2.5 M_\odot)^{1/4} \text{ km} \quad I = 2 \times 10^{45} (M/2.5 M_\odot)^{3/2}$$

and

$$t_{sd} = \frac{3.6 \times 10^2}{\sin^2 \chi} (B_p/10^{15} \text{ G})^{-2} (P/1 \text{ ms})^2 \text{ s}$$

- But Falcke-Rezzolla model, as it stands, cannot explain repeating FRBs. Can we salvage the model for repeating FRBs?
- We explore two scenarios to salvage the above model for sources like FRB 121102

Scenario I:

Sporadic accretion onto a fast spinning Kerr BH resulting from the collapse of a supra-massive magnetar

- Blandford-Znajek mechanism:
 - Potential difference developed due to a rotating horizon of a Kerr BH embedded in an external magnetic field B ,

$$V_{el} \sim \frac{1}{c} (\Omega_H/2\pi) (B \cdot \pi R_{BH}^2)$$

where Ω_H is the angular speed of the horizon,

$$\Omega_H = \frac{J}{MR_s R_{BH}}$$

$$R_s = \frac{2GM}{c^2}$$

$$R_{BH} = \frac{R_s}{2} + \sqrt{\left(\frac{R_s}{2}\right)^2 - \left(\frac{J}{Mc}\right)^2}$$

- Mining of the rotational energy of the BH

via B-Z process leads to radiated power,

$$L_{B-Z} \approx \text{current} \times V_{el} \sim \sim \frac{V_{el}^2}{\mathcal{R}} \sim \frac{c}{4} \frac{V_{el}^2}{\mathcal{R}}$$

- For extremal BHs,

$$\begin{aligned} J = cMR_s/2 \Rightarrow R_{BH} = R_s/2 \Rightarrow \Omega_H = \frac{c}{R_s} \Rightarrow V_{el} \sim R_s B/8 \\ \Rightarrow L_{B-Z} \approx \frac{cB^2 R_s^2}{256} \\ = 5.58 \times 10^{42} (B/3.2 \times 10^{11} \text{ G})^2 (M/2.3 M_\odot)^2 \text{ erg s}^{-1} \end{aligned}$$

- Sporadic relativistic electron wind towards FRB 121102 by the persistent radio-source < 40 pc far can cause radio-bursts arising out of B-Z mechanism

Caveats:

- * Requires large $B \sim 10^{11}$ G to be still present near the event horizon of the Kerr BH. Question is whether when a magnetar with polar B field $\sim 10^{14} - 10^{15}$ G collapses to form a BH,

a vestigial plasma with field $\sim 10^{11}$ is retained near the event horizon (In the context of GRB modeling, Contopoulos et al 2017 claim that $B \sim 10^4$ G can hover near the horizon)

* Accretion of plasma cannot generate such high B field since the Eddington limit for B is,

$$B_{Edd} = \sqrt{\frac{8\pi c^4 m_p}{\sigma_T G M}} \cong 2 \times 10^8 (M/2.3 M_\odot)^{-1/2} G$$

Scenario II:

The core of the Magnetar that collapses has angular momentum too large to form a Black hole

- $R_{BH} = \frac{R_s}{2} + \sqrt{(\frac{R_s}{2})^2 - (\frac{J}{Mc})^2}$
- Initial angular momentum of the supra-massive magnetar,

$$J_0 \sim M_0 R_0^2 \Omega_0$$

with,

$$\Omega_0 < \Omega_{Break-up} = \sqrt{\frac{GM_0}{R_0^3}}$$

As it spins down due to magnetic dipole radiation, it starts collapsing on time scales $1/\sqrt{G\rho_{nuc}}$ satisfying,

$$M_0 R^2(t) \Omega(t) \sim \beta J_0$$

where $\beta < 1$.

- The equatorial region forms a disc-like structure while the core of mass M_c and angular momentum J_c collapses

$$M_c = M_0 - M_{disc}$$

$$J_c = \beta J_0 - J_{disc}$$

- Assuming the disc to be thin so that angular momentum per unit mass is $\sqrt{GM_c r}$, one gets:

$$J_c \approx \beta J_0 \left[1 - \frac{8}{5} \left(1 - M_c/M_0 \right) (M_c/M_0)^{1/2} \right]$$

- **No black hole formation if**

$$J_c > \frac{GM_c^2}{c} \Rightarrow J_0 > \frac{GM_c^2}{c\beta[1 - \frac{8}{5}(1 - M_c/M_0)(M_c/M_0)^{1/2}]}$$

- **For $\beta \sim 0.8$, $M_0 = 2.3 M_\odot$ and $M_c \sim 1.4 M_\odot$:**

$$\Omega_0 > 9 \times 10^3 \text{ rad s}^{-1}$$

for no black hole formation, while for $M_0 = 2.3 M_\odot$,

$$\Omega_{Break-up} = 1.75 \times 10^4 \text{ rad s}^{-1}$$

- **What happens to the collapsed core? It becomes a strange star when the density becomes greater than $5 \times 10^{14} gm cm^{-3}$ (Witten 1984; Alcock et al. 1986)**
- **Signatures: Emission of thermal photons and neutrinos in a burst**
- **The strange star will have an outward electric field $\approx 5 \times 10^{17} - 10^{18} \text{ V/cm}$ that manages to**

hold on to a layer of electrons few fm thick
(Alcock et al. 1986)

- Mannarelli et al. 2014 have shown that torsional oscillation of the thin electron cloud relative to the positively charged strange star can cause emission of GHz radiowaves with luminosity $\sim 10^{45}$ erg/s.
- Torsional oscillations can be excited by relativistic wind from the persistent radio-source near FRB 121102

CONCLUSION

- Collapse of spun down supra-NS is a natural framework to describe both GRBs and FRBs if pre-natal kicks are included
- Repeating bursts from FRB 121102 may also be explained either by (a) invoking intermittent Blandford-Znajek processes around the collapsed black hole or by (a) torsional oscillations of electrons close to the surface of a bare strange star

THANK YOU