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of the event (Phinney 2009; Mandel & O’Shaughnessy
2010), for example an association with specific stellar
populations (e.g., Fong et al. 2010).
Motivated by the importance of EM detections, in this

paper we address the critical question: What is the most
promising EM counterpart of a compact object binary
merger? The answer of course depends on the definition
of “most promising”. In our view, a promising coun-
terpart should exhibit four Cardinal Virtues, namely it
should:

1. Be detectable with present or upcoming telescope
facilities, provided a reasonable allocation of re-
sources.

2. Accompany a high fraction of GW events.

3. Be unambiguously identifiable (a “smoking gun”),
such that it can be distinguished from other astro-
physical transients.

4. Allow for a determination of ∼ arcsecond sky posi-
tions.

Virtue #1 is necessary to ensure that effective EM
searches indeed take place for a substantial number of
GW triggers. Virtue #2 is important because a large
number of events may be necessary to build up statis-
tical samples, particularly if GW detections are rare; in
this context, ALIGO/Virgo is predicted to detect NS-
NS mergers at a rate ranging from ∼ 0.4 to ∼ 400 yr−1,
with a “best-bet” rate of ∼ 40 yr−1 (Abadie et al. 2010b;
cf. Kopparapu et al. 2008), while the best-bet rate for
detection of NS-BH mergers is ∼ 10 yr−1. Virtue #3 is
necessary to make the association with high confidence
and hence to avoid contamination from more common
transient sources (e.g., supernovae). Finally, Virtue #4
is essential to identifying the host galaxy and hence the
redshift, as well as other relevant properties (e.g., asso-
ciation with specific stellar populations).
It is important to distinguish two general strategies

for connecting EM and GW events. One approach is to
search for a GW signal following an EM trigger, either in
real time or at a post-processing stage (e.g., Finn et al.
1999; Mohanty et al. 2004). This is particularly promis-
ing for counterparts predicted to occur in temporal co-
incidence with the GW chirp, such as short-duration
gamma-ray bursts (SGRBs). Unfortunately, most other
promising counterparts (none of which have yet been in-
dependently identified) occur hours to months after co-
alescence6. Thus, the predicted arrival time of the GW
signal will remain uncertain, in which case the additional
sensitivity gained from this information is significantly
reduced. For instance, if the time of merger is known
only to within an uncertainty of ∼ hours(weeks), as we
will show is the case for optical(radio) counterparts, then
the number of trial GW templates that must be searched
is larger by a factor ∼ 104 − 106 than if the merger time
is known to within seconds, as in the case of SGRBs.

6 Predicted EM counterparts that may instead precede the
GW signal include emission powered by the magnetosphere of the
NS (e.g. Hansen & Lyutikov 2001; McWilliams & Levin 2011), or
cracking of the NS crust due to tidal interactions (e.g. Troja et al.
2010), during the final inspiral. However, given the current uncer-
tainties in these models, we do not discuss them further.
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Fig. 1.— Summary of potential electromagnetic counterparts
of NS-NS/NS-BH mergers discussed in this paper, as a function
of the observer angle, θobs. Following the merger a centrifugally
supported disk (blue) remains around the central compact object
(usually a BH). Rapid accretion lasting ! 1 s powers a collimated
relativistic jet, which produces a short-duration gamma-ray burst
(§2). Due to relativistic beaming, the gamma-ray emission is re-
stricted to observers with θobs ! θj , the half-opening angle of the
jet. Non-thermal afterglow emission results from the interaction of
the jet with the surrounding circumburst medium (red). Optical af-
terglow emission is observable on timescales up to∼ days−weeks by
observers with viewing angles of θobs ! 2θj (§3.1). Radio afterglow
emission is observable from all viewing angles (isotropic) once the
jet decelerates to mildly relativistic speeds on a timescale of weeks-
months, and can also be produced on timescales of years from sub-
relativistic ejecta (§3.2). Short-lived isotropic optical emission last-
ing ∼ few days (kilonova; yellow) can also accompany the merger,
powered by the radioactive decay of heavy elements synthesized in
the ejecta (§4).

A second approach, which is the primary focus of
this paper, is EM follow-up of GW triggers. A poten-
tial advantage in this case is that counterpart searches
are restricted to the nearby universe, as determined by
the ALIGO/Virgo sensitivity range (redshift z ! 0.05−
0.1). On the other hand, a significant challenge are the
large error regions, which are estimated to be tens of
square degrees even for optimistic configurations of GW
detectors (e.g., Gürsel & Tinto 1989; Fairhurst 2009;
Wen & Chen 2010; Nissanke et al. 2011). Although it
has been argued that this difficulty may be alleviated
if the search is restricted to galaxies within 200 Mpc
(Nuttall & Sutton 2010), we stress that the number of
galaxies with L " 0.1L∗ (typical of SGRB host galax-
ies; Berger 2009, 2011b) within an expected GW error
region is ∼ 400, large enough to negate this advantage
for most search strategies. In principle the number of
candidate galaxies could be reduced if the distance can
be constrained from the GW signal; however, distance
estimates for individual events are rather uncertain, es-
pecially at that low SNRs that will characterize most de-
tections (Nissanke et al. 2010). Moreover, current galaxy
catalogs are incomplete within the ALIGO/Virgo volume
(e.g. Kulkarni & Kasliwal 2009), especially at lower lu-
minosities. Finally, some mergers may also occur outside
of their host galaxies (Berger 2010a; Kelley et al. 2010).
At the present there are no optical or radio facilities

that can provide all-sky coverage at a cadence and depth
matched to the expected light curves of EM counter-

Figure from Metzger & Berger, 2012, ApJ, 746, 48



X-ray signatures
•  Gamma Ray Burst!
» The final proof associating Short Hard GRBs to 

merger of two neutron stars

•  Only if nearly face-on system
» May have some near-isotropic emission component

30 June 2017Rapid followup of High Energy Transients | Varun Bhalerao 4

E



Optical/IR
•  GRB afterglows
•  Kilonovae
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Theoretical kilonova lightcurves: Takana & Hotokezaka 2013

! Simulated kilonova spectra, Kasen, Metzger 7 Berger 2015
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Wavebands�
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Rapid followup
•  Gamma-ray / X-rays
» Seconds – minutes

•  Optical
» Minutes – hours 

•  Radio
» Months – years 
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Follow-up challenges
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The follow-up challenge

Right place,

Right time,

Right equipment



Overcoming the challenge
•  Hardware: 
» Rapid slew capabilities
» Constant connectivity

•  Software:
» Automated responses (GCNs)
» Decision and priority algorithms

•  Logistical:
» Remove humans from loop
» Add redundancy
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Finding transients
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ABSTRACT

The Fermi Gamma-ray Space Telescope has greatly expanded the number and energy window of observations of
gamma-ray bursts (GRBs). However, the coarse localizations of tens to a hundred square degrees provided by the
Fermi GRB Monitor instrument have posed a formidable obstacle to locating the bursts’ host galaxies, measuring
their redshifts, and tracking their panchromatic afterglows. We have built a target-of-opportunity mode for the
intermediate Palomar Transient Factory in order to perform targeted searches for Fermi afterglows. Here, we
present the results of one year of this program: 8 afterglow discoveries out of 35 searches. Two of the bursts with
detected afterglows (GRBs 130702A and 140606B) were at low redshift (z = 0.145 and 0.384, respectively) and
had spectroscopically confirmed broad-line Type Ic supernovae. We present our broadband follow-up including
spectroscopy as well as X-ray, UV, optical, millimeter, and radio observations. We study possible selection effects
in the context of the total Fermi and Swift GRB samples. We identify one new outlier on the Amati relation. We
find that two bursts are consistent with a mildly relativistic shock breaking out from the progenitor star rather than
the ultra-relativistic internal shock mechanism that powers standard cosmological bursts. Finally, in the context of
the Zwicky Transient Facility, we discuss how we will continue to expand this effort to find optical counterparts of
binary neutron starmergers that may soon be detected by Advanced LIGO and Virgo.

Key words: gamma-ray burst: individual (GRB 130702A, GRB 140606B) – gravitational waves – methods:
observational – supernovae: general – surveys

Supporting material: figure set, machine-readable tables
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Bad subtractions
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Lots of statistically significant residuals! 



False positives
•  Instrumental:
» PSF mismatch
» CCD defects
» Diffraction spikes

•  Astrophysical:
»  Asteroids
»  Satellites
»  Cosmic rays
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Detection is contextual!
•  Run-of-the-mill transients are contaminants
» Flare stars, variables

•  Utilize expected source properties
» GRB: expect fading
» Use multiple exposures
» Also eliminates asteroids (move tens of arcsec per 

hour)
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Filtering steps
•  SNR > 5 Survivors
•  “RealBogus2” score 36%
•  Not known star 17%
•  Not known asteroid 16%
•  Detect at least twice 1%
•  Human inspection 0.1%
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Human “vetting”
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Good days, Bad days
GRB 140808A
•  19,853 detections > 5σ
•  4,804 with RB2 > 0.1
•  2,349 not stellar
•  2,349 not asteroids
•  127 detected twice
•  12 saved for follow-up

GRB 140620A
•  152,224 detections > 5σ
•  50,930 with RB2 > 0.1
•  17,872 not stellar
•  17,872 not asteroids

•  34 saved for follow-up

30 June 2017Rapid followup of High Energy Transients | Varun Bhalerao 20



30 June 2017Rapid followup of High Energy Transients | Varun Bhalerao 21

Figure 1. Gamma-ray localizations, P48 tiles, and discovery images for the GBM–iPTF afterglows. The Fermi GBM 1σand 2σ regions are shown as black contour
lines, the P48 tiles as gray rectangles, the 3σ IPN triangulations in blue (when available), and the LAT 1σ error circles in green (when available). The positions of the
optical transients are marked with black diamonds.

5

The Astrophysical Journal, 806:52 (22pp), 2015 June 10 Singer et al.
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Figure 1. Gamma-ray localizations, P48 tiles, and discovery images for the GBM–iPTF afterglows. The Fermi GBM 1σand 2σ regions are shown as black contour
lines, the P48 tiles as gray rectangles, the 3σ IPN triangulations in blue (when available), and the LAT 1σ error circles in green (when available). The positions of the
optical transients are marked with black diamonds.
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Scheduling and coordination



J. Rana, A. Singhal, B. Gadre, �
V. Bhalerao, S. Bose, arXiv:1603.01689



Global Relay of Observatories W
atching Transients Happen

New 0.7m, 1deg �
fully robotic telescope



GROWTH-India: Robotic telescope
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70 cm aperture


4k x 4k high QE CCD

1 square degree FoV




GRBs with CZTI
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CZTI as a wide angle monitor
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Median area 190 sq. cm for 29% of the sky!



CZTI observed 30% of the localisation of GW151226 and �
placed strong upper limits on an X-ray counterpart

Coverage for GW151226
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Skymap plotted using data provided by LSC.



A tale of two transients



The start…
•  3:42 pm: LIGO picks up a signal, named 

G268556
•  10:28 pm: LSC goes through basic checks 

and informs astronomers
•  11:18 pm: I get a text message about a LIGO 

trigger
•  Next 40 minutes: chaos !
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… but nothing happens …

•  AstroSat observed large part of the LIGO 
region, saw nothing

•  Hanle clouded out – no Indian ground-based 
data

•  iPTF ready to observe, but Palomar clouded out
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At last, ATLAS17eau
•  00:49 am, 7 Jan : 
» ATLAS reports a fast fading source

•  Run! Run! Get Hanle data! 
» but clouds again

•  Get data from Lulin 1-m telescope
» Nope, spectrograph mounted, target too faint

•  Wait for 12 hours for it to get dark at Palomar
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So, what is this thing?
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An imposter!
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GRB170105A
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CZTI localisation
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Astrosat Localisation – 1148 deg2


IPN Localisation – 2600 deg2
Common – 192 deg2




What’s next?



What do we need for GRB studies?
•  Upcoming telescopes
» OIR: TMT, LSST, ZTF…
» Radio: uGMRT, SKA…
» X-ray / Gamma Ray: …
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Hidden

Monitoring Of Transients�
Integrating Venus and Earth

MOTIVE



Motivation

Low, stable background

Large sky visibility

Long baseline
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Concept
•  Large energy range (few keV – few MeV)
•  Large FoV (open detector)
•  Large area (> 100 cm2)
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Localisation
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•  ~10 degrees on-board
•  ~ few arcmin as IPN

Current IPN

Simulation: 
Earth + Venus



Expectations
•  100 GRBs with:
» arcmin localisation
» Prompt emission spectra

•  Electromagnetic Counterparts to GW sources
•  Other science:
» Venus Gamma ray Flashes
» Solar flares
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