

GMRT Imaging pipline for GMRT Imaging pipline for
Point source, TransientsPoint source, Transients

Sanjay Kudale
Team:Jayaram Chengalur,

Niruj Mohan

Workshop on Gamma-ray
Bursts : Prompt to Afterglow

NCRA, Pune, INDIA.
ksanjay@gmrt.ncra.tifr.res.in

4-7th Jul 2017

OutlineOutline

Introduction

Basic Elements of Pipeline

Flowchart : Flagging, Calibration

Flowchart : Main Pipeline

Flowchart : CASA – autoclean (modified)

User Input paramers to pipeline

Analysis results: Sample images

Analysis results: Lightcurves (In-Progres)

Timing

Future plans

IntroductionIntroduction

Goal : To design general purpose Imaging
pipeline for GMRT

To start with by searching for variable/transient
sources at low frequencies

Phase calibrator scans : Intra-day & long term
variability of background sources

Target source scans intra-day variability

As the target fields are rarely repeated

Elements of PipelineElements of Pipeline

flagcal : Package to flag and calibrate GMRT
interferometric data. (Chengalur, 2013)

I/p GMRT lta data o/p calibrated FITS

Various thresholds for flagging & Calibration (User's input)

PyBDSM : Python based software - 'Blob Detection and
Source Management'. (Mohan 2009)

Wrapper which calls PyBDSM from this pipeline

Package to decompose an image into sources

Source detection over local RMS instead of whole image RMS

Output clean region written in CASA CRTF format

CASA : Used for imaging and self-calibration

Execute custom 'imaging' python scripts in CASA shell

Flowchart:
Flagging,

Calibration

CASA

listscan
gvfits

flagcal

Importuvfits
listobs

Main Imaging Engine
(Repeat for all sources selected)

Stokes Selection
RRLL RR/LL

Imaging.py,
Ltafile.lta,input par file,
Online.FLAGS,
Stokes selection,
Vlacal source list

FITS, Input rc file

Listobs output
Content of FITS

data

Split/source
Chan avg

O/p MS

Start

 Low Res Imaging
Modified autoclean

Flagcal'ed FITS/MS
Outer UV taper

Do Self cal?

High Res Imaging
Modified autoclean

Self calibration
(Low Res Model)

Self-Calibration
(Low Res Model)

Do Self cal?
Self-Calibration

(High Res Model)

Individual Scan
Analysis ?

(Repeat n-Scans)

High Res Imaging
Modified autoclean
(Individual Scan)

Output FITS

Flank Field
Search?

Search Flank Field
(PyBDSM wrapper)

Do Self cal? Yes

Self-Calibration
(High Res Model
Individual Scan)

Outlier Src
List

Low Res Image

Next Source

No

No

No

Flowchart:
Main Imaging

EngineN
ex

t
so

u
rc

e?

No

Y
e

s

End

O/p Scan FITS

No

No

Yes

Yes

Yes

Yes

Start

 Low Res Imaging
Modified autoclean

Flagcal'ed FITS/MS
Outer UV taper

Do Self cal?

High Res Imaging
Modified autoclean

Self calibration
(Low Res Model)

Self-Calibration
(Low Res Model)

Do Self cal?
Self-Calibration

(High Res Model)

Individual Scan
Analysis ?

(Repeat n-Scans)

High Res Imaging
Modified autoclean
(Individual Scan)

Output FITS

Flank Field
Search?

Search Flank Field
(PyBDSM wrapper)

Do Self cal? Yes

Self-Calibration
(High Res Model
Individual Scan)

Outlier Src
List

Low Res Image

Next Source

No

No

No

Flowchart:
Main Imaging

EngineN
ex

t
so

u
rc

e?

No

Y
e

s

End

O/p Scan FITS

No

No

Yes

Yes

Yes

Yes

Start

 Flowchart:
autoclean

Clean
(1st iteration: niter=0)

Clean I/P params

Residual Fits
(Dirty Image)

Auto-window
Get Islands

Thresholds,
box_threshold
rms_box size

PyBDSM
wrapper

clean boxes,
Clipped RMS

Clean(with clean regions)
Thresh=RMS*N_sigma

Clean
Region>0

Yes

Residual Image

End

No
O/P Fits

image

start

PyBDSM

 Flowchart:
autoclean

Clean
(1st iteration: niter=0)

Clean I/P params

Residual Fits
(Dirty Image)

Auto-window
Get Islands

Thresholds,
box_threshold
rms_box size

PyBDSM
wrapper

clean boxes,
Clipped RMS

Clean(with clean regions)
Thresh=RMS*N_sigma

Clean
Region>0

Yes

Residual Image

End

No
O/P Fits

image

start

PyBDSM

Input ParametersInput Parameters

MAP_FLUX_CAL = False

MAP_PHASE_CAL = True

MAP_TARGET_SRC = False

PLOT_UV = True

PLOT_UVCOVERAGE = True

DO_FLANK = True

CELL = 2.0

IMSIZE = 110

FLANK_IMSIZE = 120

FLANK_NSELFCALCYCLES = 0

NSELFCALCYCLES = 2

SCAN_NSELFCALCYCLES = 0

SCAN_LIGHTCURVE = False

CONTAM_SIGMA_THRESH = 3.0

CONTAMINATION_LEVEL = 0.20

INDIVIDUAL_SCANS = False

MULTISCALE = []

RESTORING_BEAM = False

68.62uJy/beam
 93.4 min
610MHz

33.33 MHz

68.62uJy/beam
 93.4 min
610MHz

33.33 MHz

93.4 min
61.72 uJy/beam,

610/33.3 MHz

68.62uJy/beam
 93.4 min
610MHz

33.33 MHz

610/33 MHz
6.92 Hrs,

~350 boxes
31.54 uJy/beam

610/33.33 MHz 6.92 Hrs, 31.54 uJy/beam

 17.1 min,
 325/33 MHz

Pulsar (12.419mJy),
rms=472.45 uJy/beam,

 47' from PC
Dec=-53deg

Light-curve (scan based)Light-curve (scan based)

2-Sec Resolution light-curve2-Sec Resolution light-curve
(manual followup)(manual followup)

Shapshot imaging of pulsar:B1749-28Shapshot imaging of pulsar:B1749-28
Period ~ 562.580 mSec, time frame : 2.01 sec.

TimingTiming
Machine used is of high compute power

32 cores (2599.969 MHz), 256GB RAM, RAID storage disk (faster disk i/o)

But CASA does not use all cores all the time, but heavy disk I/O

PyBDSM is not parallel

'flagcal' makes use of all cores (Typical 9hrs data ~= 3.3 mins.)

Faster than real time for HPFW image size without flank field (60% of
real-time)

Quasi-real time for HPFW image size with (few) flank field (~100% of
real-time)

For full size image (1.5 * HPFW) without flank field is ~1.5 times
real-time

Analysis time increases with image size

Analysis time increses with no. of time frames (snapshot imaging)

Analysis time increases with number of detection

'flagcal', 'PyBDSM' : OK. autoclean takes significant time

Future plansFuture plans

Upgrade pipeline for extended sources

Upgrade to new version of CASA:

casa-4.5.2 (current pipeline version)

New features, algorithms and Parallel/distributed
execution

Parallactic angle dependent Primary Beam correction

Light-curves (In Progress):

intra-day variability of points sources in field of phase
calibrators.

Develop pipeline for uGMRT data

 Thank You!Thank You!

Output Data, Logs and Plots

'flagcal' keeps flagging information per
source/antenna/stokes, reference antenna, timing
information

All information that CASA shell + imaging.py prints is
kept in log, which contains the input parameters to
every step in pipeline

All tasks of CASA output is retained in casalog

Required final images are converted to fits

If required by user, UVPLOT, UVCOVERAGE are
plotted

PyBDSM keeps log of all fitting, residual, models and
plenty of other plots and information

Writes boxes in “crtf” (casa region text format) format for the
region which passed the selection criteria

Puts upper limit on no. of boxes to be written to 'crtf' file, via
selection of thresholds which is 'fraction of the flux of peak
flux' for which box to put

'rms_box' size to be defined by user is key parameter to make
proper box, or avoid putting box on sidelobe

Other parameters island_rms, and peak_rms defines islands of
continuous pixel which are greater than island_rms* RMS and
contains at least one pixel which is greater than
peak_rms*RMS. RMS is local rms in RMS image

Provision to generate elliptical clean region if the beam is highly
elliptical (e.g. a/b=>2.5, user defined). Useful for the case when
observation is snapshot of the source of southern dec

Used PyBDSM to generate list of outlier detection which are
greater than some threshold (say X% of flux if greater than Y
time clipped sigma, X & Y users input.) Used in Flanking Field
Search

93.4 min
61.72 uJy/beam,

610/33.3 MHz

610/33 MHz
6.92 Hrs,

~350 boxes
31.54 uJy/beam

610/33 MHz
6.92 Hrs,

~350 boxes
31.54 uJy/beam

610/33.33 MHz 6.92 Hrs, 31.54 uJy/beam

610/33.33 MHz 6.92 Hrs, 31.54 uJy/beam

Modification to CASA autoclean
'autoclean' is an iterative process in which box-making and
cleaning runs in loop, until cleaning threshold is reached

Original CASA autoclean was closing the loop without cleaning
all sources defined by cleaning threshold, some times not going
to cleaning loop at all

Generating clean region (mask) file from the boxes was taking
huge time

No provision for w-projection/widefield and multiscale
deconvolution in autoclean to pass to clean

So, we retained the shell structure of autoclean which passes
the parameters to clean, and replaced box-making algorithm

For box-making used Call_PyBDSM.get_islands()

Added new routine get_islbox() which will read residual image of last
iteration, thresholds and run PyBDSM to get clean boxes

Make islands of continuous pixel which are greater than some
threshold and contains at least one pixel with value greater than
some other threshold

	Title
	outline
	introduction
	ElementsOfPipeline
	flowchart-uvdata-ms
	flowchart-full-pipeline
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	flowchart-autoclean
	Slide 12
	Slide 13
	inputToPipeline
	1549_full_image
	1549_full_image_box
	1549_part_image
	Slide 18
	AMI001_full_image
	AMI001_part_image
	HR_1309-53_full_image_325MHz
	Slide 22
	Slide 23
	Slide 24
	timing
	Slide 26
	Slide 27
	dirty_image_itr0
	clean_image_itr0
	dirty_image_box
	output_log
	Slide 32
	uvplot
	uvcoverage
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

