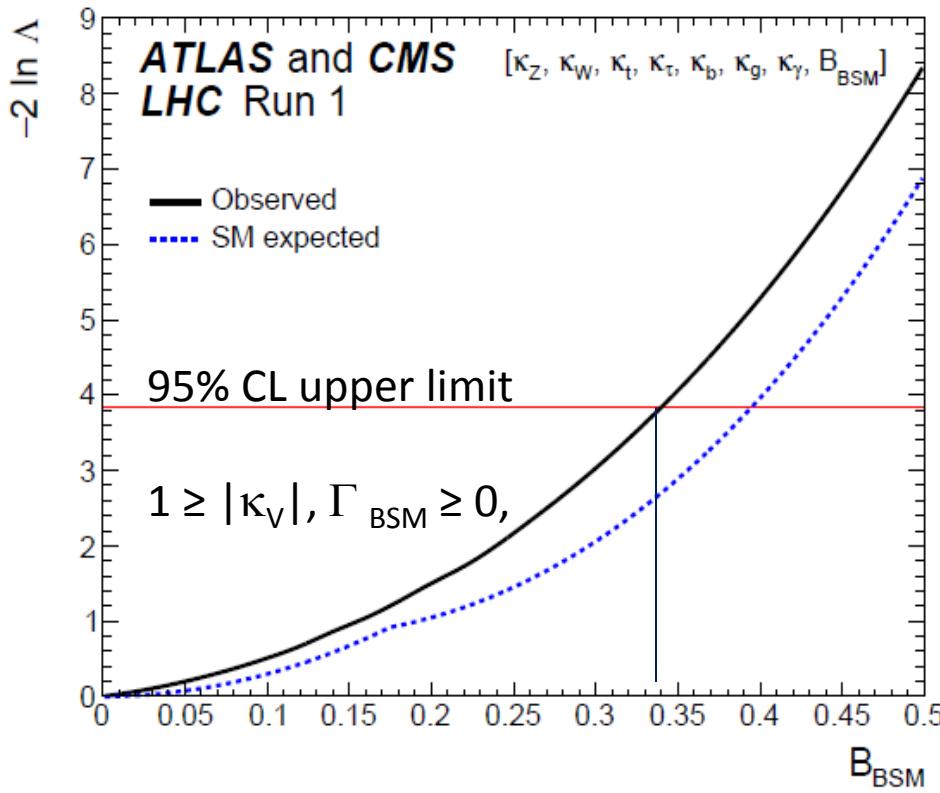


Search for Invisible Higgs at LHC

Kajari Mazumdar, TIFR, Mumbai

on behalf of

CMS collaboration, LHC, CERN


Introduction

- After the Higgs(125) discovery, the next imperative is to learn about the properties of the resonance.
- Main issue: is it **THE** Standard Model Higgs or one of the Higgs of beyond Standard Model physics?
- All measurements related to Higgs boson are in very good agreement with Standard Model, eg., various cross section measurements in a variety of final states indicate the observed signal strength for Higgs to be compatible with SM values.
- However data volume delivered by LHC is still limited for precision measurements in the Higgs sector.
→ provides lee way to accommodate various ideas of beyond Standard Model (BSM)
- Determination of Higgs total decay width provide indirect constraint on additional decay modes to invisible as well as other particles which are not detected.

Constraint on Higgs width from Run1 data

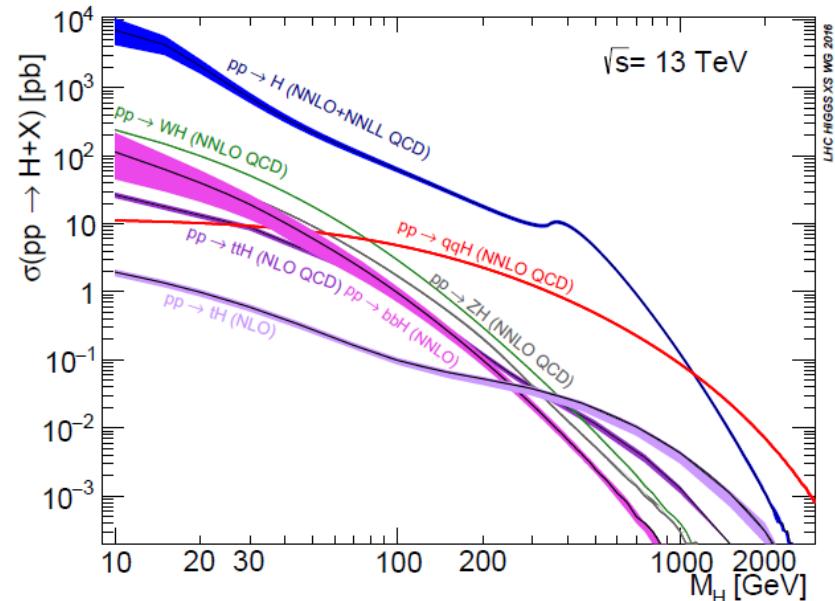
- Accommodate beyond standard model physics in terms of coupling strength modifiers κ :

$$\sigma_i \cdot B^f = \frac{\sigma_i(\vec{\kappa}) \cdot \Gamma^f(\vec{\kappa})}{\Gamma_H}, \quad \kappa_j^2 = \sigma_j/\sigma_j^{\text{SM}} \quad \text{or} \quad \kappa_j^2 = \Gamma^j/\Gamma_{\text{SM}}^j, \quad \Gamma_H = \frac{\kappa_H^2 \cdot \Gamma_H^{\text{SM}}}{1 - B_{\text{BSM}}}$$

JHEP 08(2016) 045

$B_{\text{BSM}} < 0.34$ at 95% confidence limit

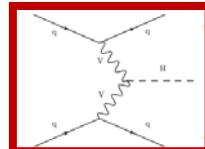
$\Gamma_H = \Gamma_H(\text{SM}) + \Gamma_H(\text{BSM})$
where $\Gamma_H(\text{BSM}) = \Gamma_H(\text{invisible})$

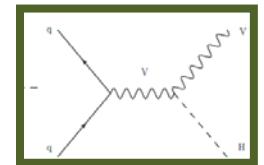

[in SM, the branching ratio for $\Gamma_H(\text{invisible})$ is $\sim 0.12\%$ due to $H \rightarrow ZZ^* \rightarrow 4\nu$.
→ beyond detection capability of experiments at present.]

- In general interaction between Higgs boson and the dark matter (DM) sector leads to invisible decay mode of Higgs eg., a pair of neutralinos in SUSY models.

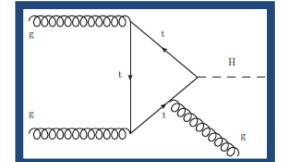
“invisible” decay of Higgs

- In Higgs portal model, the role of mediator between SM particles and DM particles is played by the Higgs. \rightarrow allows “direct production” of DM at LHC!
 \rightarrow potentially establishes non-gravitational interaction of DM particles!
- In the early universe, Higgs is expected to have played a role in the evolution as per several cosmological models.
- Direct search for invisible decay of Higgs is more interesting, since it has more sensitivity to invisible decay width compared to indirect constraint.
- Signature for invisible decay of Higgs \rightarrow large missing transverse energy E_T^{miss}
- For experimental “tag/identification” of invisible decay of Higgs, it has to recoil against a “visible” system in the detector \rightarrow Higgs should be produced accompanied with a detectable object.
- All production processes at LHC can be utilized, with varying efficiency:


Suitable Higgs production processes at LHC

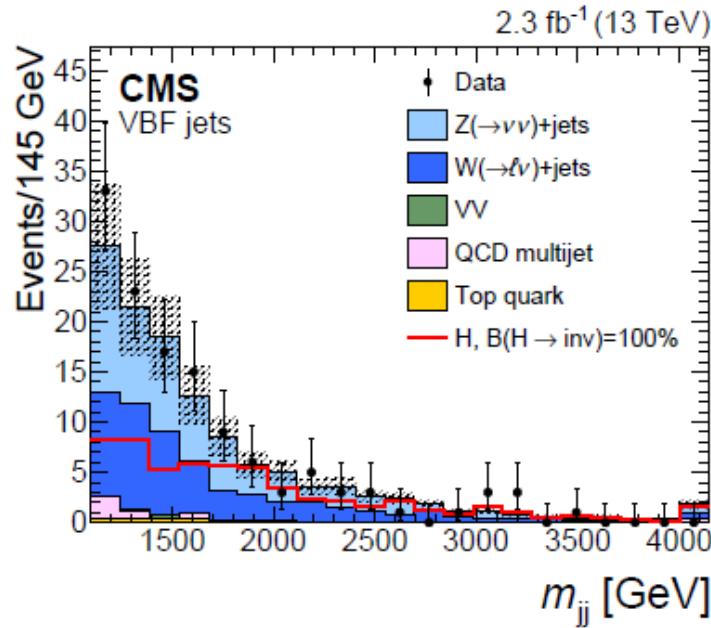
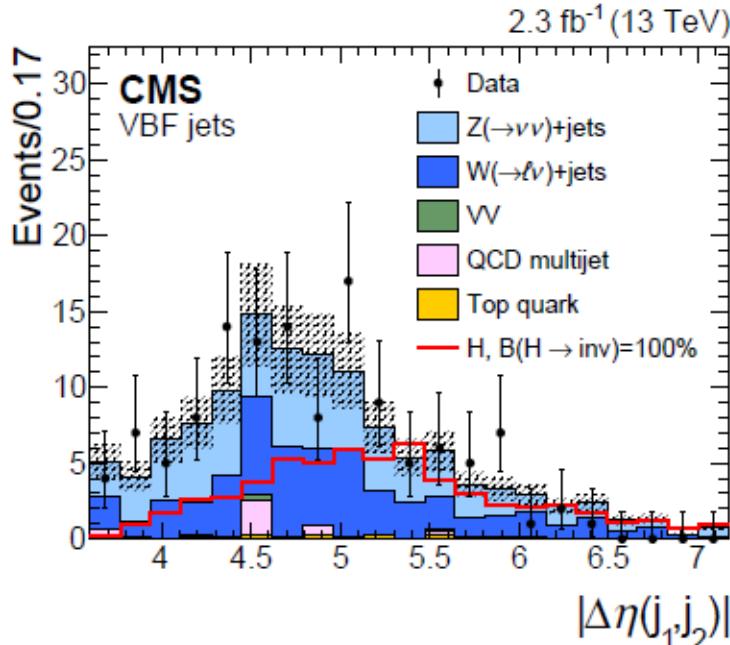

Expected signal composition (%)

Analysis	Final state	7 or 8 TeV		at 13 TeV	
		7.8 (ggH), 92.2 (qqH)	9.1 (ggH), 90.9 (qqH)	100 (ZH)	100 (ZH)
VH tagged	$Z \rightarrow \ell\ell$ $Z \rightarrow bb$ $W/Z \rightarrow qq$	100 (ZH) 100 (ZH) 25.1 (ggH), 5.1 (qqH), , 23.0 (ZH), 46.8 (WH)	38.7 (ggH), 7.1 (qqH), 21.3 (ZH), 32.9 (WH)		
ggH-tagged	Mono-jet	70.4 (ggH), 20.4 (qqH), , 3.5 (ZH), 5.7 (WH)	69.3 (ggH), 21.9 (qqH), 4.2 (ZH), 4.6 (WH)		


i) Vector boson fusion (VBF):
 $qq \rightarrow qqH$

ii) Associated production with a vector boson (VH): $qq \rightarrow VH$
 $V = W/Z$, with $W/Z \rightarrow qq$
& $Z \rightarrow ee, \mu\mu, bb$

iii) Gluon-gluon fusion (ggH) at higher orders: $gg \rightarrow Hg$
 \rightarrow use mono-jet signal



JHEP 02 (2017) 135

Search for H(inv) in VBF mode

$\mathcal{L} = 5.1, 19.7 \text{ & } 2.3 \text{ fb}^{-1}$: 2011, 2012 & 2015 data at $\sqrt{s} = 7, 8 \text{ & } 13 \text{ TeV}$

JHEP 02 (2017) 135

- Most sensitive search channel: unique event topology of signal
- 2 forward-backward jets with large invariant mass (m_{jj}), large pseudo-rapidity gap ($\Delta\eta$)
- Outgoing jets are not colour connected \rightarrow hadronically quiet central region occupied by only missing energy (essentially p_T^{miss})
- Cut and count analysis

VBF analysis: event yield in signal and control regions

$\sqrt{s} = 13 \text{ TeV}, 2.3 \text{ fb}^{-1}$

Process	Signal Region	Control regions				
		Single e	Single μ	Single τ	$\mu^+ \mu^-$	QCD
$Z(\mu^+ \mu^-) + \text{jets}$	QCD	—	—	—	4.2 ± 1.1	—
	EW	—	—	—	2.0 ± 0.7	—
$Z(\nu \nu) + \text{jets}$	QCD	47 ± 12	—	—	—	—
	EW	21 ± 7	—	—	—	—
$W(\mu \nu) + \text{jets}$	QCD	13 ± 2	—	53 ± 5	0.4 ± 0.2	45 ± 5
	EW	4.3 ± 0.8	—	27 ± 3	—	6.0 ± 0.9
$W(e \nu) + \text{jets}$	QCD	9.3 ± 1.5	17 ± 3	—	0.2 ± 2.2	39 ± 4
	EW	5.4 ± 1.1	7.8 ± 1.3	—	0.2 ± 0.1	6.1 ± 1.0
$W(\tau \nu) + \text{jets}$	QCD	13 ± 2	0.06 ± 0.06	—	12 ± 2	74 ± 9
	EW	5.5 ± 1.2	—	—	5.1 ± 1.2	24 ± 3
Top quark		2.3 ± 0.4	1.5 ± 0.3	6.8 ± 0.9	7.1 ± 1.0	82 ± 11
QCD multijet		3 ± 23	—	5 ± 3	0.4 ± 0.3	1200 ± 170
Dibosons		0.7 ± 0.3	0.4 ± 0.4	0.8 ± 0.4	—	1.8 ± 0.7
Total bkg.		125 ± 28	27 ± 3	91 ± 8	25 ± 4	6.4 ± 1.4
Data		126	29	89	24	1461
Signal $m_H = 125 \text{ GeV}$	qqH ggH	53.6 ± 4.9				
		5.4 ± 3.6				

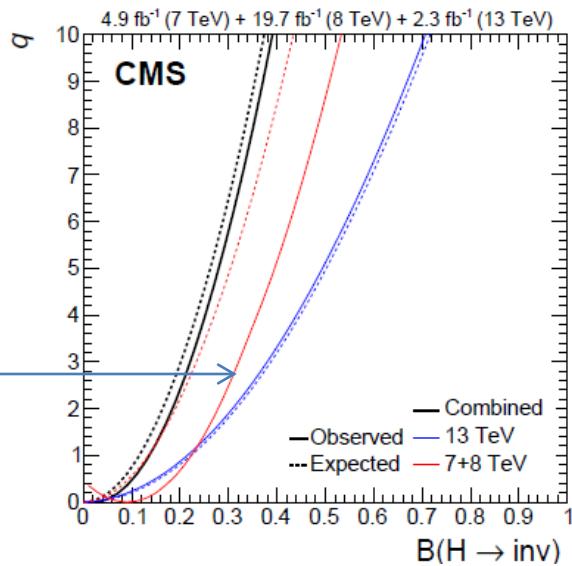
NO excess of events

VBF selections

	8 TeV	13 TeV
p_T^{j1}	$> 50 \text{ GeV}$	$> 80 \text{ GeV}$
p_T^{j2}	$> 45 \text{ GeV}$	$> 70 \text{ GeV}$
m_{jj}	$> 1200 \text{ GeV}$	$> 1100 \text{ GeV}$
E_T^{miss}	$> 90 \text{ GeV}$	$> 200 \text{ GeV}$
$S(E_T^{\text{miss}})$	$> 4\sqrt{\text{GeV}}$	—
$\min \Delta\phi(\vec{p}_T^{\text{miss}}, j)$	—	> 2.3
$\Delta\eta(j_1, j_2)$	—	> 3.6

JHEP 02 (2017) 135

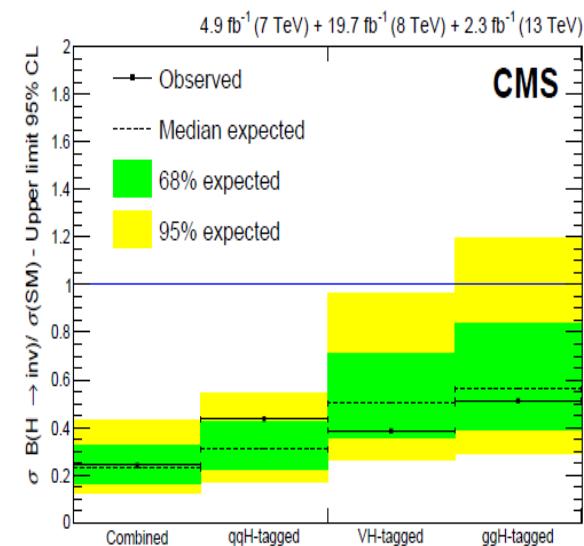
Signal extraction for VBF


JHEP 02 (2017) 135

- Simultaneous fit to signal and control regions

- Profile likelihood ratio:

$$q = -2 \ln \frac{L(\text{data} | \sigma \mathcal{B}(H \rightarrow \text{inv}) / \sigma(\text{SM}), \hat{\theta})}{L(\text{data} | \sigma \hat{\mathcal{B}}(H \rightarrow \text{inv}) / \sigma(\text{SM}), \hat{\theta})}$$


Expected = no invisible decay

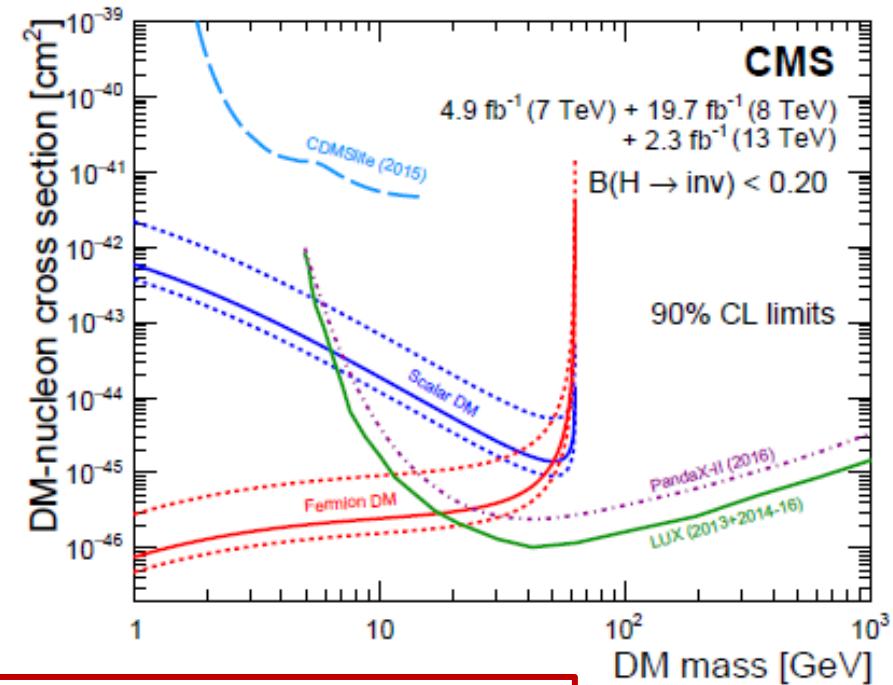
- VBF is most sensitive
- presented result mostly driven by 8 TeV data which showed a small excess!

Utilizing all channels Run1 + Run2 combined observed (expected) upper limit on $\mathcal{B}(H \rightarrow \text{inv.}) < 0.24 (0.23)$ at 95% CL, assuming SM production rate.

data at $\sqrt{s} = 7, 8 \text{ & } 13 \text{ TeV}$

Results from VBF analysis of 2016 data (36 /fb) coming soon!

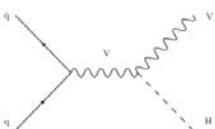
Interpretation in Higgs-portal model


JHEP 02 (2017) 135

- SM particles communicate with dark matter particles via Higgs & tree level coupling \rightarrow invisible decay of H (produced acc. to SM)
- Interpretation of limit in terms of spin-independent DM-nucleon cross section.
- Assumptions: nature of DM particle \rightarrow either scalar or fermion;
+ effective interaction does not depend on spin
- Use 90% CL limit to compare collider reach with constraints from direct detection Experiments $\rightarrow \mathcal{B}(H \rightarrow \text{inv}) < 0.20$

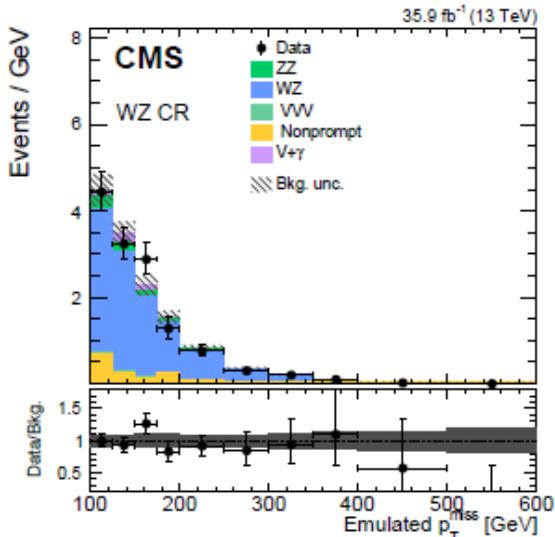
$$\sigma_{S-N}^{\text{SI}} = \frac{4\Gamma_{\text{inv}}}{m_H^3 v^2 \beta} \frac{m_N^4 f_N^2}{(m_\chi + m_N)^2}$$

$$\sigma_{f-N}^{\text{SI}} = \frac{8\Gamma_{\text{inv}} m_\chi^2}{m_H^5 v^2 \beta^3} \frac{m_N^4 f_N^2}{(m_\chi + m_N)^2}$$

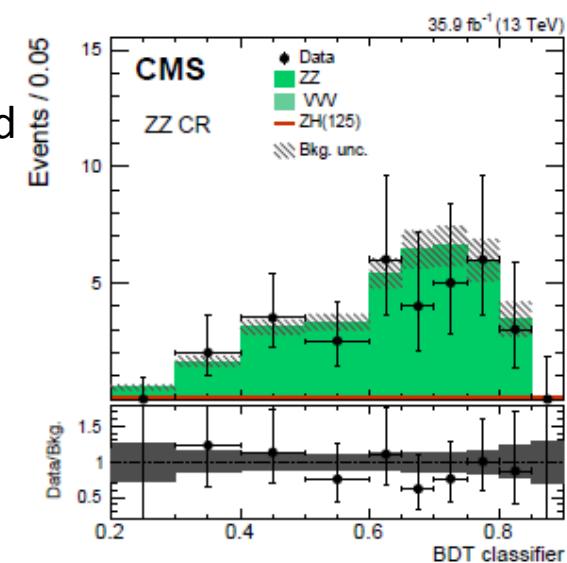

f_N : nuclear form factor = [0.260, 0.629]

Collider sensitivity most significant for low mass DM below ~ 10 GeV

$Z \rightarrow \ell^+\ell^- H(\text{inv})$

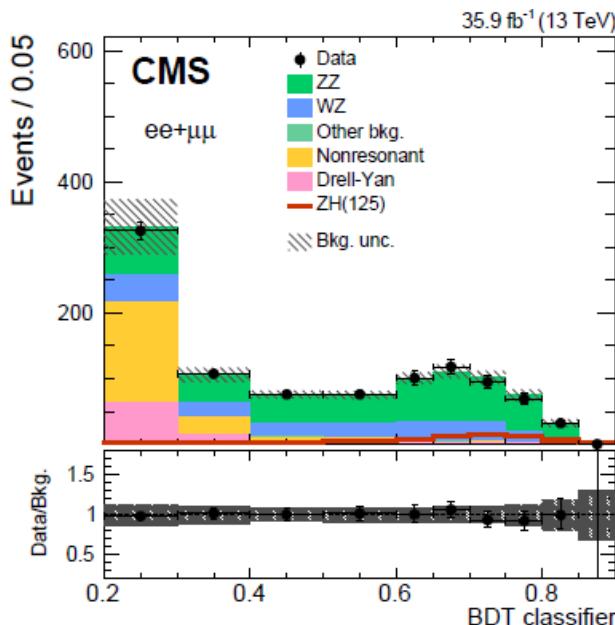

$\mathcal{L} = 35.9 \text{ fb}^{-1} : 2016 \text{ data}$

additional ZH processes



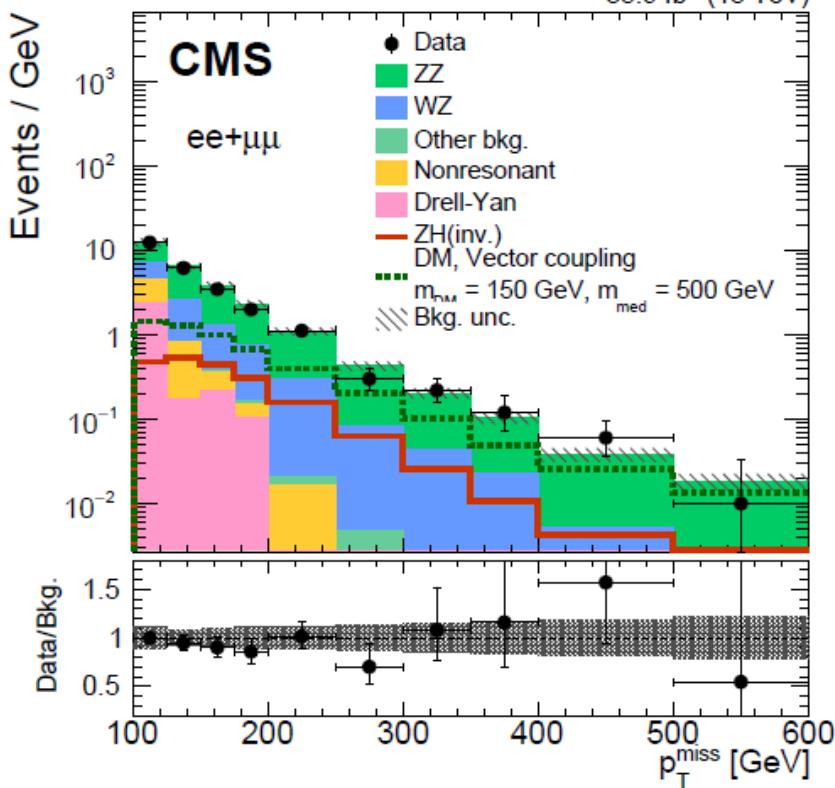
- Same flavour, opposite sign isolated lepton pair, recoiling against large p_T^{miss}
- Several background processes: estimated using control samples.
 - Continuum production of $ZZ \rightarrow 2\ell 2\nu$, irreducible (60% of total bkg)
 - $WZ \rightarrow \ell' \nu' \ell^+ \ell^-$ where ℓ' is mis-identified (25%)
 - leptonic decays of top quark, $WW \rightarrow \ell \nu \ell \nu$, Drell -Yan ($Z/\gamma^* \rightarrow \ell^+ \ell^-$), WWW, \dots
- Shape based analysis → final result from binned fit of p_T^{miss} distribution
- Multivariate analysis → several input variables to train a boosted decision tree

Control regions used for background estimation in signal region


“Emulated W p_T ” = $p_T^{\text{miss}} + p_T(\ell 3)$

Event selection for $Z \rightarrow \ell^+\ell^- H(\text{inv})$

Selection	Requirement	Reject	$\mathcal{L} = 35.9 \text{ fb}^{-1} : 2016 \text{ data}$
N_ℓ	$=2$	WZ, VVV	
p_T^ℓ	$>25/20 \text{ GeV for electrons}$ $>20 \text{ GeV for muons}$	QCD	
Z boson mass requirement	$ m_{\ell\ell} - m_Z < 15 (30) \text{ GeV}$	WW, top quark	
Jet counting	$\leq 1 \text{ jet with } p_T^j > 30 \text{ GeV}$	$Z/\gamma^* \rightarrow \ell\ell, \text{top quark, VVV}$	
$p_T^{\ell\ell}$	$>60 \text{ GeV}$	$Z/\gamma^* \rightarrow \ell\ell$	
b tagging veto	$\text{CSVv2} < 0.8484$	Top quark, VVV	$\dots \rightarrow \text{for BDT analysis}$
τ lepton veto	$0 \tau_h \text{ cand. with } p_T^\tau > 18 \text{ GeV}$	WZ	
p_T^{miss}	$>100 \text{ GeV (130 GeV, training only)}$	$Z/\gamma^* \rightarrow \ell\ell, \text{WW, top quark}$	
$\Delta\phi(\vec{p}_T^j, \vec{p}_T^{\text{miss}})$	$>0.5 \text{ rad}$	$Z/\gamma^* \rightarrow \ell\ell, WZ$	
$\Delta\phi(\vec{p}_T^{\ell\ell}, \vec{p}_T^{\text{miss}})$	$>2.6 \text{ rad (omitted)}$	$Z/\gamma^* \rightarrow \ell\ell$	
$ p_T^{\text{miss}} - p_T^{\ell\ell} / p_T^{\ell\ell}$	$<0.4 \text{ (omitted)}$	$Z/\gamma^* \rightarrow \ell\ell$	
$\Delta R_{\ell\ell}$	$<1.8 \text{ (omitted)}$	$WW, \text{top quark}$	


BDT distribution for signal region in MVA

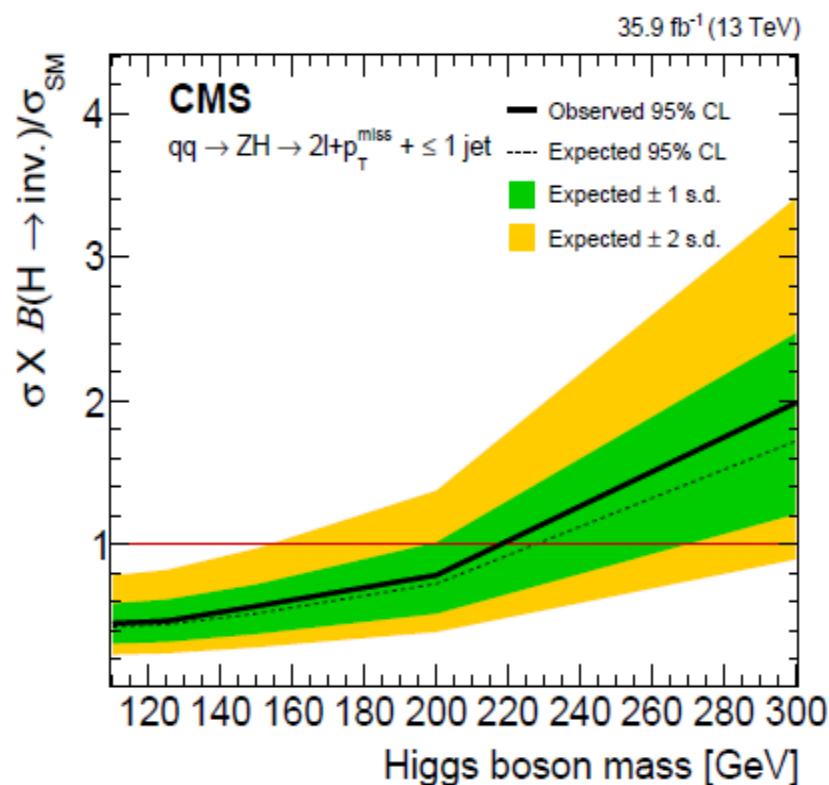
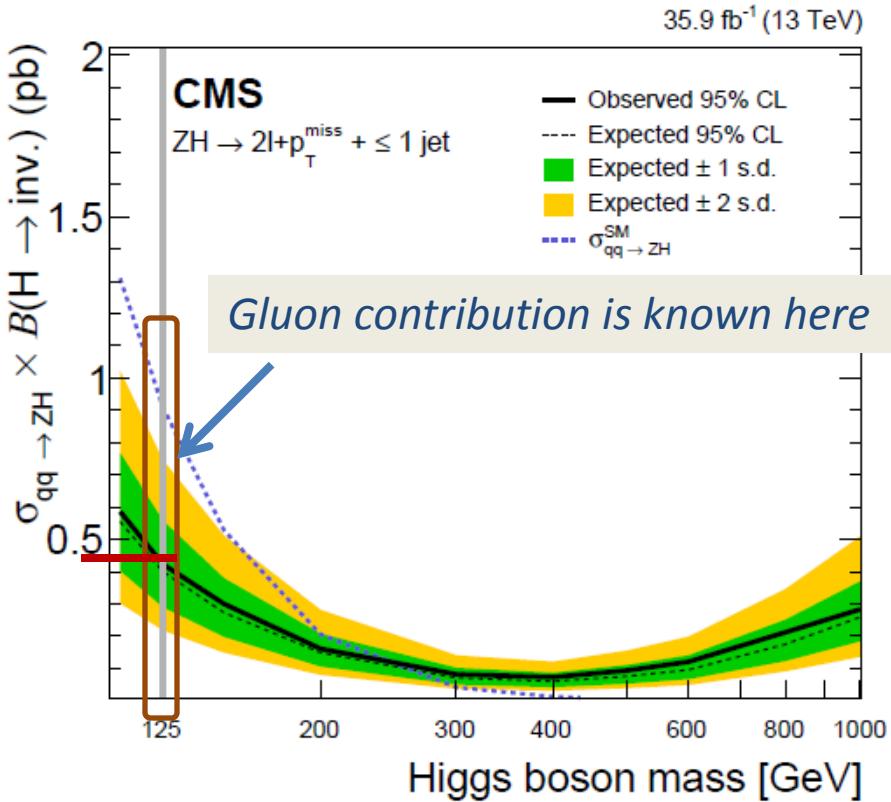
No excess of events above SM expectation

CMS-EXO-16-052
arXiv: 1711.00431
Submitted to Euro. Phys. J. C

ZH analysis: prediction for signal, background and event yield using p_T^{miss} spectrum

No excess of events above SM expectation

$\mathcal{L} = 35.9 / \text{fb}$: 2016 data

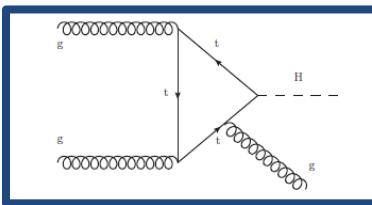


CMS-EXO-16-052
arXiv: 1711.00431
Submitted to Euro. Phys. J. C

Process	$ee + \mu\mu$
$qqZH(\text{inv.})$ $m_H = 125 \text{ GeV}, \mathcal{B}(H \rightarrow \text{inv.}) = 1$	158.6 ± 5.4
$ggZH(\text{inv.})$ $m_H = 125 \text{ GeV}, \mathcal{B}(H \rightarrow \text{inv.}) = 1$	42.7 ± 4.9

ZZ	379.8 ± 9.4
WZ	162.5 ± 6.8
Nonresonant bkg.	75 ± 15
Drell-Yan	72 ± 29
Other bkg.	2.6 ± 0.2
Total bkg.	692 ± 35
Data	698

$Z \rightarrow \ell^+\ell^- H(\text{inv})$: Results

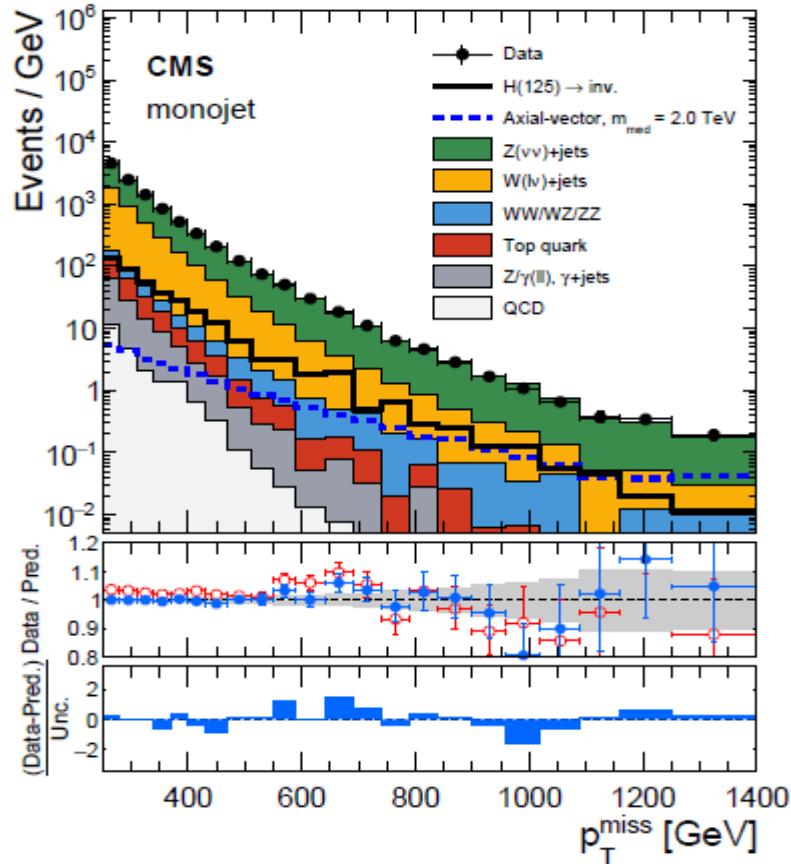
$\mathcal{L} = 35.9 \text{ fb}^{-1}$: 2016 data

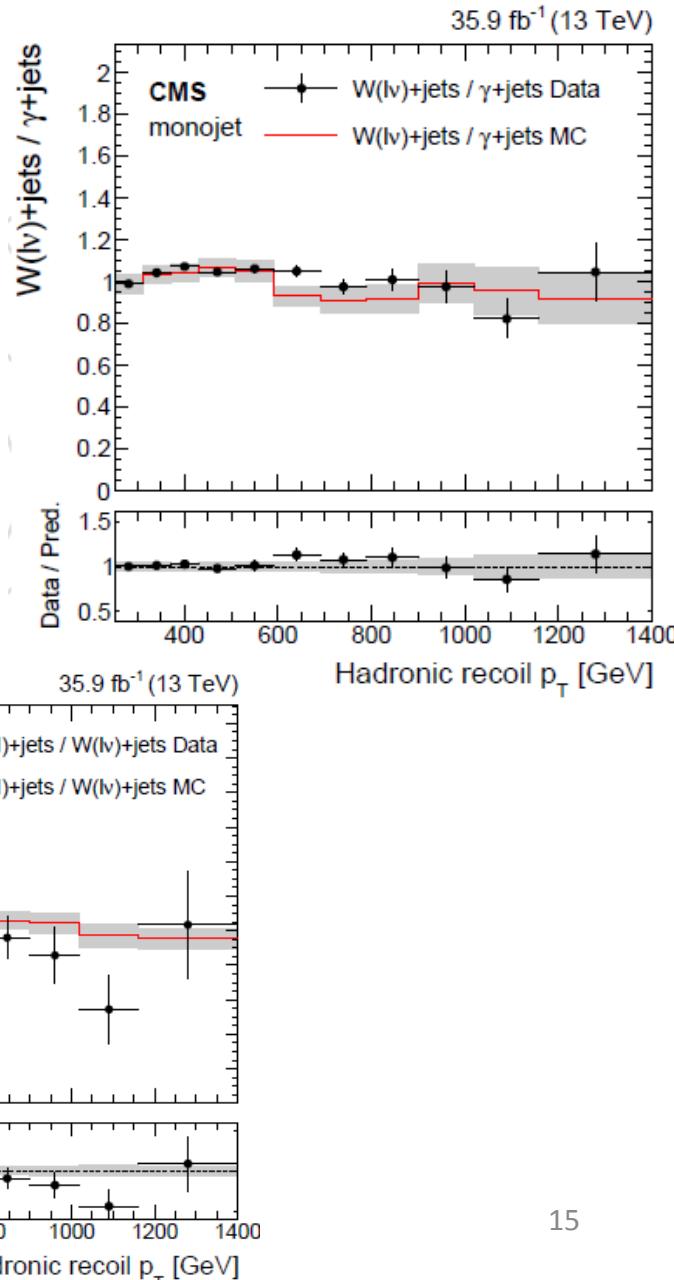

Assuming SM rate for Higgs production, observed (expected) 95% CL upper limit on $B(H(\text{inv})) = 0.45$ (0.44) from shape analysis
 $= 0.40$ (0.42) from MVA

CMS-EXO-16-052
arXiv: 1711.00431
Submitted to Euro. Phys. J. C

Mono-jet final state targeting $gg \rightarrow H(\text{inv}) + g$

$\mathcal{L} = 35.9 \text{ /fb}$: 2016 data

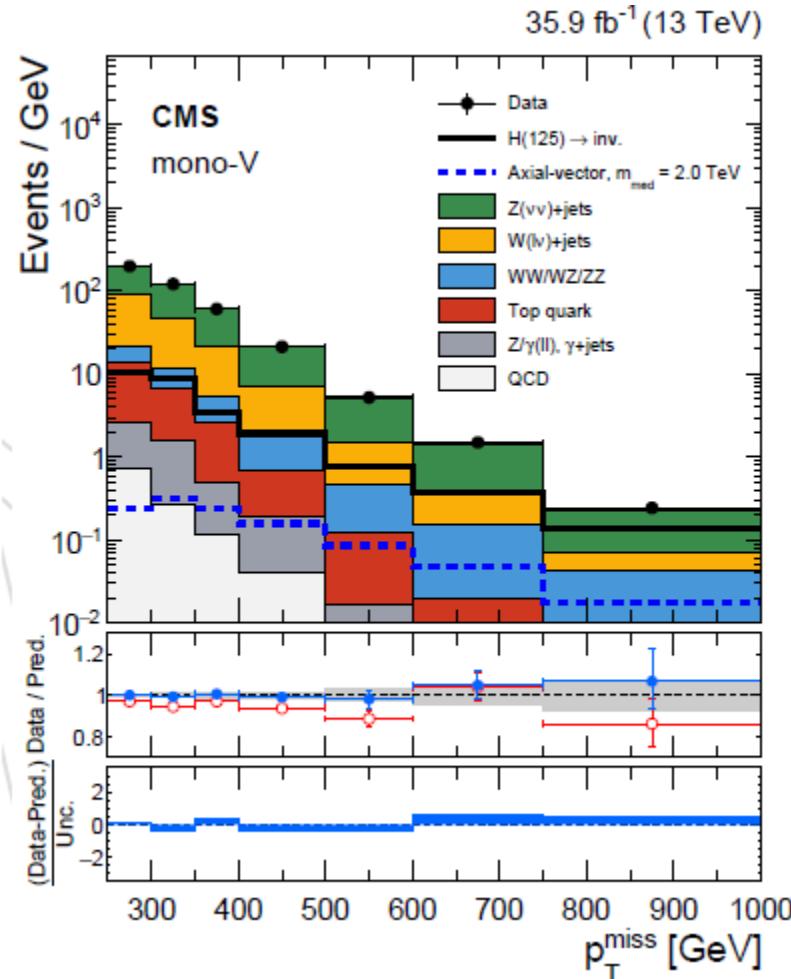

CMS Paper EXO-16-048
arXiv: 1712.02345, to PRD


- Jets + p_T^{miss} in final state, no lepton
 \rightarrow at least 1 jet from ISR, NOT fat jet! + $p_T^{\text{miss}} > 200 \text{ GeV}$
- 90% Backgrounds: irreducible $Z \rightarrow \nu\nu$ + jet and $W \rightarrow \ell\nu$, where ℓ is misidentified
- Control regions include various final states : $\mu\mu$, ee , single μ , single e and γ + jets
 \rightarrow simultaneous fit to both signal region and all backgrounds from V+jets processes
- to reduce QCD background due to mis-measurement of jets, demand
 $\min \Delta\phi(\text{jet}, p_T^{\text{miss}}) > 0.5 \text{ rad.}$

Search for $H(\text{inv})$ in 1jet + E_T^{miss} final state

35.9 fb^{-1} (13 TeV)

Control regions



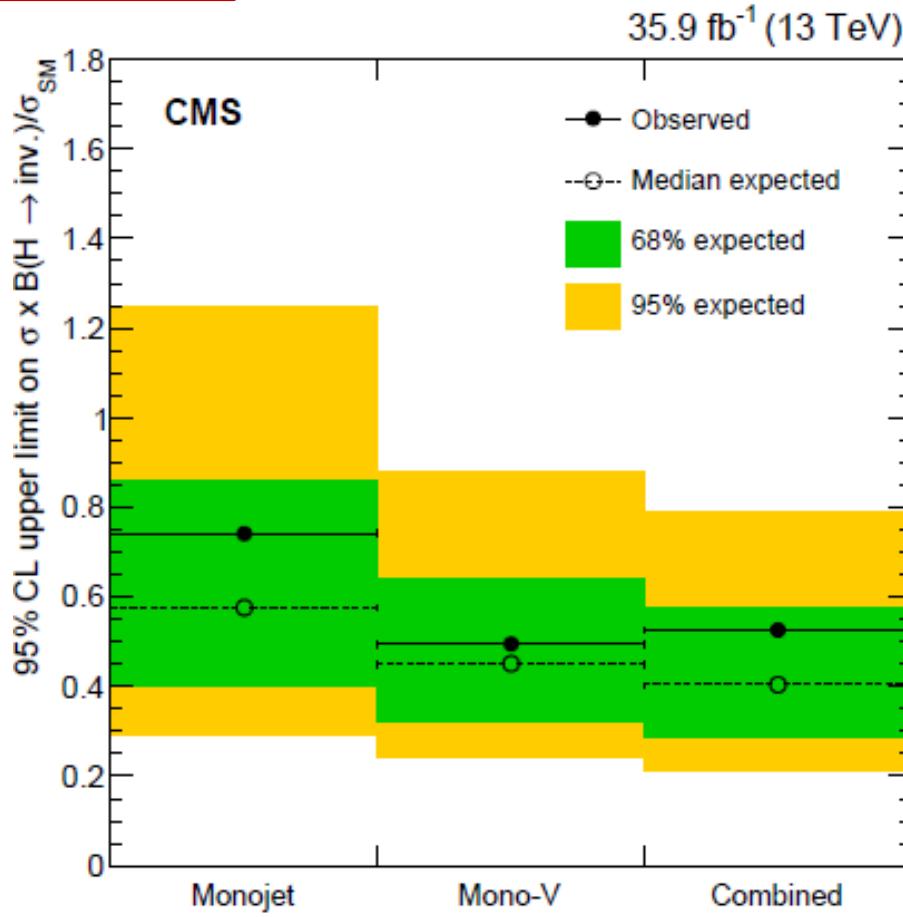
CMS Paper EXO-16-048
arXiv: 1712.02345, to PRD

Mono V: W/Z(\rightarrow jj) H(inv)

$\mathcal{L} = 35.9 \text{ fb}^{-1}$: 2016 data

- Large p_T^{miss} , no lepton, 2 jets from W/Z decay peaking at respective masses

Expected & observed upper limit on $\mathcal{B}(H(\text{inv}))$


Category	Observed (expected)	68% expected	Expected signal composition
Monojet	0.74 (0.57)	0.40–0.86	72.8% ggH, 21.5% VBF, 3.3% WH, 1.9% ZH, 0.6% ggZH
Mono-V	0.49 (0.45)	0.32–0.64	38.7% ggH, 7.0% VBF, 32.9% WH, 14.6% ZH, 6.7% ggZH
Combined	0.53 (0.40)	0.29–0.58	N/A

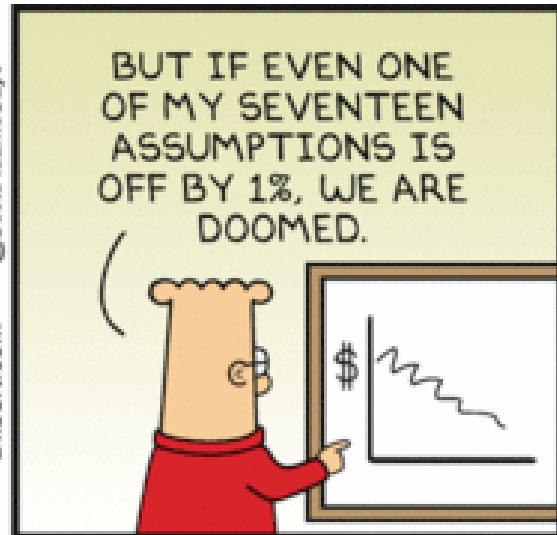
CMS Paper EXO-16-048
arXiv: 1712.02345, to PRD

Combined result from mono V and mono-jet final states

$\mathcal{L} = 35.9 \text{ fb}^{-1}$: 2016 data

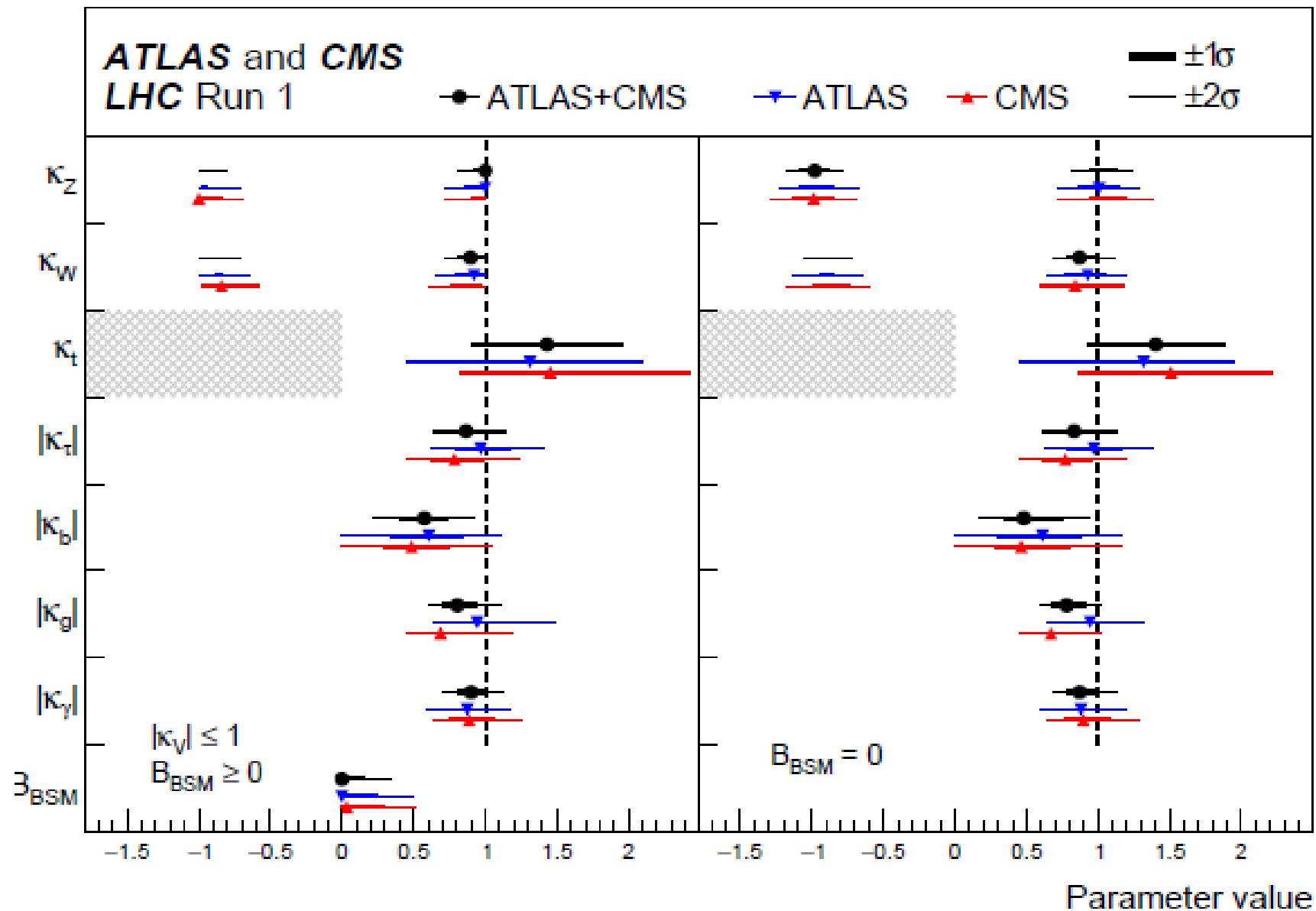
CMS Paper EXO-16-048
arXiv: 1712.02345, to PRD

Assuming SM production rate for Higgs, from mono-V($\rightarrow jj$) and mono-jet searches
the observed (expected) 95% CL upper limit on $B(H(\text{inv})) = 0.53 (0.40)$

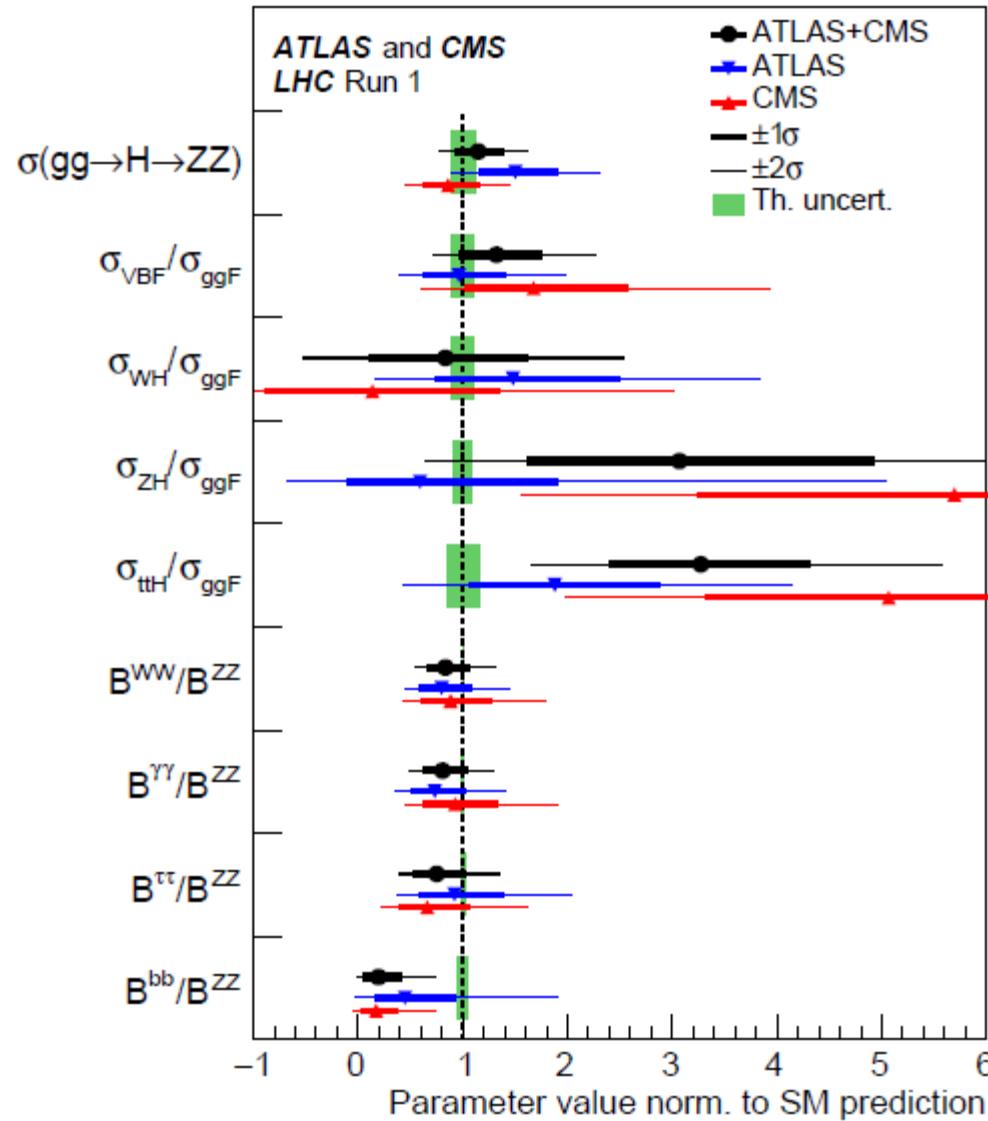

Outlook

- New results from VBF analysis, based on 2016 data is expected in near future.
- Analysis of 2017 data is in progress.
- **Expect very interesting results during next several years using total Run2 data, corresponding to at least 120 fb^{-1} at $\sqrt{s} = 13 \text{ TeV}$.**
- However LHC roadmap is drawn till 2030s with total expected data volume of $\sim 3000\text{-}5000 \text{ fb}$. LHC has delivered till now less than 3% of the total data
→ Precision measurement of Higgs properties will be complementary to constrain the branching to invisible decay.

→ **Stay tuned, exciting times ahead!**


Conclusion

- Invisible decay of Higgs is an important probe of physics beyond Standard Model. If established, has very significant implications .
- Experimental data analysed so far leaves room for such a speculation.



Thank you!

Backup

Run1 measurements

JHEP 08 (2016) 045,
 Combination of ATLAS and CMS analyses
 $\mathcal{B}(H(\text{inv})) < 34\ (39)\%$, obs.(exp.)
 → unitarity-inspired constrained $k_v < 1$

ZH analysis multiclass BDT classifier

Backgrounds: ZZ, WZ, DY, flavour symmetric or non-resonant p

- $|m_{\ell\ell} - m_Z|$ (dilepton mass);
- $p_T^{\ell 1}$ (leading lepton transverse momentum);
- $p_T^{\ell 2}$ (subleading lepton transverse momentum);
- $p_T^{\ell\ell}$ (dilepton transverse momentum);
- $|\eta^{\ell 1}|$ (leading lepton pseudorapidity);
- $|\eta^{\ell 2}|$ (subleading lepton pseudorapidity);
- p_T^{miss} (missing transverse momentum);
- $m_T(p_T^{\ell 1}, p_T^{\text{miss}})$ (leading lepton transverse mass);
- $m_T(p_T^{\ell 2}, p_T^{\text{miss}})$ (subleading lepton transverse mass);
- $\Delta\phi(\vec{p}_T^{\ell\ell}, \vec{p}_T^{\text{miss}})$ (azimuthal separation between dilepton and missing momentum);
- $\Delta R_{\ell\ell}$ (separation between leptons); and
- $|\cos\theta_{\ell 1}^{\text{CS}}|$ (cosine of the polar angle in the Collins–Soper frame [71] for the leading lepton).

Systematic uncertainties for ZH analysis

Source of uncertainty	Signal	ZZ	WZ	NRB	DY	Impact on the exp. limit (%)
* VV EW corrections	—	10	-4	—	—	14 (12)
* Renorm./fact. scales, VV	—	9	4	—	—	
* Renorm./fact. scales, ZH	3.5	—	—	—	—	
* Renorm./fact. scales, DM	5	—	—	—	—	
* PDF, WZ background	—	—	1.5	—	—	
* PDF, ZZ background	—	1.5	—	—	—	2 (1)
* PDF, Higgs boson signal	1.5	—	—	—	—	
* PDF, DM signal	1-2	—	—	—	—	
* MC sample size, NRB	—	—	—	5	—	
* MC sample size, DY	—	—	—	—	30	
* MC sample size, ZZ	—	0.1	—	—	—	
* MC sample size, WZ	—	—	2	—	—	1
* MC sample size, ZH	1	—	—	—	—	
* MC sample size, DM	3	—	—	—	—	
* Electron efficiency			1.5			
* Muon efficiency			1			
* Electron energy scale			1-2			
* Muon energy scale			1-2			
* Jet energy scale		1-3 (typically anticorrelated w/ yield)			1 (<1)	
* Jet energy resolution		1 (typically anticorr.)				
* Unclustered energy (p_T^{miss})		1-4 (typically anticorr.), strong in DY				
* Pileup		1 (typically anticorrelated)				
* b tagging eff. & mistag rate			1			
* BDT: electron energy scale	1.1	2.9	2.6	—	—	
* BDT: muon energy scale	1.5	4.3	2.7	—	—	— (2)
* BDT: p_T^{miss} scale	1.0	3.2	4.1	—	—	
NRB extrapolation to the SR	—	—	—	20	—	<1
DY extrapolation to the SR	—	—	—	—	100	<1
Lepton efficiency (WZ CR)	—	—	3	—	—	<1
Nonprompt bkg. (WZ CR)	—	—	—	—	30	<1
Integrated luminosity			2.5			<1

Affecting the shape

