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LCDM works very well at large scales in our universe

Issues at sub-galactic scales

\4

Too big to fail Core vs. cusp Missing satellites

We should see more
massive dwarf galaxies
around us

DM halos have central MWV Is missing Its
cores Instead of cusps satellite galaxies
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One of the solutions = Self-interacting DM

DM interact with other light particle in the dark sector
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Sommerfeld Effect

A nonperturbative corr. to the tree level annihilation cross-section
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The Sommerfeld Factor S
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The dark sector

LD 8M¢Ta,u¢ T M2|¢‘2 o )“¢‘4 + LU(l)—breaking
_ _ T .
XY, 0" x — MXxx — <E¢XX + h.c. | .
S.Weinberg 2013, C. Garcia-Cely et al. 2013, X. Chu et al. 204

The approx. U(l) symmetry is broken by the VEV of ¢

O — Vg + p+in
the GB gets mass from U( ) breaking term

After symmetry breaking interactions-

/ /
—=p(X1X1 — X2X2) — —U(X1X2 + X2X1)

B

Two Majorana particles MMy, My + A



DM annihilates into the lighter particles-
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The potentials
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Results
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Results
Sp > 1
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Results

10_21 SRR [ RS T T T TTTT] 1
| p—wave annihilation rate |

UdSp i UMw Ucluster

10_5 10_4 10—3 10_2 10_1



Results

DM annihilation today is given by p-wave process

Annihilation Rate (ov) [cm?®s™!]
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Explanation using Particle Exchange Symmetry

* Suppose A & B are two fermions-

|BA) = (-1)"*°|AB)
+ (—=1)* from angular momentum
« (=1)** from spin

» (—1) from Wick exchange of spinors



Explanation using Particle Exchange Symmetry

. The exchange symmetry |X1X1) <> |X2X2) is not exact

xox2) =~ (=1) ¥ |xixa) + O(A/my)

* The equations can be combined Into a single equation
with an effective potential

Veg = Vi1 + (=1,

¢ =0,s=1 ¢ =1 sE=g
e — V2 Vegg = V11 + V1o



Explanation using Particle Exchange Symmetry
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Conclusions

» Contrary to our expectation, S, > 1but S, <« 1.
» Particle exchange symmetry = selection mechanism.

* The unigue velocity behaviour of the p-wave cross-section
becomes crucial.

* DM annihilation rate i1s preferably enhanced in the galaxies.

* Future direction: more than two DM states, repulsive potential
from gauge particles, multiple mediators etc.
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Gamma matrices to the leading order in v
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