The Vev Flip-Flop
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Popular DM Production Mechanisms

Thermal Freeze-Out
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Popular DM Production Mechanisms

Thermal Freeze-Out

M Observed abundance requires
(o(xx = ff)vrel) ~ 2.2 x 107%° cm? /sec
M Realized for

new particles at ~ 100 GeV
couplings ~ 0tem ~ 0.01
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Popular DM Production Mechanisms

Thermal Freeze-Out Freeze-In via Oscillation

M Observed abundance requires

(o(xx = ff)vrel) ~ 2.2 x 107%° cm? /sec . et
M Realized for o
new particles at ~ 100 GeV 5 .
couplings ~ Otem ~ 0.01 =" )
| sinééﬂ “
Bulbul et al. 1402.2301
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Popular DM Production Mechanisms

Thermal Freeze-Out Freeze-In via Oscillation

@ ObslSnSion with LHC Constraints) |

(a(xx = ff)vrel) 9.2 x 10~26 cm® /sec
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Popular DM Production Mechanisms

Thermal Freeze-Out

& ObeSSION with LHIC Constraints
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Freeze-In via Oscillation
Tension with X-Ray &

Lyman-x data
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In this Talk

New Production Mechanisms for Dark Matter:
(controlled by finite temperature effects)

M Temporarily Unstable Dark Matter
M Vev-Controlled Freeze-In

[ Outlook
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Temporarily Unstable Dark Matter
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Phase Transitions in the Early Universe

[ Properties of the primordial plasma change dramatically
during phase transitions

M Electroweak phase transition (T ~ 160 GeV)
O Electroweak symmetry broken SU(2)r, x U(1)y — U(1)em

O Higgs acquires vev vy, fermions and gauge bosons become massive
O cross-over in the SM, but can be 1st or 2nd order in BSM models

O order parameter: vy

M QCD phase transition (T ~ 200 MeV)
O chiral symmetry broken SU(3)r x SU(3)r — SU(3)v

O order parameter: (qLgr)
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Temporarily Unstable Dark Matter

@ Question: Impact of Phase Transitions on DM Physics?

M Example:
O symmetry stabilizing DM is broken in phase transition
O DM partly decays

O second phase transition restores symmetry




The Vev Flip-Flop

M Toy Model: SM + singlet scalar S

vtee — 2 HVH 4+ Ag(HTH)? — p2S7S + Ag(S15)? + A\, (HTH)(STS)

e ————SEEERE

[ Typical behavior: 2-step phase transition
Profumo et al. 0705.2425

O High T: (5 =0, (H)=0 Cline Laporte Yamashita Kraml 0905.2559
Espinosa Konstandin Riva 1107.5441

O Intermediate 7: (5) =0, (H)=0 Cui Randall Shuve 1106.4834,
Cline Kainulainen 1210.4196

O Low T: (5)=0, (H)#0 Fairbairn Hogan 1305.3452

Curtin Meade Yu 1409.0005
4 Challenge: Make DM decay/annihilation rate =(S)

. o
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The Vev Flip-Flop
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M 7>400 GeV:(5=0,(H)=0 (Ver dominated by thermal corrections)

4 T~400 GeV: S develops vev = DM unstable

M T~150 GeV: Hdevelops vev m Feedback through \,(H'H)(S'S)
s eff changes sign, (S) — 0, DM stable
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The Vev Flip-Flop
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The Vev Flip-Flop
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Scalar Potentials at Finite Temperature

M Tree level

viree — _ 2 HTH + Ay (HVH)? — 4351 + As(STS)2 + M\, (HTH)(S'S)

M Coleman—Weinberg Coleman Weinberg 1973, Dolan Jackiw 1974

Q+>®<+A+ i VOV Z/d4k 1( 2)\222>n

O Sum over n

O Regularize, evaluate integral
O Renormalize by adding counterterms

I L =
647T { 6 A? 2



http://dx.doi.org/10.1103/PhysRevD.7.1888
http://dx.doi.org/10.1103/PhysRevD.9.3320

Scalar Potentials at Finite Temperature

4 1-loop finite T Dolan Jackiw 1974
O Impose periodic boundary conditions on path integral

Z[J) = exp| -1 / a4z dby J(z)D(z — y)J ()]

O Propagator (Green’s function) at finite T'is
trle” T T(x)p(y)]
tr [6_5}]}

evaluate by solving (9,0" + m?)D(x — 1) = —i6™W(z —y) (periodic b.c.)

D(z —y) =

O 1-loop expansion of Vei: VY = itrlog D!

nzT4 .
vt da::z: log |1+ exp(— xQ—I—mi(h,S)/TQ)
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Scalar Potentials at Finite Temperature

M Resummed “Daisy” Corrections Dolan Jackiw 1974, Carrington 1992

O none-vertex bubbles, one n-vertex bubble:

= (fisoe) oy

n

O One-vertex bubbles yield thermal mass (7)

T

Vdaisy _
121 =

ni(([m2 (5, 8) + 1(T)]* — [m?(h, )]

V][OV
N—

. o
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Dark Matter Model Building Flowchart
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A Toy Model

Field Spin SM 73 mass scale
83 0 (T,3,0) 83 — 927”./383 100 GeV
X % (1,1,0) v — e™/3y TeV
Vs ? (T . 3. 0) Vg — 8_27ri/3\|13 TeV
A 5 (1,3,0) W, — e 2™/3y] TeV

Baker JK 1608.0/5/8
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https://arxiv.org/abs/1608.07578

A Toy Model

Field Spin SM 73 mass scale
0 (T,3,0) S3—> 927”:/383 100 GeV
% (1,1,0)  x — €7'/3 TeV
? (T . 3. 0) Vg — 8_27ri/3\|13 TeV
5 (1,3,0) W, — e 2™/3y] TeV
DM Candidate_,, Baker JK 1608.07578
erc
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— stabilizes DM

A Toy Model

Field Spin SM | mass scale
0 (1,3,0) S;— €7/3S; 100 GeV
:  (1,1.0) = TeV
? (T . 3. 0) Vg — 8_27ri/3\|13 TeV
5 (1,3,0) W — e 2m/3y] TeV
DM Candidatej Baker JK 1608.07578
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— stabilizes DM

A Toy Model

new scalgr/'€ld Spin  SM (Z )  massscale
(S ) 0 (1,3,00 S;— €3S, 100 GeV
” 5 (1,1,0)  x— €773, TeV
i (1,3,0) W3 — e 27/3y; TeV
f (18.0) V,efy,  Tev
DM candidate Baker JK 1608.07578
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A Toy Model
stabilizes DM

Field Spin  SM

| mass scale
3,0)  S;— €735, 100 GeV
10) \—>627ri/3\ TeV

) 3 0) \U3 — 8_27”'/3\]]3 TeV

,3, O) \Ué — e—27ri/3Wé Tev

Baker JK 1608.0/578
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DM candidate, " . ‘DM decay products

. °
.......

@ PRiISMA


https://arxiv.org/abs/1608.07578

A Toy Model
stabilizes DM

new scalareld Spin SM \23 mass scale
 =(S; ) 0 (1,3,0) S;—e*/35; 100 GeV
| 5 (1,1,0)  x— em/3 TeV
i (1,3,0) W3 — e 2™/3yg TeV
/ 2 (1,3,0) W, - e—2“"/3\U’3 TeV

Baker JK 1608.07578

DM candidate, " . _ ‘DM decay products

LDy SiNTs + vl SINTs 4y SLWE (T4)C + hec.
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A Toy Model
stabilizes DM

new scalareld Spin  SM \£3 mass scale
(S ) 0 (1,300 S;— €35, 100 GeV
| 5 (1,1,0) x — €#7/3, TeV
i (1,3,0) W3 — e 2™/3yg TeV
/ 2 (1,3,0) W, — e 2%i/3y, TeV

Baker JK 1608.07578

DM candidate, "~ __ ‘DM decay products

LDy SiNTs + vl SINTs 4y SLWE (T4)C + hec.

M (S leads to mixing between y, W3, W3’ alters Y3, W3’ masses
4 x decays via y = W3, Sz when (S) =0


https://arxiv.org/abs/1608.07578

Cosmological Evolution
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Parameter Space

Baker JK 1608.07578
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Parameter Space

Baker JK 1608.07578
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Parameter Space

Baker JK 1608.07578
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Parameter Space

Baker JK 1608.07578
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Parameter Space

Baker JK 1608.07578
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Vev-Controlled Freeze-In
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Vev-Controlled Freeze-In

[ Idea: DM production rate depends on a vev

M Toy Model: Fermionic Higgs Portal
SM + fermionic DM ¥ + singlet scalar S

LDy, Syx — Ve

[ Scalar Potential (same as before)

vtree — 2 HTH 4 Ag (HVH)? — 4281S + As(STS)? + A\, (HTH)(S1S)

M If ms<2m,y, main production channels are H'H, SS— xx

[ Only open when (S5)#0 Baker Breitbach JK Mittnacht, in preparation
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Vev-Controlled Freeze-In
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Vev-Controlled Freeze-In

Baker Breitbach
JK Mittnacht,(in preparation)
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Vev-Controlled Freeze-In
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Outlook
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Future Directions

Related Mechanisms

M T-dependence of masses opens/
closes DM production channels

M T-dependent vev allows DM to
temporarily mix with
strongly coupled particles

R Qew

Baker Breitbach JK Mittnacht (in preparation)
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phase transitions in vev flip-flop
often 1st order = G\ signals
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http://dx.doi.org/10.1103/PhysRevD.30.272
https://arxiv.org/abs/1504.07263

Summary
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Take Home Message

M Thermal effects may be crucial to understand DM production
O affect DM stability
O open/close production channel

1.6

Vev induoed
Asg = =01, Ay = G
A =00 = 1
= 130 GeV
T = 50 GeV

100 150 00
ms(T = 0) [GeV]

Higgs portal coupling A\py
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Take Home Message

M Thermal effects may be crucial to understand DM production
O affect DM stability
O open/close production channel

....

Higgs portal coupling A\py

Vev induoec
Asyg = =01, Agqy = G
A =0, A= 1
= 130 GeV
T = 500 GeV

100 150 200
ms(T = 0) [GeV]
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Thank you!
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