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New Production Mechanisms for Dark Matter: 
(controlled by finite temperature effects)

Temporarily Unstable Dark Matter

Vev-Controlled Freeze-In

Outlook
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In this Talk



Temporarily Unstable Dark Matter
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Phase Transitions in the Early Universe

Properties of the primordial plasma change dramatically 
during phase transitions

Electroweak phase transition (T ~ 160 GeV)
Electroweak symmetry broken

Higgs acquires vev vH, fermions and gauge bosons become massive

cross-over in the SM, but can be 1st or 2nd order in BSM models

order parameter: vH

QCD phase transition (T ~ 200 MeV)
chiral symmetry broken

order parameter: ⟨qL̅qR⟩

SU(3)L ⇥ SU(3)R ! SU(3)V

SU(2)L ⇥ U(1)Y ! U(1)em
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Temporarily Unstable Dark Matter

Question: Impact of Phase Transitions on DM Physics?

Example:
symmetry stabilizing DM is broken in phase transition

DM partly decays

second phase transition restores symmetry
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The Vev Flip-Flop

Toy Model: SM + singlet scalar S

Typical behavior: 2-step phase transition
High T: ⟨S⟩ = 0, ⟨H⟩ = 0

Intermediate T: ⟨S⟩ ≠ 0, ⟨H⟩ = 0

Low T: ⟨S⟩ = 0, ⟨H⟩ ≠ 0

Challenge: Make DM decay/annihilation rate ∝⟨S⟩

Profumo et al. 0705.2425 
Cline Laporte Yamashita Kraml 0905.2559 

Espinosa Konstandin Riva 1107.5441 
Cui Randall Shuve 1106.4834, 

Cline Kainulainen 1210.4196 
Fairbairn Hogan 1305.3452 

Curtin Meade Yu 1409.0005

V
tree = �µ

2
H
H

†
H + �H(H†

H)2 � µ
2
S
S
†
S + �S(S

†
S)2 + �p(H

†
H)(S†

S)

https://arxiv.org/abs/0705.2425
https://arxiv.org/abs/0905.2559
https://arxiv.org/abs/1107.5441
https://arxiv.org/abs/1106.4834
https://arxiv.org/abs/1210.4196
https://arxiv.org/abs/1305.3452
https://arxiv.org/abs/1409.0005


8

The Vev Flip-Flop

T > 400 GeV: ⟨S⟩ = 0, ⟨H⟩ = 0 (Veff dominated by thermal corrections)
T ~ 400 GeV: S develops vev ➠ DM unstable
T ~ 150 GeV: H develops vev ➠ Feedback through  

➠ mS,eff changes sign, ⟨S⟩ → 0, DM stable
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The Vev Flip-Flop

Computed using CosmoTransitions  
Wainwright 1109.4189, Kozaczuk Profumo Haskins Wainwright 1407.4134

https://arxiv.org/abs/1109.4189
https://arxiv.org/abs/1407.4134
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Scalar Potentials at Finite Temperature

Tree level

Coleman—Weinberg

Sum over n
Regularize, evaluate integral
Renormalize by adding counterterms

Coleman Weinberg 1973, Dolan Jackiw 1974

V
tree = �µ

2
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H

†
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H)2 � µ
2
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†
S + �S(S

†
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†
H)(S†
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http://dx.doi.org/10.1103/PhysRevD.7.1888
http://dx.doi.org/10.1103/PhysRevD.9.3320


1-loop finite T
Impose periodic boundary conditions on path integral

Propagator (Green’s function) at finite T is 
 
 
 
evaluate by solving                                                              (periodic b.c.)
1-loop expansion of Veff:
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Scalar Potentials at Finite Temperature

Dolan Jackiw 1974

Z[J ] = exp[� 1
2
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http://dx.doi.org/10.1103/PhysRevD.9.3320


Resummed “Daisy” Corrections
n one-vertex bubbles, one n-vertex bubble:

One-vertex bubbles yield thermal mass Π(T)
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Scalar Potentials at Finite Temperature

Dolan Jackiw 1974, Carrington 1992
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http://dx.doi.org/10.1103/PhysRevD.9.3320
http://dx.doi.org/10.1103/PhysRevD.45.2933
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Dark Matter Model Building Flowchart
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A Toy Model

Baker JK 1608.07578

https://arxiv.org/abs/1608.07578
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A Toy Model
stabilizes DM

DM candidate

new scalar

DM decay products

L � y�S
†
3�̄ 3 + y0�S

†
3�̄ 

0
3 + y ✏

ijkSi
3 

j
3( 

0k
3 )c + h.c.

Baker JK 1608.07578

https://arxiv.org/abs/1608.07578


⟨S⟩ leads to mixing between χ, ψ3, ψ3’ alters ψ3, ψ3’ masses
χ decays via χ → W ψ3, S ψ3 when ⟨S⟩ ≠ 0
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Cosmological Evolution
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Parameter Space

Baker JK 1608.07578

https://arxiv.org/abs/1608.07578
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Parameter Space

no vev flip-flop

Baker JK 1608.07578

https://arxiv.org/abs/1608.07578
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Parameter Space

no vev flip-flop
ψ3, ψ3’ freeze out too early
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Parameter Space
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Parameter Space

no vev flip-flop
ψ3, ψ3’ freeze out too early

χ relic abundance too high

LHC constraintBaker JK 1608.07578

https://arxiv.org/abs/1608.07578


Vev-Controlled Freeze-In
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Vev-Controlled Freeze-In

Idea: DM production rate depends on a vev

Toy Model: Fermionic Higgs Portal  
SM + fermionic DM χ + singlet scalar S 

Scalar Potential  (same as before)

If mS < 2 mχ, main production channels are H†H, SS → χ̅χ

Only open when ⟨S⟩ ≠ 0

V
tree = �µ

2
H
H

†
H + �H(H†

H)2 � µ
2
S
S
†
S + �S(S

†
S)2 + �p(H

†
H)(S†

S)

L � y�S�̄�� V tree

Baker Breitbach JK Mittnacht, in preparation
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Vev-Controlled Freeze-In

L � y�S�̄�� V tree
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Vev-Controlled Freeze-In
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Outlook
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Future Directions

Related Mechanisms

T-dependence of masses opens/ 
closes DM production channels 

T-dependent vev allows DM to  
temporarily mix with  
strongly coupled particles

Gravitational Waves

phase transitions in vev flip-flop 
often 1st order  ➠  GW signals

Baker Breitbach JK Mittnacht (in preparation)
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http://dx.doi.org/10.1103/PhysRevD.30.272
https://arxiv.org/abs/1504.07263


Summary
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Take Home Message

Thermal effects may be crucial to understand DM production
affect DM stability
open/close production channel
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Thank you!


