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Importance of mass measurement

In the Standard Model, mH is the only free parameter of the Higgs sector

The Higgs sector has two parameters: µ and λ related

to the VEV υ and the Higgs mass mH by: µ =
mH√
2

and λ =
1

2

(mH

υ

)2
. Since υ =

√
1√
2GF

is known,

mH is the only free parameter.
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⇒ everything else is calculable, once mH is given.

[https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR]
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Decay channels for mass measurement

H → 4` H → γγ

PRO : good signal/background ratio ∼ 1/1

CON : only ∼ 100 events

PRO : higher statistics

CON : signal/background ∼ 2%

The full final state is reconstructed, and measured with high energy precision.

⇒ invariant mass can be measured with O (1 GeV) resolution
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Energy calibration
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Calibration

Simulation is accurate, but residual details impact the energy scale and resolution:

for muons: energy loss in material, B-field description, detector geometry, misalignments

for electrons/photons: energy loss before the EM calorimeter (ECAL), shower modelling, layers intercalibration
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Muon calibration
Data-driven pT corrections derived from J/ψ → µ+µ−

and Z → µ+µ−

δpT =
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k

ck(η, φ)(pT)k

Corrected MC is checked against data in Z → µ+µ−
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Calibration

Simulation is accurate, but residual details impact the energy scale and resolution:

for muons: energy loss in material, B-field description, detector geometry, misalignments

for electrons/photons: energy loss before the EM calorimeter (ECAL), shower modelling, layers intercalibration

Electron/photon calibration
Energy deposited in EM cluster is corrected for:

energy loss upstream the ECAL

lateral leakage out of cluster

leakage beyond the ECAL

impact point in the ECAL

All correction are optimized on simulation, separately for

electrons, unconverted photons, converted photons, with

a BDT technique.

Intercalibration of ECAL layers checked with muons.

Material in front of ECAL checked with electron longitu-

dinal shower shape

Energy scale adjustments (as functions of η) are derived

from Z → e+e−

M. Fanti (Physics Dep., UniMi) title in footer 6 / 20



Calibration

Simulation is accurate, but residual details impact the energy scale and resolution:

for muons: energy loss in material, B-field description, detector geometry, misalignments

for electrons/photons: energy loss before the EM calorimeter (ECAL), shower modelling, layers intercalibration

Electron/photon calibration
Energy deposited in EM cluster is corrected for:

energy loss upstream the ECAL

lateral leakage out of cluster

leakage beyond the ECAL

impact point in the ECAL

All correction are optimized on simulation, separately for

electrons, unconverted photons, converted photons, with

a BDT technique.

Intercalibration of ECAL layers checked with muons.

Material in front of ECAL checked with electron longitu-

dinal shower shape

Energy scale adjustments (as functions of η) are derived

from Z → e+e−

for electrons:

 [MeV]eem

E
ve

nt
s 

/ 0
.5

 G
eV

0

200

400

600

800

1000

1200
310×

 PreliminaryATLAS
-1=13 TeV, 36.1 fbs

ee→Z

Calibrated data
Corrected MC
Scale factor uncert.

 [GeV]eem
80 82 84 86 88 90 92 94 96 98 100

D
at

a 
/ M

C

0.9
0.95

1
1.05

1.1

checked on Z → e+e−

M. Fanti (Physics Dep., UniMi) title in footer 6 / 20



Calibration

Simulation is accurate, but residual details impact the energy scale and resolution:

for muons: energy loss in material, B-field description, detector geometry, misalignments

for electrons/photons: energy loss before the EM calorimeter (ECAL), shower modelling, layers intercalibration

Electron/photon calibration
Energy deposited in EM cluster is corrected for:

energy loss upstream the ECAL

lateral leakage out of cluster

leakage beyond the ECAL

impact point in the ECAL

All correction are optimized on simulation, separately for

electrons, unconverted photons, converted photons, with

a BDT technique.

Intercalibration of ECAL layers checked with muons.

Material in front of ECAL checked with electron longitu-

dinal shower shape

Energy scale adjustments (as functions of η) are derived

from Z → e+e−

for electrons:

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2
eη

0.02−

0.015−

0.01−

0.005−

0

0.005

0.01

0.015

0.02α∆ ATLAS Preliminary

-1 = 13 TeV, 0.7 fbs

Calibration uncertainty

ee measurement→ψJ/

. . . and on J/ψ → e+e−

M. Fanti (Physics Dep., UniMi) title in footer 6 / 20



Calibration

Simulation is accurate, but residual details impact the energy scale and resolution:

for muons: energy loss in material, B-field description, detector geometry, misalignments

for electrons/photons: energy loss before the EM calorimeter (ECAL), shower modelling, layers intercalibration

Electron/photon calibration
Energy deposited in EM cluster is corrected for:

energy loss upstream the ECAL

lateral leakage out of cluster

leakage beyond the ECAL

impact point in the ECAL

All correction are optimized on simulation, separately for

electrons, unconverted photons, converted photons, with

a BDT technique.

Intercalibration of ECAL layers checked with muons.

Material in front of ECAL checked with electron longitu-

dinal shower shape

Energy scale adjustments (as functions of η) are derived

from Z → e+e−

for photons:

 [GeV]γ
T

p
15 20 25 30 35 40 45 50

α ∆
0.01−

0.005−

0

0.005

0.01

Calibration uncertainty

 Measurementγll→Z

 PreliminaryATLAS
-1 = 13 TeV, 36.1 fbs

Unconverted photons

 [GeV]γ
T

p
15 20 25 30 35 40 45 50

α ∆

0.01−

0.005−

0

0.005

0.01

Calibration uncertainty

 Measurementγll→Z

 PreliminaryATLAS
-1 = 13 TeV, 36.1 fbs

Converted photons

checked on Z → ``γ

M. Fanti (Physics Dep., UniMi) title in footer 6 / 20



Measurement in H → 4` channel
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Event selection

Select 4-lepton events of the type `+1 `
−
1 `

+
2 `
−
2 — “leading” ``-pair is that with m`` closest to mZ .

m
(lead)
`` ∈ [50; 106] GeV — constrained to mZ in final fit

m
(sublead)
`` > 12 GeV

m4` ∈ [110; 135] GeV

Leptons must pass identification and isolation criteria.

Events are classified by flavour of (``)(lead) and (``)(sublead)

Discrimination between H → ZZ ∗ → 4` and irreducible background ZZ → 4` is achieved through a BDT score with

inputs:

p4`T , η4` , DZZ∗ ≡ ln

(
|MH→ZZ∗|2

|MZZ |2

)

⇒ 16 event categories : (4 lepton-flavour categories) ⊗ (4 BDT score bins)
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Signal & background models

Signal

Invariant mass pdf S(m4`) obtained per-event as S(m4`) =

∫
dm

(true)
4` · F (m4` −m

(true)
4` ) · BW (m

(true)
4` |mH)

Experimental response function F (m4`−m
(true)
4` ) depends on energy response functions of the 4 leptons (depending on

lepton flavour, η, pT).

Each energy response is modeled by 3 Gaussians ⇒ convolution of 34 = 81 Gaussians

⇒ further reduced to 4 Gaussians that mimic at best the complete parametrization

Background

irreducible ZZ → 4`:

NLO simulation, scaled to NNLO calculation

reducible (Z+jets, tt̄, WZ processes):

LO or NLO simulation, scaled to data control regions, obtained by relaxing the isolation and inverting the impact

parameter requirement, on the subleading `` pair.
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H → 4` : invariant mass spectra

inclusive
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Fit of mH in the H → 4` channels
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⇒ best channels are 4µ and 2e2µ — where subleading `` pair is µµ (leading `` pair is always constrained to mZ )

m
(4`)
H = 124.88 ± 0.37(stat) ± 0.05(syst) GeV

(expected: ± 0.35 GeV — dominated by statistics)
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Measurement in H → γγ channel
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Event selection

2 photons passing identification and isolation criteria

E
(lead)
T > 0.35 ·mγγ && E

(sublead)
T > 0.25 ·mγγ

Diphoton vertex determined by a NN with inputs:

photon pointing in ECAL (and possibly in tracker if

converted)

info on primary vertices

(recall: mγγ =

√
E
(lead)
T E

(sublead)
T (1− cosα))

⇒ vertex identification/resolution has negligible impact

on mγγ.
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Background: mostly irreducible non-resonant γγ (70%–

80%)

Background composition (γγ, γj, jj) estimated by invert-

ing identification and/or isolation

In the following mγγ fits, background pdf(mγγ) are mod-

elled by empirical analytical functions, constrained by ex-

tending the fit to the sidebands
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Event categorization

Fraction of Signal Process / Category
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VH dilep
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Simulation PreliminaryATLAS  GeV = 125.09
H

,  mγγ→H

ggH VBF WH ZH ggZH ttH bbH tHqb tHW

31 categories, chosen to optimize different production

modes and improve sensitivity to signal

pdf(mγγ) modelled as 2-sided crystal ball
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– σ = 1.61 GeV

– σ = 2.14 GeV

⇒ 31 different signal models

same value of mH

different Gaussian resolution

different non-Gaussian tails
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H → γγ : invariant mass spectra

inclusive
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Result for mH in the H → γγ channels

Cross-checks:

 [GeV]i∆

5− 4− 3− 2− 1− 0 1 2 3 4 5

BB

BE

EE

CC

UC

UU

 PreliminaryATLAS

γγ→H

-1=13 TeV, 36.1 fbs
split by

barrel/endcap

split by

conversion

status

m
(γγ)
H = 125.11 ± 0.21(stat) ± 0.36(syst) GeV

(expected: ± 0.25(stat) ± 0.33(syst) GeV)
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Combination
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Combination of H → 4` ⊕ H → γγ

m
(4`)
H = 124.88 ± 0.37(stat) ± 0.05(syst) GeV

m
(γγ)
H = 125.11 ± 0.21(stat) ± 0.36(syst) GeV

∆mH = 0.23 ± 0.42(stat) ± 0.36(syst) GeV

Combined fit:

5 independent signal strengths:

µ4`, µγγgg , µ
γγ
VBF , µ

γγ
VH , µ

γγ
ttH

Main correlated systematic uncertainties:

calibration of e/γ ; pileup modelling ; luminosity

 [GeV]Hm

124 125 126

)
Λ

­2
ln

(

0

2

4

6

8

10

12

14 Combined
 4l→ ZZ* →H 

γγ →H 
Stat. only

ATLAS  Preliminary
­1 = 13 TeV, 36.1 fbs

σ1

σ2

 [GeV]Hm
124 124.5 125 125.5 126 126.5

Total Stat. Syst. PreliminaryATLAS
-1 = 13 TeV, 36.1 fbs

  Total      Stat.   Syst.

Combined  0.21) GeV± 0.19 ± 0.28 ( ±124.98 

γγ→H  0.36) GeV± 0.21 ± 0.42 ( ±125.11 

l4→ZZ*→H  0.05) GeV± 0.37 ± 0.37 ( ±124.88 

LHC Run 1  0.11) GeV± 0.21 ± 0.24 ( ±125.09 

Preliminary combined Higgs mass — from ATLAS Run-II:

mH = 124.98 ± 0.19(stat) ± 0.21(syst) GeV

(compare with Run-1 ATLAS⊕CMS result: mH = 125.09 ± 0.21(stat) ± 0.11(syst) GeV)
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BACKUP
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ATLAS⊕CMS combined measurement, run-1

Using the H → γγ and H → ZZ ∗ → 4` decay channels

that allow a full kinematics reconstruction with good invariant mass resolution (O (1 GeV))

(main source of systematic: energy scale)

 [GeV]Hm
123 124 125 126 127 128 1290.5−

9

Total Stat. Syst.CMS and ATLAS
 Run 1LHC 						Total      Stat.    Syst.

l+4γγ CMS+ATLAS  0.11) GeV± 0.21 ± 0.24 ( ±125.09 

l 4CMS+ATLAS  0.15) GeV± 0.37 ± 0.40 ( ±125.15 

γγ CMS+ATLAS  0.14) GeV± 0.25 ± 0.29 ( ±125.07 

l4→ZZ→H CMS  0.17) GeV± 0.42 ± 0.45 ( ±125.59 

l4→ZZ→H ATLAS  0.04) GeV± 0.52 ± 0.52 ( ±124.51 

γγ→H CMS  0.15) GeV± 0.31 ± 0.34 ( ±124.70 

γγ→H ATLAS  0.27) GeV± 0.43 ± 0.51 ( ±126.02 

m̂H = 125.09 ± 0.21(stat) ± 0.11(syst) GeV
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