

Pinning down the anomalous $WW\gamma$ coupling at the LHC

Disha Bhatia

Ongoing work in collaboration with Ushoshi Maitra, Sreerup Raychaudhuri

December 14, 2017

Towards indirect probes...

- Direct searches for new particles have resulted in null results so far

Towards indirect probes...

- Direct searches for new particles have resulted in null results so far
 - which has set up higher and higher limits on the masses of these particles.

Towards indirect probes...

- Direct searches for new particles have resulted in null results so far
 - which has set up higher and higher limits on the masses of these particles.
- NP if present, may show its presence indirectly \Rightarrow more precision studies required.

Towards indirect probes...

- Direct searches for new particles have resulted in null results so far
 - which has set up higher and higher limits on the masses of these particles.
- NP if present, may show its presence indirectly \Rightarrow more precision studies required.
- In this context, we shall focus on the indirect effect of NP in $WW\gamma$ coupling.

Towards indirect probes...

- Direct searches for new particles have resulted in null results so far
 - which has set up higher and higher limits on the masses of these particles.
- NP if present, may show its presence indirectly \Rightarrow more precision studies required.
- In this context, we shall focus on the indirect effect of NP in $WW\gamma$ coupling.
 - and determine the kinematic variables which can probe these effects better at the upcoming runs at the LHC.

Gauge self interactions

- The gauge kinetic term in the SM

$$\mathcal{L} = -\frac{1}{4} \text{Tr}[W_{\mu\nu} W^{\mu\nu}] \Rightarrow \textcolor{blue}{WW\gamma}, WWZ, \\ WW\gamma\gamma, WWZZ, WWW$$

Gauge self interactions

- The gauge kinetic term in the SM

$$\mathcal{L} = -\frac{1}{4} \text{Tr}[W_{\mu\nu} W^{\mu\nu}] \Rightarrow \textcolor{blue}{WW\gamma}, WWZ, \\ WW\gamma\gamma, WWZZ, WWW$$

- The $WW\gamma$ interaction in SM correspond to

$$\mathcal{L}_{WW\gamma} = -i e (W_{\mu\nu}^\dagger W^\mu A^\nu - W_\mu^\dagger A_\nu W_{\mu\nu} + W_\mu^\dagger W_\nu A^{\mu\nu})$$

Gauge self interactions

- The gauge kinetic term in the SM

$$\mathcal{L} = -\frac{1}{4} \text{Tr}[W_{\mu\nu} W^{\mu\nu}] \Rightarrow \textcolor{blue}{WW\gamma}, WWZ, \\ WW\gamma\gamma, WWZZ, WWW$$

- The $WW\gamma$ interaction in SM correspond to

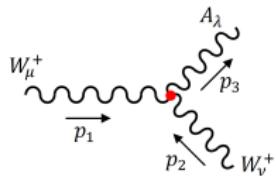
$$\mathcal{L}_{WW\gamma} = -i e (W_{\mu\nu}^\dagger W^\mu A^\nu - W_\mu^\dagger A_\nu W_{\mu\nu} + W_\mu^\dagger W_\nu A^{\mu\nu})$$

- Anomalous couplings after EWSB can be parameterized based on gauge invariance

$$\mathcal{L}_{aWW\gamma} = \kappa_\gamma W_\mu^+ W_\nu^- A_{\mu\nu} + \frac{\lambda_\gamma}{m_W^2} W_{\mu\nu}^+ W_{\nu\lambda}^- A_{\lambda\mu}$$

where, $\kappa_\gamma = \Delta\kappa_\gamma + 1$

Gauge self interactions continued ...



$$i\Gamma_{\mu\nu\lambda}^{WW\gamma} = i e \left[T_{\mu\nu\lambda}^{(0)}(p_1, p_2, p_3) + \Delta\kappa_\gamma T_{\mu\nu\lambda}^{(1)}(p_1, p_2, p_3) + \frac{\lambda_\gamma}{M_W^2} T_{\mu\nu\lambda}^{(2)}(p_1, p_2, p_3) \right]$$

where,

$$T_{\mu\nu\lambda}^{(0)} = g_{\mu\nu} (p_1 - p_2)_\lambda + g_{\nu\lambda} (p_2 - p_3)_\mu + g_{\lambda\mu} (p_3 - p_1)_\nu$$

$$T_{\mu\nu\lambda}^{(1)} = g_{\mu\lambda} p_{3\nu} - g_{\nu\lambda} p_{3\mu}$$

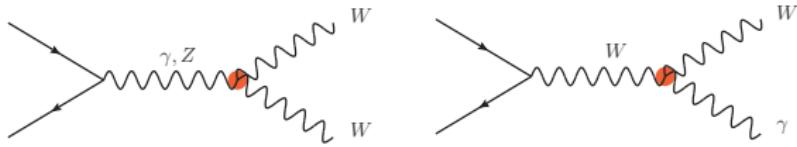
$$\begin{aligned} T_{\mu\nu\lambda}^{(2)} = & p_{1\lambda} p_{2\mu} p_{3\nu} - p_{1\nu} p_{2\lambda} p_{3\mu} - g_{\mu\nu} (p_2 \cdot p_3 p_{1\lambda} - p_3 \cdot p_1 p_{2\lambda}) \\ & - g_{\nu\lambda} (p_3 \cdot p_1 p_{2\mu} - p_1 \cdot p_2 p_{3\mu}) - g_{\mu\lambda} (p_1 \cdot p_2 p_{3\nu} - p_2 \cdot p_3 p_{1\nu}) \end{aligned}$$

Anomalous $WW\gamma$ coupling at the past and present colliders

- LEP: $ee \rightarrow WW$ and LHC: $pp \rightarrow WW, W\gamma, WZ$

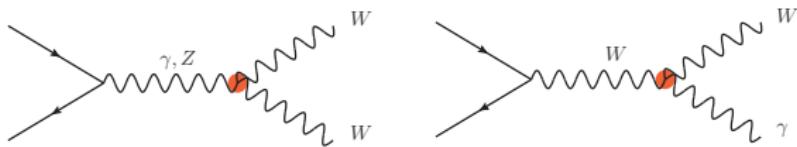
Anomalous $WW\gamma$ coupling at the past and present colliders

- LEP: $ee \rightarrow WW$ and LHC: $pp \rightarrow WW, W\gamma, WZ$
- WW probes both $WW\gamma$ and WWZ anomalous couplings.
(by writing $SU(2)_L \times U(1)_Y$ operators the two couplings can be related)



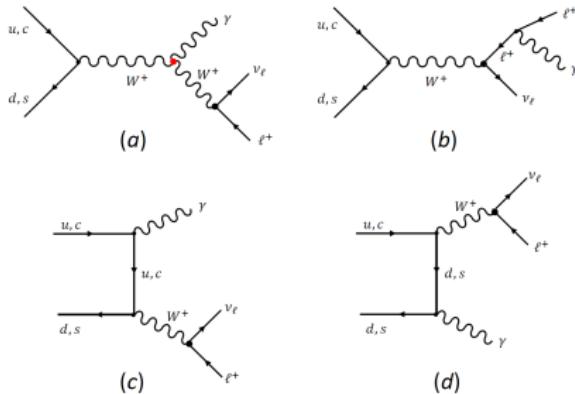
Anomalous $WW\gamma$ coupling at the past and present colliders

- LEP: $ee \rightarrow WW$ and LHC: $pp \rightarrow WW, W\gamma, WZ$
- WW probes both $WW\gamma$ and WWZ anomalous couplings.
(by writing $SU(2)_L \times U(1)_Y$ operators the two couplings can be related)



- However an independent probe/check of $WW\gamma$ and WWZ coupling is extremely important.

Our process



Strategy followed in the analysis:

- To enhance the sensitivities of the TGC's, we have optimized cuts
- Determine kinematic variables to render better separation between signal and backgrounds.

The matrix amplitude is parameterized as

$$\mathcal{M} = \mathcal{M}_{\text{SM}} + \Delta\kappa_\gamma \mathcal{M}_\kappa + \frac{\lambda_\gamma}{M_W^2} \mathcal{M}_\lambda$$

$$\sigma = \sigma_{\text{SM}} + \Delta\kappa_\gamma \sigma_{\kappa\text{SM}} + (\Delta\kappa_\gamma)^2 \sigma_\kappa + \lambda_\gamma \sigma_{\lambda\text{SM}} + (\lambda_\gamma)^2 \sigma_\lambda + \Delta\kappa_\gamma \lambda_\gamma \sigma_{\kappa,\lambda}$$

Cuts used in the analysis

Cuts on the final state objects photon, lepton and missing energy:

- ① Transverse momentum: $p_{T\gamma} > 60$ GeV, $p_{T\ell} > 30$ GeV, $E_{T\text{miss}} > 30$ GeV.
- ② Pseudo-rapidity: $\eta_\ell < 2.5$ and $\eta_\gamma < 2.5$.
- ③ $\Delta R_{\ell\gamma} > 0.4$.
- ④ Transverse mass: $M_T^W > 30$ GeV.

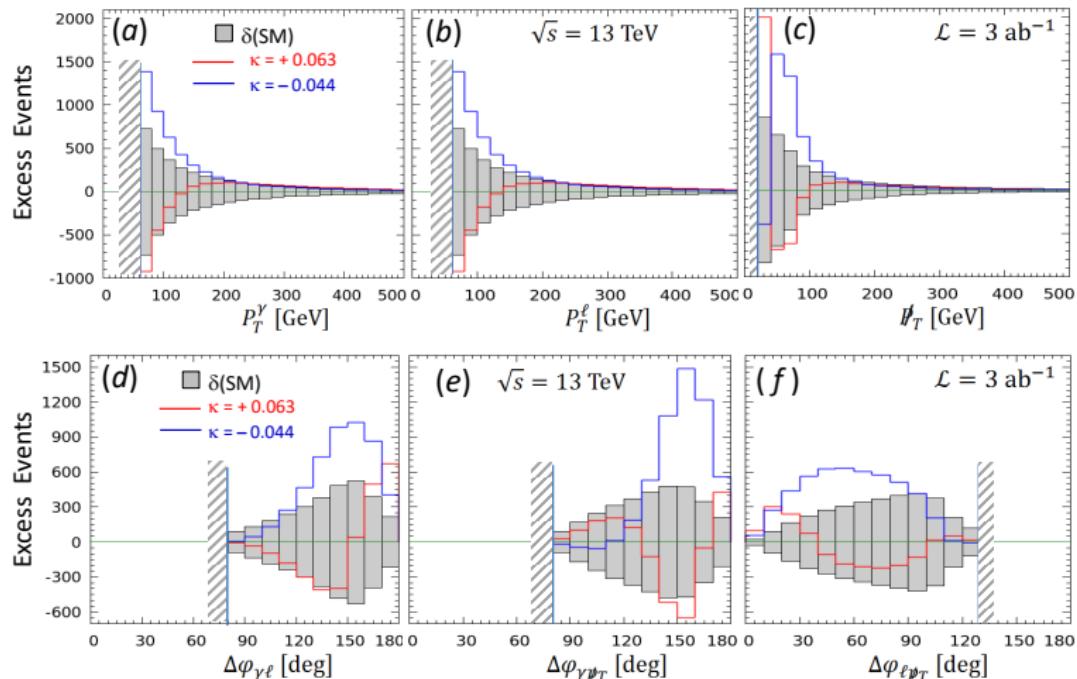
Efficiency with respect to different cuts:

Cuts	SM Background%	Signal($\Delta\kappa$ only)%	Signal (λ only)%
$p_{T\gamma} > 60$ GeV	100	100	100
$p_{T\ell} > 30$ GeV	78.6	84.4	88.6
$E_{T\text{miss}} > 30$ GeV	40.5	68.6	77.8
$M_{T^W} > 30$ GeV	35.8	56.4	60.2
$\eta_\gamma < 2.5$	26.7	47.0	58.0
$\eta_\ell < 2.5$	20.3	40.9	56.2
$\Delta R_{\gamma\ell}$	18.9	40.9	56.1

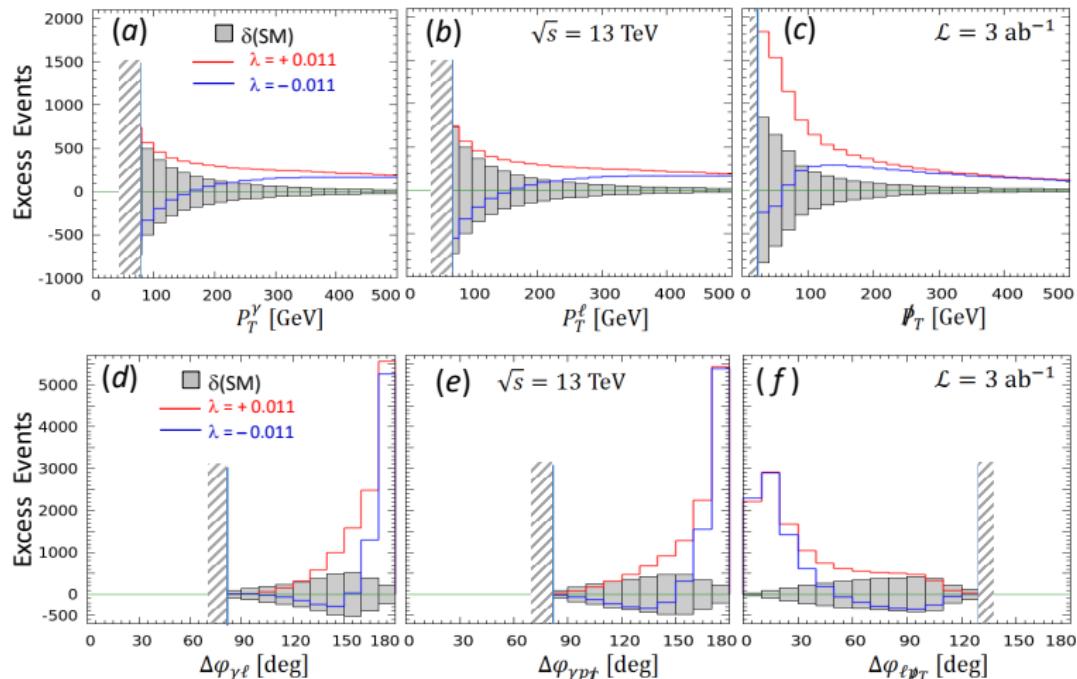
Kinematic variables used to improve the limits

- The NP operators contain derivative couplings.
- Kinematic variables for best separation between signal and background:
 - Transverse momentum (used mostly for the analyses)
 - Azimuthal angles ($\Delta\phi_{a,b} \equiv \frac{p_{T a} \cdot p_{T b}}{p_{T a} p_{T b}}$)
- Variables used for our analysis:
 $p_{T\gamma}$, $p_{T\ell}$, $E_{T\text{miss}}$
 $\Delta\phi_{(\gamma,\ell)}$, $\Delta\phi_{(\gamma,E_{T\text{miss}})}$ and $\Delta\phi_{(\ell,E_{T\text{miss}})}$.

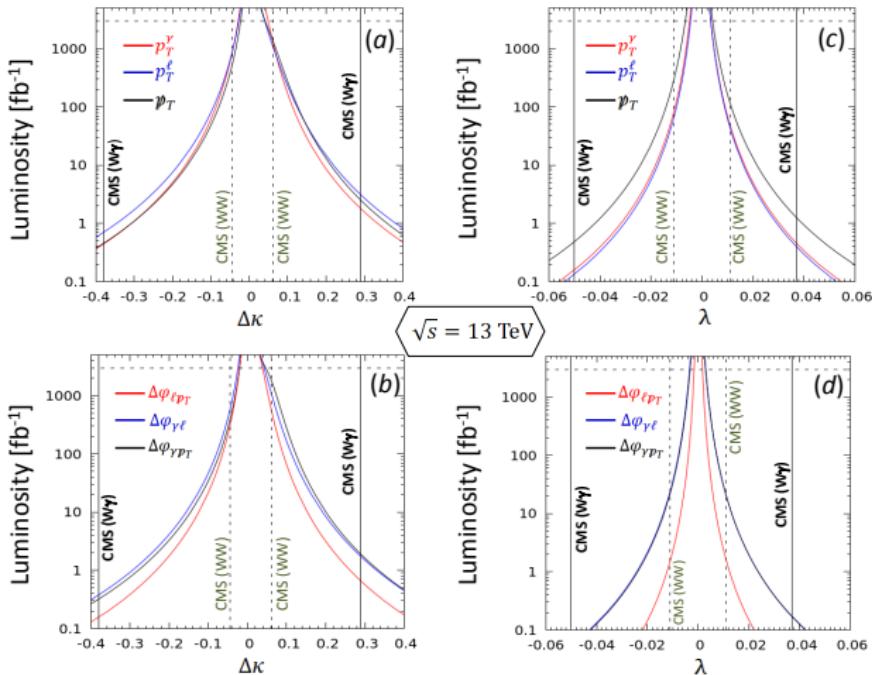
Distributions: $\Delta\kappa_\gamma$



Distributions: λ_γ

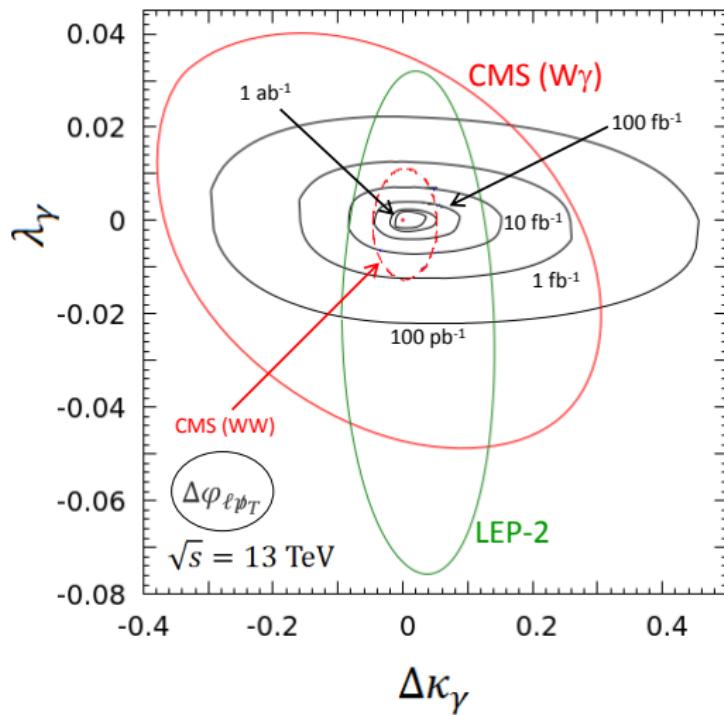


Projection of analysis: 1d Analysis



Projected regions which could be probed with significances 2σ

Projection of limits: 2d analysis



Summary and future directions

- We did a detailed study of $pp \rightarrow W\gamma \rightarrow \ell\nu\gamma$ to constrain the anomalous triple gauge boson couplings.
- Transverse momentum and Azimuthal angle are good discriminators.
- The NP effects in TGC will in general also modify the other couplings, incorporating them in a consistent framework has never been performed and one could look forward to such analyses in future.

Back-up slides

Mapping TGV's to higher dimensional operators

The dimension-6 operators which give rise to anomalous gauge couplings are:

$$\begin{aligned}\mathcal{O}_{WWW} &= \text{Tr}[W_{\mu\nu} W^{\nu\lambda} W_{\lambda}^{\mu}] \\ \mathcal{O}_W &= (D_{\mu}\Phi)^{\dagger} W^{\mu\nu} (D_{\nu}\Phi) \\ \mathcal{O}_B &= (D_{\mu}\Phi)^{\dagger} B^{\mu\nu} (D_{\nu}\Phi)\end{aligned}$$

with,

$$\Delta\kappa_{\gamma} = 1 + (c_W + c_B) \frac{M_W^2}{2\Lambda^2}, \lambda_{\gamma} = c_{WWW} \frac{3g^2 M_W^2}{2\Lambda^2}$$

Similarly the anomalous WWZ couplings is given as

$$\lambda_Z = \lambda_{\gamma}, \Delta\kappa_Z = \Delta g_1^Z - \tan^2 \theta_W \Delta\kappa_{\gamma}$$

Current limits on anomalous couplings

