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Introduction Duality in N = 4 Duality in N = 1 N = 3 Conclusions

QFTs from their perturbative expansion

Most of the talks we have heard in
this conference approach particle
physics from the point of view of
perturbation theory: we have a
collection of almost free fields, which
interact via Feynman diagrams, in an
order-by-order expansion.

This is a fantastically useful and powerful approach.
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Limitations of the perturbative viewpoint

The Feynman diagram approach applies naturally for quantum field
theories with a parameter g such that when g � 1 we have
semiclassical expansion in terms of weakly interacting free fields.

In the last few years we have learned various striking facts regarding
what happens when g is not very small:

Both g � 1 and g � 1 can have semiclassical expansions, but
these expansions are generically different. (�Duality)
We have found families of theories where the g � 1 limit is
understandable in terms of some fundamental “generalized
matter” (∼unparticle) building blocks. (�Isolated SCFTs)

Supersymmetry is important to make progress here.
Historically N = 4 and N = 2 first, and then N = 3 and N = 1.



Introduction Duality in N = 4 Duality in N = 1 N = 3 Conclusions

Limitations of the perturbative viewpoint

The Feynman diagram approach applies naturally for quantum field
theories with a parameter g such that when g � 1 we have
semiclassical expansion in terms of weakly interacting free fields.

In the last few years we have learned various striking facts regarding
what happens when g is not very small:

Both g � 1 and g � 1 can have semiclassical expansions, but
these expansions are generically different. (�Duality)

We have found families of theories where the g � 1 limit is
understandable in terms of some fundamental “generalized
matter” (∼unparticle) building blocks. (�Isolated SCFTs)

Supersymmetry is important to make progress here.
Historically N = 4 and N = 2 first, and then N = 3 and N = 1.



Introduction Duality in N = 4 Duality in N = 1 N = 3 Conclusions

Limitations of the perturbative viewpoint

The Feynman diagram approach applies naturally for quantum field
theories with a parameter g such that when g � 1 we have
semiclassical expansion in terms of weakly interacting free fields.

In the last few years we have learned various striking facts regarding
what happens when g is not very small:

Both g � 1 and g � 1 can have semiclassical expansions, but
these expansions are generically different. (�Duality)
We have found families of theories where the g � 1 limit is
understandable in terms of some fundamental “generalized
matter” (∼unparticle) building blocks. (�Isolated SCFTs)

Supersymmetry is important to make progress here.
Historically N = 4 and N = 2 first, and then N = 3 and N = 1.



Introduction Duality in N = 4 Duality in N = 1 N = 3 Conclusions

Limitations of the perturbative viewpoint

The Feynman diagram approach applies naturally for quantum field
theories with a parameter g such that when g � 1 we have
semiclassical expansion in terms of weakly interacting free fields.

In the last few years we have learned various striking facts regarding
what happens when g is not very small:

Both g � 1 and g � 1 can have semiclassical expansions, but
these expansions are generically different. (�Duality)
We have found families of theories where the g � 1 limit is
understandable in terms of some fundamental “generalized
matter” (∼unparticle) building blocks. (�Isolated SCFTs)

Supersymmetry is important to make progress here.
Historically N = 4 and N = 2 first, and then N = 3 and N = 1.



Introduction Duality in N = 4 Duality in N = 1 N = 3 Conclusions

Duality

Duality is the phenomenon in quantum field theory where the same
quantum theory has more than one semiclassical description. This
is possible since in quantum theory we are summing over fields, so
the sum can be reexpressed in different variables
∫

[DφA]Oa(x1, . . . , xn)eiSa(φA,ga) =

∫
[Dφb]Ob(x1, . . . , xn)eiSb(φb,gb)

for some choice of classical theories A and B and a duality map
between operators Oa and Ob and parameters ga and gb.
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N = 4 SYM theory in four dimensions
[Montonen, Olive ’77], [Osborn ’79] conjectured that N = 4 theories
exhibit duality.

These theories has 16 supercharges. All N = 4 theories which are known
are Lagrangian (Yang-Mills), and can be specified by giving a gauge
group G, a complexified coupling τ = θ + i/g2, and some extra discrete
choices [Aharony, Seiberg, Tachikawa ’13]:

L =
1

g2
Tr(F ∧ ?F ) + θTr(F ∧ F ) + . . . (1)

The N = 4 theory is interacting and conformal for any finite τ . Changing
τ gives rise to a marginal deformation of this superconformal field theory
(SCFT). The set of SCFTs connected by such marginal deformations is
known as the conformal manifold.
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Symmetries and matter content

N = 4 theories in four dimensions have a global symmetry group
SU(4)R (“R-symmetry”), and fields of spin-1, spin-1/2 and spin-0.

Field Spin SU(4)R rep. U(N) rep
Aµ 1 1 adj
λβα

1
2 4 adj

Φi 0 6 adj

In the vacuum we can have 〈Φi〉 6= 0 without breaking
supersymmetry or Lorentz invariance. For a generic such vacuum
expectation value U(N)→ U(1)N . (Coulomb branch.)
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Duality and validity of the classical description

In a given weak coupling description one has
Aµ spin-1 fields and their superpartners. In the Coulomb
branch we have U(1)N with a bunch of massive W bosons,
with mass proportional to

√
τ−1 〈Φ〉 ∼ g 〈Φ〉.

Monopoles: classical solitons with their collective degrees of
freedom, with mass proportional to

√
τ 〈Φ〉 ∼ 1/g 〈Φ〉.

Conjecture: when g →∞ a new classical description emerges
where the monopoles are the fundamental degrees of freedom, the
original W bosons can be understood as solitons, and geff = 1/g.
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N = 4 SYM theory in four dimensions

[Montonen, Olive ’77] argue that if such an effective description is
possible, it must be in terms of a gauge group LG:

T (G, τ) = T (LG,−1

τ
) . (2)

LG is the Langlands dual to G:

G LG
U(N) U(N)
SO(2N) SO(2N)
SU(N) SU(N)/ZN

SO(2N + 1) USp(2N)

Note that in the last example even the algebra changes: the notion of
gauge group is useful but not fundamental!
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Duality in N = 1

Interestingly, a similar story holds for N = 2 and N = 1 theories.
In the last few years, starting with [Argyres, Seiberg ’07], we have
understood how to construct large classes of theories where we have a
first principles way of understanding the physics at every “g →∞” limit:

For N = 2 in [Gaiotto ’09].

For N = 1 in [Gaiotto, Razamat ’15] and [I.G.-E., Heidenreich ’16].

The tool that allows us to do this is string theory: we embed the theories
in string theory, and using standard properties of string theory the
question of field theory duality becomes a question about geometry,
which we can solve.
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A simple example: C3/Z3 phase I

USp(Ñ + 4) SU(Ñ) SU(3) U(1)R Z3

Ãi 2
3 − 2

Ñ
1

B̃i 1 2
3 + 4

Ñ
−2

(here Ñ ∈ 2Z). Graphically we can represent this as

USp(Ñ + 4) SU(Ñ)

B̃iÃi

W = εijk Tr(Ã
iÃjB̃k)
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A simple example: C3/Z3 phase II

SO(N − 4) SU(N) SU(3) U(1)R Z3

Ai 2
3 + 2

N 1

Bi 1 2
3 − 4

N −2

which can be displayed graphically as

SO(N − 4) SU(N)

BiAi

W = εijk Tr(A
iAjBk)

Note: For N = 5 this is SU(5) with three generations of 5 and
three of 1̄0. [Lykken, Poppitz, Trivedi ’98]
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Duality

USp(Ñ + 4) SU(Ñ)

B̃iÃi

W = εijk Tr(Ã
iÃjB̃k)

is dual to

SO(N − 4) SU(N)

BiAi

W = εijk Tr(A
iAjBk)

Global anomalies, the moduli spaces, SCIs and the spectrum of
operators match if Ñ = N − 3 . [I.G.-E., Heidenreich, Wrase ’12]
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A more involved example: C(dP1)
SU(N − 4) SU(N)

Z Ai

Y

Bi, X

W = εijB
iAjY + 1

2εijXA
iZAj

is dual to
SU(Ñ + 4) SU(Ñ)

Z Ai

Y

Bi, X

W = εijB
iAjY + 1

2εijXA
iZAj

is dual (trial?, plural?) to

USp(M̃ + 4)SU(M̃)

Ai[φ]

Y

Bi

Sp O

W = εijA
iBjY
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A generic case
For C(dP2), every duality phase includes isolated CFT factors:

SU(M)SO(M − 4)
Y

Z

B1

A1[φ1]

B2

A2[φ2]

Sp O

Sp O

W = Y (B1 −B2) +A1A2Z

SU(M̃ − 4)USp(M̃)
Y

Z

B1

A1[±1]

B2

A2[±2]

O Sp

O Sp

W = Y (B1 −B2) +A1A2Z

SU(N − 4) SU(N)

A1[φ]

A2

B2

B1

Zi
Sp O

W = A1B1Z1 +A2B2Z2 +B1B2Z3

SU(Ñ + 4) SU(Ñ)

A1[φ1]

A2[φ2]

B2

B1

ZiO Sp

W = A1B1Z1 +A2B2Z2 +B1B2Z3

SU(P − 4) SU(P )

A2

A1

Sp O

Y

ZiX

W = A1Y Z1 +XA2Y Z2

SU(P̃ + 4) SU(P̃ )

A2

A1

O Sp

Y

ZiX

W = A1Y Z1 +XA2Y Z2
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Deconstructing isolated SCFTs

Once we include the appropriate class of SCFTs, the duality
structure becomes much clearer.

What do we know about these isolated SCFTS?
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Deconstructing isolated SCFTs
The class of theories I just discussed are particularly nice, in that
the isolated SCFTs can be described as the IR fixed point of an
ordinary Lagrangian theory:

SU(M) SU(M + 4)(−1)F

(−1)F

Sp O

is the (interacting) IR fixed point of
SU(M + F )

SU(M + 4)

SU(M)

SU(F )T

Z

R

P

Q

A1

A2

W = A1A2Z + PQR+ TQ2Z
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Lagrangian vs. non-Lagrangian

We may call these isolated SCFTs Lagrangian, since they can be
defined in terms of a RG flow from a weakly coupled theory.

When we say that an isolated SCFT theory is non-Lagrangian we
are really making a statement about our state of knowledge: we
have not constructed such a flow from a Lagrangian yet, and we
don’t know if the flow exists or not.

Many known N = 2 and N = 1 dualities are of this kind, involving
non-Lagrangian isolated SCFTs.

I will now briefly review one recent amusing example where we can
prove that there is no suitable RG flow from a weakly coupled
theory. (Caveat: I am only considering flows that have the same
amount of susy as the IR fixed point. It is not possible at this stage
to say anything about potential flows with accidental susy
enhancement in the IR.)
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Back to the textbooks

Most of those who have studied extended susy have at some point
wondered why (in the absence of gravity) we only talk about
N ∈ {0, 1, 2, 4}. The standard answers are:

N > 4 would imply the existence of a particle with helicity
greater than 1. (Nothing wrong with this, but let us avoid
sugra since we are thinking about ordinary SCFTs.)
N = 3 is equivalent to N = 4: the minimal CPT invariant
N = 3 multiplet is the N = 4 multiplet, and its interactions
are as in the N = 4 theory.
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Better answers

These aren’t very good answers! They assume the existence of
a Lagrangian description, which is very limiting if we are thinking
about SCFTs. We have only learned the proper answer (for SCFTs)
recently:

Unitary SCFTs with N > 4 have no stress-tensor multiplet.
[Cordova, Dumitrescu, Intriligator ’16]
N = 3 theories do exist, they are isolated. [I.G.-E., Regalado ’15]
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Back to Montonen-Olive duality in N = 4

In the Coulomb branch (U(N)→ U(1)N ) we had
Massive W bosons, with mass proportional to√
τ−1 〈Φ〉 ∼ g 〈Φ〉.

Monopoles, with mass proportional to
√
τ 〈Φ〉 ∼ 1/g 〈Φ〉.

There is a g = 1 point where both kinds of excitations are equally
important, and have the same mass.

In fact, there is a symmetry (S) exchanging the W bosons and the
monopoles at g = 1.

The evidence from field theory for S is rather circumstantial, but
when the system is embedded in string theory the existence of the
symmetry becomes very obvious.
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N = 3 from N = 4

Using this symmetry we can construct N = 3 theories, intuitively:

{N = 3} =
{N = 4}
S . (3)

Some remarks:
This was very hand-wavy, but the intuition can be made
precise in string theory. [I.G.-E., Regalado ’15]
S is a symmetry only when g = 1, so the marginal deformation of
the N = 4 theory is frozen out: N = 3 theories are stuck at strong
coupling. I.e. the conformal manifold is a point, and there is no
weak coupling regime.
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Conclusions

Thinking about duality, it is very natural to generalize what
“weak coupling” means to include isolated SCFTs with weakly
gauged global symmetries.

Such isolated SCFTs are not rare, we now know how to
construct and analyse various infinite families.
We cannot always access these theories via a Lagrangian, but
the theories still exist. In some cases, like N = 3, one can
show that no N = 3 Lagrangian exists.
Technology for analysing these isolated SCFTs is in active
development. (I.e. how to compute the spectrum of operators
and correlators, at least in some subsectors.)
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