

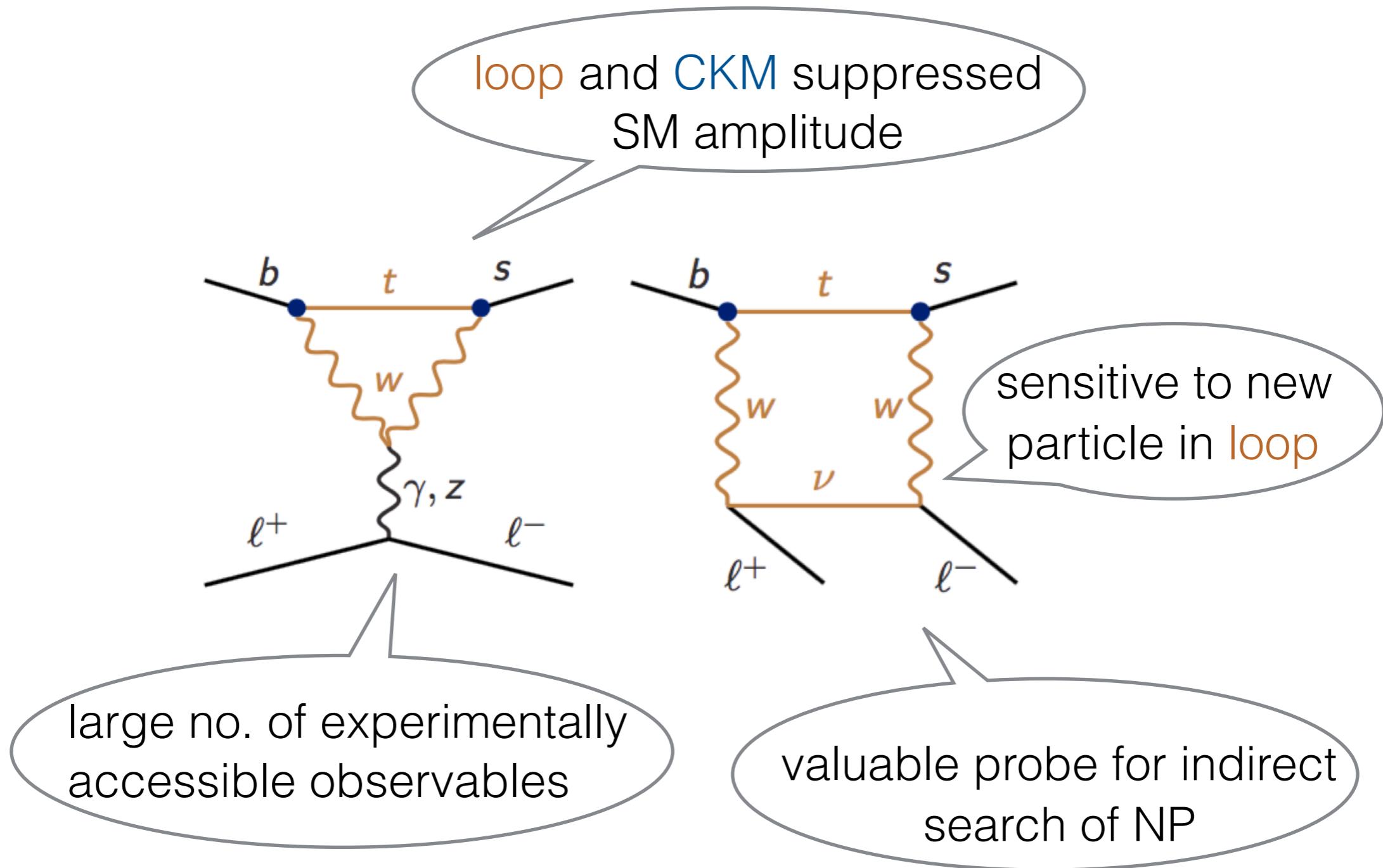
Minimal unified resolution to B anomalies with lepton mixing

Rusa Mandal

Institute of Mathematical Sciences, Chennai

on PRL 119, 151801 (2017)

with Debajyoti Choudhury, Anirban Kundu,
& Rahul Sinha


December 12, 2017

Outline

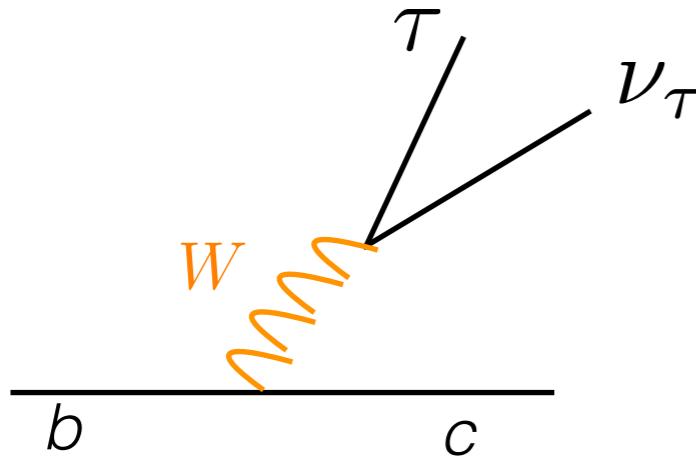
- Introduction
- Constraints
- Effective operators
- Results
- Summary

Introduction

Introduction

- ▶ Discrepancies in neutral current B decays

$$R_{K^{(*)}} \equiv \frac{\text{BR}(B \rightarrow K^{(*)}\mu\mu)}{\text{BR}(B \rightarrow K^{(*)}ee)} = 1 \text{ in SM}$$


		[LHCb '14, '17]
$R_K = 0.745^{+0.090}_{-0.074} \pm 0.036$	$q^2 \in [1 : 6] \text{ GeV}^2$	$\rightarrow 2.6\sigma$
$R_{K^*}^{\text{low}} = 0.660^{+0.110}_{-0.070} \pm 0.024$	$q^2 \in [0.045 : 1.1] \text{ GeV}^2$	$\rightarrow 2.1\sigma$
$R_{K^*}^{\text{cntr}} = 0.685^{+0.113}_{-0.069} \pm 0.047$	$q^2 \in [1.1 : 6] \text{ GeV}^2$	$\rightarrow 2.4\sigma$

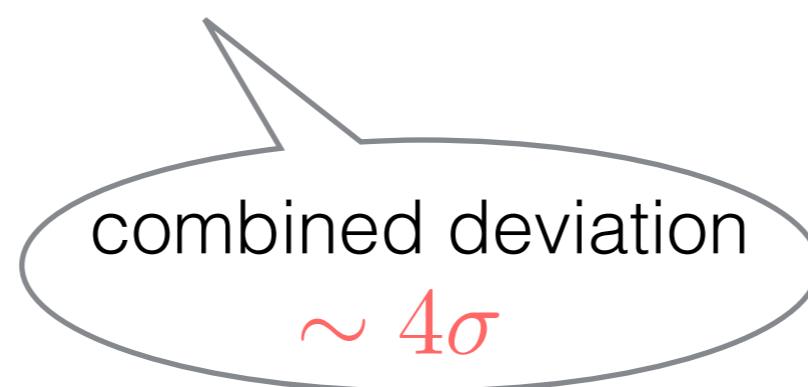
$$\begin{aligned} \Phi &\equiv d\text{BR}(B_s \rightarrow \phi\mu\mu)/dq^2 \Big|_{q^2 \in [1:6] \text{ GeV}^2} && \text{[LHCb '15]} \\ &= (2.58^{+0.33}_{-0.31} \pm 0.08 \pm 0.19) \times 10^{-8} \text{ GeV}^{-2} \text{ (exp)} \\ &= (4.81 \pm 0.56) \times 10^{-8} \text{ GeV}^{-2} && \text{(SM)} \end{aligned}$$

3 σ

Introduction

- ▶ Exciting discrepancies observed in charged current B decays also

$$\mathcal{H}^{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{cb} (1 + C^{\text{NP}}) (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_{\tau L})$$


$$R(D^{(*)}) \equiv \frac{\text{BR}(B \rightarrow D^{(*)}\tau\nu)}{\text{BR}(B \rightarrow D^{(*)}\ell\nu)}, \quad \ell \in \{e, \mu\}$$

$$R(D) = (1.34 \pm 0.17) \times R(D)_{\text{SM}}, \quad R(D^*) = (1.23 \pm 0.07) \times R(D^*)_{\text{SM}}$$

2.2σ

3.3σ

[HFAG]

Constraints

► Constraints from other modes

[LHCb '17]

$$\text{BR}(B_s \rightarrow \mu\mu) = \frac{(3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9} \text{ (exp.)}}{(3.65 \pm 0.23) \times 10^{-9} \text{ (SM)}}$$

 well in agreement

$$\text{BR}(B \rightarrow K^{(*)}\nu\bar{\nu}) < 1.6 \text{ (2.7)} \times 10^{-5}$$

$$\text{BR}(B^+ \rightarrow K^+ \mu^\pm \tau^\mp) < 4.5 \text{ (2.8)} \times 10^{-5}$$

$$\text{BR}(B_s \rightarrow \tau\tau) < 6.8 \times 10^{-3}$$

$$\text{BR}(B_c^- \rightarrow \tau^-\bar{\nu}) \lesssim 5\% \quad [\text{Grinstein et.al '16}]$$

Quite challenging to explain all anomalies together by evading all the bounds.

Effective operators

- ▶ NP operators with 2nd & 3rd generation fields

$$\mathcal{H}^{\text{NP}} = A_1 (\bar{Q}_{2L} \gamma_\mu L_{3L}) (\bar{L}_{3L} \gamma^\mu Q_{3L}) + A_2 (\bar{Q}_{2L} \gamma_\mu Q_{3L}) (\bar{\tau}_R \gamma^\mu \tau_R)$$

- ▶ Directly contributes to $R(D^{(*)})$
- ▶ Diagonalisation of Hamiltonian for lepton part through small mixing angle θ : interaction basis mass basis

$$\tau = \cos \theta \tau' + \sin \theta \mu'$$

Contribution to $b \rightarrow s \mu \mu$ is generated

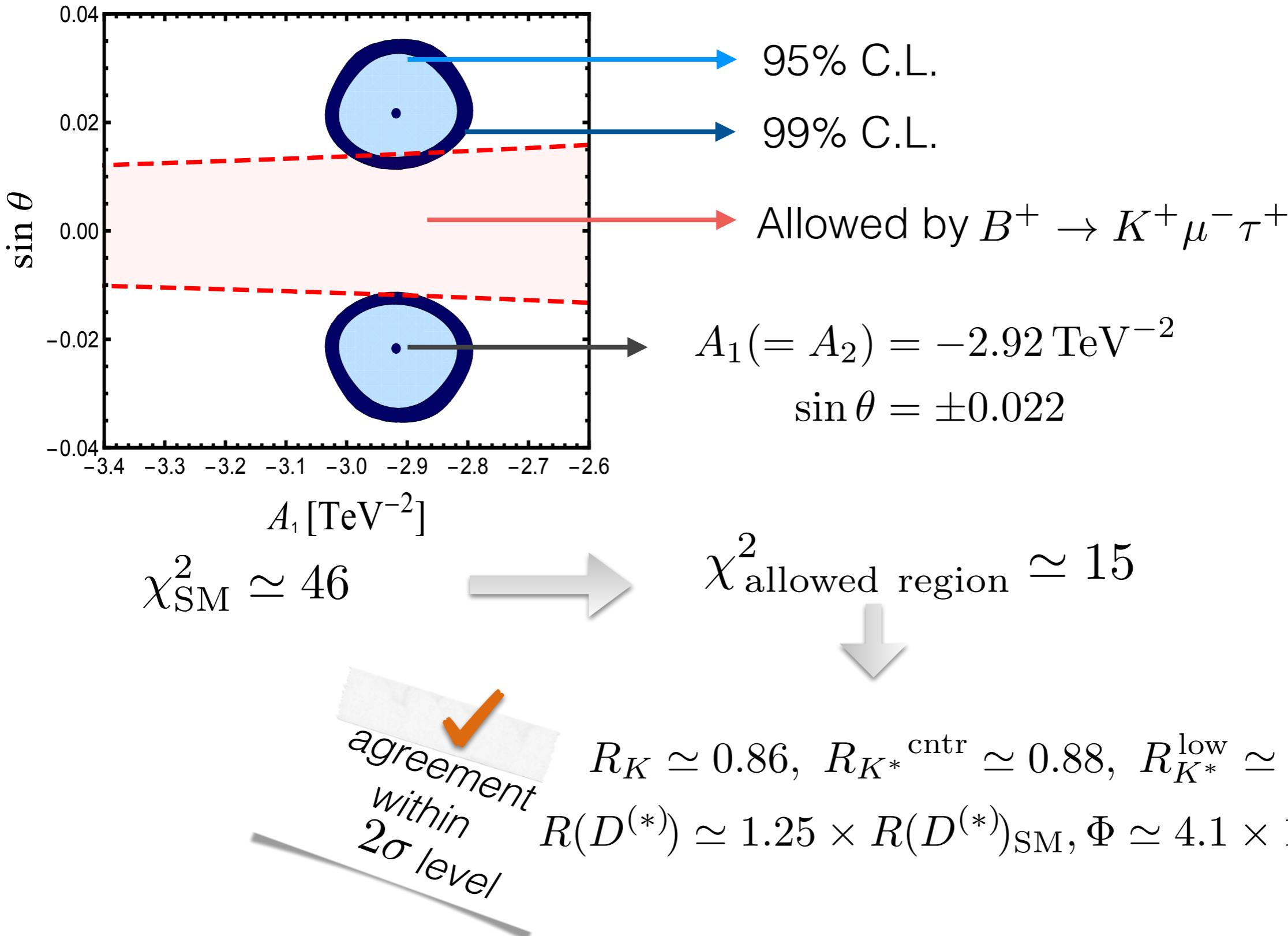
Effective operators

- ▶ Hamiltonian and relevant operators for $b \rightarrow s\mu\mu$

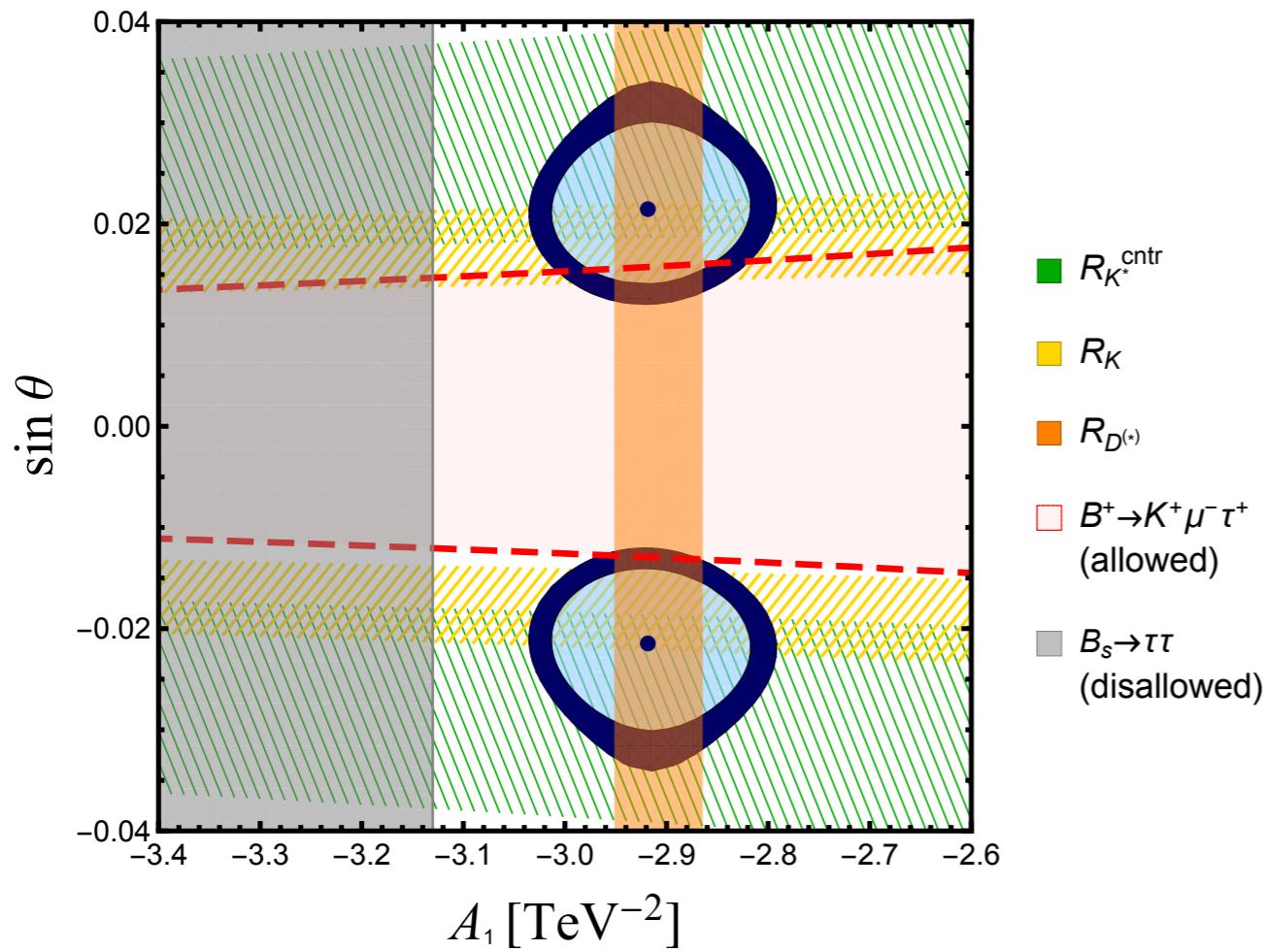
$$\mathcal{H}^{\text{eff}} = \frac{-4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i(\mu) \mathcal{O}_i(\mu),$$

$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b (\bar{s}\sigma_{\mu\nu} P_R b) F^{\mu\nu}$$

$$\mathcal{O}_9 = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\mu}\gamma^\mu \mu)$$


$$\mathcal{O}_{10} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\mu}\gamma^\mu \gamma_5 \mu)$$

New contribution to
(axial)vector currents


$$C_9 \rightarrow C_9 + C_9^{\text{NP}}$$

$$C_{10} \rightarrow C_{10} + C_{10}^{\text{NP}}$$

Results

Results

$$\chi^2_{\text{SM}} \simeq 46$$

Allowing 20% breaking

$$A_2 = 4A_1/5$$

from quantum corrections
or unknown dynamics of the
UV completion of the model

$$\chi^2_{\text{allowed region}} \simeq 10$$

agreement
within
 1σ level

$$R_K \simeq 0.80, R_{K^*}^{\text{cntr}} \simeq 0.83, R_{K^*}^{\text{low}} \simeq 0.88, \\ R(D^{(*)}) \simeq 1.24 \times R(D^{(*)})_{\text{SM}}, \Phi \simeq 3.8 \times 10^{-8} \text{ GeV}^{-2}$$

Summary & Outlook

- ▶ Another discrepancy at $b \rightarrow c$ charged current

[LHCb '17]

$$R_{J/\psi} \equiv \frac{\text{BR}(B_c \rightarrow J/\psi \tau \nu)}{\text{BR}(B_c \rightarrow J/\psi \mu \nu)}$$

$$= (2.5 \pm 0.97) \times R_{J/\psi}^{\text{SM}} \xrightarrow{\text{red arrow}} < 2\sigma$$

In the same direction as of $R(D^{(*)})$

considered operators can also explain

- ▶ $SU(2)_L$ triplet type operators are also explored

[1712:01593]

Summary & Outlook

- ✓ Several hints of lepton non universality are observed by various experimental groups
- ✓ In terms of effective operators we show a possible explanation to all the anomalies together
 - ▶ The model has only two new parameters
 - ▶ It predicts some interesting signatures in the context of B decays such as $B_s \rightarrow \tau\tau$, $B \rightarrow K^{(*)}\mu\tau$
- ✓ Opens up way to construct UV complete theory
- ✓ Fluctuation? Wait for more data to be accumulated!

Summary & Outlook

- ✓ Several hints of lepton non universality are observed by various experimental groups
- ✓ In terms of effective operators we show a possible explanation to all the anomalies together
 - ▶ The model has only two new parameters
 - ▶ It predicts some interesting signatures in the context of B decays such as $B_s \rightarrow \tau\tau$, $B \rightarrow K^{(*)}\mu\tau$
- ✓ Opens up way to construct UV complete theory
- ✓ Fluctuation? Wait for more data to be accumulated!

Thank you!