

A Perturbative Randall Sundrum Cosmological Phase Transition

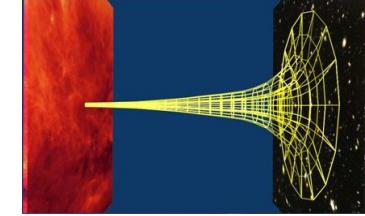
Bithika Jain

International Centre
for Theoretical Physics
South American Institute
for Fundamental Research

Work with Jay Hubisz, Don Bunk
arXiv 1705.00001

SUSY'17, TIFR Mumbai

Motivation



- In large N gauge theories, evidence that confining transition is strongly first order
- Too strong: nucleation of true vacuum bubbles outpaced by Hubble dilution - trapped in false vacuum = empty universe
- Dual picture (Randall Sundrum model) exhibits same phenomenology

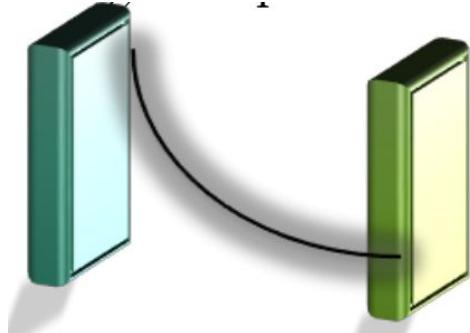
Problem

Perturbative Randall-Sundrum Models Stabilized by Goldberger-Wise Mechanism typically lead to an Empty Universe

Holographic Model at Zero Temperature

5 D Einstein-Scalar theory with extra spatial dimension, y (S_1/Z_2 orbifold)

$$S = \int d^5x \sqrt{g} \left[\frac{1}{2} (\partial_M \phi)^2 - V(\phi) - \frac{1}{2\kappa^2} \mathcal{R} \right] - \int d^5x \sqrt{g_0} V_0(\phi) - \int d^5x \sqrt{g_1} V_1(\phi)$$



Extra Dimension spans two branes y_0 and y_1

Brane Localized potentials contribute to total action

5D scalar minimally coupled to gravity

dual to coupling in CFT

VEV of scalar

CFT operator is sourced

y -dependence, e^{-ky}

Renormalisation group flow

Bulk Potential - Cosmological Const.

gives AdS curvature (\mathcal{N} of CFT)

ϕ dependence

beta function (VEV explicitly breaks Scale Invariance)

Coordinates and EOM

Metric ansatz: flat 4d slices $\rightarrow ds^2 = e^{-2A(\tilde{y})} \eta_{\mu\nu} dx^\mu dx^\nu - d\tilde{y}^2$

Take $A(\tilde{y}) = y$, $G(y) = A'(\tilde{y}(y))^2 \rightarrow ds^2 = e^{-2y} \eta_{\mu\nu} dx^\mu dx^\nu - \frac{dy^2}{G(y)}$

Deviations from AdS encoded in $G(y)$, Pure AdS, $G=k$

Equations of motion:

$$G = \frac{\frac{-\kappa^2}{6}V(\phi)}{1 - \frac{\kappa^2}{12}\dot{\phi}^2}$$

$$\frac{\dot{G}}{G} = \frac{2\kappa^2}{3}\dot{\phi}^2$$

$$\ddot{\phi} = \left(4 - \frac{1}{2G}\dot{G}\right)\dot{\phi} + \frac{1}{G}\frac{\partial V}{\partial\phi}$$

Eliminate $G(y)$ in the scalar field EOM
Master Evolution equation :

$$\ddot{\phi} = 4 \left(\dot{\phi} - \frac{3}{2\kappa^2} \frac{\partial \log V(\phi)}{\partial \phi} \right) \left(1 - \frac{\kappa^2}{12}\dot{\phi}^2 \right)$$

2 types of backreaction: Potential and Gravity

Effective Dilaton Action

- Introduction of IR brane/ deformation of geometry at y_1 is dual to spontaneous breaking of conformal symmetry

$$f^{-1} = \int_{y_0}^{y_1} \frac{e^y}{\sqrt{G}} dy$$

f is the dilaton

- Total value of the classical action can be expressed as a pure boundary term
- Replace the kinetic and potential terms for, ϕ using Einstein's equations, include singular terms at the brane and impose BCs

$$V_{\text{eff}} = e^{-4y_0} \left[V_0(\phi(y_0)) - \frac{6}{\kappa^2} \sqrt{G(y_0)} \right] + e^{-4y_1} \left[V_1(\phi(y_1)) + \frac{6}{\kappa^2} \sqrt{G(y_1)} \right]$$

- Entire effective potential= boundary term with brane localized potentials and jump conditions
- Depends only on asymptotic behavior of the geometry and the scalar field

The Long walk in 5D

Want slow walking over large range of coupling in dual CFT

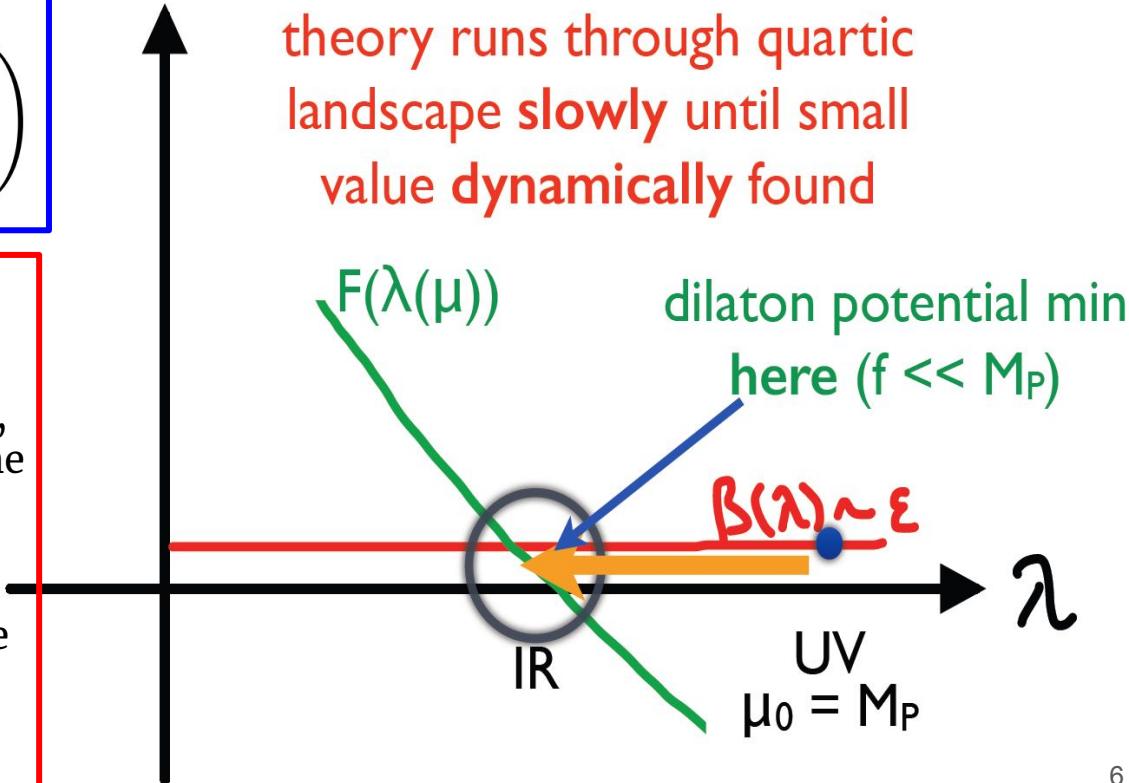
$$V(\phi) = -\frac{6k^2}{\kappa^2} \left(1 - \frac{\kappa^2}{3} \epsilon \phi^2 \right)$$

AdS/CFT: Small dependence on scalar field value

Parametric suppression by small mass, no operators in potential with order one coefficients

Perform numerical solutions of non-linear zero temperature and finite temperature equations over large parameter space to calculate effective potentials

theory runs through quartic landscape slowly until small value dynamically found

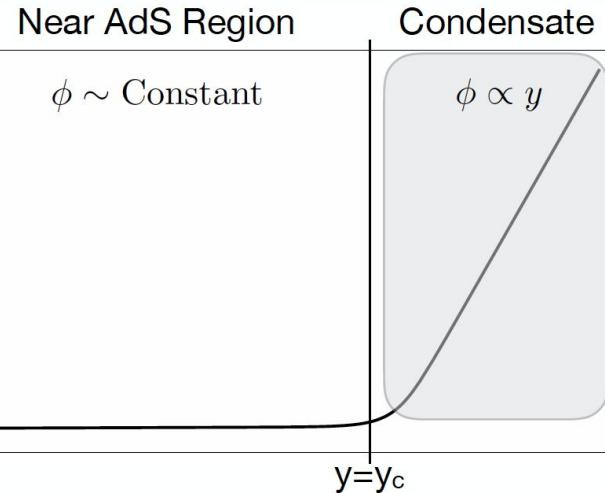
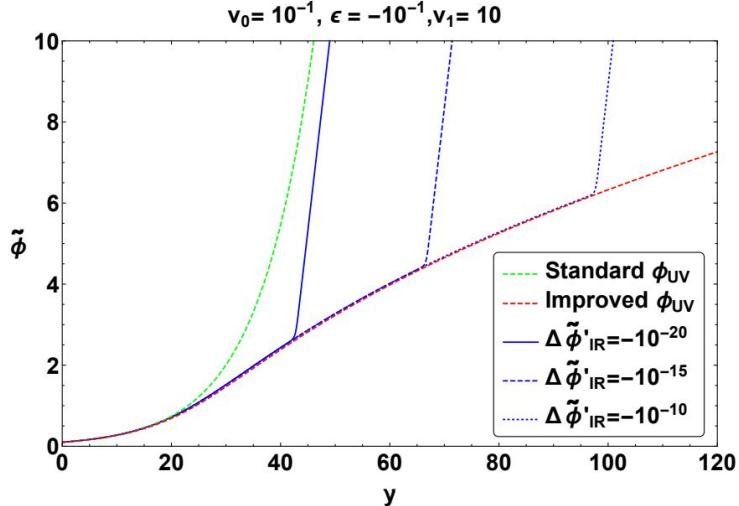
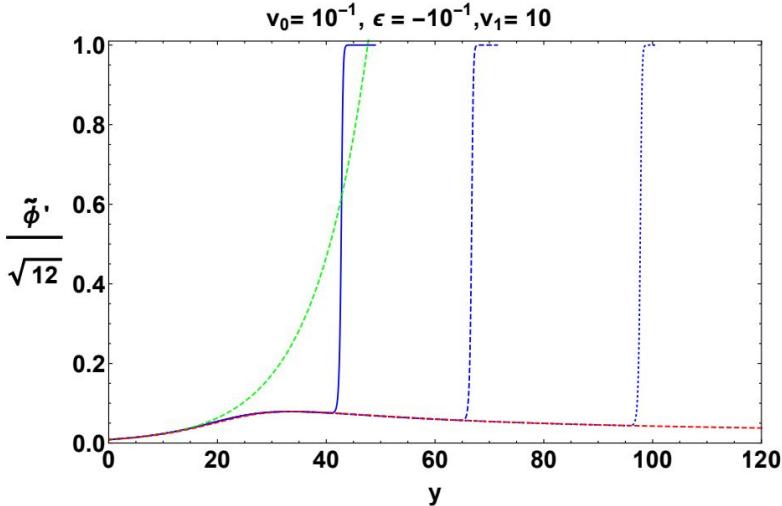


Scalar field evolution at T=0

Slow evolution in UV

$$\ddot{\phi} = 4 \left(\dot{\phi} - \frac{3}{2\kappa^2} \frac{\partial \log V(\phi)}{\partial \phi} \right) \left(1 - \frac{\kappa^2}{12} \dot{\phi}^2 \right)$$

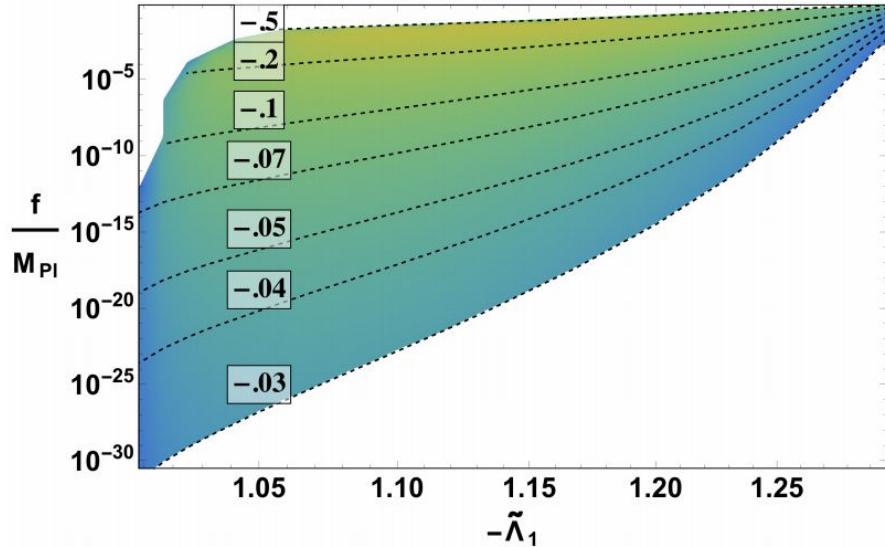
IR behaviour universal:
linear growth= condensate “SOFT WALL”



Results at Zero Temperature

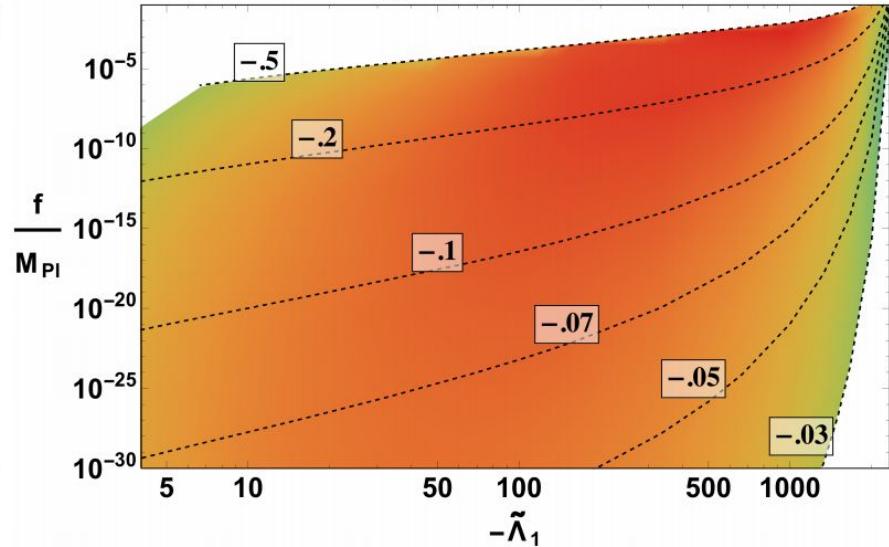
Golberger-Wise

$$v_0 = 10^{-1}, v_1 = 1, N = 12$$



Soft-Wall Light Dilaton

$$v_0 = 10^{-1}, v_1 = 10, N = 12$$



$\frac{-V_{min}}{f^4}$

f^4

$10^{-3.0}$

$10^{-2.5}$

$10^{-2.0}$

$10^{-1.5}$

$10^{-1.0}$

$10^{-0.5}$

$10^{0.0}$

Color shading is value of effective V at minimum in units of f^4

Boxed numbers are the values of epsilon (dimensionless scalar mass in units of curvature)

Finite Temperature

To model Finite T - compactify time dimension on circle $t \in [0, 1/T)$

Euclidean action = Helmholtz Free Energy

Metric modified to reflect symmetry of geometry

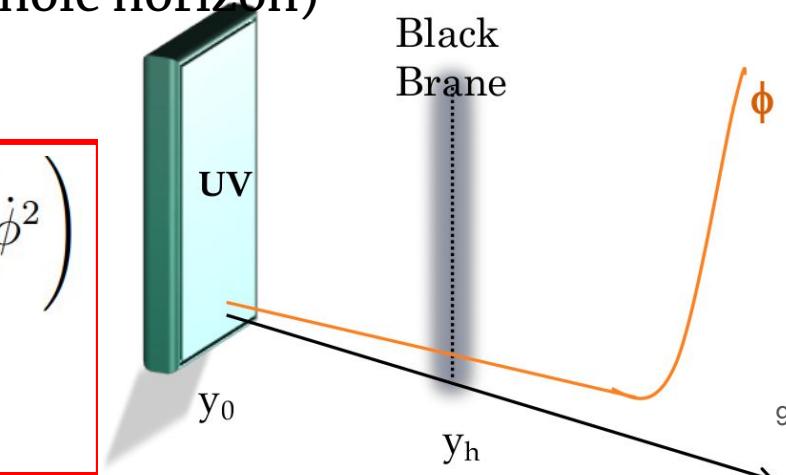
$$ds^2 = e^{-2y} [h(y)dt^2 + d\vec{x}^2] + \frac{1}{h(y)} \frac{dy^2}{G(y)}$$

At finite T, coordinate singularity at y_h (blackhole horizon)

No scalar VEV = AdS - Schwarzschild

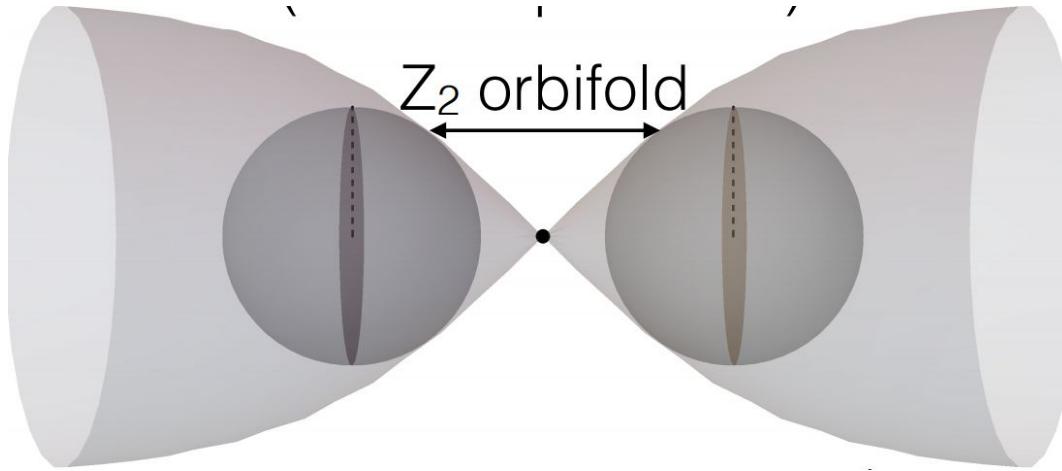
EOMs

$$\ddot{\phi} = 4 \left(\dot{\phi} - \frac{3}{2\kappa^2} \frac{\partial \log V}{\partial \phi} \right) \left(1 - \frac{1}{4} \frac{\dot{h}}{h} - \frac{\kappa^2}{12} \dot{\phi}^2 \right)$$
$$\ddot{\frac{h}{\dot{h}}} = 4 - \frac{\kappa^2}{3} \dot{\phi}^2 \quad h(y_h) = 0$$



Free Energy of BH solution - Conical Singularity

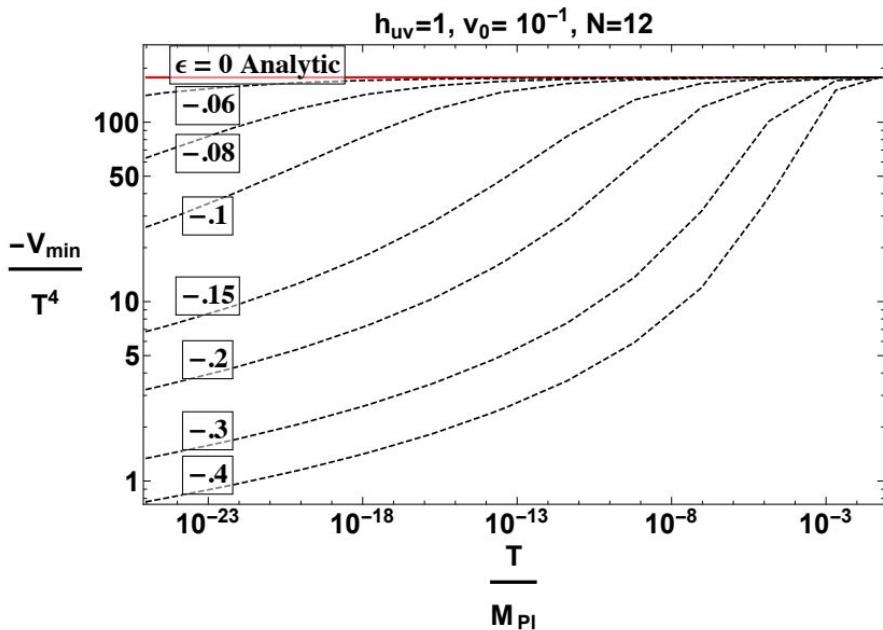
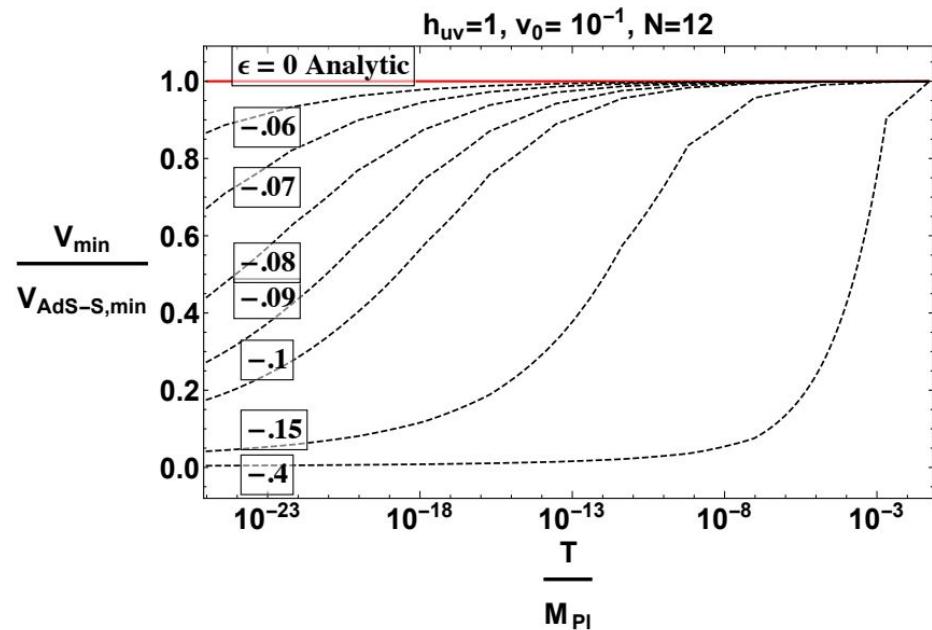
Near the horizon, $y \sim y_h$ geometry conically singular (out of equilibrium)



Free energy receives UV contribution and (regulated) entropy like contribution from near horizon geometry , $F = U - TS$

$$F = e^{-4y_0} \left[\sqrt{h(y_0)} V_0(\phi(y_0)) - \frac{6}{\kappa^2} h(y_0) \sqrt{G(y_0)} \right] - \frac{4\pi T}{\kappa^2} e^{-3y_h}$$

Results at Finite T



Very large differences compared to vanishing BR case BH suppressed gravitational BR - mostly due to potential BR

Bubble Nucleation

Universe starts in hot CFT phase
(radiation domination)

$$H^2 = \frac{8\pi G\rho}{3} \sim \frac{\pi^3 G N^2 T^4}{3}$$

For successful phase transition

Bubble nucleation must outpace dilution

$$\frac{\Gamma}{V} \gtrsim H^4$$

Nucleation rate proceeds like exponential
Of Euclidean bubble action (Coleman)

$$\frac{\Gamma}{V} \approx T_c^4 e^{-S_E}$$

up to mult.
order 1
factors

T_c is critical temperature
(typically close to f)

Criteria for successful phase transition

$$S_E \lesssim 4 \log \left(\frac{M_{\text{Pl}}}{f} \right)$$

Bubble Nucleation Actions

Action for bubble very hard to calculate generally - several approximations

Bubbles can be big - $O(3)$ symmetry (wrap time direction)

Or small - $O(4)$ symmetry (neglect compactification)

Surface energy

$$S_E^{O(4)} = S_4 = 2\pi^2 \int r^3 \left[\frac{\mathcal{N}}{2} \left(\vec{\nabla} f \right)^2 + V(f, T) \right] dr$$

$$S_E^{O(3)} = S_3/T = \frac{4\pi}{T} \int r^2 \left[\frac{\mathcal{N}}{2} \left(\vec{\nabla} f \right)^2 + V(f, T) \right] dr$$

Canonical Normalization for dilaton: $\mathcal{N} = 3N^2/2\pi^2$

Bubble Nucleation

Thick wall Appx : When the bubble radius, $R \sim$ thickness of bubble and surface energy $\sim R$

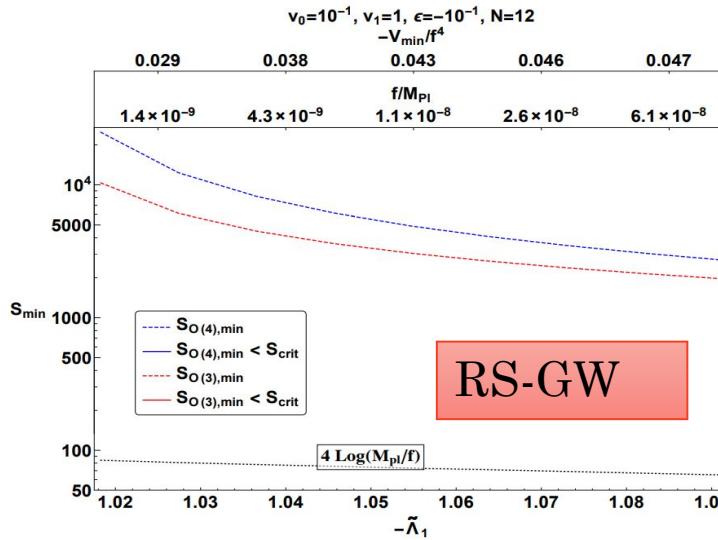
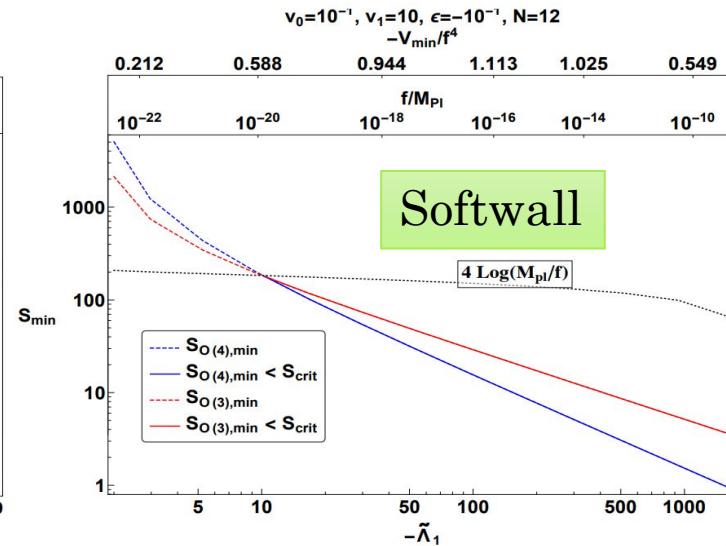
Thin wall Appx: Bubble radius $>>$ thickness of bubble

Thick wall actions are smaller Whichever appx gives smaller action “wins”

$$S_3/T(\text{min}) = \frac{4\pi}{3} \frac{\mathcal{N}^{3/2} f^3}{\sqrt{2|\bar{V}|}}$$

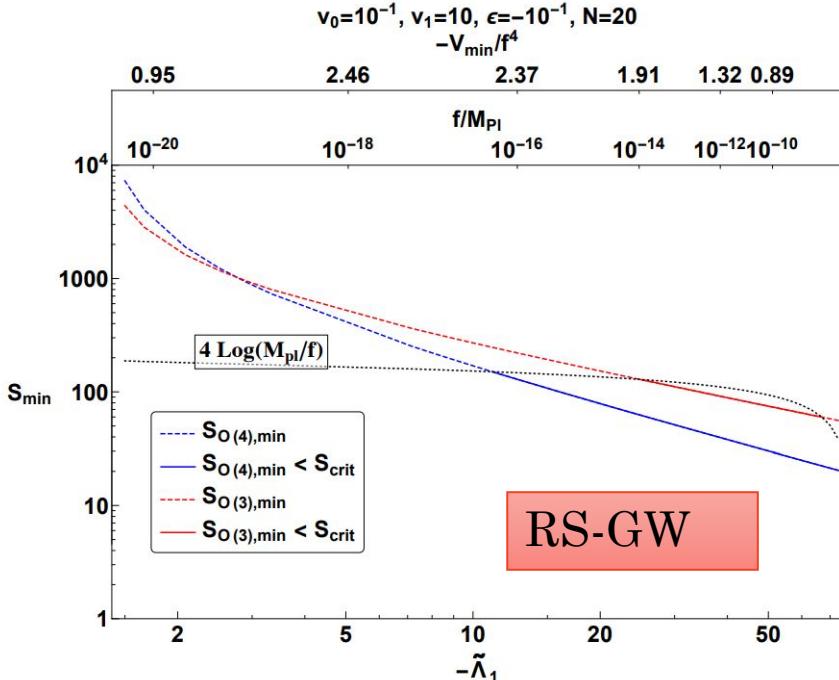
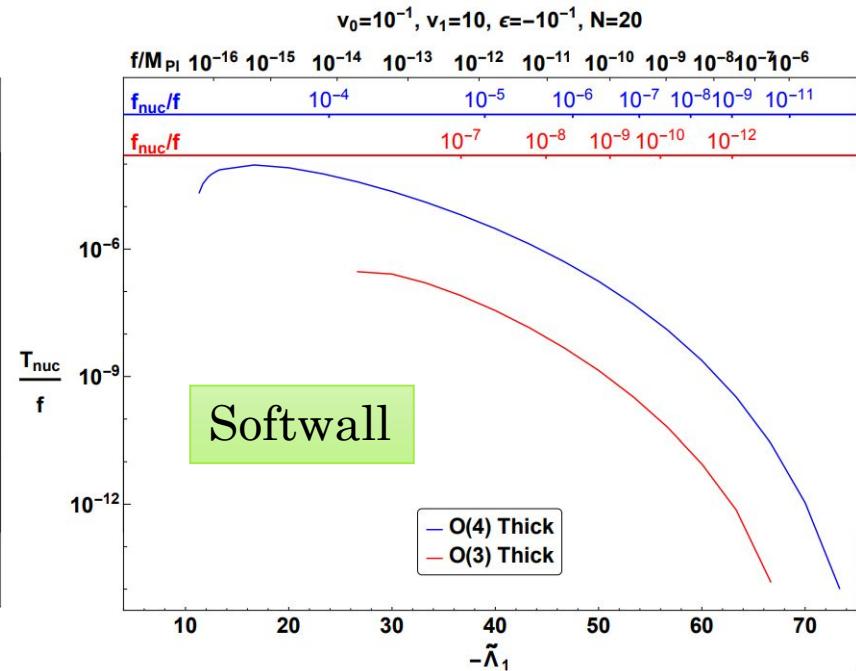
$$S_4(\text{min}) = \pi^2 \frac{\mathcal{N}^2 f^4}{2|\bar{V}|}$$

$$|\bar{V}| \approx F_{\text{min}}(T) - V_{\text{dilaton}}(f)$$



Largest N?

We have done an incomplete by-hand scan and found N=20 completes with TeV scale f , mass $^2 \sim 0.1$



Nucleation temperature and nucleation f value becoming tiny at threshold
- don't tunnel to true min

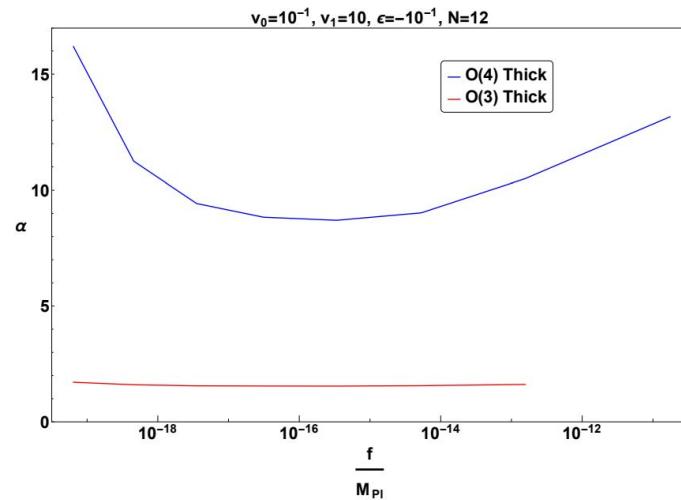
Gravitational Waves

Bubbles break spacetime symmetries and create turbulence in hot plasma - Source GR waves

Characterized by two features

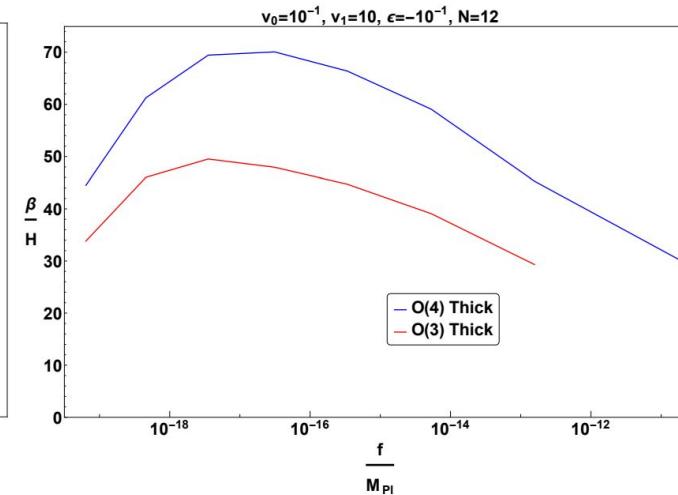
Latent heat release:

$$\alpha = \frac{V_{T=0}(f_n)}{V_T(T = T_n)} - 1$$



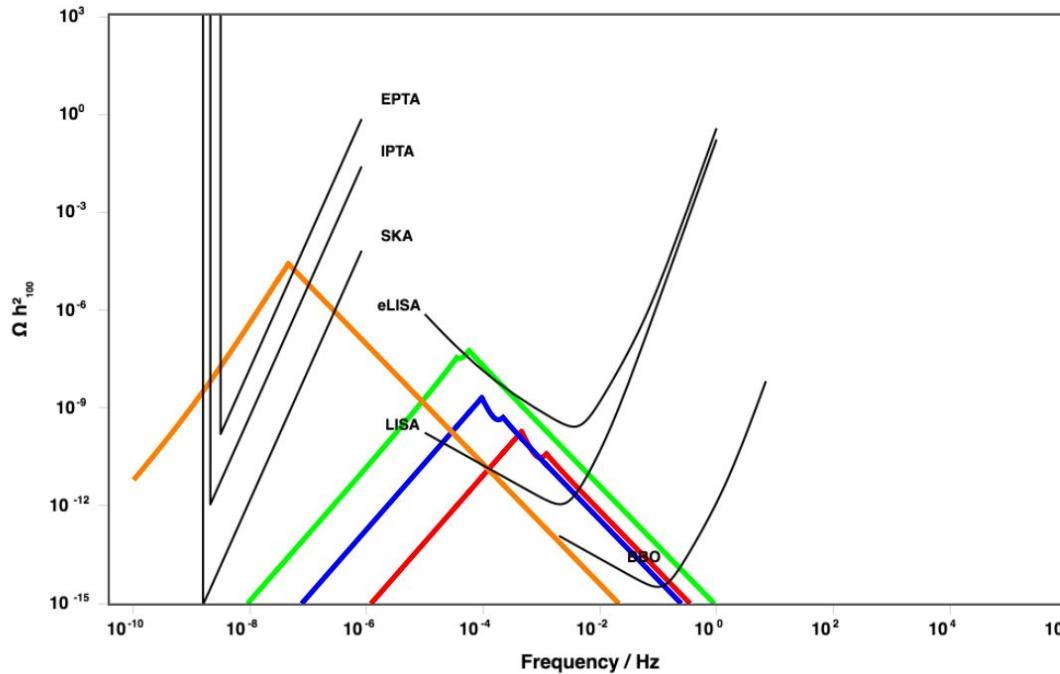
Transition time scale:

$$\frac{\beta}{H^*} = T^* \left. \frac{dS}{dT} \right|_{T^*}$$



Gravitational Waves

Observational Possibility because of large α and β/H



Dashed lines are signals: various values of N ($N=6$ (red), then 9 (blue), 12 (green), to orange $N=20$) $\epsilon = 0.1$, $v_0 = 0.1$, $v_1 = 10$, and $f = 1$ TeV

Conclusions

1. We have performed a study of zero and finite temperature **Randall Sundrum models** including **arbitrary backreaction** (scalar BR on V and gravitational BR on metric)
2. Numerical solutions yield **shape of dilaton/radion effective potential** at zero and finite temperature - **large deviations** from picture in literature
3. Results used to estimate bubble action - rate of true vacuum nucleation in early universe cosmology (natural spontaneous breaking of \sim conformal invariance)
4. Large values of N (small 5D gravity coupling) yield acceptably fast nucleation rate - successful RS cosmology
5. Large N TeV-scale transition potentially observable at LISA