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ATLAS and CMS Combination
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Figure 11: Best-fit results for the production signal strengths for the combination of ATLAS and CMS. Also shown
for completeness are the results for each experiment. The error bars indicate the 1� (thick lines) and 2� (thin lines)
intervals. The measurements of the global signal strength µ are also shown.
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Direct Measurement of Bottom and Top Couplings subject to 
large uncertainties :  2σ deviations from SM predictions possible

Low bottom coupling had a major impact on the fit to the rest of the couplings.

Assuming 
no strict

correlation
 between
gluon and 

top 
couplings

Very good agreement of production rates with SM predictions
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New tth results
Values overall consistent with 
the SM, within a few tens of 
percent



Things have changed in an interesting way :

There is today evidence of a Higgs decaying to bottom quarks



This evidence is present at both experiments

                                        Consistency with SM results

Errors are still large an admit deviations of a few tens of percent from the SM results



SM Higgs LHC Cross Sections and Decay Branching Ratios

Higgs tends to decay into heavier SM particle kinematically available

1 barn : 10

�24
cm

2

1 pb = 10

�12
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1 fb = 10

�15
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L⇥ � = Number of events

Friday, November 2, 2012

The search for the Standard Model Higgs at the LHC

• Low mass range mHSM < 200 GeV

H !"" ,## ,bb,WW ,ZZ

•  High mass range mHSM > 200 GeV

H !WW ,  ZZ

   1 bf-1

 in 2009

14 TeV

Search for the Standard Model Higgs at Proton Colliders  

Friday, November 2, 2012

A Higgs with a mass of about 125 GeV allows to study many decay channels

Standard Model Higgs Production Channels
and Branching Ratios



Relevant Higgs Decay Branching Ratios

BR(h ! bb̄)SM = 0.575

BR(h ! WW ⇤)SM = 0.216

BR(h ! gg)SM = 0.086

BR(h ! ⌧+⌧�)SM = 0.063

BR(h ! cc̄)SM = 0.029

BR(h ! ZZ⇤)SM = 0.027

BR(h ! ��)SM = 0.0023

BR(h ! µ+µ�)SM = 0.0022

The bottom decay is dominant.  This, in spite of the fact that the
relevant Yukawa coupling hb  is only about 1/60 !

The smallness of hb is the only reason why off-shell and loop induced
decays are sizable, and makes other possible rare decays relevant. 



Impact of Modified Couplings
• In general, assuming modified couplings, and no new light particle the 

Higgs can decay into, the new decay branching ratios are given by

• For small variations of (only) the bottom coupling, and 

• So, due to the its large contribution to the Higgs decay width, a 
modification of a bottom coupling leads to a large modification of all 
other decay branching ratios (larger than the one into bottoms !)

• Observe that the coefficients are just given by the SM bottom decay 
branching ratio and its departure from one. 

are modified by a factor 2t . Moreover, the modified branching ratios are given by

BR(h ! XX) =

2X BR(h ! XX)

SM

P

i 
2

i BR(h ! ii)SM
(3.1)

where BR(h ! XX) is the branching ratio of the Higgs decay into a pair of X particles.

In Fig 8, we fix t at 1, or 1.1, g at 0.81, 0.94, and 1, which are representative values
for the gluon Higgs couplings necessary to obtain sizable modifications of the di-Higgs
production cross section. Having fixed these values, we fit for the preferred values of b and
w. We include all the Higgs data from Run I [4, 5], except h ! ZZ⇤ and h ! ⌧⌧ , as they
also depend on Z and ⌧ , which are beyond the scope of discussion in this study. The
production for VBF also depends on z, which we fix at the run I best fit value z = 1. Due
to the small value of the BR(h ! ZZ), fixing z = w makes no difference in our results.
The value of � is considered to be consistent with the values induced by the present of
light stops and modifications of t and w. Using effective field theory to evaluate the top
and stop contributions, one obtains, approximately

� = 1.28w � 0.28g, (3.2)

where we used Eq. (2.6) and the fact that the relation between the top and stop contributions
to g and � are the same.

The region within 1 � of the best fit value for b and w is shown in blue, and the region
within 2 � of the best fit value is shown in light blue. Then, for given values of w and b,
we calculate the Higgs decay branching ratios to bb and ��, and we show the contours of
BR(h ! bb)⇥BR(h ! ��), normalized to the SM value. We also show the Run 2 results
for gluon fusion, h ! �� in orange(ATLAS) [55], and green(CMS) [56]. The solid lines are
the central values, and the dashed line show the 1 � range. The region above the dotted
line is consistent with the Run 2 measurement of associated production of Higgs with vector
bosons, V h, with h ! b¯b within 1 � [57]. It can be seen from the top two panels that t
does not change the fit, as the tth channel has large uncertainties. t does not change the
branching ratios either, because by allowing new particles in the loop, or considering g
as an independent parameter, t does not change the Higgs decay. Then for g = 0.9 and
g = 1 we only consider t = 1.

Our results are roughly consistent with the ones obtained by the combined ATLAS and
CMS Higgs data [4, 5]. As can be seen from these contours, some small modifications
to BR(h ! bb) ⇥ BR(h ! ��) are expected, which would modify the hh ! bb�� rate.
However, the largest modification is about ±20%. Let us stress that the inclusion of run II
data is likely to move b towards larger values. However, as is apparent from Fig. 8, this
modification is unlikely to modify the above conclusion. Therefore, only mild variations are
expected in the product of the bb and �� decay branching ratios and the hh ! bb�� rate is
mainly controlled by the modifications of the di-Higgs production rate with respect to the
SM value.
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BR(h ! bb̄) ' BR(h ! bb̄)SM(1 + 0.4(2
b � 1))

BR(h ! XX) ' BR(h ! XX)SM(1� 0.6(2
b � 1))

BR(h ! bb̄)

BR(h ! XX)
=

BR(h ! bb̄)SM

BR(h ! XX)SM
(1 + (2

b � 1))

X 6= b



Modified couplings in 2HDMs



Low Energy Supersymmetry :   Type II Higgs doublet models

In Type II models, the Higgs Hd would couple to down-quarks and charge leptons, 
while the Higgs Hu couples to up quarks and neutrinos.  Therefore, 

If the mixing is such that

then the coupling of the lightest Higgs to fermions and gauge bosons is SM-like.       
We shall call this situation ALIGNMENT

Observe that close to the alignment limit, the heavy Higgs couplings to down quarks 
and up quarks are enhanced (suppressed) by a             factor.   We shall concentrate 
on this case. 

It is important to stress that the couplings of the CP-odd Higgs boson are
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and the mass-squared matrix for the CP -even scalars can be expressed as

M =

⎛

⎝

M11 M12

M12 M22

⎞

⎠ ≡ m2
A

⎛

⎝

s2β −sβcβ

−sβcβ c2β

⎞

⎠ + v2

⎛

⎝

L11 L12

L12 L22

⎞

⎠ , (12)

where

L11 = λ1c
2
β + 2λ6sβcβ + λ5s

2
β , (13)

L12 = (λ3 + λ4)sβcβ + λ6c
2
β + λ7s

2
β , (14)

L22 = λ2s
2
β + 2λ7sβcβ + λ5c

2
β . (15)

There are two simple facts to keep in mind:

Mii > 0 , and m2
h ≤ Mii ≤ m2

H , for i = 1, 2 , (16)

where the first condition follows from the requirements that DetM > 0 and TrM > 0, while

the second follows from ”level repulsion” of eigenvalues of symmetric matrices.

Next we are going to solve for the mixing angle in the CP -even sector in terms ofmh = 125

GeV and two of the three entries of M2
h,H. Let’s define the mixing angle α

⎛

⎝

H

h

⎞

⎠ =

⎛

⎝

cα sα

−sα cα

⎞

⎠

⎛

⎝

φ0
1

φ0
2

⎞

⎠ ≡ R(α)

⎛

⎝

φ0
1

φ0
2

⎞

⎠ , (17)

where we choose −π/2 ≤ α ≤ π/2, in general, so that both sα and cα are single-valued.

However in MSSM one can show that −π/2 ≤ α ≤ 0 at tree-level, which nonetheless does

not hold once radiative corrections are included. Then we have

RT (α)

⎛

⎝

m2
H 0

0 m2
h

⎞

⎠R(α) =

⎛

⎝

M11 M12

M12 M22

⎞

⎠ . (18)

Then from Eq. (18) we can solve for

sα =
M12

√

(M12)2 + (M11 −m2
h)

2
, (19)

m2
H =

M11(M11 −m2
h) + (M12)2

M11 −m2
h

. (20)

From Eq. (19) we see that the sign of sα is determined by the sign of M12, which is why

in MSSM at tree-level one can choose −π/2 ≤ α ≤ 0. Also the conditions in Eq. (16)

guarantees the positivity of m2
H in Eq. (20).
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We follow the notation in Ref. [1] for the scalar potential of the most general two-Higgs-

doublet extension of the SM:

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12(Φ
†
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2
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2
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⎦ . (2)

Notice that in the case of unbroken SUSY we have
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1

4
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Z
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1

4
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2
g22 , (4)
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2
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λ5 = λ6 = λ7 = 0 . (6)

We will assume CP conservation and that the minimum of the potential is at

⟨Φi⟩ =
1√
2

⎡

⎣

0

vi

⎤

⎦ , (7)

where

v2 = v21 + v22 ≈ 246 GeV , tβ ≡ tan β =
v2
v1

. (8)

We choose 0 ≤ β ≤ π/2 so that tβ ≥ 0 and write v1 = v cos β ≡ vcβ and v2 = v sin β ≡ vsβ.

The five mass eigenstates are two CP -even scalars H and h, with mh ≤ mH , one CP -odd

scalar A, and a charged pair H±. The mass parameters m11 and m22 can be eliminated by

imposing the minimization condition [1]:

m2
11 − tβm

2
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where λ̃3 = λ3 + λ4 + λ5. It then follows that [1]
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the second follows from ”level repulsion” of eigenvalues of symmetric matrices.

Next we are going to solve for the mixing angle in the CP -even sector in terms ofmh = 125

GeV and two of the three entries of M2
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where we choose −π/2 ≤ α ≤ π/2, in general, so that both sα and cα are single-valued.

However in MSSM one can show that −π/2 ≤ α ≤ 0 at tree-level, which nonetheless does

not hold once radiative corrections are included. Then we have

RT (α)
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H 0

0 m2
h

⎞

⎠R(α) =

⎛
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M12 M22
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Then from Eq. (18) we can solve for

sα =
M12

√

(M12)2 + (M11 −m2
h)

2
, (19)

m2
H =

M11(M11 −m2
h) + (M12)2

M11 −m2
h

. (20)

From Eq. (19) we see that the sign of sα is determined by the sign of M12, which is why

in MSSM at tree-level one can choose −π/2 ≤ α ≤ 0. Also the conditions in Eq. (16)

guarantees the positivity of m2
H in Eq. (20).

3

Alignment in General two Higgs Doublet Models

In the MSSM, at tree-level, only the first four 
couplings are non-zero and are governed by D-
terms in the scalar potential.  At loop-level, all of 

them become non-zero via  the trilinear and quartic 
interactions with third generation sfermions.       

   Haber, Hempfling’93

H. Haber and J. Gunion’03

Tuesday, November 19, 2013

From here, one can minimize the effective potential and
     derive the expression for the CP-even Higgs mass matrix

in terms of a reference mass, that we will take to be mA

2
2 2

2 2

General two Higgs Doublet Model



Then at leading order in �, the Higgs couplings become

ghV V ⇥
⇤
1� 1

2
t�2
⇥ �2

⌅
gV , gHV V ⇥ t�1

⇥ � gV , (44)

ghdd ⇥ (1� �) gf , gHdd ⇥ t⇥(1 + t�2
⇥ �)gf , (45)

ghuu ⇥ (1 + t�2
⇥ �) gf , gHuu ⇥ �t�1

⇥ (1� �)gf . (46)

We see � characterizes the departure from the alignment limit of not only ghdd but also gHuu.

On the other hand, the deviation in the ghuu and gHdd are given by t�2
⇥ �, which is doubly

suppressed in the large t⇥ regime. Moreover, terms neglected above are of order �2 and are

never multiplied by positive powers of t⇥, which could invalidate the expansion in � when

t⇥ is large.

There are some interesting features regarding the pattern of deviations. First, whether

the coupling to fermions is suppressed or enhanced relative to the SM values, is determined

by the sign of �: ghdd and gHuu are suppressed (enhanced) for positive (negative) �, while

the trend in ghuu and gHdd is the opposite. In addition, as � ⌅ 0, the approach to the SM

values is the fastest in ghV V and the slowest in ghdd. This is especially true in the large t⇥

regime, which motivates focusing on precise measurements of ghdd in type II 2HDMs.

Our parametrization of c⇥�� = t�1
⇥ � can also be obtained by modifying Eq. (39), which

defines the alignment limit, as follows:
⇧

⌥ s2⇥ �s⇥c⇥

�s⇥c⇥ c2⇥

⌃

�

⇧

⌥ �s�

c�

⌃

� = t�1
⇥ �

⇧

⌥ �s⇥

c⇥

⌃

� . (47)

The eignevalue equation for mh in Eq. (40) is modified accordingly,

v2

⇧

⌥ L11 L12

L12 L22

⌃

�

⇧

⌥ �s�

c�

⌃

� = m2
h

⇧

⌥ �s�

c�

⌃

��m2
A t�1

⇥ �

⇧

⌥ �s⇥

c⇥

⌃

� . (48)

From the above, taking � ⇤ 1 and expanding to first order in �, we obtain the “near-

alignment conditions”,

(C1⇥) : m2
h = v2L11 + t⇥v

2L12 + �
�
t⇥(1 + t�2

⇥ )v2L12 �m2
A

⇥
, (49)

(C2⇥) : m2
h = v2L22 + t⇥

�1v2L12 � �
�
t�1
⇥ (1 + t�2

⇥ )v2L12 �m2
A

⇥
. (50)

We will return to study these two conditions in the next section, after first analyzing solutions

for alignment without decoupling in general 2HDMs.

12

More explicitly, since s� = �c⇥ in the alignment limit, we can re-write the above matrix

equation as two algebraic equations: 3

(C1) : m2
h = v2L11 + t⇥v

2L12 = v2
�
⇥1c

2
⇥ + 3⇥6s⇥c⇥ + ⇥̃3s

2
⇥ + ⇥7t⇥s

2
⇥

⇥
, (41)

(C2) : m2
h = v2L22 +

1

t⇥
v2L12 = v2

�
⇥2s

2
⇥ + 3⇥7s⇥c⇥ + ⇥̃3c

2
⇥ + ⇥6t

�1
⇥ c2⇥

⇥
. (42)

Recall that ⇥̃3 = (⇥3 + ⇥4 + ⇥5). In the above mh is the SM-like Higgs mass, measured to

be about 125 GeV, and Lij is known once a model is specified. Notice that (C1) depends

on all the quartic couplings in the scalar potential except ⇥2, while (C2) depends on all the

quartics but ⇥1. If there exists a t⇥ satisfying the above equations, then the alignment limit

would occur for arbitrary values of mA and does not require non-SM-like scalars to be heavy!

Henceforth we will consider the coupled equations given in Eqs. (41) and (42) as required

conditions for alignment. When the model parameters satisfy them, the lightest CP-even

Higgs boson behaves exactly like a SM Higgs boson even if the non-SM-like scalars are light.

A detailed analysis of the physical solutions will be presented in the next Section.

B. Departure from Alignment

Phenomenologically it seems likely that alignment will only be realized approximately,

rather than exactly. Therefore it is important to consider small departures from the align-

ment limit, which we do in this subsection.

Since the alignment limit is characterized by c⇥�� = 0, it is customary to parametrize the

departure from alignment by considering a Taylor-expansions in c⇥�� [7, 8], which defines the

deviation of the ghV V couplings from the SM values. However, this parametrization has the

drawback that deviations in the Higgs coupling to down-type fermions are really controlled

by t⇥ c⇥��, which could be O(1) when t⇥ is large. Therefore, we choose to parametrize the

departure from the alignment limit by a parameter � which is related to c⇥�� by

c⇥�� = t�1
⇥ � , s⇥�� =

⇤
1� t�2

⇥ �2 . (43)

3 The same conditions can also be derived using results presented in Ref. [8].
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Deviations from Alignment

The couplings of down fermions are not only the
ones that dominate the Higgs width but also tend

to be the ones which differ at most from the SM ones

�Sign(M2
12)(M2

22 � m2
h)/c� and B = |M2

12|/s�. Further, mh is the mass of the lightest

CP-even Higgs boson and M2
ii �m2

h > 0, i = {1, 2} by Eq. (20). Therefore Eq. (72) implies

A ⇥ 0 and B ⇥ 0 (74)

at the alignment limit.

Now in the near-alignment limit, where the alignment is only approximate, one can derive

ghdd =
A

B
�
1� (1�A2/B2)c2�

gf (75)

=

⌥
1� s2�

⇧
1� A

B

⌃
+O

�
(1�A/B)2

⇥�
gf , (76)

which, when comparing with Eq. (45), implies

⇥ = s2�

⇧
1� A

B

⌃
= s2�

B �A
B . (77)

Therefore, the ghdd coupling is enhanced (suppressed) if B�A < 0 (> 0). It is easy to verify

that the above equation is identical to the near-alignment condition (C1⇥) in Eq. (49). The

condition (C2⇥) could again be obtained using Eq. (22).

It is useful to analyze Eq. (76) in di�erent instances. For example, when ⇤6 = ⇤7 = 0,

one obtains

ghdd ⇤

 

↵1 + s�

⇤
⇤SM � ⇤̃3s2� � ⇤1c2�

⌅
v2

B

⌦

� gf . (78)

Hence, for ⇤̃3 > ⇤SM > ⇤1, a suppression of ghdd will take place for values of t� larger than

the ones necessary to achieve the alignment limit. On the contrary, for ⇤1 > ⇤SM > ⇤̃3,

larger values of t� will lead to an enhancement of ghdd.

On the other hand, for ⇤7 ⌅= 0 and large values of t�, one obtains

ghdd ⇤

 

↵1 + s�

⇤
⇤SM � ⇤̃3 � ⇤7t�

⌅
v2

B

⌦

� gf , (79)

which shows that for ⇤SM > ⇤̃3 and ⇤7 positive, ghdd is suppressed at values of t� larger than

those necessary to obtain the alignment limit, and vice versa.

One can in fact push the preceding analysis further by deriving the condition giving rise

to a particular deviation from alignment. More specifically, the algebraic equation dictating

the contour ghdd/gf = r, where r ⌅= 1, can be obtained by using Eq. (75):

m2
A =

1

R(�)� 1

A� B
s�

+
m2

h

s2�
� v2⇤5 � ⇤1v

2t�2
� � 2⇤6v

2t�1
� , (80)
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C. Departure from Alignment

So far we have analyzed solutions for the alignment conditions (C1) and (C2) in general

2HDMs. However, it is likely that the alignment limit, if realized in Nature at all, is

only approximate and the value of t⇥ does not need to coincide with the value at the

exact alignment limit. It is therefore important to study the approach to alignment and

understand patterns of deviations in the Higgs couplings in the “near-alignment limit,”

which was introduced in Section III B.

Although we derived the near-alignment conditions (C1�) and (C2�) in Eqs. (49) and

(50) using the eigenvalue equations, it is convenient to consider the (near-)alignment limit

from a slightly di�erent perspective. Adopting the sign choice (I) in Eq. (16) and using the

expression for the mixing angle, �, in Eq. (21), we can re-write the ghdd and ghuu couplings

as follows

ghdd = �s�
c⇥

gf =
A⇧

A2c2⇥ + B2s2⇥

gf , (68)

ghuu =
c�
s⇥

gf =
B⇧

A2c2⇥ + B2s2⇥

gf . (69)

where

A = �M2
12

c⇥
=

�
m2

A � (⇥3 + ⇥4)v
2
⇥
s⇥ � ⇥7v

2s⇥t⇥ � ⇥6v
2c⇥ , (70)

B =
M2

11 �m2
h

s⇥
=

�
m2

A + ⇥5v
2
⇥
s⇥ + ⇥1v

2 c⇥
t⇥

+ 2⇥6v
2c⇥ �

m2
h

s⇥
. (71)

Again it is instructive to consider first taking the pseudo-scalar mass to be heavy: mA ⇥ ⇤.

In this limit we have A ⇥ m2
As� and B ⇥ m2

As�, leading to �s�/c⇥ ⇥ 1 and c�/s⇥ ⇥ 1. We

recover the familiar alignment-via-decoupling limit. On the other hand, alignment without

decoupling could occur by setting directly

A = B , (72)

where, explicitly,

B �A =
1

s⇥

⇤
�m2

h + ⇥̃3v
2s2⇥ + ⇥7v

2s2⇥t⇥ + 3⇥6v
2s⇥c⇥ + ⇥1v

2c2⇥

⌅
= 0 , (73)

is nothing but the alignment condition (C1) in Eq. (41). The alignment condition (C2)

would be obtained if the representation in Eq. (22) is used instead, leading to A =

17
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For small departures from alignment, the parameter η can be determined     
as a function of the quartic couplings and the Higgs masses

,
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Lightest SM-like Higgs mass strongly depends on: 

Mh depends logarithmically on the averaged stop mass scale MSUSY  and has a quadratic and 
quartic dep. on the stop mixing parameter  Xt.  [ and on sbotton/stau sectors for large tanbeta] 

For moderate to large values of tan beta and large non-standard Higgs masses  

Analytic expression valid for  MSUSY~ mQ ~ mU 
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Figure 2. Comparison of the diagrammatic two-loop O(m2
t h

2
t αs) result for mh, to leading order

in mt/MS [eqs. (46) and (47)] with the “mixed-scale” one-loop EFT result [eq. (49)]. Note that

the latter now includes the threshold corrections due to stop mixing in the evaluation of mt(MS) in

contrast to the EFT results depicted in fig. 1. “Mixed-scale” indicates that in the no-mixing and

mixing contributions to the one-loop Higgs mass, the running top quark mass is evaluated at different

scales according to eq. (48). See text for further details. The two graphs above are plotted for

MS = mA = (m2
g̃ + m2

t )
1/2 = 1 TeV for the cases of tan β = 1.6 and tanβ = 30, respectively.
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Standard Model-like Higgs Mass
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2 -loop corrections:      
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For masses of order 1 TeV, diagrammatic and EFT approach agree well, once the 
appropriate threshold corrections are included



Dependence on Stop Mixing

FIG. 6. Mh vs. bXt for mA = [200, 500] GeV in the [left, right] columns, t� = (2, 20) in the (top,

bottom) rows, Ab = A⌧ = MS , and µ = M1 = M2 = 200 GeV. The four curves are for MS values of

1, 2, 5, 10 TeV from bottom to top. The vertical grey dashed line indicates the value at the one-loop

maximal mixing value bXt =
p
6. The horizontal light grey box is the 1� band Mh = 125.09± 0.24

GeV.

at maximal mixing without light electroweakinos. We can compare with the recent results

produced by the SusyHD code of Ref. [28]. Our values are . 1 GeV higher than the central

result of Ref. [28]. Part of this discrepancy is attributed to the use of the lower value of

yt(Mt): if we instead use the NNLO + N3LO QCD value yt,N3LO QCD(Mt) = 0.93690, Mh is

lowered by 0.5 GeV. The remaining small di↵erence may be explained by the more complete

calculation of thresholds in the mA ⇠ MS case of Refs. [26, 28].

VI. COMPARISON TO PREVIOUS RESULTS

In this section, we compare our results with the results obtained in the hMSSM scenario

as well in the FeynHiggs version 2.10.2, in which relevant logarithmic e↵ects to the SM

22

Vega and Villadoro ’15, Wagner and Lee’15, FeynHiggs’17
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FIG. 2: Ratio of the value of the down-type fermion couplings to Higgs bosons to their SM values

in the case of low µ (L1j ⇥ 0), as obtained from Eq. (96), and �d ⌅ 0.

We can reach the same conclusion by using Eq. (21) for s� in this regime,

s� =
�(m2

A +m2
Z)s⇥c⇥⇤

(m2
A +m2

Z)
2s2⇥c

2
⇥ +

�
m2

As
2
⇥ +m2

Zc
2
⇥ �m2

h

⇥2 , (96)

which, for mA
>� 2mh and moderate t⇥ implies

� s�
c⇥

⌅ m2
A +m2

Z

m2
A �m2

h

. (97)

This clearly demonstrates that in this case the deviation of (�s�/c⇥) from 1 depends only on

mA and is independent of t⇥. In other words, alignment is only achieved in the decoupling

limit, m2
A ⇤ m2

Z ,m
2
h.

This also agrees with our expressions regarding the approach to the alignment limit via

decoupling, Eq. (77). In this regime �5,6,7 are very small implying

B ⌅ m2
A �m2

h, and B �A ⌅ �(m2
Z +m2

h) . (98)

In Fig. 2 we display the value of �s�/c⇥ in the mA � tan⇥ plane, for low values of µ, for

which the radiative corrections to the matrix element L11 and L12 are small, Eq. (96). As

expected from our discussion above, the down-type fermion couplings to the Higgs become
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Down Couplings in the MSSM for low values of µ

All vector boson branching
ratios suppressed by enhancement

of the bottom decay width
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FIG. 1: One-loop diagrams contributing to the the coefficient, Z6, of the Higgs basis operator,

(H†
1H1)(H

†
1H2). Using the interaction Lagrangian given in Eq. (51), one sees that the parametric

dependence for the six diagrams are: h4t s
3
βcβX

3
t Yt for (a) and (b); h4t s

3
βcβX

2
t for (c) and (d); and

h4t s
3
βcβXtYt for (e) and (f).

where we have used Eq. (46) to write v2s4βh
4
t = 4m4

t/v
2. Using Eqs. (55) and (56) in the

evaluation of Eq. (30) yields

tβ cβ−α ≃
−1

m2
H −m2

h

[
m2

h +m2
Z +

3m4
tXt(Yt −Xt)

4π2v2M2
S

(
1−

X2
t

6M2
S

)]
. (57)

At large tβ we have Xt(Yt−Xt) ≃ µ(Attβ −µ) and X3
t (Yt−Xt) ≃ µA2

t (Attβ − 3µ), in which

case, Eq. (57) can be rewritten in the following approximate form,

tβ cβ−α ≃
−1

m2
H −m2

h

[
m2

h +m2
Z +

3m4
t

4π2v2M2
S

{
Atµtβ
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t
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)
− µ2
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)}]
.

(58)
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Figure 5: Regions of the (mA, tan �) plane excluded in a simplified MSSM model via fits to the measured
rates of Higgs boson production and decays. The likelihood contours where �2 ln⇤ = 6.0, corresponding
approximately to 95% CL (2�), are indicated for the data and expectation assuming the SM Higgs sector.
The light shaded and hashed regions indicate the observed and expected exclusions, respectively. The
SM decoupling limit is mA ! 1.

for 2  tan �  10, with the limit increasing to larger masses for tan � < 2. The observed limit is
stronger than expected since the measured rates in the h ! �� (expected to be dominated by a W boson
loop) and h ! ZZ⇤ ! 4` channels are higher than predicted by the SM, but the simplified MSSM
has a physical boundary V  1 so the vector boson coupling cannot be larger than the SM value. The
physical boundary is accounted for by computing the profile likelihood ratio with respect to the maximum
likelihood obtained within the physical region of the parameter space, mA >0 and tan � >0. The range
0 tan � 10 is shown as only that part of the parameter space was scanned in the present version of this
analysis. The compatible region extends to larger tan � values.

The results reported here pertain to the simplified MSSM model studied and are not fully general.
The MSSM includes other possibilities such as Higgs boson decays to supersymmetric particles, decays
of heavy Higgs bosons to lighter ones, and e↵ects from light supersymmetric particles [60] which are
not investigated here.

8 Higgs Portal to Dark Matter

Many “Higgs portal” models [14,34,61–65] introduce an additional weakly-interacting massive particle
(WIMP) as a dark matter candidate. It is assumed to interact very weakly with the SM particles, except
for the Higgs boson. In this study, the coupling of the Higgs boson to the WIMP is taken to be a free
parameter.

The upper limit on the branching ratio of the Higgs boson to invisible final states, BRi, is derived
using the combination of rate measurements from the h ! ��, h ! ZZ⇤ ! 4`, h ! WW⇤ ! `⌫`⌫,
h! ⌧⌧, and h! bb̄ channels, together with the measured upper limit on the rate of the Zh! ``+ Emiss

T
process. The couplings of the Higgs boson to massive particles other than the WIMP are assumed to be
equal to the SM predictions, allowing the corresponding partial decay widths and invisible decay width

Low values of µ similar to the ones analyzed by ATLAS

ATLAS-CONF-2014-010

Bounds coming from precision h measurements
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Higgs Decay into Gauge Bosons
Mostly determined by the change of width

CP-odd Higgs masses of order 200 GeV and tanβ = 10 OK in the alignment case

Small μ µ/MSUSY = 2, At/MSUSY ' 3

M. Carena, I. Low, N. Shah, C.W.’13

1.0

Tuesday, November 19, 2013

Carena, Haber, Low, Shah, C.W.’14



Depending on the  values of  μ and tanβ different search strategies must be applied.

Heavy Higgs Bosons :  A variety of decay Branching Ratios
Carena, Haber, Low, Shah, C.W.’14

Heavy Supersymmetric Particles

At large tanβ, bottom and tau decay modes dominant.
As tanβ decreases decays into SM-like Higgs and wek bosons become relevant

! "

!
"

Μ " # Β "

ΤΤ

Χ Χ

(a)

!
"

Μ " # Β "

ΤΤ

Χ Χ

(b)

! "

!
"

Μ " # Β "

ΤΤ

Χ& Χ'

Χ Χ

(c)

!
"

Μ " # Β "

ΤΤ

Χ& Χ'

Χ Χ

(d)

FIG. 5: Branching Ratio of the heavy CP-even Higgs and CP-odd Higgs decays as a function of

the respective Higgs mass in the mhalt and mhmod scenarios for tan β = 10 and for different values

of the Higgsino mass parameter µ.

the width beyond the bottom-quark and tau-lepton ones, the hZ channel being the most

relevant one. As we discussed before, this is in sharp contrast with what happens in the

heavy CP-even Higgs boson, for which at mA ≃ 300 GeV the BR(H → ττ) is only of a few

20
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FIG. 7: Branching Ratio of the heavy CP-even Higgs and CP-odd Higgs decays as a function of

the respective Higgs mass in the mhalt and mhmod scenarios for tan β = 4 different values of the

Higgsino mass parameter µ.

are displayed in Fig. 8 with the values of At defined in the on-shell scheme. Observe that

for the mhalt scenario larger values of mQ are necessary for smaller values of µ. On the

contrary, in the mhmod scenario, larger values of mQ are obtained for larger values of µ. The

22

malt
h : Large µ. Alignment at values of tan� ' 12



Carena, Haber, Low, Shah, C.W.’14

Light Charginos and Neutralinos can significantly modify M the                                                                 
CP-odd Higgs Decay Branching Ratios

! "

!
"

Μ " Β "

ΤΤ

Χ Χ
Χ& Χ'

(a)

! "

!
"

Μ " Β "

ΤΤ

Χ Χ
Χ& Χ'

(b)

FIG. 6: Branching Ratio of the heavy CP-even Higgs and CP-odd Higgs decays as a function of the

respective Higgs mass in the malt
h and mmod

h scenarios for tan β = 4 different values of the Higgsino

mass parameter µ.

percent, only a factor of two larger than in the low µ scenario. This difference between the

CP-even and CP-odd Higgs bosons has important phenomenological consequences that will

be discussed below.

Another thing that may be observed from Figs. 6 and 7 is that at low values of tan β,

the top contribution to the decay width of the non-standard Higgs bosons is sufficiently

large to strongly suppress all other relevant branching ratios for mA > 2Mt, where Mt is

the top quark mass. Hence, in the following, we shall mostly connectrate in the region of

mA < 350 GeV.

For stop masses of one TeV, the mhmod and mhalt scenarios fail to reproduce the proper

lightest Higgs mass, mh = 125 GeV at values of tanβ ≤ 6. Hence, the stop masses must

be raised in order to obtain the proper Higgs mass. In our work, we keep the ratio of

the trilinear mass parameter At to the overall stop mass scale, as defined in Ref. [], but

vary the value of the stop soft supersymmetry breaking parameters until mh ≃ 125 GeV is

obtained. The corresponding values of the stop soft breaking mass parameters MSUSY = mQ

21

At small values of µ (M2 ' 200 GeV here), chargino and neutralino

decays prominent. Possibility constrained by direct searches.



Large μ and small tanβ
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FIG. 7: Branching Ratio of the heavy CP-even Higgs and CP-odd Higgs decays as a function of

the respective Higgs mass in the mhalt and mhmod scenarios for tan β = 4 different values of the

Higgsino mass parameter µ.

are displayed in Fig. 8 with the values of At defined in the on-shell scheme. Observe that

for the mhalt scenario larger values of mQ are necessary for smaller values of µ. On the

contrary, in the mhmod scenario, larger values of mQ are obtained for larger values of µ. The
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FIG. 7: Branching Ratio of the heavy CP-even Higgs and CP-odd Higgs decays as a function of

the respective Higgs mass in the mhalt and mhmod scenarios for tan β = 4 different values of the

Higgsino mass parameter µ.

are displayed in Fig. 8 with the values of At defined in the on-shell scheme. Observe that

for the mhalt scenario larger values of mQ are necessary for smaller values of µ. On the

contrary, in the mhmod scenario, larger values of mQ are obtained for larger values of µ. The
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Decays into gauge and Higgs bosons become important. Observe, however 
that the BR(A  to τ τ) remains large up to the top-quark threshold scale
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Complementarity between precision measurements
and search for new Higgs going to τ pairs

Carena, Haber, Low, Shah, C.W.’14

Limits coming from measurements of h couplings

become weaker for larger values of µ

Limits coming from direct searches of H,A ! ⌧⌧
become stronger for larger values of µ

Bounds on mA are therefore dependent on the scenario

and at present become weaker for larger µ

With a modest improvement of direct search limit one would
be able to close the wedge, below top pair decay threshold 

H,A ! ⌧⌧



Naturalness and Alignment in the NMSSM

• It is well known that in the NMSSM there are new contributions to the lightest 
CP-even Higgs mass,

• It is perhaps less known that it leads to sizable corrections to the mixing between 
the MSSM like CP-even states. In the Higgs basis,  ( correction to     )

• The last term is the one appearing in the MSSM, that are small for moderate 
mixing and small values of 

• The values of      end up in a very narrow range, between 0.65 and 0.7 for all 
values of tan(beta), that are the values that lead to naturalness with perturbativity 
up to the GUT scale

W = �SHuHd +
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2
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Alignment in the NMSSM (heavy or Aligned singlets)(i) (ii)
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FIG. 8: Blue shaded region denotes current LHC limits. The ratio of the Higgs coupling to down-

type quarks to the SM limit is shown by the red dashed contours for various values of �.
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It is clear from these plots that
the NMSSM does an amazing 
job in aligning the  MSSM-like 

CP-even sector, provided          
is  about 0.65

Carena, Low, Shah, C.W.’13
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Aligning the CP-even Singlets

• The previous formulae assumed implicitly that the singlets are either decoupled, 
or not significantly mixed with the MSSM CP-even states

• The mixing mass matrix element between the singlets and the SM-like Higgs is 
approximately given by

• If one assumes alignment, the expression inside the bracket must cancel

• If one assumes                and lambda of order 0.65, and in addition one asks for 
kappa in the perturbative regime, one immediately conclude that in order to get 
small mixing in the Higgs sector,  the CP-odd Higgs is correlated in mass with 
the parameter    

• Since both of them small is a measure of naturalness, we see again that 
alignment and naturalness come together in a beautiful way in the NMSSM

• Moreover, this ensures also that all parameters are small and the CP-even and 
CP-odd singlets (and singlino) become self consistently light

M2
S(1, 3) ' 2�vµ

✓
1� m2

A sin2 2�

4µ2
�  sin 2�

2�

◆

tan� < 3

Carena, Haber, Low, Shah, C.W.’15

µ



Decays into pairs of SM-like Higgs bosons           
suppressed by alignment

Carena, Haber, Low, Shah, C.W.’15

Crosses : H1 singlet like
Asterix : H2 singlet like
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FIG. 10: Branching ratio of the decay of the heaviest CP-even Higgs boson into pairs of identical

CP-even Higgs bosons. Blue, red and yellow represent values of tan� = 2, 2.5 and 3, respectively.
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FIG. 11: Branching ratios of the decay of the heavy CP-even Higgs boson into a pair of non-identical

lighter CP-even Higgs bosons, H ! hhS (left panel) and into the lightest CP-odd Higgs boson and

a Z boson (right panel). Blue, red and yellow represent values of tan� = 2, 2.5 and 3, respectively.
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FIG. 10: Branching ratio of the decay of the heaviest CP-even Higgs boson into pairs of identical

CP-even Higgs bosons. Blue, red and yellow represent values of tan� = 2, 2.5 and 3, respectively.
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FIG. 11: Branching ratios of the decay of the heavy CP-even Higgs boson into a pair of non-identical

lighter CP-even Higgs bosons, H ! hhS (left panel) and into the lightest CP-odd Higgs boson and

a Z boson (right panel). Blue, red and yellow represent values of tan� = 2, 2.5 and 3, respectively.
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Blue : tan� = 2

Red : tan� = 2.5
Yellow: tan� = 3



Heavy CP-odd Higgs Bosons have similar decay modes

Carena, Haber, Low, Shah, C.W.’15

Significant decay of heavy CP-odd 
Higgs bosons into singlet like states plus Z
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FIG. 13: Branching ratio of the decay of the heaviest CP-odd Higgs boson into a Z and the lightest

CP-even Higgs bosons, h (left panel) and hS (right panel). Blue, red and yellow represent values

of tan� = 2, 2.5 and 3, respectively.

tency up to the Planck scale (see Fig. 2), implying that the decays

H,A ! �0,±
i �0,⌥

j (83)

are likely to have sizable rates in the region of parameters under consideration.

Fig. 14 illustrates that the heavy Higgs bosons H and A have sizable decay branching

ratios into charginos and neutralinos. These branching ratios become more prominent for

larger values of tan� and for masses below 350 GeV where the decays into top quarks are

suppressed.

For completeness, we present the branching ratio of the heaviest CP-even and CP-odd

Higgs bosons into top quarks in Fig. 15. As expected, this branching ratio tends to be

significant for masses larger than 350 GeV and becomes particularly important at low values

of tan �, for which the couplings of the heaviest non-SM-like Higgs bosons to the top quark

are enhanced. In spite of being close to the alignment limit, this branching ratio is always

significantly lower than 1, due to the decays of the Higgs bosons to final states consisting of

the lighter Higgs bosons and chargino and/or neutralino pairs, as noted above.
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CMS-PAS-HIG-15-001

Search for (psudo-)scalars decaying into lighter ones 

It is relevant to perform similar analyses replacing
the Z by a SM Higgs  !



Top Quark and Bottom Quark Couplings 
Modifications



Modifying the top and bottom couplings in two Higgs Doublet 
Models

• Measurement of the top and bottom couplings still subject to large errors.   

• The enhancement on the top coupling is somewhat weaker in the 13 TeV data. 
Modifications of a few tens of percent possible. 

• Modifying the top-quark coupling is simple for small values of tanβ, but the bottom 
coupling is modified as well in an opposite direction 

M. Badziak and C.W. ‘1602.06198

t = sin(� � ↵) + cot� cos(� � ↵)

b = sin(� � ↵)� tan� cos(� � ↵)

V = sin(� � ↵) ' 1

h = � sin↵H0
d + cos↵H0

u

H = cos↵H0
d + sin↵H0

u

tan� =
vu
vd



What is the problem in 2HDM ?

Suppression of the gluon fusion rate ?

Would expect top rate to be suppressed as well ! No evidence of that
in data, although errors are too large to tell. 

Same Coupling



The Gluon Fusion Rate

• Suppression of the bottom coupling would demand some suppression of 
the gluon-Higgs coupling.  

• Problem is even more severe when the top coupling is enhanced, since 
we have to compensate for this potential source of ggh enhancement 

• However, the gluon fusion cross section could also be modified in the 
presence of extra color particles.  For instance, for scalar tops,  

M. Badziak and C.W. ‘1602.06198, 1611.03253 
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        Connection with Di-Higgs Production
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HH production at 14 TeV LHC at (N)LO in QCD
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Figure 3: Total cross sections at the LO and NLO in QCD for HH production channels, at the
√

s =14 TeV LHC as a function of the
self-interaction coupling λ. The dashed (solid) lines and light- (dark-)colour bands correspond to the LO (NLO) results and to the scale and
PDF uncertainties added linearly. The SM values of the cross sections are obtained at λ/λSM = 1.
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Frederix et al’14

Very few events in the SM case after cuts are implemented. 

Light Stops or small modifications of the top quark coupling (or both)
can strongly enhance the di-Higgs production rate. 

Joglekar, Huang, Li, C.W.’17



Variation of the Di-Higgs Cross Section with
the Top Quark and Self Higgs Couplings

Strong dependence on the value of kt and λ3
Εven small variations of kt can lead to 50 percent variations of the di-Higgs cross section

Huang, Joglekar, Li, C.W.’17
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Figure 3: Di-Higgs production cross section in the absence of stops, as a function of the
top-quark Yukawa coupling, t, for different values of the Higgs trilinear coupling �

3

. Here,
we have t = g.

interference between the box and triangle diagram amplitudes, and hence leads to a general
reduction of the di-Higgs production cross section. On the contrary, for small values of
�
3

' 0, only the box diagram contributes, and hence the cross section is not only enhanced
with respect to the SM case, but depends quartically on the top quark coupling t. Di-Hggs
production cross section values of the order of 4 times the SM value may be obtained for
the maximal variations of t and �

3

considered in Fig. 3.

In the Figs. 4, 5, 6 and 7, we show the results for the double Higgs cross section in the
presence of light stops. For each values of mQ and mU , we calculated the largest value of
|Xt| that can be allowed by a lower bound on stop mass and a stable Higgs vacuum, with
a Higgs vacuum expectation value of v = 246 GeV. The lower bound on the stop masses
used in Figs. 4, 5, 6 and 7 are 400 GeV, 300 GeV,500 GeV, and 400 GeV respectively. Then
we use the previously mentioned modified version of MCFM to calculate the double Higgs
production cross section, which is normalized to the SM value, as shown by the green dashed
contours. For the stability condition, we decided to be conservative and ignore the mA and
MZ dependence in Eq. (2.7). The dependence on mA of the vacuum stability bound on Xt,
and of the resulting double Higgs production cross section, will be discussed later.

We also calculate the single Higgs production cross section in the gluon fusion channel,
as shown in the orange regions. The left panels in all three figures correspond to a value
of the top-quark Yukawa coupling normalized to the SM value, t = 1.0, while the right
panel corresponds to t = 1.1. The modification of the triple Higgs coupling is defined as
�
3

= (�
3

� �SM

3

)/�SM

3

. The first and last row in each of the Figs. 4, 5 and 6 corresponds

– 9 –



Stop Effects on Di-Higgs
Production Cross Section

Orange :  Stop corrections to kappa_g decoupled
Red : X_t fixed at color breaking vacuum boundary value, for light mA
Green : X_t fixed at color breaking boundary value, for mA = 1.5 TeV
Blue : Same as Red, but considering \kappa_t = 1.1 

Huang, Joglekar, Li, C.W.’17
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Figure 8: Di-Higgs production cross section normalized to the SM value using the full
one loop calculation (solid lines) and the EFT calculation (dashed lines) as a function of
the lightest stop mass for mQ = mU and �

3

= 0. t is chosen to be 1 for the orange,
red and green lines, and 1.1 for the blue lines. For red and blue lines, X2

t is chosen to
saturate the vacuum stability condition as in Eq. (2.7), neglecting the mA and mZ terms.
For green lines, X2

t is chosen to saturate the vacuum stability condition with mA = 1.5 TeV,
µ = 400 GeV, and tan� = 1. For the orange line, X2

t is chosen to be m2

˜t1
+ m2

˜t2
to keep

g = 1. For blue, red, and green lines, g value range for each stop mass is labeled on the
plot corresponding to that stop mass. The value of g are identical for solid and dashed
line of the same color at a given lightest stop mass. g values increase monotonously with
increase in the lightest stop mass for each line except for the Orange lines where it is fixed
at 1. For red and blue lines, mA = µ = 0.

more conservative vacuum stability bound is considered.

3.1 Di-Higgs Search Channel

The general strategy in the search for double Higgs is to require one Higgs to decay to a pair
of bottoms for enough statistics, as the total rate for double Higgs production is about three
orders of magnitude smaller compared to single Higgs production. Then, we can consider
the other Higgs decay to a pair of photons, bottoms, W±’s, or ⌧ ’s. In this work, we are
going to discuss the modifications to distributions in the presence of light stops, and we
will focus on the bb�� channel, as this channel provides best resolution.

– 15 –



Inverting the sign of 
the bottom coupling



What about inverting the sign of the 
third generation couplings ?

• Easy to invert the bottom coupling in type II Higgs doublet models

• In the NMSSM, in particular, this implies to go to larger values of lambda, since 
this is the parameter that allows to control this coupling. 

• This causes problems with the spectrum, since some scalars tend to become 
tachyonic in the relevant region of parameters. We cured this problem by 
adding a tadpole term

• Since the Higgs-gauge boson coupling with respect to the SM is                    , 
one needs sizable values of               ,  and moderate values of           ,  but still 
allowed by searches for non-standard Higgs bosons.   Values of                      
are the most appropriate ones.                 

large values of t�, including only the stop loop corrections, namely [35]:

Z6v
2 ⇡ 1

tan �

⇥

m2
h +m2

Z � �2v2
⇤
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3v2h4

tµXt

16⇡2M2
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✓

1� X2
t

6M2
S

◆

(15)

which leads to
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h


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3m4
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✓

1� A2
t

6M2
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◆�

(16)

Compared with Equation (12), we got an extra ��2v2 term in the parenthesis, which tends to

push t� c��↵ towards positive values and makes it promising to get t� c��↵ = 2 with smaller

values of tan �. However, for that purpose we need � to be of order 1. We found that when

� or  are large, say � ⇡  ⇡ 1, the chargino, neutralino and Higgs loop contributions

are also sizable and can not be neglected when evaluating Higgs mass and couplings, more

specifically t� c��↵ in this case. After taking these into consideration, the phenomenological

analysis becomes more complicated and a numerical analysis with full quantum corrections

up to two-loop level are necessary to select the proper region of parameter space leading to

the inversion of the bottom coupling. On the other hand, large � could lead to a Landau pole

problem at energies lower than the Grand Unification scale. In the following two sections

we will discuss these two issues and assess the possibility of negative Yukawa couplings in

the NMSSM.

As we will show in later sections, beyond the problems associated with perturbativity,

this simple framework leads to problems in the CP-even Higgs sector, since the square of

the lightest CP-even Higgs boson mass is generically pushed to negative values due to large

mixing e↵ects. A possible solution to this problem is to add a non-zero singlet tadpole term

�S to the potential

�V = ⇠S S + h.c. (17)

This term breaks the accidental Z3 symmetry and could be a result of the supersymmetry

breaking mechanism at high scales [30]. A large |⇠S| could keep the singlet decoupled from

the two neutral Higgs bosons [9], reducing the problem to an approximate 2x2 Higgs mixing

one, with low energy quartic couplings that are modified by terms proportional to powers

of the couplings � and .
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large values of t�, including only the stop loop corrections, namely [35]:
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Values of the dimensionless couplings
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Effects on gluon Fusion

• Changing the sign of the bottom coupling changes the gluon fusion rate by 
about 12 percent !

• Assuming that no other effect is present, the LHC collaborations announce a 
precision of about 5 percent for the gluon coupling by the end of the LHC 
run. So, under this assumption this effect may be tested.

B. Li, N. Coyle, C.W. ’17 (to appear)



Low charged Higgs masses

Constraints on Charged Higgs Mass coming
from t ! bH+ considered

Part of the reason for large value of λ is the relation between the CP-odd and charged
Higgs masses in these theories, namely

m2
H+ ' m2

A � �2v2

B. Li, N. Coyle, C.W. ’17 (to appear)

v = 174 GeV

FIG. 3: Scatter plot of the charged Higgs mass MH± against MH , with the value of tan� as the

colorbar. A tan�-dependent mass cut on MH± , with a lowest limit of 155 GeV, has been applied

to satisfy experimental constraints.

Let us stress here that for sizable values of tan �, the bottom quark coupling to the

lightest Higgs boson is modified at the loop level in a relevant way with respect to its tree-

level value. This modifications are particularly important for large values of the Higgsino

mass parameter µ and are approximately given by [35]

b =
ghbb
gSMhbb

= �s↵
c�



1� �b

1 +�b

✓

1 +
1

t↵t�

◆�

(18)

where �b is given by [36],[37],[38]

�b '
✓

2↵3

3⇡
I(mb̃1

,mb̃2
,M3) +

h2
t

(4⇡)2
I(mt̃1 ,mt̃2 , µ)

◆

tan � (19)

and the function I(a, b, c) is given by []

I(a, b, c) =
a2b2 ln(a2/b2) + b2c2 ln(b2/c2) + c2a2 ln(c2/a2)

(a2 � c2)(a2 � b2)(b2 � c2)
(20)

There are similar corrections to the tau coupling, but they are governed by weak coupling

e↵ects and are therefore less significant. The above corrections imply a di↵erence between b

and ⌧ and has threfore relevant phenomenological consequences for sizable values of tan �.

In particular, in the region of parameter under investigation, ⌧ tends to be smaller than b

by a few tens of percent.
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Novelty : Decay into charged Higgs Bosons

Large values of λ imply that the charged Higgs mass becomes
significantly lower than the neutral MSSM-like Higgs masses.

B. Li, N. Coyle, C.W. ’17 (to appear)



Additional tests of this idea ?

FIG. 6: Energy at which some coupling becomes non-perturbative for each � and  combination

for a fixed values of g1 at u = 3 TeV. The left panel corresponds to g1 = 1.5 while the right panel

corresponds to g1 = 3.0. The lines labeled with 1016GeV in the two panels are consistent with the

two contour lines in Figure 5 with the corresponding g1 values.

VI. IMPLICATIONS FOR LHC PHYSICS

A. Radiative Higgs Decay to Quarkonia

The change of sign of the bottom Yukawa coupling may have relevant phenomenological

consequences. One Higgs process a↵ected by the bottom Yukawa coupling is the radiative

decay of the Higgs to Quarkonium, in particular to the ⌥ meson, which is composed of bb̄.

Within the Standard Model, the direct and indirect Feynman diagrams have an approximate

accidental cancelation, which e↵ectively excludes this decay process at all but very high

luminosities. Figures 7 and 8 show the direct and indirect Feynman diagrams, taken from

Ref. [39].

The resulting decay widths ofH ! ⌥(nS)+� in terms of b, the bottom Yukawa coupling

relative to the SM value, are given by [39]

�[H ! ⌥(1S) + �] = |(3.33± 0.03)� (3.49± 0.15)b|2 ⇥ 10�10 GeV

�[H ! ⌥(2S) + �] = |(2.18± 0.03)� (2.48± 0.11)b|2 ⇥ 10�10 GeV (31)
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FIG. 7: Feynman diagrams for the direct amplitude of H ! V + �, where V represents the

quarkonium bound state [39].

FIG. 8: Feynman diagram for the indirect amplitude of H ! V + � [39].

�[H ! ⌥(3S) + �] = |(1.83± 0.02)� (2.15± 0.10)b|2 ⇥ 10�10 GeV,

where the first term derives from the indirect diagram and the second term, which is modified

by b, derives from the direct diagram. Note that the change in sign from b = 1 to

b = �1 gives a factor increase of between 102 and 104 in the decay widths. Using �(H) =

4.195+0.164
�0.159 ⇥ 10�3 GeV [40], the Higgs branching ratio to ⌥(1S, 2S, 3S) + � final states for

the SM are (0.610, 2.15, 2.44)⇥10�9. For b = �1, the branching ratios are (1.11, 0.518,

0.378)⇥10�6, which are still small but significantly larger than the SM values.

The predicted number of H ! ⌥(nS) + � events at the LHC is calculated as

N =
�(H ! ⌥(nS) + �)

�(H)
⇥ �(p+ p ! H)⇥ Lint. (32)

We calculate the expected number of H ! ⌥(nS) + � events for both b = 1 and b = �1

using an integrated luminosity of Lint = 30 fb�1, the to-date LHC integrated luminosity for
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Radiative Higgs Decays

Accidental cancellation present in the SM would lead to a large enhancement in the
case of a change in sign of the bottom coupling to Higgs bosons. 

Bodwin et al’14, Neubert et al’15



LHC Sensitivity

2016 [41]. The Higgs total cross section is taken to be �(p + p ! H) = 5.57 ⇥ 104 fb [40].

The results are shown in Table II.

b ⌥(1S) ⌥(2S) ⌥(3S)

1 0.001± 0.01209 0.0036± 0.0094 0.0041± 0.008

-1 1.85± 0.01 0.865± 0.009 0.631± 0.008

TABLE II: Number of expected events for H ! ⌥(nS) + � decays for b = 1 and b = �1 with

an integrated luminosity of 30 fb�1.

We also examine the number of expected events by the end of LHC Run 2 and Run 3.

The approximate target integrated luminosity gathered by the end of Run 2 is 130 fb�1,

while the expected total integrated luminosity by the end of Run 3 is 300 fb�1 [42]. The

predicted number of events for each case are shown in Table III.

b ⌥(1S) ⌥(2S) ⌥(3S)

Run 2 (130 fb�1)

1 0.00442± 0.06214 0.0155± 0.0483 0.0178± 0.0414

-1 8.02± 0.32 3.75± 0.15 2.73± 0.11

Run 3 (300 fb�1)

1 0.0102± 0.1434 0.358± 0.1115 0.0408± 0.0956

-1 18.5± 0.7 8.65± 0.36 6.31± 0.26

TABLE III: Number of expected events for H ! ⌥(nS) + � decays at the end of Run 2 and Run

3.

Of particular interest within the phenomenology of the wrong-sign bottom Yukawa are

the a↵ected processes which can be examined at the LHC. We focus specifically on the Higgs

decays h ! ⌥(nS)+ �, h ! gg, and h ! ��. While the gluon coupling may be constrained

mostly by the rate of gluon fusion production processes, the photon coupling is constrained

by Higgs decays, namely

2
� =

�NMSSM(h ! ��)

�(hSM ! ��)
. (33)

Searches for h ! ⌥(nS) + � have been performed previously for the 8 TeV runs with

approximately 20.3 fb�1 of luminosity [45]. The current limits on the branching ratios at

17

Branching ratios are small and therefore the number of events become
only sizable at high luminosities.  The approximate number of events are

Therefore, at most a few hundred of events available in these channels.

Run I bound on the Branching ratios of order of a few 10�3.
Improvement in search sensitivity will be required to reach
the required sensitivity at the HL-LHC.

BR(H ! ⌥(1S) + �) ' 1.1⇥ 10�6

BR(H ! ⌥(2S) + �) ' 0.5⇥ 10�6

BR(H ! ⌥(3S) + �) ' 0.4⇥ 10�6

For b = �1

B. Li, N. Coyle, C.W. ’17 (to appear)



More general Parameters : Superpotential Tadpole

One may reduce the mass gap with the charged Higgs, and due to the
large misalignment, decays into Higgs and gauge bosons open up. 

B. Li, N. Coyle, C.W. ’17 (to appear)



Consistent with  ATLAS Excess
B. Li, N. Coyle, C.W. ’17 (to appear)



Conclusions

Current Higgs measurements are in agreement with the values predicted in the SM.

Determination of bottom and top couplings still lacks precision, with a few tens of 
percent errors.  Therefore, relevant modifications of these couplings may be present.

Bottom coupling governs the width and therefore its departure from SM values leads 
to a relevant modification of all decay widths.

An interesting, even if unlikely, possibility is that the sign of this coupling is inverted.

In this talk, after discussing the alignment condition, we have also explored scenarios 
in which relevant modifications of the bottom coupling may be present, in well 
motivated low energy supersymmetry extensions of the SM

Relevant implications for Higgs phenomenology, that go beyond the modifications of 
the decay widths, and may allow to test these scenarios.





Bottom AFB

• New gauge boson that couples to bottom quark.

• Could mimic the Higgs boson

D. Liu, J. Liu, X. Wang, C.W. , to appear

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02750 ± 0.00033 0.02759
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959
σhad [nb]σ0 41.540 ± 0.037 41.478
RlRl 20.767 ± 0.025 20.742
AfbA0,l 0.01714 ± 0.00095 0.01645
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481
RbRb 0.21629 ± 0.00066 0.21579
RcRc 0.1721 ± 0.0030 0.1723
AfbA0,b 0.0992 ± 0.0016 0.1038
AfbA0,c 0.0707 ± 0.0035 0.0742
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.385 ± 0.015 80.377
ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092
mt [GeV]mt [GeV] 173.20 ± 0.90 173.26

March 2012



Fixing the perturbativity problem ?

FIG. 4:

However this region of parameter leads to the so-called Landau-pole problem, i.e. coupling

constants will reach infinity at some energies much lower than the GUT scale during the

renormalization group evolution [38]. This problem can be solved by extending the gauge

groups, for example, to SU(3)c ⇥SU(2)1 ⇥SU(2)2 ⇥U(1)Y , more specifically SU(2)1 is the

weak group coupling with the third generation and Higgs sector while SU(2)2 couples with

the first two generations [37]. The symmetry breaking from SU(2)1⇥SU(2)2 to the regular

SU(2) is achieved by a bi-doublet chiral field ⌃ happening at energies < ⌃ >= u of the oder

of a few TeV. Considering only the particles in the NMSSM, we get the following one-loop

RGE equations for ↵’s and Yukawa couplings.

d↵̃1

dt
= �33

5
↵̃2
1, (18)

d↵̃2

dt
= �↵̃2

2, (19)

d↵̃3

dt
= 3↵̃2

3, (20)

dYt

dt
= �Yt

✓

Y� + 6Yt �
16

3
↵̃3 � 3↵̃2 �

13

15
↵̃1

◆

, (21)

dY�

dt
= �Y�

✓

4Y� + 2Y + 3Yt � 3↵̃2 �
3

5
↵̃1

◆

, (22)

dY

dt
= �6Y (Y� + Y) (23)
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B. Li, N. Coyle, C.W. ’17 (to appear)

It is known that one can add two SU(2)’s at higher energies, one that couples to the Higgs bosons 
and the third generation, and the other the first generation. This would break to the SM SU(2) at 
energies of a few TeV.

Batra et al’04



Loss of Perturbative Consistency for different values of 

FIG. 5: Below the red dashed line is the allowed region of � and  in the NMSSM model; the blue

contours shows the allowed boundaries of � and  for di↵erent values of the new SU(2) coupling g1

at u = 3 TeV. Below each line all couplings are perturbative during 1-loop RG evolution up to the

energies of 1016GeV . The contour lines correspond to g1 = 3.5, 3.0, 2.5, 2.0 and 1.5 from right to

left. The points show the values of  and � associated with negative values of the bottom Yukawa,

shown in Fig. 2.

FIG. 6: Energy at which some coupling becomes non-perturbative for each � and  combination

for a fixed values of g1 at u = 3 TeV. The left panel corresponds to g1 = 1.5 while the right panel

corresponds to g1 = 3.0. The lines labeled with 1016GeV in the two panels are consistent with the

two contour lines in Figure 5 with the corresponding g1 values.
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g1

g1 = 1.5 g1 = 3.

Contours denote the value of the cutoff at which the perturbative
consistency of the theory is lost.

B. Li, N. Coyle, C.W. ’17 (to appear)



Higgs Basis

decoupling can occur due to an accidental cancellation between tree-level and loop-induced

contributions. Although this possibility appears to violate the perturbative expansion, one

can easily argue why this is not the case. Indeed, the one-loop contributions arise from

fundamentally new sources of physics—namely the effect of supersymmetry breaking. Al-

though it is possible that one-loop corrections are as large as their tree-level counterparts (a

possibility already exhibited in the one-loop corrected MSSM Higgs mass), the two-loop cor-

rections are parametrically smaller than the corresponding one-loop corrections by a factor

of g2/(16π2) where g is a typical gauge or Yukawa coupling.

To exhibit explicitly the accidental cancellation that yields alignment, we make use of the

fact that exact alignment is attained when Z6 = 0. Assuming that s2β ̸= 0, it then follows

from eq. (47) that exact alignment is achieved when

m2
Zc2β =

3v2s2βh
4
t

16π2

[
ln

(
M2

S

m2
t

)
+

Xt(Xt + Yt)

2M2
S

−
X3

t Yt

12M4
S

]
, (53)

and Xt and Yt are defined in eq. (45). Eq. (53) yields a non-linear polynomial equation for

tan β. If a solution exists for positive tan β (since 0 ≤ β ≤ 1

2
π by convention) for fixed values

of the other MSSM parameters, then the alignment limit can be realized. To exhibit that a

solution is possible, we shall assume that tβ ≫ 1 (in practice, moderate to large values of

tβ >∼ 5 are sufficient). We then perform a Taylor expansion of eq. (47) keeping only constant

terms and terms linear in t−1
β . We can then easily solve for tβ ,

tβ =

m2
Z +

3v2h4
t

16π2

[
ln

(
M2

S

m2
t

)
+

2A2
t − µ2

2M2
S

−
A2

t (A
2
t − 3µ2)

12M4
S

]

3v2h4
tµAt

32π2M2
S

(
A2

t

6M2
S

− 1

) . (54)

Since the numerator of eq. (54) is typically positive, it follows that a viable solution exists

if µAt(At −
√
6MS) > 0. Note that in the approximations employed in obtaining eq. (54),

the so-called maximal mixing condition that saturates the upper bound for the radiatively-

corrected mh corresponds to At =
√
6MS. Thus, we expect to satisfy tβ ≫ 1 for values of

At slightly above [below] the maximal mixing condition if µAt > 0 [µAt < 0].

To make contact again with the results of Ref. [12], we observe that the exact alignment

condition, Z6 = 0, is achieved when [cf. eq. (23)]:

(λ1 − λ345)c
2
β − (λ2 − λ345)s

2
β = (c2β − 3s2β)t

−1
β λ6 + (3c2β − s2β)tβλ7 , (55)
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FIG. 1: One-loop diagrams contributing to the the coefficient Z6 of the Higgs basis operator

(H†
1H1)(H

†
1H2). Using the interaction Lagrangian given in eq. (44), one sees that the parametric

dependence for the six diagrams are: h4t s
3
βcβX

3
t Yt for (a) and (b); h4t s

3
βcβX

2
t for (c) and (d); and

h4t s
3
βcβXtYt for (e) and (f).

in the Higgs basis. Using the interaction Lagrangian given by eq. (44), one immediately can

ascertain the parametric dependence of the diagrams shown in Fig. 1. Each diagram has a

s3βcβh
4
t dependence, and there is a factor of Xt [Yt] for each H1Q̃Ũ [ H2Q̃Ũ ] vertex. In this

way, we explain the parametric dependence of the threshold corrections to Z6 exhibited in

eq. (47). Likewise, by replacing the external H2 line with an H1 line in Fig. 1 [and delete

graphs (e) and (f) which are now identical to graphs (c) and (d)], we can understand the

parametric dependence of the threshold corrections to Z1.

The Higgs-fermion Yukawa couplings are also modified below the scale MS. Having

12

H1 = Hu sin� +Hd cos�

H2 = Hu cos� �Hd sin�

In this basis, H1 acquires a v.e.v., while H2 does not.

Alignment is obtained when quartic coupling Z6H
3
1H2

vanishes. H1 and H2 couple to stops with couplings

Xt = ht sin� (At � µ/ tan�)
Yt = ht cos� (At + µ tan�)
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solution is possible, we shall assume that tβ ≫ 1 (in practice, moderate to large values of

tβ >∼ 5 are sufficient). We then perform a Taylor expansion of eq. (47) keeping only constant

terms and terms linear in t−1
β . We can then easily solve for tβ ,

tβ =

m2
Z +

3v2h4
t

16π2

[
ln

(
M2

S

m2
t

)
+

2A2
t − µ2

2M2
S

−
A2

t (A
2
t − 3µ2)

12M4
S

]

3v2h4
tµAt

32π2M2
S

(
A2

t

6M2
S

− 1

) . (54)

Since the numerator of eq. (54) is typically positive, it follows that a viable solution exists

if µAt(At −
√
6MS) > 0. Note that in the approximations employed in obtaining eq. (54),

the so-called maximal mixing condition that saturates the upper bound for the radiatively-

corrected mh corresponds to At =
√
6MS. Thus, we expect to satisfy tβ ≫ 1 for values of

At slightly above [below] the maximal mixing condition if µAt > 0 [µAt < 0].

To make contact again with the results of Ref. [12], we observe that the exact alignment

condition, Z6 = 0, is achieved when [cf. eq. (23)]:

(λ1 − λ345)c
2
β − (λ2 − λ345)s

2
β = (c2β − 3s2β)t

−1
β λ6 + (3c2β − s2β)tβλ7 , (55)
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gH1 t̃t̃
= ht sin�Xt, with Xt = At � µ⇤/ tan�

gH2 t̃t̃
= ht cos�Yt, with Yt = At � µ⇤

tan�

At moderate or large tan�



Quartic Couplings

(3), let m2
k = m2

kk + |µ|2 for k 2 {1, 2} and m2
12 = Bµ, with the following relations between

the fields,

�1 = �i�2H
⇤
D , �2 = HU . (39)

The terms in Eq. (38) become

|H†
DHU |2 ! |�1|2|�2|2 � (�†

1�2)(�
†
2�1) , HD · HU ! ��†

1�2 , (40)

and we have the following tree-level relations for the quartic couplings:

�1 = �2 =
1

4
(g2

2 + g2
Y ) , (41)

�3 =
1

4
(g2

2 � g2
Y ) , (42)

�4 = �1

2
g2
2 , (43)

�5 = �6 = �7 = 0 , (44)

where the notation for the above couplings is shorthand for �MSSM
i (MS).

The one-loop threshold corrections to �k(MS) in the MSSM from box and triangle dia-

grams are tabulated in, e.g. Ref. [29]:

�(1)
th �1 = �

2
h4
t µ̂

4 + 6h4
b
bA2
b

⇣

1 �
bA2
b

12

⌘

+ 2h4
⌧
bA2
⌧

⇣

1 �
bA2
⌧

12

⌘

+ 
g2
2 + g2

Y

4

h

3h2
t µ̂

2 � 3h2
b
bA2
b � h2

⌧
bA2
⌧

i

, (45)

�(1)
th �2 = 6h4

t
bA2
t

⇣

1 �
bA2
t

12

⌘

� 

2
h4
b µ̂

4 � 

6
h4
⌧ µ̂

4

� 
g2
2 + g2

Y

4

h

3h2
t
bA2
t � 3h2

b µ̂
2 � h2

⌧ µ̂
2
i

, (46)

�(1)
th �3 =



6
µ̂2
h

3h4
t (3 � bA2

t ) + 3h4
b(3 � bA2

b) + h4
⌧ (3 � bA2

⌧ )
i

+


2
h2
th

2
b

h

3( bAt + bAb)
2 � (µ̂2 � bAt

bAb)
2 � 6µ̂2

i

(47)

� 

2

g2
2 � g2

Y

4

h

3h2
t ( bA

2
t � µ̂2) + 3h2

b( bA
2
b � µ̂2) + h2

⌧ ( bA
2
⌧ � µ̂2)

i

, (48)

�(1)
th �4 =



6
µ̂2
h

3h4
t (3 � bA2

t ) + 3h4
b(3 � bA2

b) + h4
⌧ (3 � bA2

⌧ )
i

� 

2
h2
th

2
b

h

3( bAt + bAb)
2 � (µ̂2 � bAt

bAb)
2 � 6µ̂2

i

+


2

g2
2

2

h

3h2
t ( bA

2
t � µ̂2) + 3h2

b( bA
2
b � µ̂2) + h2

⌧ ( bA
2
⌧ � µ̂2)

i

, (49)

�(1)
th �5 = �

6
µ̂2
h

3h4
t
bA2
t + 3h4

b
bA2
b + h4

⌧
bA2
⌧

i

, (50)
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where the notation for the above couplings is shorthand for �MSSM
i (MS).

The one-loop threshold corrections to �k(MS) in the MSSM from box and triangle dia-

grams are tabulated in, e.g. Ref. [29]:
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b
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b
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b
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+ 2h4
⌧
bA2
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⇣

1 �
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⌧

12

⌘

+ 
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2 + g2
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h
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t µ̂

2 � 3h2
b
bA2
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⌧
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⌧

i
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�(1)
th �2 = 6h4

t
bA2
t

⇣
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bA2
t

12

⌘

� 

2
h4
b µ̂

4 � 

6
h4
⌧ µ̂

4

� 
g2
2 + g2

Y

4

h

3h2
t
bA2
t � 3h2

b µ̂
2 � h2

⌧ µ̂
2
i

, (46)

�(1)
th �3 =



6
µ̂2
h

3h4
t (3 � bA2

t ) + 3h4
b(3 � bA2

b) + h4
⌧ (3 � bA2

⌧ )
i

+


2
h2
th

2
b

h

3( bAt + bAb)
2 � (µ̂2 � bAt

bAb)
2 � 6µ̂2

i

(47)

� 

2

g2
2 � g2

Y

4

h

3h2
t ( bA

2
t � µ̂2) + 3h2

b( bA
2
b � µ̂2) + h2

⌧ ( bA
2
⌧ � µ̂2)

i

, (48)
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
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µ̂2
h

3h4
t (3 � bA2

t ) + 3h4
b(3 � bA2

b) + h4
⌧ (3 � bA2

⌧ )
i

� 

2
h2
th

2
b

h

3( bAt + bAb)
2 � (µ̂2 � bAt

bAb)
2 � 6µ̂2

i

+


2

g2
2

2

h

3h2
t ( bA

2
t � µ̂2) + 3h2

b( bA
2
b � µ̂2) + h2

⌧ ( bA
2
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 =
1

16⇡2



and

�1⇥ =

⇤
� 12⇥2 � ⇥

⇧
12y2t + 12y2b + 4y2⇥ � 9g22 �

9

5
g21

⌃
+ 12y4t + 12y4b + 4y4⇥

� 9

4
g42 �

9

10
g22g

2
1 �

27

100
g41

⌅
L

+

⇤
� 6⇥

⇧
g22 +

1

5
g21

⌃
+
⇧
g22 +

3

5
g21

⌃2
+ 4g42

⇧
1� 2s2�c

2
�

⌃⌅
Lµ, (46)

�2⇥ =

⇤
144⇥3 + ⇥2

⇧
216y2t � 108g22 �

108

5
g21

⌃
+ ⇥

⇧
� 18y4t + 27g42 +

54

5
g22g

2
1 +

81

25
g41

⌃

+ ⇥y2t

⇧
� 96g23 � 81g22 � 21g21

⌃
+ y4t

⇧
� 180y2t + 192g23 + 54g22 +

102

5
g21

⌃

+ y2t

⇧27
2
g42 +

27

5
g22g

2
1 +

81

50
g41

⌃⌅
L2

�
⇤�

24⇥+ 12y2t � 9g22 �
9

5
g21

⇥�
6⇥

⇧
g22 +

1

5
g21

⌃2
�

⇧
g22 +

3

5
g21

⌃2
� 4g42

⇧
1� 2s2�c

2
�

⌃⇥⌅
LLµ

+

⇤
3
⇧
g22 +

1

5
g21

⌃�
6⇥

⇧
g22 +

1

5
g21

⌃2
�

⇧
g22 +

3

5
g21

⌃2
� 4g42

⇧
1� 2s2�c

2
�

⌃⇥⌅
L2
µ

+

⇤
78⇥3 + 72⇥2y2t + ⇥y2t (3y

2
t � 80g23)� 60y6t + 64g23y

4
t

⌅
L, (47)

�3⇥ =

⇤
� 1728⇥4 � 3456⇥3y2t + ⇥2y2t (�576y2t + 1536g23)

+ ⇥y2t (1908y
4
t + 480y2t g

2
3 � 960g43) + y4t (1548y

4
t � 4416y2t g

2
3 + 2944g43)

⌅
L3

+

⇤
� 2340⇥4 � 3582⇥3y2t + ⇥2y2t (�378y2t + 2016g23)

+ ⇥y2t (1521y
4
t + 1032y2t g

2
3 � 2496g43) + y4t (1476y

4
t � 3744y2t g

2
3 + 4064g43)

⌅
L2

+

⇤
� 1502.84⇥4 � 436.5⇥3y2t � ⇥2y2t (1768.26y

2
t + 160.77g23)

+ ⇥y2t (446.764⇥y
4
t + 1325.73y2t g

2
3 � 713.936g43)

+ y4t (972.596y
4
t � 1001.98y2t g

2
3 + 200.804g43)

⌅
L, (48)
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The analysis of the three-loop corrections show a high degree of  cancellation 
between the dominant and subdominant contributions

This is a SM effect, since this is the effective theory we are considering.  

This shows that a partial computation of three loop effects is not justified

Draper, Lee, C.W. ’13,  S. Martin’07

Harlander, Kant, Mihaila, Steinhauser’08,’10 

Feng, Kant, Profumo, Sanford’13

Dominant Corrections for heavy Stops and Higgs Masses, 

The running Higgs mass at Mt is given by

m2
h(Mt) = �(Mt)v

2(Mt). (43)

We use one-loop running to obtain v(Mt) = 246.517 GeV from v(MZ) ⇠ V (see Table II).

The logarithmic factors are L = log(MS/Mt) and Lµ = log(MS/µ) (note that the latter also

includes logs of the form log(MS/M1,2)). Below, all parameters are in the MS scheme and

should be evaluated at Q = MS:

�(Mt) = �+ �1�+ 2�2�+ 3�3�+ 4�4�, (44)

and

�1� =

(
� 12�2 � �

h
12y2t + 12y2b + 4y2⌧ � 9g22 �

9

5
g21

i
+ 12y4t + 12y4b + 4y4⌧

� 9

4
g42 �

9

10
g22g

2
1 �

27

100
g41

)
L

+

(
� 6�

h
g22 +

1

5
g21

i
+
h
g22 +

3

5
g21

i2
+ 4g42

h
1� 2s2�c

2
�

i)
Lµ, (45)

�2� =

(
144�3 + �2

h
216y2t � 108g22 �
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5
g21

i
+ �

h
� 18y4t + 27g42 +
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g22g

2
1 +

81

25
g41

i

+ �y2t
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i
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+ y2t

h27
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1 +
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50
g41

i)
L2

�
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24�+ 12y2t � 9g22 �
9

5
g21

#"
6�

h
g22 +

1

5
g21

i2
�

h
g22 +

3

5
g21

i2
� 4g42

h
1� 2s2�c

2
�

i#)
LLµ

+
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3
h
g22 +

1

5
g21

i"
6�

h
g22 +

1

5
g21

i2
�
h
g22 +

3

5
g21

i2
� 4g42

h
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2
�
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