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There 1s evidence for dark matter
in a wide range of distance scales

Clusters

Galaxies of galaxies Observable

Solar system Universe

pC kpc Mpc Gpc distance

Cosmological and astronomical observations are
consistent with the dark matter being constituted
by new particles not contained in the Standard Model
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Candidates of particle dark matter
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WIMPs in the early Universe

roduction Assuming that the dark matter particles were
< in thermal equilibrium with the SM 1n the
Early Universe, their relic abundance reads:

>

annihilation

~strength of the - Correct dark matter abundance, Q A*~ 0.1, if
weak interaction

mpy ~ a few GeV —a few TeV
(forg~0.01-1)
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Many possible realizations of the effective interaction
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Many possible realizations of the effective interaction

Which dark matter partic le?

Which mediator (if any)?

What is the role of the mediator in the phenomeno logy?
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“M l.V\.l.W\al Da V' k M atter’ ) Cirelli, Fornengo, Strumia '05

Add to the SM a new particle with electroweak interactions
and with the characteristics of the dark matter.

Assumption:

Select the SU(2)xU(1) representation such that:

- Contains a neutral component
- Cosmologically long-lived



“M l.V\l.W\al Da V ,( M atter’ ) Cirelli, Fornengo, Strumia '05

Add to the SM a new particle with electroweak interactions

Assumption: and with the characteristics of the dark matter.
Select the SU(2)xU(1) representation such that:
- Contains a neutral component
- Cosmologically long-lived
Quantum numbers DM can DM mass mpy+r — mpu Events at LHC og 1N
SU(2), U(l)y Spin| decay into in TeV in MeV [Ldt =100/fb 10=% cm?

2 1/2 0 FEL 0.54 £ 0.01 350 320 = 510 0.2
2 /2  1/2 EH 1.1 4+0.03 341 160 = 330 0.2
3 0 0 HH* 2.0+£0.05 166 0.2=1.0 1.3
3 0 1/2 LH 2.4+0.06 166 0.8 =4.0 1.3
3 1 0 HH LL 1.6 = 0.04 540 3.0 =10 1.7
3 1 1/2 LH 1.8 £0.05 525 27 =90 1.7
4 1/2 0 HHH* 2.4+0.06 353 0.10 =06 1.6
4 /2 1/2 (LHH™) 2.4+0.06 347 5.3 =25 1.6
4 3/2 0 HHH 2.9+0.07 729 0.01 = 0.10 7.5
4 3/2  1/2 (LHH) 2.6 £0.07 712 1.7=95 7.5
5 0 0 |(HHH*H*) 5.0+0.1 166 < 1 12
5 0 1/2 — 4.44+0.1 166 < 1 12
7 0 0 — 8.54+0.2 166 < 1 46
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Add to the SM a new particle with electroweak interactions

Assumption: and with the characteristics of the dark matter.
Select the SU(2)xU(1) representation such that:
- Contains a neutral component
- Cosmologically long-lived
Quantum numbers DM can DM mass mpy+r — mpu Events at LHC og 1N
SU(2), U(l)y Spin| decay into in TeV in MeV [Ldt =100/fb 10=% cm?

2 1/2 0 FL 0.54 + 0.01 350 320 = 510 0.2
2 r/271y2 FH 1.1 +0.03 341 160 = 330 0.2
3 0 0 HH* 2.0+ 0.05 166 0.2=1.0 1.3
3 0 172 LH 2.4+ 0.06 166 0.8 =4.0 1.3
3 1 0 HH. LL 1.6 =0.04 540 3.0 =10 1.7
3 1 1/2 LH 1.8 +0.05 H25 27 =90 1.7
4 1/2 0 HHH* 2.4+ 0.06 353 0.10 - 0.6 1.6
4 e L (LHH*) 2.4+ 0.06 347 5.3 =25 1.6
4 3/2 0 HHH 2.94+0.07 729 0.01 = 0.10 7.5
4 3/2 1/2| (LHH) 26+007 712 1.7+95 7.5
5 0 0 (HHH*H*) 5.0%+0.1 166 < 1 12
5! 0 1/2 — 44+0.1 166 < 1 12
7 0 0 - 3.5 0.2 166 < 1 46




“M l.V\l.W\al Da V' ,( M atter’ ) Cirelli, Fornengo, Strumia '05

Add to the SM a new particle with electroweak interactions

SO and with the characteristics of the dark matter.
Select the SU(2)xU(1) representation such that:
- Contains a neutral component
- Cosmologically long-lived
Quantum numbers DM can DM mass mpy+r — mpu Events at LHC Ogp 1N
SU(2), U(l)y Spin| decay into in TeV in MeV [Ldt =100/fb 10=% cm?

9 172 0 EL 0.54 + 0.01 350 320 = 510 0.2
9 /2 1/2 EH 1.1 griinil i 0.2
3 0 0 HH* 2.0 1.3
3 0 1/2 LH 2.4 1.3
3 1 0 HH,LL 1. 1.7
3 1 1/2 LH 1.8 1.7
] 172 0 HHH* 24 16
4 1/2 1/2 | (LHH*) 24 1.6
4 3/2 0 HHH 2.0 7.5
4 3/2 1/2| (LHH) 26+0.07 712 1.7+95 7.5
5 0 0 |(HHH"H®) 5.0=x0.1 166 < 1 12
5 0 1/2 ~ 44401 166 <1 12
7 0 0 = 85+ 0.2 166 < 1 46




“M l.V\l.W\al Da V' k M atter’ ) Cirelli, Fornengo, Strumia '05

Add to the SM a new particle with electroweak interactions

Assumption: : e
P and with the characteristics of the dark matter.
Select the SU(2)xU(1) representation such that:
- Contains a neutral component
- Cosmologically long-lived
Quantum numbers DM can DM mass mpy+r — mpu Events at LHC Ogp 1N
SU(2), U(l)y Spin| decay into in TeV in MeV [Ldt =100/fb 10=% cm?

9 172 0 EL 0.54 + 0.01 350 320 = 510 0.2
9 /2 1/2 EH 1.1 griinil i 0.2
3 0 0 HH* 2.0 1.3
3 0 1/2 LH 2.4 1.3
3 1 0 HH,LL 1. 1.7
3 1 1/2 LH 1.8 1.7
] 172 0 HHH* 24 16
4 1/2 1/2 | (LHH*) 24 1.6
4 3/2 0 HHH 2.0 7.5
4 3/2 1/2| (LHH) 7.5




“Ml.l’\l.W\al Dar k M atter’ ) Cirelli, Fornengo, Strumia '05

DM SM A --

I
_I_

VWV
|
oM M ’ -l*v'w

(ov) = number X

Mpm

Correct DM abundance if:

{ow) 2 3 X 10~ gm® g~ mpv ~ 4.4 TeV



“M l. V\l.W\al D ar k M atter’ ) Cirelli, Fornengo, Strumia '05

DM SM N -

I
_I_

VWV
|
oM SM ’ -l’vw

(ov) = number X

Mpm

Correct DM abundance if:

(ov) 23 x 107 cm®s™! fnw

%
6

Including
non-perturbative
effects



“Minimal Dark Matter’’: tests

Direct detection  Cirelli et a'07

‘DM DM, DM DM

Interactions with nucleons
at the one-loop level
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{2013}

WIMP-nucleon cross section [em?]
WIMP-nucleon cross section [pb]

1 10 10001000 0
WIMP Mass [GeV/c?]



“Minimal Dark Matter’’: tests

Indirect detection
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“Minimal Dark Matter’’: tests

Indirect detection
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“Minimal Dark Matter’’: tests

Indirect detection
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In models where the dark matter interacts with a lighter mediator, the naive
calculation cannot be trusted = Necessary to resum diagrams at all loops.

Dark Matter Fraction

» s . Hisano et al'03,04
Sommerfeld enhancement” of the cross section
E 254h, DM DM — W*W'
Fermionic 5—plet, Einasto profile - Einasto profile
10 WPl
] fp==smsmssmsmn un smums smumn mmiinnnnmann an smumn nmnmn nn mmann amamann mann munnnnmu s n nmnmn pmhusyu nmp -
—~10%
o -
107! T F
. ST
1072 Sharp R
1 features o Obeerved thiswork  Thermal relic density|
10~ 10 = wmsas Expected
- [ 88% Containment
10-4 I B [ ]95% Containment
. . el ] = H.E.S.S 112h
! 5 10 20 0rb T HESS coll' 16
0.05

11 1 I . ] 1 111 1 1
01 02 1 2 345 10 2030

M (TeV) Garcia-Cely et al'l5 ' oy (TeV)



“Minimal Dark Matter’’: tests

Indirect detection
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Classification of models (according to minimality)

Number of new fields

1 2

“minimal DM”

S

Scalar singlet DM

“simplified models”
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Singlet scalar dark matter

Add to the SM a real scalar field, ¢, singlet under the

Assumption:
SM gauge group. Silveira, Zee '85, McDonald '07
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Singlet scalar dark matter

Add to the SM a real scalar field, ¢, singlet under the

Assumption 1:
M gauge group. Silveira, Zee '85, McDonald '07

1 1
LD ——méqb? — —

1
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Assumption 2: Impose a Z, symmetry ¢— —¢p, SM - SM

¢ 1s stable and constitutes a dark matter candidate



Singlet scalar dark matter

Add to the SM a real scalar field, ¢, singlet under the
M gauge group. Silveira, Zee '85, McDonald '07

1 _ |
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Assumption 2: Impose a Z, symmetry ¢— —¢p, SM - SM

Assumption 1:

¢ 1s stable and constitutes a dark matter candidate



Singlet scalar dark matter

Add to the SM a real scalar field, ¢, singlet under the
gauge group. Silveira, Zee '85, McDonald '07

£~ ol - ot - Doy M

Assumption 2: Impose a Z, symmetry ¢— —¢p, SM - SM

Assumption 1:

¢ is stable and constitutes a dark matter candidate
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Singlet scalar dark matter: tests

Collider searches

For my<m,;/2, measurements of the Higgs decay width exclude A,5=0.03

Indirect searches

Dwarf galaxy observations + CMB constrain the annihilation rate
for low DM masses.

Direct searches

Interactions with nucleons via Higgs
exchange:

AN

2.0 2.5 3.0 3.9
logio(ms/GeV) Cline et al'l3



Singlet scalar dark matter: tests

Collider searches

For my<m,;/2, measurements of the Higgs decay width exclude A,5=0.03

Indirect searches \Q

Dwarf galaxy observations + CMB ¢~ ﬂ 509v 1 rate
for low DM masses. (‘ ¢

III_i'IIII

Direct searches 5»&0 : O& P.'I

Interactior-
exche-

2.0 2.5 3.0 3.9
logio(ms/GeV) Cline et al'l3



Classification of models (according to minimality)

Number of new fields

1 2

“minimal DM”

S

Coad e TN
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Inert doublet dark matter model

Assumption 1: Add to the SM a scalar doublet with hypercharge 1/2, n,
(copy of the SM Higgs)

Assumption 2: Impose a Z, symmetry n— —n, SM - SM

The lightest component of the doublet is stable and
constitutes a dark matter candidate

= (L(HI[{;M“J

V2
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\\\ \\x;’ * h
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Inert doublet dark matter model

Assumption 1: Add to the SM a scalar doublet with hypercharge 1/2, n,
(copy of the SM Higgs)

Assumption 2: Impose a Z, symmetry n— —n, SM - SM

The lightest component of the doublet is stable and
constitutes a dark matter candidate

0.1}

Qh?

0.01¢

0.001¢

10 50 100 500 1000 5000
M,(GeV)



Inert doublet dark matter model

Assumption 1: Add to the SM a scalar doublet with hypercharge 1/2, n,
(copy of the SM Higgs)

Assumption 2: Impose a Z, symmetry n— —n, SM - SM

The lightest component of the doublet is stable and
constitutes a dark matter candidate

LEW mass window High mass Windéw
10 GeV s Mo sM,y M0 2500:Ge

0 1”0 Ny de® 35 LT adguey T pEEy L) - gyt

=
< Intermediate mass “gap”

0.1} My, s M0 5500 GeV

0.001¢

10 50 100 500 1000 5000
M,0(GeV)



Inert doublet dark matter model

Assumption 1: Add to the SM a scalar doublet with hypercharge 1/2, n,
(copy of the SM Higgs)

Assumption 2: Impose a Z, symmetry n— —n, SM - SM

The lightest component of the doublet is stable and
constitutes a dark matter candidate

Annihilations into gauge
bosons always present

H° . { Wt (Z)
Jad e W+(2)

100 500 1000 5000
M, 0(GeV)



Inert doublet dark matter model

Assumption 1: Add to the SM a scalar doublet with hypercharge 1/2, n,
(copy of the SM Higgs)

Assumption 2: Impose a Z, symmetry n— —n, SM - SM

The lightest component of the doublet is stable and
constitutes a dark matter candidate

Annihilations into Higgs
bosons lower the relic density

H

500 1000 5000
M, 0(GeV)



Inert doublet dark matter model

Assumption 1: Add to the SM a scalar doublet with hypercharge 1/2, n,
(copy of the SM Higgs)

Assumption 2: Impose a Z, symmetry n— —n, SM - SM

The lightest component of the doublet is stable and
constitutes a dark matter candidate

Annihilations into gauge bosons

1f kinematically forbidden
H N W+(2)

. 0 l ?0 g de® §a %% Frlgwty o ufy i
S o W+ (2)

0.01! Annihilations into SM fermions
possible. Adjust quartic couplings
to generate the correct relic density

0.001}
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Inert doublet dark matter model

Assumption 1: Add to the SM a scalar doublet with hypercharge 1/2, n,
(copy of the SM Higgs)

Assumption 2: Impose a Z, symmetry n— —n, SM - SM

The lightest component of the doublet is stable and
constitutes a dark matter candidate
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M, 0(GeV)



Inert doublet dark matter model: tests

Direct detection
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Inert doublet dark matter model: tests

Direct detection
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Inert doublet dark matter model: tests

Direct detection
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“Simplified models”

Assumption 1: Add to the SM a dark matter candidate, y, and a
mediator, 1, heavier than the DM candidate.

Assumption 2: Impose a Z, symmetry y— —y, 71— —1, SM - SM

X 1s the lightest particle of the Z,-odd sector and 1s stable



“Simplified models”

Assumption 1: Add to the SM a dark matter candidate, y, and a
mediator, 1, heavier than the DM candidate.

Assumption 2: Impose a Z, symmetry y— —y, 71— —1, SM - SM
X 1s the lightest particle of the Z,-odd sector and 1s stable

Many possible realizations:
e DM spin/parity
e DM gauge quantum numbers
e t-channel or s-channel mediation

e Coupling to the left- and/or right-handed electron, to the up-quark,
to the bottom-quark...



“Simplified models”

Assumption 1: Add to the SM a dark matter candidate, y, and a
mediator, 1, heavier than the DM candidate.

Assumption 2: Impose a Z, symmetry y— —y, 71— —1, SM - SM
X 1s the lightest particle of the Z,-odd sector and 1s stable

Many possible realizations:
e DM spin/parity
e DM gauge quantum numbers
e t-channel or s-channel mediation

e Coupling to the left- and/or right-handed electron, to the up-quark,
to the bottom-quark...

e.g. Majorana fermion dark matter, coupling to a right-handed up-quark
via a scalar mediator.

Free parameters: DM mass (m, ), mediator mass (i), Yukawa coupling (y)



“Simplified models”

Dark matter production fixes one of the parameters of the model.
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“Simplified models”: tests

Indirect detection

) f p-wave suppressed, helicity suppressed.

in Expected annihilation cross-section in our Galaxy
. ~ 5-6 orders of magnitude smaller than
the thermal cross section.

i 10-22
A T 1073

10-24f
— 1075
R ”"I—Et’i i

Limits from dwarf galaxy
observations on the uu
final state do not constrain
this model.

(av) (em?s

10! 102 103 |
DM Mass (GeV /c?) Fermi coll."15
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“Simplified models”: tests

Indirect detection
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“Simplified models”: tests

Indirect detection

(0v)gqy + 2(0v) 4, lcm3/S]

]

10—25

10-26

10-% |

10-28

10—29

10730

th. prod. (2)

Bringmann et al.'12

1000 10000



“Simplified models”: tests

Direct detection
. v/ Slat dirp—8 SI at dim-7
. SD at dim-6
. . tree-level
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one-loop
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“Simplified models”: tests

Collider searches

The scalar mediator cannot
be produced at the collider,
but only the DM.

Mono-X + missing p_

m,=0(m,)

The scalar mediator can

be produced at the collider,
and then decays into the
DM plus a quark.

jets + missing p_

The scalar mediator can

be produced at the collider,
and then decays into the
DM plus a quark. However
the jet is too soft to be
detected.

jets + missing p_
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“Simplified models’: tests

Collider searches
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“Simplified models’: tests

Comp lementari’cy of searches

DM coupling to RH up-quarks
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“Simplified models’: tests

Comp lementari’cy of searches

DM coupling to RH up-quarks
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“Simplified models’: tests

Comp lementari’cy of searches

DM coupling to RH up-quarks
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“Simplified models”: tests

Comp [ementari’cy of searches

DM coupling to RH muons
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“Simplified models’: take home lesson

The mediator plays a crucial role in the phenomenology, when its mass
1s close to the dark matter mass.

Thermal producﬁon
production
-

DM k\/'*f/ Hh\
: ) q
An
' g
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> coannihilations
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“Simplified models’: take home lesson

The mediator plays a crucial role in the phenomenology, when its mass
1s close to the dark matter mass.

Indirect detection

DM\ /SM \'/'/
DM/ \SM =

anmhllatlon Internal Loop annihilations

Bremsstrahlung




“Simplified models’: take home lesson

The mediator plays a crucial role in the phenomenology, when its mass
1s close to the dark matter mass.

Direct detection

scattering
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“Simplified models’: take home lesson

The mediator plays a crucial role 1n the phenomenology, when its mass
1s close to the dark matter mass.

Collider searches

production
-

DM\ / SM % /
DM / \SM ﬁ \



Conclusions

e Simple particle physics frameworks contain a dark matter candidate with an
abundance today which is in qualitative good agreement with observations.
These models contain very few parameters and have some predictive power.

e Current experiments have achieved sufficient sensitivity to put tension on some
of the simplest frameworks. From an optimistic point of view, discovery could
be around the corner.
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