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The Higgs   
• Higgs discovery of 2012 establishes Higgs 
mechanism with a Higgs particle 
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The Higgs  
• Just a Landau-Ginzburg theory of superconductivity 

(in fact it was literally borrowed from there in 60’s) 

• Except: in superconductivity: H is a bound state 
(Cooper pair), not an elementary field 

• What is H in particle physics?  

• If elementary very problematic - hierarchy problem 
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Hierarchy problem
 All elementary scalars expected to be ultra heavy 

Mass of Higgs not protected by symmetries (like  
fermion, gauge boson) 
• Fermions protected by chiral symmetry 
• Spin 1 gauge bosons protected by gauge symmetry

• In the limit  m→0  a new symmetry appears 
• Symmetry forbids mass generation Δm2 ∝ m2 

• Small masses could be natural



Possible solutions to the hierarchy problem
• Maybe there is a symmetry after all? Need to relate 
scalar to fermion (supersymmetry)  
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FOCUS OF THIS TALK



Composite Higgses
• We assume that Higgs NOT elementary, but 
composite. Most naive assumption: scale of 
compositeness 𝚲 ~ 10 TeV 

• Why 10 TeV? We know from LEP experiments that 
SM very good approximation up to operators 
suppressed by ~           where 𝚲>~ 5-10 TeV 

• New bound states show up at 𝚲. What would be 
expected Higgs mass?  

• For 𝚲~10 TeV this is still ~ (1 TeV)2 about 100 times 
too large… 
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The pNGB Composite Higgses

•  Need an additional ingredient that further lowers 
the Higgs mass.  

• Idea: Higgs also a pNGB  

• What does this mean?  

• Strong dynamics has a global symmetry G 

• During confinement G→H breaking, which 
produces GB’s.  Some of these will be identified 
with SM Higgs  



The pNGB Composite Higgses
• Why is this useful? 

Global symmetry breaking scale: f 

Cutoff scale (scale of generic composites): 𝚲 

• For 𝚲~10 TeV we find f~1 TeV, and IF corrections 
given by f2/(4𝜋)2 then Higgs mass can be natural… 

• New particles at f~1 TeV (top and spin 1 partners) 

• This is eventually what is called ``composite Higgs 
model” - but need to understand details… 
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Theory of Goldstone bosons
•  Best analogy is pions of QCD 

• Use non-linear field 

• Pion has shift symmetry, forbids the potential  

• Explicit breaking terms (quark mass, QED charges) 
will generate potential 

Figure 8: Cartoon of the Goldstone excitation for a ‘Mexican hat’ potential. Image from [148].

space associated with the chiral condensate, U0 ⇠ hq̄qi. This transforms as a bifundamental with
respect to SU(3)L⇥SU(3)R,

U(x) ! ULU(x)U †

R
, (4.9)

where UL and UR are the transformation matrices under the SU(3)L and SU(3)R respectively. The
observation that SU(3)A is broken corresponds to U0 = . Note that this indeed preserves the
SU(3)V transformations UL = UR.

We now consider the fluctuations U(x) about U0—these are what we identify with the Goldstone
bosons. Recall the picture of spontaneous symmetry breaking through the ‘Mexican hat’ potential
in Fig. 8. The action of an unbroken symmetry does not a↵ect the vev (represented by the ball),
while broken symmetries shift the vev along the vacuum manifold. This gives an intuitive picture
of how to identify the Goldstone modes:

1. Identify a convenient vev, U0

2. Act on that vev with the broken group elements

3. Promote the transformation parameter to a field, identify these with the Goldstones.

For the chiral Lagrangian, our broken symmetries are those for which UL = U
†

R
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We now promote the transformation parameter ✏
a to Goldstone fields, ✏a ⇠ ⇡

a(x). Since ✏
a is

dimensionless, in order for ⇡a to have canonical scaling dimension we should rescale by the decay
constant16 f . We may understand the physical meaning of f if we recall Fig. 8, since we want ✏ to

16The name comes from identifying the appearance of this factor in the matrix element for pion decays, e.g.
h0|ū�µ�5d|⇡�

i ⌘ ifpµ.
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be an angle that parameterizes the position along the vacuum circle: the Goldstone is a periodic
variable with period 2⇡f , so that f is identified with the value of the symmetry breaking vev.
The angle ✏ is then ⇡(x)/f . We thus promote ✏

a
! ⇡(x)/f so that we may define the field U(x),

U(x) = e
i
⇡a(x)

f T
a

U0 e
i
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f T
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⇡a(x)
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We now have an object U(x) which packages the Goldstone fields, ⇡a(x). Note that U(x) transforms
linearly under the full SU(3)L⇥SU(3)R group, U(x) ! ULU(x)U †

R
, but the fields that actually

describe the low energy spectrum are related in a non-trivial way to U(x).

4.3.2 How pions transform

We can determine the transformation of the pions ⇡
a by using the transformation of the linear

field U(x). Under the SU(3)V (unbroken) symmetry, UL = UR = UV, we have

U(x) ! UVU(x)U †

V
= UV
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where we can see from the first term that ⇡
a(x)T a

! UV ⇡
a(x)T a

U
†

V
. In other words, ⇡

a(x)
transforms linearly under the unbroken symmetry. Note that the higher order terms also obey
this by trivially inserting factors of U †

V
UV = . Indeed, we expected this result because we know

that Gell-Mann’s eightfold way is precisely a realization of SU(3)V, so our pions must transform
as octets.

Things are not as simple for the broken symmetry, UL = U
†

R
= UA. In this case the transfor-

mation is

U(x) ! UAU(x)UA ⌘ e
2i

⇡0a(x)
f T

a

. (4.13)

In this case the pion does not transform in a nice, linear way17. Unlike the above case, there is no
sense in which this looks like ⇡

a(x)T a
! UA⇡

a(x)T a
U

†

A
. The best we can do is say that we have

moved U0 to a new point on the vacuum manifold, which we parameterize by an angle 2⇡0a(x)/f .
The transformation ⇡

a(x) ! ⇡
0
a(x) is nonlinear. To leading order,
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so that

⇡
0a(x)T a = ⇡

a(x)T a + fc
a
T

a
. (4.15)

In other words, to leading order the pion shifts ⇡a
! fc

a. This shift symmetry in the nonlinear
realization is precisely why the pion is massless; the only non-trivial pion Lagrangian terms must
carry derivatives.

17This may seem confusing since U(x) transforms as a bifundamental under SU(3)L ⇥ SU(3)R. However, compo-
nents of U(x) are not independent due to the nonlinear constraints of being unitary and having unit determinant.

57

be an angle that parameterizes the position along the vacuum circle: the Goldstone is a periodic
variable with period 2⇡f , so that f is identified with the value of the symmetry breaking vev.
The angle ✏ is then ⇡(x)/f . We thus promote ✏

a
! ⇡(x)/f so that we may define the field U(x),

U(x) = e
i
⇡a(x)

f T
a

U0 e
i
⇡a(x)

f T
a

= e
2i

⇡a(x)
f T

a

. (4.11)

We now have an object U(x) which packages the Goldstone fields, ⇡a(x). Note that U(x) transforms
linearly under the full SU(3)L⇥SU(3)R group, U(x) ! ULU(x)U †

R
, but the fields that actually

describe the low energy spectrum are related in a non-trivial way to U(x).

4.3.2 How pions transform

We can determine the transformation of the pions ⇡
a by using the transformation of the linear

field U(x). Under the SU(3)V (unbroken) symmetry, UL = UR = UV, we have

U(x) ! UVU(x)U †

V
= UV

✓
1 + 2i

⇡
a(x)

f
T

a + · · ·

◆
U

†

V
, (4.12)

where we can see from the first term that ⇡
a(x)T a

! UV ⇡
a(x)T a

U
†

V
. In other words, ⇡

a(x)
transforms linearly under the unbroken symmetry. Note that the higher order terms also obey
this by trivially inserting factors of U †

V
UV = . Indeed, we expected this result because we know

that Gell-Mann’s eightfold way is precisely a realization of SU(3)V, so our pions must transform
as octets.

Things are not as simple for the broken symmetry, UL = U
†

R
= UA. In this case the transfor-

mation is

U(x) ! UAU(x)UA ⌘ e
2i

⇡0a(x)
f T

a

. (4.13)

In this case the pion does not transform in a nice, linear way17. Unlike the above case, there is no
sense in which this looks like ⇡

a(x)T a
! UA⇡

a(x)T a
U

†

A
. The best we can do is say that we have

moved U0 to a new point on the vacuum manifold, which we parameterize by an angle 2⇡0a(x)/f .
The transformation ⇡

a(x) ! ⇡
0
a(x) is nonlinear. To leading order,

1 + 2i
⇡
0a(x)

f
T

a = (1 + ic
a
T

a)

✓
1 + 2i

⇡
a(x)

f
T

a

◆
(1 + ic

a
T

a) (4.14)

so that

⇡
0a(x)T a = ⇡

a(x)T a + fc
a
T

a
. (4.15)

In other words, to leading order the pion shifts ⇡a
! fc

a. This shift symmetry in the nonlinear
realization is precisely why the pion is massless; the only non-trivial pion Lagrangian terms must
carry derivatives.

17This may seem confusing since U(x) transforms as a bifundamental under SU(3)L ⇥ SU(3)R. However, compo-
nents of U(x) are not independent due to the nonlinear constraints of being unitary and having unit determinant.

57

Figure 9: ‘Cat diagram’ adapted from [151]. Despite the silly appearance, the key point is that
the photon couples to the electric current Jµ = e ̄�µ (‘ears’) formed from interactions with
fundamental quarks in the strongly coupled sector. The ‘whiskers’ are the pseudo-Goldstone
external states when expanding the U(x) field in (4.28). The contribution to the charged meson
masses come from the ‘two whisker’ diagram.

4.3.5 Electromagnetic mass splitting

In addition to the spontaneous chiral symmetry breaking by strong dynamics, the SU(3)L⇥SU(3)R
group is also broken explicitly from the gauging of U(1)EM ⇢ SU(3)V. The neutral Goldstones
(pions, kaons, and the ⌘) are una↵ected by this. The charged Goldstones, on the other hand, pick
up masses from photon loop diagrams of the form in Fig. 9. These diagrams contribute to an
operator that gives a shift in the [pseudo-]Goldstone mass,

�L ⇠ e
2Tr

⇥
QU(x)†QU(x)

⇤
, (4.28)

where Q = 1

3
diag(2,�1,�1) is the matrix of quark electric charges. Since the electromagnetic

force does not distinguish between the down and strange quarks, this diagram gives an equal shift
to both the charged pions (e.g. ud̄) and kaons (e.g. us̄). Since the up and anti-down/strange quark
have the same charge, the bound state is more energetic than the neutral mesons and we expect the
shift in the mass-squared to be positive [151,152]. Note that the contribution to the charged pion
mass is quadratically sensitive to the chiral symmetry breaking scale, though it is also suppressed
by the smallness of ↵EM.

4.3.6 Explicit breaking from quark spectrum

One can add quark masses that constitute a small (mq ⌧ ⇤qcd) explicit breaking of the global
symmetry and generate small masses to the pseudo-Goldstone bosons. One can write this as a
spurion M = diag(mu,md,ms) which has the same quantum numbers as U(x). One can add these
terms to the e↵ective Lagrangian by forming the appropriate global symmetry group invariant. In
particular, we add to the Lagrangian

�L ⇠ Tr [MU(x)] ⇠ Tr

"
M

✓
⇡
a(x)

f
T

a

◆2
#
+ · · · (4.29)

In the limit where mu = md and ignoring the electromagnetic splitting above, one may identify the
masses for the pions, kaons, and ⌘ (di↵erent components of ⇡a) to derive the Gell-Mann–Okubo
relation,

m
2

⌘
+m

2

⇡
= 4m2

K
. (4.30)
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General setup of pNGB Higgs   

• Global symmetry breaking 

• Some subgroup              is gauged which contains 
                         . This is an explicit breaking - will 
generate a Higgs potential. 
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Figure 10: Pattern of symmetry breaking. (left, tree level) Strong dynamics breaks G ! Hglobal

spontaneously, while Hgauge ⇢ G is explicitly broken through gauging. The unbroken group H =
Hgauge \Hglobal contains the sm electroweak group, SU(2)L ⇥ U(1)Y. (right, loop level) Vacuum
misalignment from sm interactions shifts the unbroken group H ! H

0 and breaks the electroweak
group to U(1)EM. The degree of misalignment is parametrized by ⇠, the squared ratio of the ewsb

vev to the G ! H vev. Adapted from [157].

2. In addition to this, we will explicitly break G by weakly gauging a subgroup Hgauge which
contains the sm electroweak group SU(2)L ⇥ U(1)Y. This is analogous to the gauging of
U(1)EM.

We assume that the sm electroweak group is a subgroup of H = Hgauge [ Hglobal so that it is
gauged and preserved by the strong dynamics. This is shown on the left of Fig. 10. This results
in dimHgauge transverse gauge bosons and (dimG� dimHglobal) Goldstone bosons. The breaking
G ! Hglobal also breaks some of the gauge group so that there are a total of (dimHgauge �H)
massive gauge bosons and (dimG� dimHglobal)� (dimHgauge � dimH) ‘uneaten’ massless Gold-
stones.

Now we address the white elephant of the Higgs interactions—can we bequeath to our Goldstone
bosons the necessary non-derivative interactions to make one of them a realistic Higgs candidate?
This is indeed possible through vacuum misalignment, which we illustrate on the right of Fig. 10.
The gauging of Hgauge gives loop-level corrections to the dynamical symmetry breaking pattern
since this is an explicit breaking of the global symmetry. This is analogous to how the gauged
U(1)EM splits the masses of the charged and neutral pions through a photon loop. Loops of sm
gauge bosons can generate an electroweak symmetry breaking potential for the Higgs. We illustrate
this below.

One key point here is that since the Higgs potential is generated dynamically through sm gauge
interactions, the electroweak scale v is distinct from the G ! H symmetry breaking scale f . The
‘angle’

⇠ =

✓
v

f

◆2

(4.36)

parameterizes this separation of scales and quantifies the degree of vacuum misalignment. Note
that this is a separation of scales which does not exist in technicolor and is the key to parame-
terizing how the Higgs remains light relative to the heavier resonances despite not being a ‘true’
Goldstone boson. The limits ⇠ ! 0 and ⇠ ! 1 correspond to the sm (heavy states completely
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Goldstone boson. The limits ⇠ ! 0 and ⇠ ! 1 correspond to the sm (heavy states completely
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General setup of pNGB Higgs   
• Due to the explicit breaking, there will be a vacuum 
misalignment generating the electroweak scale 

• Misalignment angle                  separation of v and f 

•  𝛏=0: SM limit. 𝛏=1: no separation, technicolor (like 
QCD, but large EWP corrections)
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Figure 10: Pattern of symmetry breaking. (left, tree level) Strong dynamics breaks G ! Hglobal

spontaneously, while Hgauge ⇢ G is explicitly broken through gauging. The unbroken group H =
Hgauge \Hglobal contains the sm electroweak group, SU(2)L ⇥ U(1)Y. (right, loop level) Vacuum
misalignment from sm interactions shifts the unbroken group H ! H

0 and breaks the electroweak
group to U(1)EM. The degree of misalignment is parametrized by ⇠, the squared ratio of the ewsb

vev to the G ! H vev. Adapted from [157].

2. In addition to this, we will explicitly break G by weakly gauging a subgroup Hgauge which
contains the sm electroweak group SU(2)L ⇥ U(1)Y. This is analogous to the gauging of
U(1)EM.

We assume that the sm electroweak group is a subgroup of H = Hgauge [ Hglobal so that it is
gauged and preserved by the strong dynamics. This is shown on the left of Fig. 10. This results
in dimHgauge transverse gauge bosons and (dimG� dimHglobal) Goldstone bosons. The breaking
G ! Hglobal also breaks some of the gauge group so that there are a total of (dimHgauge �H)
massive gauge bosons and (dimG� dimHglobal)� (dimHgauge � dimH) ‘uneaten’ massless Gold-
stones.

Now we address the white elephant of the Higgs interactions—can we bequeath to our Goldstone
bosons the necessary non-derivative interactions to make one of them a realistic Higgs candidate?
This is indeed possible through vacuum misalignment, which we illustrate on the right of Fig. 10.
The gauging of Hgauge gives loop-level corrections to the dynamical symmetry breaking pattern
since this is an explicit breaking of the global symmetry. This is analogous to how the gauged
U(1)EM splits the masses of the charged and neutral pions through a photon loop. Loops of sm
gauge bosons can generate an electroweak symmetry breaking potential for the Higgs. We illustrate
this below.

One key point here is that since the Higgs potential is generated dynamically through sm gauge
interactions, the electroweak scale v is distinct from the G ! H symmetry breaking scale f . The
‘angle’

⇠ =
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v

f

◆2

(4.36)

parameterizes this separation of scales and quantifies the degree of vacuum misalignment. Note
that this is a separation of scales which does not exist in technicolor and is the key to parame-
terizing how the Higgs remains light relative to the heavier resonances despite not being a ‘true’
Goldstone boson. The limits ⇠ ! 0 and ⇠ ! 1 correspond to the sm (heavy states completely
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Collective symmetry breaking  
• Generically explicit breaking reintroduces the 
quadratic divergence of the Higgs potential!  

• Explicit breaking has to have a very special form to 
avoid quadratically divergent corrections! 

• Basic idea: No single explicit breaking term itself 
will completely break the global symmetry 

• Need 2 (or more) explicit breaking terms 
simultaneously to given mass to Higgs 

• Presence of several insertions usually softens 
divergence and makes potential finite (or log div)



Simplest example of collective breaking  

• Take SU(3)/SU(2) coset - will produce a doublet GB 
(+singlet - ignore for simplicity) 

• Enlarge SM fermion doublet to triplet 

• T is top partner, and we need two right handed tops 
now (one for SM, one top partner) 

• Yukawa coupling: 

If we were only considering a single SU(3)!SU(2) global symmetry breaking, then we would still
be out of luck since the massive gauge bosons would have eaten all of our Goldstone bosons—so
even though we got rid of the ⇤2 sensitivity of the pseudo-Goldstone masses, we also would have
gotten rid of the pseudo-Goldstones themselves. With foresight, however, we have followed the
advice of footnote 24: we have more Goldstones than our gauge bosons can possibly eat.

A useful way to parameterize our Goldstones is to follow the convention in (4.16):

⌃0 =exp

2

4 i

f

0

@ 02⇥2 V

V
† 0

1

A

3

5 exp

2

4 i

f

0

@ 02⇥2 H

H
† 0

1

A

3

5

0

@
0
0
f

1

A (4.78)

⌃00 =exp

2

4 i

f

0

@ 02⇥2 V

V
† 0

1

A

3

5 exp

2

4�i

f

0

@ 02⇥2 H

H
† 0

1

A

3

5

0

@
0
0
f

1

A , (4.79)

where we have identified the Higgs as the axial combination of global shifts, while the vector
combination of Goldstones, V , is eaten by the gauge bosons to become massive.

Now the H pseudo-Goldstones only pick up mass from diagrams that involve both the (gq0)
and the (gq00) couplings. In other words, it requires a combination of the ⌃0 and the ⌃00 fields. The
leading order contribution comes from diagrams of the form

⌃0 ⌃0

⌃00 ⌃00

⇠
g
4

16⇡2
log⇤2

��⌃0†⌃00
��2 . (4.80)

Since ⌃0†⌃00 = f
2
�2H†

H+ · · · , we see that the leading term in the Higgs mass is only logarithmi-
cally sensitive to ⇤ because it required one power each of the ⌃0 and ⌃00

vevs. The Higgs mass sets
the electroweak scale to be on the order of f/(4⇡). This is a factor of (4⇡) suppressed compared to
the global symmetry breaking scale f—generating the hierarchy in ⇠ that we wanted—and also a
further factor of (4⇡) from the cuto↵ ⇤ = 4⇡f . In this sense, collective symmetry breaking shows
us what we can buy for factors of (4⇡) and why those factors are important in näıve dimensional
analysis.

4.5.3 Top partners

As before, the largest contribution to the Higgs mass comes from the top quark. In the simple
scenario above, we have extended our gauge group26 from SU(2)L to Hgauge =SU(3) so we’ll need
to also extend the usual top doublet to include a partner TL
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We must also include a right-handed SU(3) singlet T 0

R
as a partner for the TL, in parallel to the

usual right-handed t
0

R
partner of the sm tL. The prime on the t

0

R
—what is normally called tR in

26For simplicity we ignore the U(1)Y factor, it is straightforward to assign charges appropriately.
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Simplest example of collective breaking  

• First term SU(3) invariant. Second term does not 
contain Higgs field. Need BOTH terms to make Higgs 
a pNGB and generate potential!  

• Let us expand now      to get form of Yukawa 
coupling  

• One loop quadratic divergence will cancel by 
collective breaking of SU(3) symmetry!  

LY uk = �1 Ht1c + �2fT t
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Simplest example of collective breaking  

• Easiest to do WITHOUT going to mass eigenbasis 

•   

• Leading pieces of two diagrams cancel - seems like 
a miracle but really governed by underlying symmetry 

the sm—is for future convenience. The Yukawa terms for the top quarks are,

Ltop = �
0⌃0†

Qt
0†

R
+ �

00⌃00†
QT

0†

R
+ h.c. (4.82)

where the fermions are written in terms of Weyl spinors. Other terms, such as ⌃0†
QT

0

R

† or ⌃00†
Qt

0

R

†,
can typically be prohibited by invoking chiral symmetries. Observe that the �

0 term is invariant
under G

0 if Q is a fundamental under G
0. Similarly, the �

00 term is invariant under G
00 if Q is a

fundamental under G00. This is indeed consistent since Q is a fundamental under Hgauge which is
the diagonal subgroup of G0

⇥G
00. This shows us how collective symmetry breaking is embedded in

the Yukawa sector. When only one of the � terms is nonzero, Ltop is G0
⇥G

00 invariant. However,
when both are turned on, the global symmetry is broken down to the diagonal subgroup.

This is collective breaking is similar to the breaking of the global U(3)Q⇥U(3)U ⇥U(3)D flavor
symmetry to U(3) by the up- and down-type Yukawas in the Standard Model. If yu = 0 and
yd 6= 0, then the flavor symmetry would be enhanced to U(3)2 since the right-handed up-type
quarks could be rotated independently of the other fields.

We can now plug in the expansion (4.78 – 4.79) into the Yukawa terms (4.82), ignoring the V

terms since we now know those are eaten by the gauge bosons. Expanding the resulting product
gives
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From this we can write out the right-handed top eigenstates
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and the resulting top Yukawa, top partner mass, and top partner coupling to H
†
H,
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where we see that all of the couplings are simply related to the sm top Yukawa, �t =
p
�02 + �002.

These relations ensure the cancellation between diagrams that give a ⇤2 contribution to the Higgs
mass,

h h
t

�t �t

+

h h

�tf

��t/f

T

= O(log ⇤). (4.86)

Note the symmetry factor of 1/2 in the h
2
TLT

†

R
Feynman rule. For simplicity we also drop an

overall
p
2 in the normalization of the h field which is irrelevant for the ⇤2 cancellation. We

see that indeed collective symmetry breaking can protect against the reintroduction of quadratic
sensitivity to the cuto↵ by the Yukawa interactions.

Just as in the case of natural susy, an important signature of this class of models is to look
for the ‘partner top’ particles which are responsible for the softening of the cuto↵ dependence of
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Minimal Composite Higgs (MCH)  
• Most commonly used example. Reason: minimal 
setup where so called T-parameter is protected. 

• G=SO(5), H=SO(4) = SU(2)L x SU(2)R 

                                     breaking via VEV of SO(5) vector 

• 4 Goldstone bosons - identified with Higgs 

decoupled) and technicolor, respectively. We note that this parameter is also a source of tuning in
realistic composite Higgs models. Once the pseudo-Goldstone Higgs state is given non-derivative
interactions, these interactions generically introduce quadratic divergences at loop level which
would lead to an expected O(1%) tuning. To avoid this, one needs to introduce a smart way
of dealing with these explicit breaking terms called collective symmetry breaking which we
discuss below. First, however, we focus on the e↵ects of gauge bosons on the Higgs potential.

We have the following constraints for picking a symmetry breaking pattern:

1. The sm electroweak group is a subgroup of the unbroken group, SU(2)L ⇥ U(1)Y ⇢ H. In
fact, it is better to have the full custodial SU(2)L ⇥ SU(2)R ⇠= SO(4) group embedded in H

since this will protect against large contributions to the ⇢-parameter.

2. There is at least one pseudo-Goldstone boson with the quantum numbers of the sm Higgs.
To protect the ⇢-parameter, it is better to have a (2,2) under the custodial group.

At this point we have said nothing about the sm fermions. These, too, will have to couple to
the strong sector to generate Yukawa couplings with the Higgs. We show below that a reasonable
way to do this is to allow the sm fermions to be partially composite, a scheme that we had
already seen in the holographic interpretation of the rs scenario. Indeed, extra dimensions provide
a natural language to construct composite Higgs models.

4.4.2 Minimal Composite Higgs: set up

We now consider an explicit example, theminimal composite Higgs model, which was explored
in [158, 159] using the intuition from the rs framework. Following the guidelines set above, we
would like to choose choose Hglobal = SO(4), the custodial group which is the minimal choice to
protect the ⇢-parameter. However, the SO(4) = SU(2)L ⇥ SU(2)R charge assignments don’t give
the correct U(1)Y charges, as is well known in left-right symmetric models. Thus our ‘minimal’
choice for Hglobal requires an additional U(1)X so that one may include hypercharge in the unbroken
group, H,

Y = (TR)3 +X. (4.37)

We then choose G = SO(5)⇥U(1)X and introduce a linear field ⌃ that is an SO(5) fundamental and
uncharged under U(1)X. Note that we can ignore the U(1)X charge in our spontaneous symmetry
breaking analysis since it’s really just ‘coming along for the ride’ at this point. ⌃ acquires a vev

to break SO(5) ! SO(4),

h⌃i = (0, 0, 0, 0, 1)T . (4.38)

This is analogous to the qcd chiral condensate. We can now follow the intuition we developed
with chiral perturbation theory. The Goldstone bosons of this breaking are given by transforming
this vev by the broken generators. A useful parameterization of the four broken generators is
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where â 2 {1, · · · 4}. We refer to the unbroken generators with an undecorated index: T
a. The

SO(5) group element that acts non-trivially on the vev, exp(ihâ
T

â
/f), can be written in terms

of sines and cosines by separately summing the odd and even terms of the exponential. The
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â
/f), can be written in terms

of sines and cosines by separately summing the odd and even terms of the exponential. The

64

linear field ⌃ can then be decomposed into the Goldstone pieces h
â(x) and a radial component

h(x) =
p
hâ(x)hâ(x),

⌃ = e
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â
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With this parameterization, the sm Higgs doublet is
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1
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4.4.3 Gauge couplings

Why ⇠ is an angle. As a quick exercise, let’s see why we said (4.36) should be identified with an angle.
Starting from the kinetic term for ⌃ in (4.40) with electroweak covariant derivative, one finds that the W and
Z mass terms are
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Using the relation MW = cos ✓W mZ , this tells us that

sin
hhi

f
=

v

f
, (4.43)

so that we now see the relation between ⇠ = v2/f2 and the ‘angle’ hhi/f . Note that the vev hhi 6= 246 GeV.

We would like to write down a Lagrangian for this theory and parameterize the e↵ects of the strong
sector on the sm couplings. A useful trick for this is to pretend that the global SO(5) ⇥ U(1)X
symmetry is gauged and then ‘demote’ the additional gauge fields to spurions—i.e. turn them o↵.
We can then parameterize the quadratic part of the Lagrangian for the full set of SO(5) [partially
spurious] gauge bosons, Vµ = A

a

µ
T

a + A
â

µ
T

â, and the U(1)X gauge boson, X, by writing down the
leading SO(5)⇥ U(1)X-invariant operators:
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⇤
. (4.44)

Where the form factors are completely analogous to (4.25) and (4.26). Contained in this expression
are the kinetic and mass terms of the sm electroweak gauge bosons. To extract them, we must
expand the form factors ⇧(q2) in momenta and identify the O(q0) terms as mass terms and the
O(q2) terms as kinetic terms. Since the ⇧X and ⇧0 terms include gauge fields in the unbroken
directions, they should vanish at q2 = 0, otherewise masses would be generated for those directions.
The ⇧1 term, however, selects out the broken direction upon inserting the ⌃ ! ⌃0 and thus
contains the Goldstone pole, (4.27). We thus find

⇧0(0) = ⇧X(0) = 0 ⇧1(0) = f
2
. (4.45)

Assuming that the Higgs obtains a vev, one may rotate it into a convenient location (h1
, · · · , h

4) =
(0, 0, v/

p
2, 0) corresponding to the usual sm Higgs vev parameterization. We now assume that
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â(x) and a radial component

h(x) =
p
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Partial compositeness  
•  Best way to introduce fermionic partners:  they will 
be assumed to be composite fermions from the 
strong sector.  

• To couple them (for flavor physics): small mixing 
between SM (elementary) and heavy fermions 

• Will result in 

• 𝜀 will control the flavor properties of the model - has 
wonderful automatic RS GIM mechanism (separate 
talk needed for that) 

(a) Mass from technicolor (b) Higgs and sm fermion (c) Yukawa coupling

Figure 11: Fermion couplings to the composite sector, represented by shaded blobs. (a): Bilinear
coupling of fermions to the composite sector (4.54) lead to fermion masses from the condensate
of techniquarks. (b): Partial compositeness scenario. In addition to the Higgs being part of the
strong sector, the elementary sm fermions mix linearly with strong sector operators with the same
quantum numbers. (c): Yukawa interactions are generated through the strong sector dynamics.
Adapted from [160].

where we have used the dimensional analysis limit ⇤ = 4⇡f . We see that having explained the
lightness of the Higgs by appealing to the Goldstone shift symmetry, reintroducing the Higgs
couplings to the gauge bosons breaks this shift symmetry and wants to push the Higgs mass back
up towards the symmetry breaking scale. In order to avoid this, one additional ingredient called
collective breaking (along with light gauge and top partners) is necessary. We present this in
Section 4.5.

4.4.4 Partial compositeness

Having introduced the Higgs couplings to the gauge bosons, we can move on to finding a way to
incorporate the Yukawa couplings into composite Higgs models. The way this is done in technicolor
is to introduce a four-Fermi interaction that is bilinear in sm fields, e.g.

�L ⇠ (Q̄LuR)( ̄TC TC) (4.54)

where the ( ̄TC TC) are bilinears of the techni-quarks. The resulting fermion mass is shown in
Fig. 11a. This strategy typically runs afoul of constraints on cp violation and flavor-changing
neutral currents since one can imagine the composite sector similarly generating a four-fermion
operator between sm states unless elaborate flavor symmetry schemes are assumed.

Instead of connecting the strong sector to a sm fermion bilinear, we can consider a linear

connection. This is known as partial compositeness [106, 164] and is shown in Fig. 11b. We
assume that instead of (4.54), the elementary fermions mix with a fermionic composite operator,

�L ⇠ Q̄LOQL , (4.55)

where OQL is a strong sector operator that is interpolated into a composite quark doublet. We
assume similar mixing terms for each of the other sm fermions. In order to preserve the sm

quantum numbers we must assume that the the sm gauge group is a weakly gauged subgroup
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of the strongly coupled sector’s flavor symmetries. Note that the gauge bosons are also partially
composite20, as we saw in (4.23). The resulting Yukawa interactions are shown in Fig. 11c.

The degree of mixing is now a freedom in our description. Let us parameterize the elementary–
composite mixing by ‘angles’ ✏,

|observed particlei ⇠ |elementaryi+ ✏|compositei. (4.56)

We can use this degree of compositeness to control flavor violation. Since the strongest flavor
constraints are for the first two generations, we assume that the first two generations have very
small mixing with the composite sector. This suppresses dangerous flavor-violating four-fermion
operators. On the other hand, we may assume that the third particles are more composite than
the first two generations,

✏3 � ✏1,2. (4.57)

Since the degree of compositeness also controls the interaction with the Higgs, this means that
the third generation particles have a larger Yukawa coupling and, upon electroweak symmetry
breaking, have heavier masses. The astute reader will note that this is exactly the same as the
flavor structure of the ‘realistic’ Randall-Sundrum models in Sec. 3.11-3.12. The observation that
light fermions can automatically avoid flavor bounds is precisely what we called the ‘rs gim

mechanism.’ This is no surprise since the holographic interpretation of the rs model is indeed one
where the Higgs is composite.

Let us briefly see how this works with an explicit example. Let us write out (4.55) with a
coupling �QL and cuto↵ ⇤ = 4⇡f :

�L �
�QL

⇤dimOQL
�5/2

Q̄LOQL + h.c., (4.58)

where the power of ⇤ is chosen so that �L has mass dimension four. We assume that at low
energies, the operator OQL dimensionally transmutes into a fermion  QL with canonical mass
dimension. We say that  QL is an interpolating field for the composite operator OQL . It is treated
as a local field in the same way that one may treat the proton as a local interpolating field for a uud
composite operator in qcd. We further assume that  QL comes with conjugate  c

QL
(interpolating

a conjugate operator Oc

QL
) so that it may form a vectorlike mass,

�L � g⇤⇤
2 ̄QL 

c

QL
+ h.c., (4.59)

which comes from a coupling g⇤⇤
4�2dimOQL ŌQLO

c

QL
in the uv; the powers of ⇤ sort themselves

out as the operators dimensionally transmute into the interpolating fields. The coupling g⇤ is a
characteristic coupling of the strong sector discussed below in (4.92). Together, (4.58) and (4.59)
give the mass matrix

�L = �⇤2
�
Q̄L  ̄QL  ̄c

QL

�
0

@
0 0 �QL

0 0 g⇤

�QL g⇤ 0

1

A

0

@
QL

 QL

 c

QL

1

A . (4.60)

20In this framework the longitudinal modes of the massive sm gauge bosons pick up this partial compositeness from
the Higgs. It is also possible to have a scenario where the transverse modes are partially composite, see [165, 166]
for explicit realizations.
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Classification of composite Higgs models   

•  There are many kinds of composite Higgs models - 
``little Higgs”, ``holographic Higgs”, ``twin Higgs”, … 
What is the difference?  

• The actual structure of the Higgs potential and the 
top/spin 1 partners cancelling the divergence 

• SM Higgs potential: 

GEW SU(3)R

Figure 14: Full symmetry structure of the minimal moose little Higgs model. Shaded blobs repre-
sent gauged subgroups. We explicitly show that only the ‘diagonal’ subgroups are gauged.

GEW SU(3)
R

See §4.1 of [135] for a review of this particular model. A full discussion of these moose-based
little Higgs models is outside of the scope of these lectures. In addition to the reviews mentioned
above [134, 135], see [193] for the self-described ‘bestest’ little Higgs model and [180, 194] for a
discussion of the status of composite Higgs models after the first run of the lhc.

4.7 A taxonomy of composite Higgs models

Having surveyed the main features of composite Higgs models, let us classify the landscape of
such theories. This section is meant to clarify the distinctions between what is colloquially called
a ‘composite Higgs’ versus a ‘little Higgs’ or a ‘holographic composite Higgs’ versus a ‘dilatonic
Higgs.’ We closely follow the discussion in Sections 2 – 3 of [132], to which we refer the reader for
further details and references.

As a warm up and review, recall the Standard Model Higgs potential

V (h) = �µ
2
|H|

2 + �|H|
4

�! �
1

2
µ
2
h
2 +

�

4
h
4
. (4.89)

Minimizing the potential and matching to experiment yields

v
2 = hhi =

µ
2

�
= 246 gev m

2

h
= 2µ2 = (125 gev)2 , (4.90)
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= 2µ2 = (125 gev)2 , (4.90)
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where v has long been known from the masses and couplings of the electroweak gauge bosons, but
m

2

h
is new data from 2012. This new information tells us that µ = 89 gev and, from the expression

for v, that � = 0.13.
Let us now map this onto a convenient parameterization of the Higgs potential in composite

Higgs models.

V (h) =
g
2

SM
M

2

16⇡2

✓
�ah

2 +
b

2f 2
h
4

◆
. (4.91)

One can compare this to (4.70). Here gSM is a characteristic Standard Model coupling, such as
g
2

SM
= Ncy

2

t
. Implicit in this parameterization is the expectation that the Higgs potential is ra-

diatively generated, giving a g
2

SM
/16⇡2 prefactor. With this normalization, tree-level contributions

appear as coe�cients a, b that go like 16⇡2
/g

2

SM
. The mass scale M is typically that of the new

states (e.g. top partners) that cut o↵ the quadratic divergence introduced by the explicit breaking
of the Goldstone shift symmetry, as discussed in Section 4.4.3. It is useful to parameterize this in
terms of the coupling of these new states to the strong sector g⇤,

M = g⇤f. (4.92)

These states are typically lighter than the cuto↵, 4⇡f , to help with the little hierarchy problem.
We expect the lighter mass comes from a weaker coupling to the strong sector, g⇤, motivating
the definition (4.92). This coupling is sometimes written as g⇤ = g⇢ in the literature, making the
analogy to the coupling of the spin-1 ⇢ meson in qcd, see Section 4.3.8. (4.92) defines g⇤ as a ratio
of mass scales, but when one includes this state in chiral perturbation theory (using the ccwz

formalism introduced in Appendix B), this ratio is manifestly the value of the ⇢⇡⇡ coupling. In
this sense, g⇢ is the ‘gauge coupling’ of the ⇢ as a massive gauge boson, g⇢ = m⇢/f .

The experimental information that the sm quartic is � = 0.13 is strongly suggestive of a loop
induced coupling. Using the nda scaling of a strong sector quartic (4.35) and a proportionality
factor from an explicit global symmetry breaking sm loop, g2

SM
/16⇡2, we estimate

�loop ⇡ 2
1

16⇡2
g
2

SM
g
2

⇤
⇡ 0.15⇥

✓
gSM

p
Ncyt

◆2 ⇣
g⇤

2

⌘2

. (4.93)

Here the factor of 2 comes from two top partner polarizations and the scaling with respect to
g⇤ = M/f comes from nda [155]. Thus the coupling of the new state is g⇤ ⌧ 4⇡ and is expected
to be weakly coupled. This is a more quantitative version of the statement that the discovery of
the 125 gev Higgs signaled the death of technicolor, as we explained qualitatively in Section 4.2.
The other implication of this weak coupling is that the new particles that cancel the quadratic
sensitivity of the Higgs potential have masses well below the strong coupling scale, M ⌧ ⇤ = 4⇡f ;
where we recall the nda cuto↵ from Section 4.3.7.

Comparing (4.91) to (4.89 – 4.90) gives

v
2 =

a

b
f
2 = (246 gev)2 m

2

h
= 2

g
2

SM

16⇡2
M

2
a = 4v2

g
2

SM
g
2

⇤

16⇡2
b = (125 gev)2 . (4.94)

We can restate the discussion below (4.93) in terms of (4.94). Prior to the Higgs discovery,
one could have tuned ⇠ = v

2
/f

2 by, say, increasing the parameter b. With the discovery of a
125 gev Higgs boson, one can no longer do this since increasing b also increases m2

h
. Indeed, this

is why prior to the Higgs discovery people said that composite Higgs models predict a heavier
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Here the factor of 2 comes from two top partner polarizations and the scaling with respect to
g⇤ = M/f comes from nda [155]. Thus the coupling of the new state is g⇤ ⌧ 4⇡ and is expected
to be weakly coupled. This is a more quantitative version of the statement that the discovery of
the 125 gev Higgs signaled the death of technicolor, as we explained qualitatively in Section 4.2.
The other implication of this weak coupling is that the new particles that cancel the quadratic
sensitivity of the Higgs potential have masses well below the strong coupling scale, M ⌧ ⇤ = 4⇡f ;
where we recall the nda cuto↵ from Section 4.3.7.
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is why prior to the Higgs discovery people said that composite Higgs models predict a heavier

80



Classification of composite Higgs models   

•  Parametrization of the composite Higgs potential 

• Assume potential loop induced (via explicit 
breaking) and cut off by partners of mass 

• Models differ by prediction for a, b and value of g* 

• Main difference quartic loop or tree-level  
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Here the factor of 2 comes from two top partner polarizations and the scaling with respect to
g⇤ = M/f comes from nda [155]. Thus the coupling of the new state is g⇤ ⌧ 4⇡ and is expected
to be weakly coupled. This is a more quantitative version of the statement that the discovery of
the 125 gev Higgs signaled the death of technicolor, as we explained qualitatively in Section 4.2.
The other implication of this weak coupling is that the new particles that cancel the quadratic
sensitivity of the Higgs potential have masses well below the strong coupling scale, M ⌧ ⇤ = 4⇡f ;
where we recall the nda cuto↵ from Section 4.3.7.
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Here the factor of 2 comes from two top partner polarizations and the scaling with respect to
g⇤ = M/f comes from nda [155]. Thus the coupling of the new state is g⇤ ⌧ 4⇡ and is expected
to be weakly coupled. This is a more quantitative version of the statement that the discovery of
the 125 gev Higgs signaled the death of technicolor, as we explained qualitatively in Section 4.2.
The other implication of this weak coupling is that the new particles that cancel the quadratic
sensitivity of the Higgs potential have masses well below the strong coupling scale, M ⌧ ⇤ = 4⇡f ;
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Classification of composite Higgs models   

•  Initially little Higgs was most useful, since no little 
hierarchy there, v/f ~ 1/4𝛑 - completely natural EWSB 
BUT prediction for Higgs mass too high  

• Now most popular holographic higgs, twin higgs 

model O(a) O(b) O(g⇤) comments

Bona-fide composite Higgs 1 1 4⇡ Requires tuning of both a and b.
Little Higgs 1 16⇡

2

g2⇤
⌧ 4⇡ Tree level quartic, h too heavy.

Holographic Higgs 1 1 ⌧ 4⇡ ⇠ little Higgs with loop-level quartic.
Twin Higgs 1 1� 16⇡

2

g2⇤
gSM 2 rather than collective breaking.

Dilatonic Higgs see text Related to rs radion Higgs.

Table 2: Taxonomy of composite Higgs models according to the couplings in (4.91) and (4.92);
based on [132]. Models must be tuned when phenomenology requires values of the couplings that
are very di↵erent from the expected magnitudes shown here.

Higgs mass of mh ⇠ 300 gev. One way to evade making m
2

h
> m

2

t
is to observe that most of the

contributions to b comes from the fermionic top partner resonances. We’ve been characterizing
all of the heavy particle couplings as g⇤, but in principle the top partners could have a di↵erent
coupling, gT , in which case g⇤ ! gT in (4.94). If this top partner coupling is smaller than the
general resonance coupling gT < g⇤, while also satisfying gT & 1 to push the mass up, then one
can keep m

2

h
< m

2

t
while pushing up b to achieve tuning in ⇠. This is why one may expect the

‘light’ top partners described in Section 4.5.3 to have masses lighter than the other strong sector
resonances mT ⇡ gTf < M .

In the remainder of this section we examine five classes of composite Higgs models and classify
them according to their natural expectations for a, b, and g⇤. These are summarized in Table 2.

4.7.1 Bona-Fide Composite Higgs

The ‘bona-fide composite Higgs’ models in the first row of Table 2 are the simplest realizations
of the Higgs as pseudo-Nambu–Goldstone boson idea: a strongly coupled sector has a global
symmetry which is spontaneously broken and yields a Goldstone with the quantum numbers of
the Higgs. The Higgs potential is assumed to be radiatively generated by explicit breaking terms
so that in the parameterization (4.91), a ⇠ b ⇠ O(1). From the left-side equation of (4.94), a
parametric separation between v and f requires a to be tuned small by an amount ⇠ in (4.36).

Even with this, however, this is a second tuning required on b since the new states are expected
to couple to the strong sector with strong couplings, g⇤ ⇠ 4⇡. Thus one finds that the quartic
coupling is too large in (4.93) compared to � = 0.13. In other words, one predicts a Higgs mass
that is heavier than observed in (4.94). This is mapped onto a tuning of b.

4.7.2 Little Higgs

In little Higgs models, collective symmetry breaking naturally gives a hierarchy

⇠ =
v
2

f 2
⇠

g
2

⇤

16⇡2
⌧ 1. (4.95)

The quartic coupling appears at tree-level, � ⇠ gSM. This is shown as b ⇠ 16⇡2
/g

2

⇤
in Table 2.

Prior to the Higgs discovery, this set up was seen to be a feature: one explains the separation
between v and f . However, (4.94) shows that this predicts a Higgs mass that is on the order of
500 gev for gSM ⇠ 1.
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Experimental Signals of Composite Higgs  
• Electroweak precision tests 

• Universal (oblique) 

• Non-universal (Zbb): fits favor small positive shift  
as in CH 

x=0 HSML
x=0.1
x=0.2
x=0.25

UV con tr.

fe
rm
io
n
co
n t
r.

IR
con tr.

-2 -1 0 1 2 3

-1

0

1

2

S
`
¥ 103

T`
¥
10

3

Figure 2: Confidence level contours (at 65%, 95% and 99%) for Ŝ and T̂ from [97]. The IR contributions
alone would imply ⇠ = v

2
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2 . 0.1.

6.1.2 Non-universal

Besides the oblique parameters, strongly interacting models usually induce non-universal mod-

ifications to the couplings of the top, and due to SU(2)L invariance, also to those of the

left-handed bottom [99]. This is due to the necessarily large coupling of the top quark to

the strong sector, in order to reproduce its large Yukawa coupling. The strongest constraints

come from measurements of the ZbLb̄L coupling, sensitive to the masses of the new-physics

states. However, it was shown in [100] that the ZbLb̄L vertex can be protected from large

corrections by a PLR parity symmetry, as long as the bL embedding does not break it, that

is if bL has �1/2 charge under both SU(2)L and SU(2)R.4 As for the custodial symmetry,

when this custodial parity is preserved by the strong sector, corrections to ZbLb̄L can be kept

under control. Both symmetries yield important consequences for the quantum numbers and

spectrum of the top partner resonances (for instance extended representations such as the

4 = (2,2)).

Fig. (3) reproduced from [101] shows the best fit region with a small positive �gRb where

4Notice that in symmetry breaking cosets with unbroken SO(4), PLR actually arises as an accidental
symmetry of the leading order derivative Lagrangian [65].
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the following parametrization is used 5

L =
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Figure 3: Best fit region for the Zb̄b couplings from [101] favoring small positive �gRb. The SM is represented
by the green point.

The contribution from fermion loops to �gLb is generically logarithmically divergent as a

result of insertions of the mixings that break the PLR parity
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m2
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Another sensitive test concerns the anomalous coupling of the right-handed top and bottom

to the Z. This coupling is tightly constrained by b ! s� measurements. However, the

size of the anomalous coupling is generically suppressed by yb/yt, yielding mild bounds on

the new physics scale, see for instance [102]. Other top related measurements still lack of

precision [98,103].

In the previous sections we have argued that due to its contribution to the Higgs potential,

fermionic top partners should be the lightest new physics states. The e↵ects of top-partners

on precision tests, which we have reviewed in this section, have been thoroughly discussed

in the literature, either in the context of little Higgs models [104], holographic Higgs mod-

els [16, 61, 93,98,105,106], or in more generality [97, 107].

5There exists another best fit region with a larger negative �gRb.
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fermionic top partners should be the lightest new physics states. The e↵ects of top-partners

on precision tests, which we have reviewed in this section, have been thoroughly discussed
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   • Higgs physics  
Single Higgs production 

coupling SM MCHM Dilaton
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� b(3)
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)
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Table 2: Coe�cients of the linear Higgs couplings in Eq. (6.12), for the SM, the SO(5)/SO(4) composite
Higgs (MCHM), and the dilaton Higgs.

to the SM predictions. Importantly, this is regardless of any new states that might be present

in the spectrum, given that such GB e↵ects can not be decoupled.

6.3.1 Single-Higgs production

After the Higgs discovery, one of the major enterprises in particle physics has been the extrac-

tion of the linear couplings of the Higgs to the other SM fields. These are obtained by fitting

the experimental data on � ⇥BR, see [128–130] and references therein. The best tested Higgs

couplings to date are those to electroweak gauge bosons hZZ and hWW (with less precision),

and to massless gauge bosons hgg and h��, induced at one loop in the SM. Indirectly, through

its contribution to hgg and h��, the coupling to top quarks, htt̄ is also being tested. The first

results on the coupling to tau leptons h⌧ ⌧̄ and bottom quarks hbb̄ have also been obtained.

In order to make connection with the experimental data and compare with di↵erent models,

we parametrize the linear interactions of the Higgs by the following Lagrangian

L(h)
eff

=
�
cV

�
2m2

W
W+

µ
W�µ + m2

Z
Z2

µ

�
� ctmtt̄t � cbmbb̄b � c⌧m⌧ ⌧̄ ⌧

� h

v

+
⇣c��

2
Aµ⌫A

µ⌫ + cZ�Zµ⌫�
µ⌫ +

cgg

2
Ga

µ⌫
Ga,µ⌫

⌘ h

v
, (6.12)

and present in Table 2 the predictions for two distinct composite Higgs models, the SO(5)/SO(4)

model of [11], known as the Minimal Composite Higgs Model (MCHM), and the dilatonic Higgs

following [44]. For the MCHM, we only include the predictions associated to the GB non-

linear nature of the Higgs, dictated by the symmetry structure of the model, and comment

on the e↵ects of the light SM partners below, which in any case give subleading corrections.

For the case of the dilaton the couplings are entirely determined by scale invariance and its

breaking. In Table 2 we have defined ⇠ = v2/f 2, and notice first the important fact that in the

MCHM the deviations from the SM scale with ⇠, thus the SM limit is reproduced for ⇠ ! 0.
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model of [11], known as the Minimal Composite Higgs Model (MCHM), and the dilatonic Higgs

following [44]. For the MCHM, we only include the predictions associated to the GB non-

linear nature of the Higgs, dictated by the symmetry structure of the model, and comment

on the e↵ects of the light SM partners below, which in any case give subleading corrections.

For the case of the dilaton the couplings are entirely determined by scale invariance and its
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   • Higgs physics  
Double Higgs production 

coupling SM MCHM Dilaton
dV 1 1 � 2⇠ ⇠
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Table 4: Higgs couplings in Eq. (6.13) for the SM, the MCHM, and the dilaton.

by the Higgs itself, without the need of any new resonances up to at least ⇠ 3 TeV [158–160].

For the case that the Higgs arises as a 4-plet of GB’s, the above statement, in e↵ective field

theory language, is equivalent to the confirmation that the operator (@µ(H†H))2 is suppressed

by a scale f hierarchically larger than the electroweak scale. Furthermore, in this case the

properties of the W and Z are intrinsically tied to those of the Higgs boson, and as such

their behavior at high energies is completely correlated by the SO(4) symmetry. Because of

this, the high energy behavior of double Higgs production does not o↵er a new (compared

to WW scattering) avenue where beyond the SM behavior might be expected. However, two

important comments are in order. First, there is a composite Higgs candidate which does not

exhibit the above features by construction: the dilatonic Higgs. Second, the production of

Higgs boson pairs can be a↵ected by several other new-physics e↵ects, as we now show.

As in the previous section, we parametrize the double interactions of the Higgs by a

phenomenological Lagrangian [161]

L(h2)
eff

=

✓
dV

2

�
m2

W
W+

µ
W�µ + m2

Z
Z2
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�
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m2
h

v
h3 , (6.13)

and present in Table 4 the predictions for the MCHM of [11], and the dilatonic Higgs [44].

For the MCHM we omit again the e↵ects of the light SM partners, but we comment on those

below. As for the linear Higgs couplings, the deviations from the SM vanish in the limit

⇠ ! 0 for the MCHM, as well as in other models where the Higgs boson belongs to the same

multiplet as the scalars eaten by the W and the Z. Once again, the dilaton mimics the SM

prediction in the opposite limit ⇠ ! 1, along with vanishing anomalous dimensions, except

for one notable exception, the trilinear Higgs self-interaction c3. This can be understood by

noticing that the SM result c3 = 1 is reproduced if the perturbation explicitly breaking scale

invariance is a pure mass term, as in the SM, since then d�/d� = �2 (where in the SM case

� = µ). However, the natural realization of the Higgs-like dilaton scenario (with a su�ciently
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   • Direct bounds   
Spin 1/2 top partners  

Recent CMS bound > 1.3 TeV 



   • Direct bounds   
Spin 1 partners W’, Z’  
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Recent new directions   

• First holographic CH with tree-level quartic - will 
help with tuning. Based on deconstruction of 6D 
model 

• Maximal symmetry - a remnant of chiral symmetry 
of fermions will ensure minimal tuning of Higgs 
potential 

Figure 9: ‘Cat diagram’ adapted from [151]. Despite the silly appearance, the key point is that
the photon couples to the electric current Jµ = e ̄�µ (‘ears’) formed from interactions with
fundamental quarks in the strongly coupled sector. The ‘whiskers’ are the pseudo-Goldstone
external states when expanding the U(x) field in (4.28). The contribution to the charged meson
masses come from the ‘two whisker’ diagram.

4.3.5 Electromagnetic mass splitting

In addition to the spontaneous chiral symmetry breaking by strong dynamics, the SU(3)L⇥SU(3)R
group is also broken explicitly from the gauging of U(1)EM ⇢ SU(3)V. The neutral Goldstones
(pions, kaons, and the ⌘) are una↵ected by this. The charged Goldstones, on the other hand, pick
up masses from photon loop diagrams of the form in Fig. 9. These diagrams contribute to an
operator that gives a shift in the [pseudo-]Goldstone mass,

�L ⇠ e
2Tr

⇥
QU(x)†QU(x)

⇤
, (4.28)

where Q = 1

3
diag(2,�1,�1) is the matrix of quark electric charges. Since the electromagnetic

force does not distinguish between the down and strange quarks, this diagram gives an equal shift
to both the charged pions (e.g. ud̄) and kaons (e.g. us̄). Since the up and anti-down/strange quark
have the same charge, the bound state is more energetic than the neutral mesons and we expect the
shift in the mass-squared to be positive [151,152]. Note that the contribution to the charged pion
mass is quadratically sensitive to the chiral symmetry breaking scale, though it is also suppressed
by the smallness of ↵EM.

4.3.6 Explicit breaking from quark spectrum

One can add quark masses that constitute a small (mq ⌧ ⇤qcd) explicit breaking of the global
symmetry and generate small masses to the pseudo-Goldstone bosons. One can write this as a
spurion M = diag(mu,md,ms) which has the same quantum numbers as U(x). One can add these
terms to the e↵ective Lagrangian by forming the appropriate global symmetry group invariant. In
particular, we add to the Lagrangian

�L ⇠ Tr [MU(x)] ⇠ Tr

"
M

✓
⇡
a(x)

f
T

a

◆2
#
+ · · · (4.29)

In the limit where mu = md and ignoring the electromagnetic splitting above, one may identify the
masses for the pions, kaons, and ⌘ (di↵erent components of ⇡a) to derive the Gell-Mann–Okubo
relation,

m
2

⌘
+m

2

⇡
= 4m2

K
. (4.30)
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Tree-level quartic for composite Higgs   

• From the original 6D model 

• Can find a simple warped 5D model version 

Figure 9: ‘Cat diagram’ adapted from [151]. Despite the silly appearance, the key point is that
the photon couples to the electric current Jµ = e ̄�µ (‘ears’) formed from interactions with
fundamental quarks in the strongly coupled sector. The ‘whiskers’ are the pseudo-Goldstone
external states when expanding the U(x) field in (4.28). The contribution to the charged meson
masses come from the ‘two whisker’ diagram.
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have the same charge, the bound state is more energetic than the neutral mesons and we expect the
shift in the mass-squared to be positive [151,152]. Note that the contribution to the charged pion
mass is quadratically sensitive to the chiral symmetry breaking scale, though it is also suppressed
by the smallness of ↵EM.
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In the limit where mu = md and ignoring the electromagnetic splitting above, one may identify the
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relation,
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(Geller, Telem, C.C.)

2 Motivations for a Quartic from 6D

The first implementation of the little Higgs idea [4] was based on a deconstructed [12]
6D gauge theory. The aim was to construct a composite Higgs model where a large tree-
level quartic could result in a fully natural electroweak symmetry breaking (EWSB) Higgs
potential. The extra dimensional components A5, A6 of the gauge field can have the right
quantum numbers to be identified with the Higgs. Compactification of the extra dimension
can provide physical irreducible Wilson lines in the extra dimension which have all the
properties of a pNGB in 4D (see also [13]). The quartic arises from the field strength term:

Tr[A5, A6]
2
2 F56F56. (1)

In the deconstructed version, this corresponds to a plaquette operator.

Before explaining the details of the full 6D construction (as well as the simple warped
5D version), we would like to explain how the presence of such a tree-level quartic could
help alleviate the tuning in composite Higgs models1. The Higgs potential in CH models
with a loop-induced quartic is parametrized as

V (h) =
3g2

t
M2
 

16⇡2

✓
�ah2 +

b

2

h4

f 2

◆
(2)

where gt is the SM coupling, M = g f is the top partner mass, and a and b are (at most)
O(1) numbers. The coe�cients a and b can be smaller than 1 (at the price of tuning various
terms against each other) but can not be bigger than O(1). The tuning is then quantified
by

� =
1

ab
. (3)

The origin of the v2/f 2 tuning is easy to see: since both the quadratic and quartic terms
are loop-induced by the same dynamics, the minimum of the potential is when v

2

f2 = a

b
,

which for b ⇠ 1 gives the “irreducible” tuning of composite Higgs models � = 1
ab

= f
2

v2
>
⇠ 9.

The lower bound on this tuning follows from electroweak precision and Higgs coupling
constraints, which imply that that f

v

>
⇠ 3. A more detailed analysis of the tuning yields

� ' 8 yt
⇣ g 
1.8

⌘2
✓
f/v

3

◆2
>
⇠ 8 yt , (4)

since g > 1.8 is required to get a large enough loop-induced quartic.

An additional (adjustable) tree-level quartic significantly changes the picture, reducing
the previously “irreducible” f

v
tuning. The reason is that the coupling g setting overall

magnitude of the loop-induced Higgs potential can be taken smaller, while the adjustable
contribution ensures that � = 0.13. In this case the dominant bound on the tuning is no

1For a detailed analysis of the tuning in CH models, see [14].

3

Figure 3: A sketch of the main elements of our deconstructed 5d model. The two sites in
the bulk represent the SO(5)u ⇥ SO(5)d, broken on the IR into SO(4)u ⇥ SO(4)d and on
the UV into SO(5)u ⇥ [SU(2)L ⇥ U(1)Y ]

d

SM
. The bulk link corresponds to the breaking of

SO(5)u ⇥ SO(5)d into the diagonal SO(5)V with a constant VEV in the bulk.

and the bulk Lagrangian looks like a two-site model: the bulk gauge symmetry is SO(5)u⇥
SO(5)d, where i = u, d are the two sites mimicking the e↵ect of the 6th dimension. The
bulk symmetry is broken on the IR brane to SO(4)u ⇥ SO(4)d and on the UV brane in
SO(5)u ⇥ [SU(2)L ⇥ U(1)Y ]

d

SM
. In addition, the SO(5)u ⇥ SO(5)d symmetry is broken in

the bulk to the diagonal SO(5)V , with the original SO(5)u ⇥ SO(5)d realized nonlinearly

via a bulk link field U = ei
p

2
f6

⇡
a
T

a

. The ⇡a’s play the role of the 6th component of the
6D SO(5) gauge fields Ay. The decay constant f6 is taken to be a constant along the 5th
dimension, and is roughly of the order of the inverse AdS curvature 1/R. This model is
illustrated in Fig. 3.

Next we will explicitly show that this model contains two scalar zero modes with IR
localized profiles. The bulk action for this model includes the gauge kinetic terms and the
covariant derivative of the link field:

S =

Z
d4xdz

p
g

✓
�
1

4
FMNF

MN +
f 2
6

4

�
DMU

�†
DMU

◆
, (13)

where the covariant derivatives are

DµU =

 p
2

f6
@µ⇡ � g5A

(A)
µ

!
+..., DzU = �

 p
2

f6
@z⇡ � g5A

(A)
z

� i

p
2g5
f6

[Au

z
, ⇡]

!
+... (14)

and A(A)
µ,z ⌘ Au

µ,z
� Ad

µ,z
, A(V )

µ,z ⌘ Au

µ,z
+ Ad

µ,z
, while the ellipses stand for higher order

commutator terms and terms negligible in the limit R ⌧ R0. The scalar zero modes live
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Tree-level quartic for composite Higgs   
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Higgs doublets! 

• Top sector can easily lift the second Higgs doublet  

• Also double KK spectrum 

• New charged Higgses 
(2HDM model in the decoupling limit, 300-500 GeV 
states)

Figure 9: ‘Cat diagram’ adapted from [151]. Despite the silly appearance, the key point is that
the photon couples to the electric current Jµ = e ̄�µ (‘ears’) formed from interactions with
fundamental quarks in the strongly coupled sector. The ‘whiskers’ are the pseudo-Goldstone
external states when expanding the U(x) field in (4.28). The contribution to the charged meson
masses come from the ‘two whisker’ diagram.

4.3.5 Electromagnetic mass splitting

In addition to the spontaneous chiral symmetry breaking by strong dynamics, the SU(3)L⇥SU(3)R
group is also broken explicitly from the gauging of U(1)EM ⇢ SU(3)V. The neutral Goldstones
(pions, kaons, and the ⌘) are una↵ected by this. The charged Goldstones, on the other hand, pick
up masses from photon loop diagrams of the form in Fig. 9. These diagrams contribute to an
operator that gives a shift in the [pseudo-]Goldstone mass,

�L ⇠ e
2Tr

⇥
QU(x)†QU(x)

⇤
, (4.28)

where Q = 1

3
diag(2,�1,�1) is the matrix of quark electric charges. Since the electromagnetic

force does not distinguish between the down and strange quarks, this diagram gives an equal shift
to both the charged pions (e.g. ud̄) and kaons (e.g. us̄). Since the up and anti-down/strange quark
have the same charge, the bound state is more energetic than the neutral mesons and we expect the
shift in the mass-squared to be positive [151,152]. Note that the contribution to the charged pion
mass is quadratically sensitive to the chiral symmetry breaking scale, though it is also suppressed
by the smallness of ↵EM.

4.3.6 Explicit breaking from quark spectrum

One can add quark masses that constitute a small (mq ⌧ ⇤qcd) explicit breaking of the global
symmetry and generate small masses to the pseudo-Goldstone bosons. One can write this as a
spurion M = diag(mu,md,ms) which has the same quantum numbers as U(x). One can add these
terms to the e↵ective Lagrangian by forming the appropriate global symmetry group invariant. In
particular, we add to the Lagrangian

�L ⇠ Tr [MU(x)] ⇠ Tr

"
M

✓
⇡
a(x)

f
T

a

◆2
#
+ · · · (4.29)

In the limit where mu = md and ignoring the electromagnetic splitting above, one may identify the
masses for the pions, kaons, and ⌘ (di↵erent components of ⇡a) to derive the Gell-Mann–Okubo
relation,

m
2

⌘
+m

2

⇡
= 4m2

K
. (4.30)
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Figure 4: The top partner spectrum in our model.

multiplets. Furthermore, even the individual contributions of complete multiplets T 0
L
and

T 1
L
are separately zero. Indeed, the Coleman Weinberg potential depends on T 0,1

L
through

����
yt f
p
2

�
⌃uSu ± i⌃dSd

�����
2

= y2
t
f 2 , (44)

which is independent of h1,2. Since our zero modes live mostly in T 0
L
and all the other

modes are at MKK , we can now ignore the complete multiplet T 1
L
and focus only on the T 0

L

contribution, which is cut at MKK .

The top partners in T 0
L
are:

T 0
L
=

1
p
2

�
0, 0,�it̄0

d
, t̄0

d
, t0

s

�
. (45)

Here t0
d
is part of an electroweak doublet and t0

s
is an electroweak singlet. Their couplings

to the Higgs in Eq. (43) can be explicitly written as:

Ltop partners = ytt̄
0
dL
h†
2tR + ytt̄

0
sL

✓
f �

h2
1

2f
�

h2
2

2f

◆
tR +Mdt̄

0
dL
t0
dR

+Mst̄
0
sL
t0
sR

, (46)

while the Higgs potential contribution of this sector is

V (h1, h2) = �
3y2

t
M2

s

16⇡2
h1h

†
1 +

3y2
t
(M2

d
�M2

s
)

16⇡2
h2h

†
2 . (47)

The top partner spectrum of our model is shown in Fig. 4. We see that Ms acts
e↵ectively as a cuto↵ for the h1 mass term, while both the doublet and the singlet contribute
to h2 with opposite signs. For Md > Ms, we get a positive mass for h2, lifting the flat
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Figure 9: ‘Cat diagram’ adapted from [151]. Despite the silly appearance, the key point is that
the photon couples to the electric current Jµ = e ̄�µ (‘ears’) formed from interactions with
fundamental quarks in the strongly coupled sector. The ‘whiskers’ are the pseudo-Goldstone
external states when expanding the U(x) field in (4.28). The contribution to the charged meson
masses come from the ‘two whisker’ diagram.

4.3.5 Electromagnetic mass splitting

In addition to the spontaneous chiral symmetry breaking by strong dynamics, the SU(3)L⇥SU(3)R
group is also broken explicitly from the gauging of U(1)EM ⇢ SU(3)V. The neutral Goldstones
(pions, kaons, and the ⌘) are una↵ected by this. The charged Goldstones, on the other hand, pick
up masses from photon loop diagrams of the form in Fig. 9. These diagrams contribute to an
operator that gives a shift in the [pseudo-]Goldstone mass,

�L ⇠ e
2Tr

⇥
QU(x)†QU(x)

⇤
, (4.28)

where Q = 1

3
diag(2,�1,�1) is the matrix of quark electric charges. Since the electromagnetic

force does not distinguish between the down and strange quarks, this diagram gives an equal shift
to both the charged pions (e.g. ud̄) and kaons (e.g. us̄). Since the up and anti-down/strange quark
have the same charge, the bound state is more energetic than the neutral mesons and we expect the
shift in the mass-squared to be positive [151,152]. Note that the contribution to the charged pion
mass is quadratically sensitive to the chiral symmetry breaking scale, though it is also suppressed
by the smallness of ↵EM.

4.3.6 Explicit breaking from quark spectrum

One can add quark masses that constitute a small (mq ⌧ ⇤qcd) explicit breaking of the global
symmetry and generate small masses to the pseudo-Goldstone bosons. One can write this as a
spurion M = diag(mu,md,ms) which has the same quantum numbers as U(x). One can add these
terms to the e↵ective Lagrangian by forming the appropriate global symmetry group invariant. In
particular, we add to the Lagrangian

�L ⇠ Tr [MU(x)] ⇠ Tr

"
M

✓
⇡
a(x)

f
T

a

◆2
#
+ · · · (4.29)

In the limit where mu = md and ignoring the electromagnetic splitting above, one may identify the
masses for the pions, kaons, and ⌘ (di↵erent components of ⇡a) to derive the Gell-Mann–Okubo
relation,

m
2

⌘
+m

2

⇡
= 4m2

K
. (4.30)
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4

Thus  + and  � are related by the Higgs parity op-
erator:  + = V �, and are not idependent fields.

Our original fermion Lagrangian in terms of  ± is:

Lf=  ̄+i /5 + + f(c�R ̄tRUV +L + c+R ̄tRU +L)

+ f(c�L ̄qLUV +R + c+L ̄qLU +R)

� (MQ +MS) ̄+L +R � (MQ �MS) ̄
0
+L

V +R (19)

where the Yukawas are c±R = ✏tQ±✏tS

2 , c±L = ✏qQ±✏qSp
2

.

Since the composite fermions  Q and  S fill out a full
SO(5) representation, the kinetic terms will have the en-
larged SO(5)L ⇥ SO(5)R chiral global flavor symmetry,
which can have various symmetry breaking patterns de-
pending on the structure of the Yukawa couplings and
composite mass terms. These symmetry breaking pat-
terns will determine the form of the radiatively induced
Higgs potential and its degree of divergence. Since our
goal is to find an implementation of the maximal symme-
try, we will set c�L = c�R = 0 in the general Lagrangian.
If c� and c+ were to appear simultaneously in the La-
grangian one would not be able to maintain an entire
SO(5) global symmetry as needed for maximal symme-
try. Of course one could as well have chosen c+L,R = 0
and arrive at similar results. In this case, the Lagrangian
is

Lf=  ̄+i /5 + + fc+R ̄tRU +L + fc+L ̄qLU +R

� (MQ +MS) ̄+L +R � (MQ �MS) ̄+LV +R(20)

Once we impose c�L,R = 0 the mixing terms will have
the full SO(5)L ⇥ SO(5)R chiral global symmetry, and
the breaking pattern depends on the relation of the mass
termsMQ,S , giving rise to the following possible breaking
patterns:

MQ �MS = 0 ) SO(5)L ⇥ SO(5)R/SO(5)V

MQ +MS = 0 ) SO(5)L ⇥ SO(5)R/SO(5)V 0

|MQ| 6= |MS | ) SO(5)L ⇥ SO(5)R/SO(4)V (21)

Let us now examine what these symmetries imply for the
structure of the Higgs potential.

• If MQ = MS the second (twisted) mass term
vanishes. The entire remaining Lagrangian is in-
variant under the SO(5)V global symmetry where
U +L,R ! WU +L,R, tR,QL ! W tR,QL . This
global symmetry contains the original shift sym-
metry, so the entire Higgs potential vanishes, thus
every term must be proportional to MQ �MS .

• If the untwisted mass vanishes MQ + MS = 0,
then there is still a remaining global symmetry,
the maximal symmetry SO(5)V 0 , but it does not
contain the entire Goldstone shift symmetry, thus
a potential will be generated. The transforma-
tion here is U +L ! LU +L, U +R ! RU +R.
Since the twisted mass term can be also written
as  ̄+LU†⌃0U +R, the condition for the unbroken
SO(5)V 0 symmetry is L†⌃0R = ⌃0.

In order to find the actual structure of the radiatively
induced Higgs potential we need to examine the collective
symmetry breaking properties of (20).

• The combination of the c+L and the two mass terms
will break the shift symmetry. However we can see
that we need all three of these terms to generate a
potential. If c+L = 0 we don’t have U appearing at
all. If MQ�MS = 0 we have the vectorlike SO(5)V
symmetry as above. If MQ + MS = 0 we have
the unbroken global symmetry U +R ! RU +R

and  +L ! V U †RU +L which contains the Higgs
shift symmetry. Thus the Higgs potential must be
proportional to c+L(MQ+MS)(MQ�MS), and to
be able to close the Feynman diagram c+L actaully
has to show up as |c+L|

2, resulting in a contribution
logarithmically sensitive to the cuto↵:

VL⇠ ⇠ |c+L|
2f2(MQ +MS)(MQ �MS) log⇤

2 (22)

A similar term is obtained using c+R:

VR⇠ ⇠ |c+R|
2f2(MQ +MS)(MQ �MS) log⇤

2 (23)

• The combination of c+L, c+R and the twisted mass
term will break the shift symmetry (but leave the
maximal symmetry intact), and a potenial will be
generated. Again we can see we need all three terms
to generate a potential. If the twisted mass term
is turned o↵ we again have the vectorlike SO(5)V
containing the shift symmetry. If for example c+L

is turned o↵, we again have the global symmetry
U +R ! RU +R and  +L ! V U †RU +L which
contains the Higgs shift symmetry. So we need all
three terms to show up, and in fact to be able to
actaully generate a potential all three have to show
up twice, giving rise to a finite contribution of the
form we need the Feynman diagram here

|c+L|
2
|c+R|

2f4(MQ �MS)
2/⇤2. (24)

So according to Eq. (16), we find the top mass is
proportional to mt ⇠ |MQ �MS |.

Inetgrating out the heavy top partner  + from the
Lagrangian in (19) we obtain the form factors ⇧q,t

0 , ⇧q,t

1

and M t

1 for the e↵ective Lagrangian of the elementary
quarks as in (5). The explicit expressions of the form
factors are given in App. ??. Recalling that the e↵ect
of the SO(5)L ⇥ SO(5)R global symmetry on the ele-
mentary fields is  tR ! R tR , QL ! L QL , it is clear
that ⇧q

0(⇧
t

0) is SO(5)L(SO(5)R) invariant, while ⇧
q

1 (⇧
t

1)
break the full SO(5)L ⇥ SO(5)R to SO(5)V corespond-
ing to L = R. However the top mass term M t

1 leaves the
maximal SO(5)V 0 invariant, since that symmetry corre-
sponds to the choice where L†⌃0R = ⌃0. Thus for the
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Figure 9: ‘Cat diagram’ adapted from [151]. Despite the silly appearance, the key point is that
the photon couples to the electric current Jµ = e ̄�µ (‘ears’) formed from interactions with
fundamental quarks in the strongly coupled sector. The ‘whiskers’ are the pseudo-Goldstone
external states when expanding the U(x) field in (4.28). The contribution to the charged meson
masses come from the ‘two whisker’ diagram.

4.3.5 Electromagnetic mass splitting

In addition to the spontaneous chiral symmetry breaking by strong dynamics, the SU(3)L⇥SU(3)R
group is also broken explicitly from the gauging of U(1)EM ⇢ SU(3)V. The neutral Goldstones
(pions, kaons, and the ⌘) are una↵ected by this. The charged Goldstones, on the other hand, pick
up masses from photon loop diagrams of the form in Fig. 9. These diagrams contribute to an
operator that gives a shift in the [pseudo-]Goldstone mass,

�L ⇠ e
2Tr

⇥
QU(x)†QU(x)

⇤
, (4.28)

where Q = 1

3
diag(2,�1,�1) is the matrix of quark electric charges. Since the electromagnetic

force does not distinguish between the down and strange quarks, this diagram gives an equal shift
to both the charged pions (e.g. ud̄) and kaons (e.g. us̄). Since the up and anti-down/strange quark
have the same charge, the bound state is more energetic than the neutral mesons and we expect the
shift in the mass-squared to be positive [151,152]. Note that the contribution to the charged pion
mass is quadratically sensitive to the chiral symmetry breaking scale, though it is also suppressed
by the smallness of ↵EM.

4.3.6 Explicit breaking from quark spectrum

One can add quark masses that constitute a small (mq ⌧ ⇤qcd) explicit breaking of the global
symmetry and generate small masses to the pseudo-Goldstone bosons. One can write this as a
spurion M = diag(mu,md,ms) which has the same quantum numbers as U(x). One can add these
terms to the e↵ective Lagrangian by forming the appropriate global symmetry group invariant. In
particular, we add to the Lagrangian

�L ⇠ Tr [MU(x)] ⇠ Tr
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M

✓
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f
T

a
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#
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In the limit where mu = md and ignoring the electromagnetic splitting above, one may identify the
masses for the pions, kaons, and ⌘ (di↵erent components of ⇡a) to derive the Gell-Mann–Okubo
relation,

m
2

⌘
+m

2
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= 4m2

K
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Thus  + and  � are related by the Higgs parity op-
erator:  + = V �, and are not idependent fields.

Our original fermion Lagrangian in terms of  ± is:

Lf=  ̄+i /5 + + f(c�R ̄tRUV +L + c+R ̄tRU +L)

+ f(c�L ̄qLUV +R + c+L ̄qLU +R)

� (MQ +MS) ̄+L +R � (MQ �MS) ̄
0
+L

V +R (19)

where the Yukawas are c±R = ✏tQ±✏tS

2 , c±L = ✏qQ±✏qSp
2

.

Since the composite fermions  Q and  S fill out a full
SO(5) representation, the kinetic terms will have the en-
larged SO(5)L ⇥ SO(5)R chiral global flavor symmetry,
which can have various symmetry breaking patterns de-
pending on the structure of the Yukawa couplings and
composite mass terms. These symmetry breaking pat-
terns will determine the form of the radiatively induced
Higgs potential and its degree of divergence. Since our
goal is to find an implementation of the maximal symme-
try, we will set c�L = c�R = 0 in the general Lagrangian.
If c� and c+ were to appear simultaneously in the La-
grangian one would not be able to maintain an entire
SO(5) global symmetry as needed for maximal symme-
try. Of course one could as well have chosen c+L,R = 0
and arrive at similar results. In this case, the Lagrangian
is

Lf=  ̄+i /5 + + fc+R ̄tRU +L + fc+L ̄qLU +R

� (MQ +MS) ̄+L +R � (MQ �MS) ̄+LV +R(20)

Once we impose c�L,R = 0 the mixing terms will have
the full SO(5)L ⇥ SO(5)R chiral global symmetry, and
the breaking pattern depends on the relation of the mass
termsMQ,S , giving rise to the following possible breaking
patterns:

MQ �MS = 0 ) SO(5)L ⇥ SO(5)R/SO(5)V

MQ +MS = 0 ) SO(5)L ⇥ SO(5)R/SO(5)V 0

|MQ| 6= |MS | ) SO(5)L ⇥ SO(5)R/SO(4)V (21)

Let us now examine what these symmetries imply for the
structure of the Higgs potential.

• If MQ = MS the second (twisted) mass term
vanishes. The entire remaining Lagrangian is in-
variant under the SO(5)V global symmetry where
U +L,R ! WU +L,R, tR,QL ! W tR,QL . This
global symmetry contains the original shift sym-
metry, so the entire Higgs potential vanishes, thus
every term must be proportional to MQ �MS .

• If the untwisted mass vanishes MQ + MS = 0,
then there is still a remaining global symmetry,
the maximal symmetry SO(5)V 0 , but it does not
contain the entire Goldstone shift symmetry, thus
a potential will be generated. The transforma-
tion here is U +L ! LU +L, U +R ! RU +R.
Since the twisted mass term can be also written
as  ̄+LU†⌃0U +R, the condition for the unbroken
SO(5)V 0 symmetry is L†⌃0R = ⌃0.

In order to find the actual structure of the radiatively
induced Higgs potential we need to examine the collective
symmetry breaking properties of (20).

• The combination of the c+L and the two mass terms
will break the shift symmetry. However we can see
that we need all three of these terms to generate a
potential. If c+L = 0 we don’t have U appearing at
all. If MQ�MS = 0 we have the vectorlike SO(5)V
symmetry as above. If MQ + MS = 0 we have
the unbroken global symmetry U +R ! RU +R

and  +L ! V U †RU +L which contains the Higgs
shift symmetry. Thus the Higgs potential must be
proportional to c+L(MQ+MS)(MQ�MS), and to
be able to close the Feynman diagram c+L actaully
has to show up as |c+L|

2, resulting in a contribution
logarithmically sensitive to the cuto↵:

VL⇠ ⇠ |c+L|
2f2(MQ +MS)(MQ �MS) log⇤

2 (22)

A similar term is obtained using c+R:

VR⇠ ⇠ |c+R|
2f2(MQ +MS)(MQ �MS) log⇤

2 (23)

• The combination of c+L, c+R and the twisted mass
term will break the shift symmetry (but leave the
maximal symmetry intact), and a potenial will be
generated. Again we can see we need all three terms
to generate a potential. If the twisted mass term
is turned o↵ we again have the vectorlike SO(5)V
containing the shift symmetry. If for example c+L

is turned o↵, we again have the global symmetry
U +R ! RU +R and  +L ! V U †RU +L which
contains the Higgs shift symmetry. So we need all
three terms to show up, and in fact to be able to
actaully generate a potential all three have to show
up twice, giving rise to a finite contribution of the
form we need the Feynman diagram here

|c+L|
2
|c+R|

2f4(MQ �MS)
2/⇤2. (24)

So according to Eq. (16), we find the top mass is
proportional to mt ⇠ |MQ �MS |.

Inetgrating out the heavy top partner  + from the
Lagrangian in (19) we obtain the form factors ⇧q,t

0 , ⇧q,t

1

and M t

1 for the e↵ective Lagrangian of the elementary
quarks as in (5). The explicit expressions of the form
factors are given in App. ??. Recalling that the e↵ect
of the SO(5)L ⇥ SO(5)R global symmetry on the ele-
mentary fields is  tR ! R tR , QL ! L QL , it is clear
that ⇧q

0(⇧
t

0) is SO(5)L(SO(5)R) invariant, while ⇧
q

1 (⇧
t

1)
break the full SO(5)L ⇥ SO(5)R to SO(5)V corespond-
ing to L = R. However the top mass term M t

1 leaves the
maximal SO(5)V 0 invariant, since that symmetry corre-
sponds to the choice where L†⌃0R = ⌃0. Thus for the
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Figure 9: ‘Cat diagram’ adapted from [151]. Despite the silly appearance, the key point is that
the photon couples to the electric current Jµ = e ̄�µ (‘ears’) formed from interactions with
fundamental quarks in the strongly coupled sector. The ‘whiskers’ are the pseudo-Goldstone
external states when expanding the U(x) field in (4.28). The contribution to the charged meson
masses come from the ‘two whisker’ diagram.

4.3.5 Electromagnetic mass splitting

In addition to the spontaneous chiral symmetry breaking by strong dynamics, the SU(3)L⇥SU(3)R
group is also broken explicitly from the gauging of U(1)EM ⇢ SU(3)V. The neutral Goldstones
(pions, kaons, and the ⌘) are una↵ected by this. The charged Goldstones, on the other hand, pick
up masses from photon loop diagrams of the form in Fig. 9. These diagrams contribute to an
operator that gives a shift in the [pseudo-]Goldstone mass,

�L ⇠ e
2Tr

⇥
QU(x)†QU(x)

⇤
, (4.28)

where Q = 1

3
diag(2,�1,�1) is the matrix of quark electric charges. Since the electromagnetic

force does not distinguish between the down and strange quarks, this diagram gives an equal shift
to both the charged pions (e.g. ud̄) and kaons (e.g. us̄). Since the up and anti-down/strange quark
have the same charge, the bound state is more energetic than the neutral mesons and we expect the
shift in the mass-squared to be positive [151,152]. Note that the contribution to the charged pion
mass is quadratically sensitive to the chiral symmetry breaking scale, though it is also suppressed
by the smallness of ↵EM.

4.3.6 Explicit breaking from quark spectrum

One can add quark masses that constitute a small (mq ⌧ ⇤qcd) explicit breaking of the global
symmetry and generate small masses to the pseudo-Goldstone bosons. One can write this as a
spurion M = diag(mu,md,ms) which has the same quantum numbers as U(x). One can add these
terms to the e↵ective Lagrangian by forming the appropriate global symmetry group invariant. In
particular, we add to the Lagrangian

�L ⇠ Tr [MU(x)] ⇠ Tr
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#
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In the limit where mu = md and ignoring the electromagnetic splitting above, one may identify the
masses for the pions, kaons, and ⌘ (di↵erent components of ⇡a) to derive the Gell-Mann–Okubo
relation,
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breaking sector is � ' g2
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larger than the irreducible 1/⇠ minimal tuning. Double
tuning is a generic problem even for holographic com-
posite Higgs [22] models based on a warped extra di-
mension and their deconstructed versions [23–26]: these

models do regulate the UV behavior of ⇧q/t

1 to yield a
log divergent or finite Higgs potential, however double
tuning is present. Maximal symmetry o↵ers an elegant
and completely novel solution for eliminating double tun-
ing: maximal symmetry implies the vanishing of the en-
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1 form factor, thereby eliminating all O(✏2/g2
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a minimum at ⇠ ' 0.5, implying that the tuning will be
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for a small ⇠. In order to actually achieve this tuning
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to include gauge contributions, and impose a cancelation
between the fermionic and gauge contributions of the �
terms �f ' ��g (while �g is at order O(g4/g4
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) which is

always negligible compared to �f ).

Another simple way to see simple way to see that max-
imal symmetry implies minimal tuning is to realize that
maximal symmetry will imply the existence of an addi-
tional Z2 symmetry in the Higgs potential corresponding
to the sh , �ch exchange, analogous to the case of twin
higgs models [43]. This symmetry will forbid the ✏2s2

h

term (similar to composite twin Higgs models [28–30])
and eliminate the double tuning.

For general composite Higgs models one usually needs
some additional tuning to get the Higgs mass down to
125 GeV. However the model with maximal symmetry
has the special property that the top mass is maximized:
mt ⇠ sin ✓L sin ✓R |MQ�MS |sh where ✓L and ✓R are the
degrees of LH and RH top compositeness. Since maxi-
mal symmetry implies MQ = �MS , the |MQ �MS | fac-
tor is maximized, hence the degree of compositeness can
be minimized while the top mass is held fixed at the
physical value. This also implies that the mass of the
lightest top partner min{MT ,MT1} = min{ MS

cos ✓L
, MQ

cos ✓R
}

is also automatically reduced, which in turn cuts o↵
the top contribution to the Higgs mass earlier, mH _
min{MT ,MT1}mt/f , and allows us to obtain a light 125
GeV Higgs in the maximally symmetric limit.

To explicitly verify our estimates we have numerically
evaluated the tuning in the model of (7) with maximal

FIG. 1: Left: Scatter plot of tuning �i for the various input
parameters xi, c+R (black), c+L (blue), f (red), MS (green)
and m⇢ (magenta), as a function of mh with ⇠ = 0.1 held
fixed. Right: the tuning �m as a function of ⇠ for higgs mass
mh = 125 GeV. The red solid line is the analytic expression
of �m.

FIG. 2: Scatter plots for the Higgs mass as a function of g
(left) and the top partner masses (right) for ⇠ = 0.1. The
chosen range of the parameters is mt 2 [150, 170] GeV, m⇢ �
2 TeV. The horizontal and vertical red lines, corresponding to
900 and 1100 GeV respectively, are the lower bounds of the
doublet and singlet top partners from the most recent 13 TeV
LHC data [31–33].

symmetry where we have used the measure of tuning
from [27]. To obtain the contribution of the gauge sec-
tor one can extend the concept of maximal symmetry by
imposing that the vector meson ⇢µ and the axial-vector
meson aµ form a full adjoint representation of SO(5)
(which again automatically renders the higgs potential
finite). The analytic expression for the maximal amount
of tuning is �m ' 1/⇠ � 2. The numerical values of
the tuning are shown in Fig. 1. We can clearly see that
the largest tuning is from m⇢ which is from the require-
ment �f ' ��g and is slightly smaller than 8 for ⇠ = 0.1
because corrections beyond those at O(c2+L
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/g4
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) can

also contribute to �f making it slightly smaller than �f .
We also show scatter plots of the Higgs and top partner
masses in Fig. 2 for the maximally symmetric MCHM.
The main consequence of maximal symmetry is the

vanishing of the form factors ⇧q,t

1 = 0, which is what
one would like to check experimentally by testing the
properties of the top Yukawa coupling. For the MCHM
the top Yukawa coupling is parametrized by
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doublet and singlet top partners from the most recent 13 TeV
LHC data [31–33].
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the tuning are shown in Fig. 1. We can clearly see that
the largest tuning is from m⇢ which is from the require-
ment �f ' ��g and is slightly smaller than 8 for ⇠ = 0.1
because corrections beyond those at O(c2+L

c2+R
/g4

f
) can

also contribute to �f making it slightly smaller than �f .
We also show scatter plots of the Higgs and top partner
masses in Fig. 2 for the maximally symmetric MCHM.
The main consequence of maximal symmetry is the

vanishing of the form factors ⇧q,t

1 = 0, which is what
one would like to check experimentally by testing the
properties of the top Yukawa coupling. For the MCHM
the top Yukawa coupling is parametrized by

LY ⇠ M t

1 sin
2h

f

✓
1 + (↵q⇧

q

1 + ↵t⇧
t

1) sin
2 h

2f

◆
t̄t. (10)

A test of maximal symmetry would be to precisely mea-



Conclusions  
• Composite pNGB Higgs may solve the hierarchy 
problem  

• Need collective breaking for Goldstone’s thm to 
actually help with divergences +partial 
compositeness for flavor 

• Same spin partners would cancel divergences - this 
is what LHC is searching for (so far no luck) 

• As bounds get stronger tuning will soon start 
increasing from those set by LEP  

• New directions based on adjustable quartic/maximal 
symmetry could help reduce the tuning  

Figure 9: ‘Cat diagram’ adapted from [151]. Despite the silly appearance, the key point is that
the photon couples to the electric current Jµ = e ̄�µ (‘ears’) formed from interactions with
fundamental quarks in the strongly coupled sector. The ‘whiskers’ are the pseudo-Goldstone
external states when expanding the U(x) field in (4.28). The contribution to the charged meson
masses come from the ‘two whisker’ diagram.

4.3.5 Electromagnetic mass splitting

In addition to the spontaneous chiral symmetry breaking by strong dynamics, the SU(3)L⇥SU(3)R
group is also broken explicitly from the gauging of U(1)EM ⇢ SU(3)V. The neutral Goldstones
(pions, kaons, and the ⌘) are una↵ected by this. The charged Goldstones, on the other hand, pick
up masses from photon loop diagrams of the form in Fig. 9. These diagrams contribute to an
operator that gives a shift in the [pseudo-]Goldstone mass,
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where Q = 1

3
diag(2,�1,�1) is the matrix of quark electric charges. Since the electromagnetic

force does not distinguish between the down and strange quarks, this diagram gives an equal shift
to both the charged pions (e.g. ud̄) and kaons (e.g. us̄). Since the up and anti-down/strange quark
have the same charge, the bound state is more energetic than the neutral mesons and we expect the
shift in the mass-squared to be positive [151,152]. Note that the contribution to the charged pion
mass is quadratically sensitive to the chiral symmetry breaking scale, though it is also suppressed
by the smallness of ↵EM.

4.3.6 Explicit breaking from quark spectrum

One can add quark masses that constitute a small (mq ⌧ ⇤qcd) explicit breaking of the global
symmetry and generate small masses to the pseudo-Goldstone bosons. One can write this as a
spurion M = diag(mu,md,ms) which has the same quantum numbers as U(x). One can add these
terms to the e↵ective Lagrangian by forming the appropriate global symmetry group invariant. In
particular, we add to the Lagrangian
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"
M

✓
⇡
a(x)

f
T

a

◆2
#
+ · · · (4.29)

In the limit where mu = md and ignoring the electromagnetic splitting above, one may identify the
masses for the pions, kaons, and ⌘ (di↵erent components of ⇡a) to derive the Gell-Mann–Okubo
relation,
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