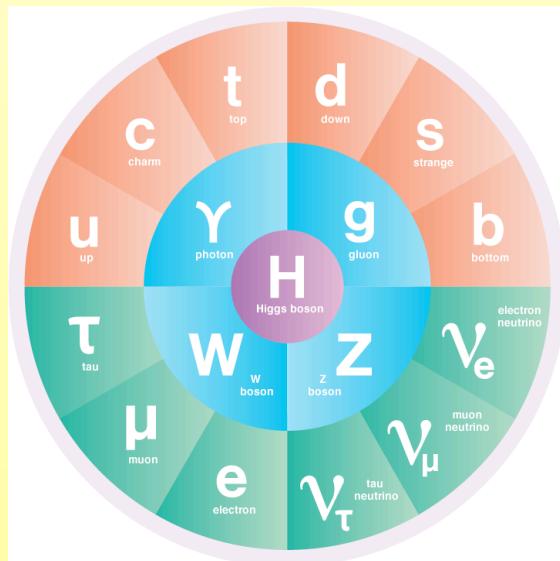
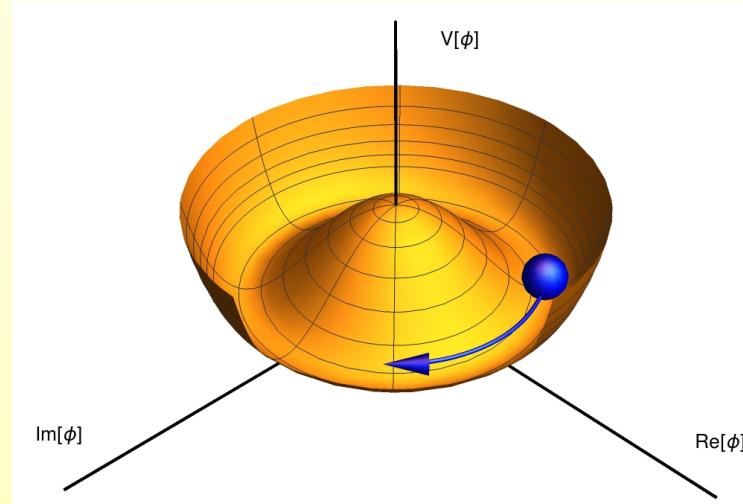


Composite Higgses

Csaba Csáki (Cornell)

SUSY 2017
Tata Institute, Mumbai, December 14

The Higgs

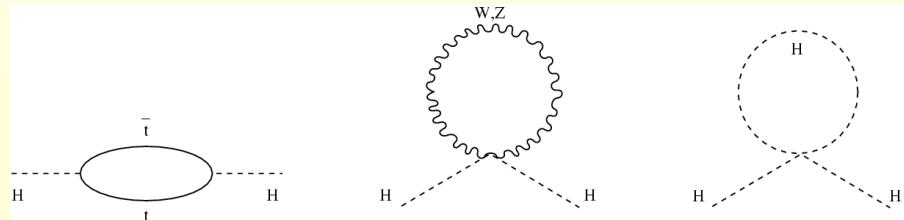
- Higgs discovery of 2012 establishes Higgs mechanism with a Higgs particle

$$V(H) = \lambda(|H|^2 - \frac{v^2}{2})^2$$

$$\langle H \rangle = \begin{pmatrix} 0 \\ \frac{v}{\sqrt{2}} \end{pmatrix}$$

The Higgs

- Just a Landau-Ginzburg theory of superconductivity (in fact it was literally borrowed from there in 60's)


$$V(H) = \lambda(|H|^2 - \frac{v^2}{2})^2$$

- Except: in superconductivity: H is a bound state (Cooper pair), not an elementary field
- What is H in particle physics?
- If elementary very problematic - hierarchy problem

Hierarchy problem

All elementary scalars expected to be **ultra heavy**

$$\Delta m_H^2 \propto \frac{g^2}{16\pi^2} \Lambda^2$$

Mass of Higgs **not protected by symmetries** (like fermion, gauge boson)

- Fermions protected by **chiral symmetry**
- Spin 1 gauge bosons protected by **gauge symmetry**
- In the limit **$m \rightarrow 0$** a new symmetry appears
- Symmetry forbids mass generation **$\Delta m^2 \propto m^2$**
- Small masses could be natural

Possible solutions to the hierarchy problem

- Maybe there is a **symmetry** after all? Need to relate scalar to fermion (supersymmetry)

Possible solutions to the hierarchy problem

- Maybe there is a symmetry after all? Need to relate scalar to fermion (supersymmetry)
- Maybe Higgs **not an elementary** particle but a composite object - no true hierarchy problem beyond scale of compositeness

Possible solutions to the hierarchy problem

- Maybe there is a symmetry after all? Need to relate scalar to fermion (supersymmetry)
- Maybe Higgs not an elementary particle but a composite object - no true hierarchy problem beyond scale of compositeness
- Maybe solution is **anthropic**? If Higgs VEV too large no chemistry, no life...

Possible solutions to the hierarchy problem

- Maybe there is a symmetry after all? Need to relate scalar to fermion (supersymmetry)
- Maybe Higgs not an elementary particle but a composite object - no true hierarchy problem beyond scale of compositeness
- Maybe solution is anthropic? If Higgs VEV too large no chemistry, no life...
- Maybe ALL Higgs VEVs are actually scanned during the cosmic evolution, and something special happens when $m_H^2 \sim 0$? **Relaxion** type approach

Possible solutions to the hierarchy problem

- Maybe there is a symmetry after all? Need to relate scalar to fermion (supersymmetry)
- Maybe Higgs not an elementary particle but a composite object - no true hierarchy problem beyond scale of compositeness
- Maybe solution is anthropic? If Higgs VEV too large no chemistry, no life...
- Maybe ALL Higgs VEVs are actually scanned during the cosmic evolution, and something special happens when $m_H^2 \sim 0$? Relaxion type approach

FOCUS OF THIS TALK

Composite Higgses

- We assume that Higgs NOT elementary, but composite. Most naive assumption: scale of compositeness $\Lambda \sim 10 \text{ TeV}$
- Why 10 TeV? We know from LEP experiments that SM very good approximation up to operators suppressed by $\sim 1/\Lambda^2$ where $\Lambda \sim 5-10 \text{ TeV}$
- New bound states show up at Λ . What would be expected Higgs mass?
$$\Delta m_H^2 \propto \frac{g^2}{16\pi^2} \Lambda^2$$
- For $\Lambda \sim 10 \text{ TeV}$ this is still $\sim (1 \text{ TeV})^2$ about 100 times too large...

The pNGB Composite Higgses

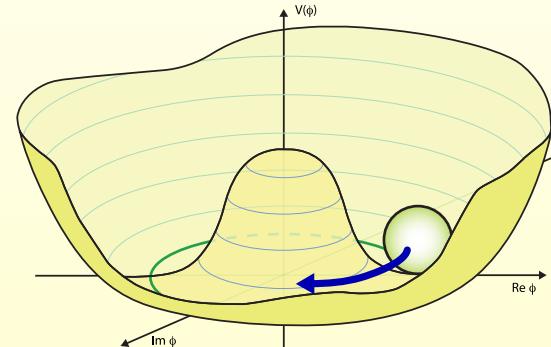
- Need an additional ingredient that further lowers the Higgs mass.
- Idea: Higgs also a pNGB
- What does this mean?
- Strong dynamics has a global symmetry G
- During confinement $G \rightarrow H$ breaking, which produces GB's. Some of these will be identified with SM Higgs

The pNGB Composite Higgses

- Why is this useful?

Global symmetry breaking scale: f

Cutoff scale (scale of generic composites): Λ

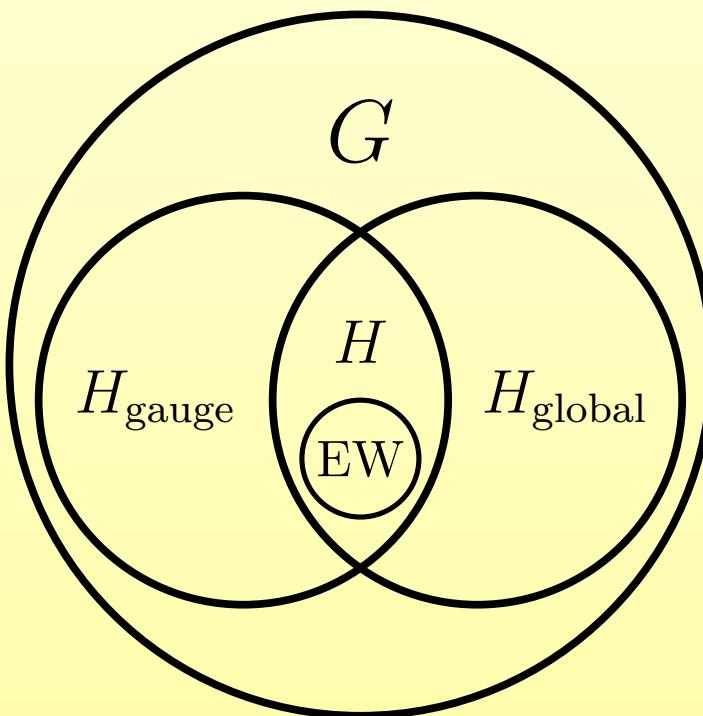

$$\Lambda \sim 4\pi f$$

- For $\Lambda \sim 10$ TeV we find $f \sim 1$ TeV, and IF corrections given by $f^2/(4\pi)^2$ then Higgs mass can be natural...
- New particles at $f \sim 1$ TeV (top and spin 1 partners)
- This is eventually what is called ``composite Higgs model" - but need to understand details...

Theory of Goldstone bosons

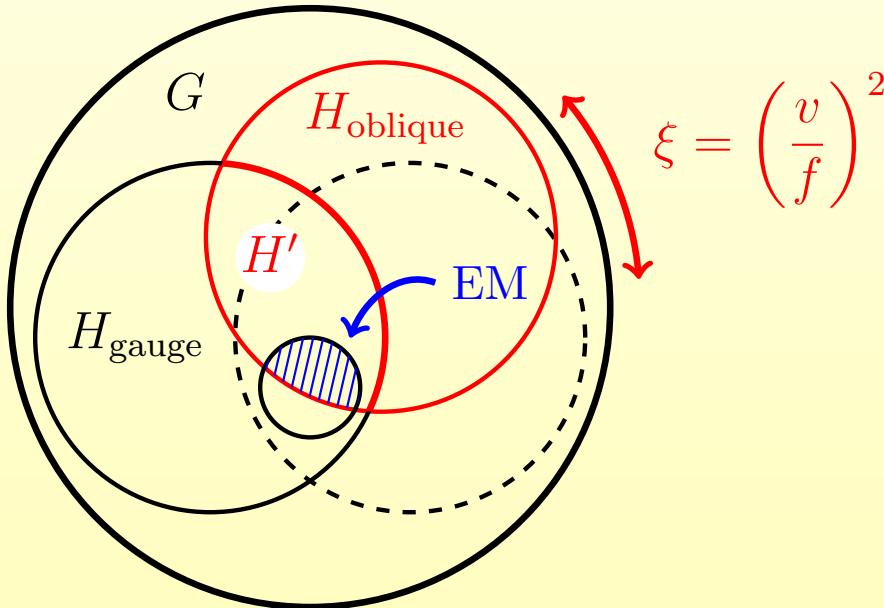
- Best analogy is pions of QCD
- Use non-linear field

$$U(x) = e^{i\frac{\pi^a(x)}{f}T^a} U_0 e^{i\frac{\pi^a(x)}{f}T^a} = e^{2i\frac{\pi^a(x)}{f}T^a}$$


- Pion has shift symmetry, forbids the potential
- Explicit breaking terms (quark mass, QED charges) will generate potential

$$\Delta\mathcal{L} \sim \text{Tr} [MU(x)] \sim \text{Tr} \left[M \left(\frac{\pi^a(x)}{f} T^a \right)^2 \right] + \dots$$

$$\Delta\mathcal{L} \sim e^2 \text{Tr} [QU(x)^\dagger QU(x)]$$


General setup of pNGB Higgs

- Global symmetry breaking $G \rightarrow H_{\text{global}}$
- Some subgroup H_{gauge} is gauged which contains $SU(2)_L \times U(1)_Y$. This is an explicit breaking - will generate a Higgs potential.

General setup of pNGB Higgs

- Due to the explicit breaking, there will be a **vacuum misalignment** generating the electroweak scale

- Misalignment angle $\xi = \left(\frac{v}{f}\right)^2$ separation of v and f
- $\xi=0$: SM limit. $\xi=1$: no separation, **technicolor** (like QCD, but large EWP corrections)

Collective symmetry breaking

- Generically explicit breaking reintroduces the quadratic divergence of the Higgs potential!
- Explicit breaking has to have a **very special** form to avoid quadratically divergent corrections!
- Basic idea: No single explicit breaking term itself will **completely** break the global symmetry
- Need 2 (or more) explicit breaking terms simultaneously to give mass to Higgs
- Presence of several insertions usually **softens** divergence and makes potential finite (or log div)

Simplest example of collective breaking

- Take $SU(3)/SU(2)$ coset - will produce a doublet GB (+singlet - ignore for simplicity)

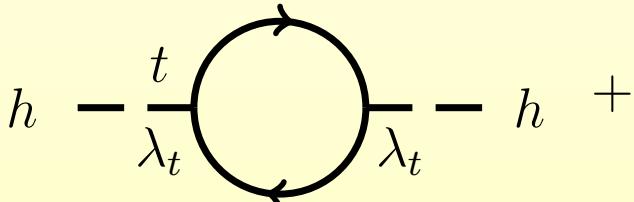
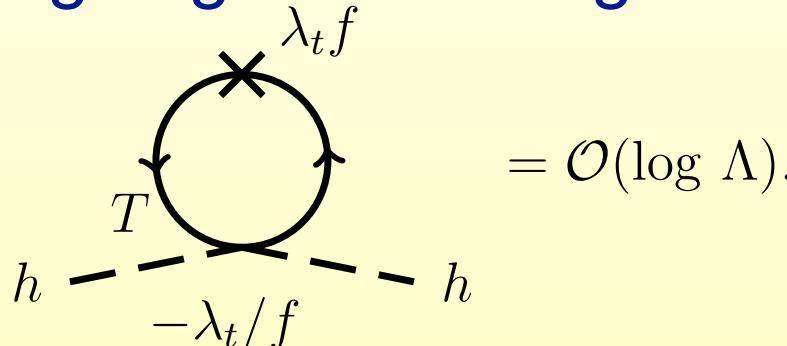
$$\mathcal{H} = \exp \left[\frac{i}{f} \begin{pmatrix} 0_{2 \times 2} & H \\ -H^\dagger & 0 \end{pmatrix} \right] \begin{pmatrix} 0 \\ 0 \\ \frac{1}{f} \end{pmatrix} = \begin{pmatrix} iH \\ f \end{pmatrix} - \frac{1}{2f} \begin{pmatrix} & \\ & H^+ H \end{pmatrix}$$

- Enlarge SM fermion doublet to triplet $Q \rightarrow \Psi = \begin{pmatrix} Q \\ & T \end{pmatrix}$
- T is top partner, and we need two right handed tops now (one for SM, one top partner)
- Yukawa coupling: $\mathcal{L}_{Yuk} = \lambda_1 \Psi \mathcal{H} t_c^1 + \lambda_2 f T t_c^2$

Simplest example of collective breaking

$$\mathcal{L}_{Yuk} = \lambda_1 \Psi \mathcal{H} t_c^1 + \lambda_2 f T t_c^2$$

- First term **SU(3)** invariant. Second term does not contain Higgs field. Need **BOTH** terms to make Higgs a pNGB and **generate** potential!
- Let us expand now \mathcal{H} to get form of Yukawa coupling



$$\lambda_1 H(iQ) t_c^1 + \left(f - \frac{H^\dagger H}{2f} \right) T \lambda_1 t_c^1 + \lambda_2 f T t_c^2$$

- One loop quadratic divergence will cancel by **collective breaking** of SU(3) symmetry!

Simplest example of collective breaking

$$\lambda_1 H(iQ)t_c^1 + \left(f - \frac{H^\dagger H}{2f} \right) T \lambda_1 t_c^1 + \lambda_2 f T t_c^2$$

- Easiest to do WITHOUT going to mass eigenbasis

- + = $\mathcal{O}(\log \Lambda)$.

- Leading pieces of two diagrams cancel - seems like a miracle but really governed by underlying symmetry

Minimal Composite Higgs (MCH)

- Most commonly used example. Reason: minimal setup where so called T-parameter is protected.
- $G=SO(5)$, $H=SO(4) = SU(2)_L \times SU(2)_R$
 $SO(5) \rightarrow SO(4)$ breaking via VEV of $SO(5)$ vector

$$\langle \Sigma \rangle = (0, 0, 0, 0, 1)^T$$

- 4 Goldstone bosons - identified with Higgs

$$\Sigma = e^{ih^{\hat{a}}(x)T^{\hat{a}}/f} \langle \Sigma \rangle = \frac{\sin(h/f)}{h} (h^1, h^2, h^3, h^4, h \cot(h/f)).$$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} h^1 + ih^2 \\ h^3 + ih^4 \end{pmatrix}.$$

Partial compositeness

- Best way to introduce fermionic partners: they will be assumed to be composite fermions from the strong sector.
- To couple them (for flavor physics): small mixing between SM (elementary) and heavy fermions

$$\Delta\mathcal{L} \sim \bar{Q}_L \mathcal{O}_{Q_L}$$

- Will result in
$$|\text{observed particle}\rangle \sim |\text{elementary}\rangle + \epsilon |\text{composite}\rangle.$$
- ϵ will control the flavor properties of the model - has wonderful automatic RS GIM mechanism (separate talk needed for that)

Classification of composite Higgs models

- There are many kinds of composite Higgs models - ``little Higgs'', ``holographic Higgs'', ``twin Higgs'', ...
What is the difference?
- The actual structure of the Higgs potential and the top/spin 1 partners cancelling the divergence
- SM Higgs potential:

$$V(h) = -\mu^2|H|^2 + \lambda|H|^4 \quad \longrightarrow \quad -\frac{1}{2}\mu^2h^2 + \frac{\lambda}{4}h^4$$

$$v^2 = \langle h \rangle = \frac{\mu^2}{\lambda} = 246 \text{ GeV} \quad m_h^2 = 2\mu^2 = (125 \text{ GeV})^2,$$

$$\mu = 89 \text{ GeV} \quad \lambda = 0.13.$$

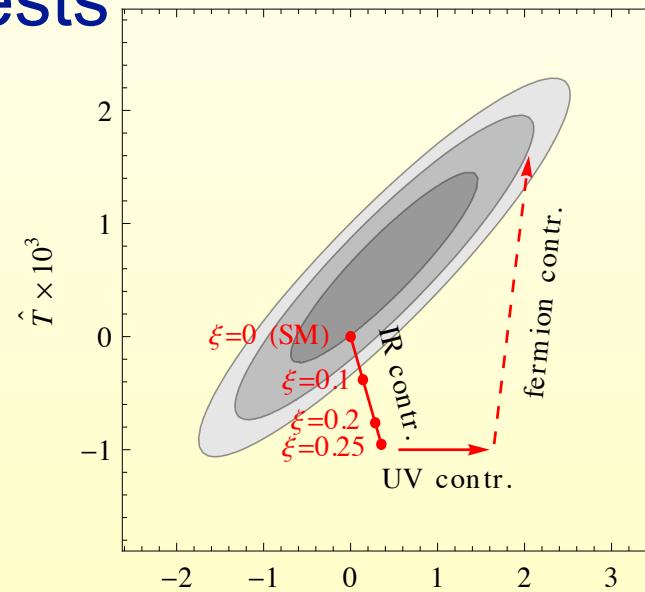
Classification of composite Higgs models

- Parametrization of the composite Higgs potential

$$V(h) = \frac{g_{\text{SM}}^2 M^2}{16\pi^2} \left(-ah^2 + \frac{b}{2f^2} h^4 \right)$$

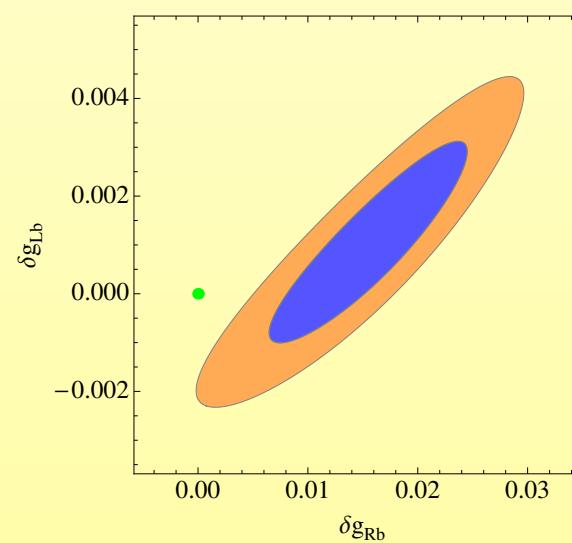
- Assume potential **loop induced** (via explicit breaking) and cut off by partners of mass $M = g_* f$.
- Models differ by **prediction** for a , b and value of g_*
- Main difference **quartic** loop or tree-level

Classification of composite Higgs models


MODEL	$\mathcal{O}(a)$	$\mathcal{O}(b)$	$\mathcal{O}(g_*)$	COMMENTS
Bona-fide composite Higgs	1	1	4π	Requires tuning of both a and b .
Little Higgs	1	$\frac{16\pi^2}{g_*^2}$	$\ll 4\pi$	Tree level quartic, h too heavy.
Holographic Higgs	1	1	$\ll 4\pi$	\sim little Higgs with loop-level quartic.
Twin Higgs	1	$1 - \frac{16\pi^2}{g_*^2}$	g_{SM}	\mathbb{Z}_2 rather than collective breaking.
Dilatonic Higgs		SEE TEXT		Related to RS radion Higgs.

- Initially little Higgs was most useful, since no little hierarchy there, $v/f \sim 1/4\pi$ - completely natural EWSB
BUT prediction for Higgs mass too high
- Now most popular holographic higgs, twin higgs

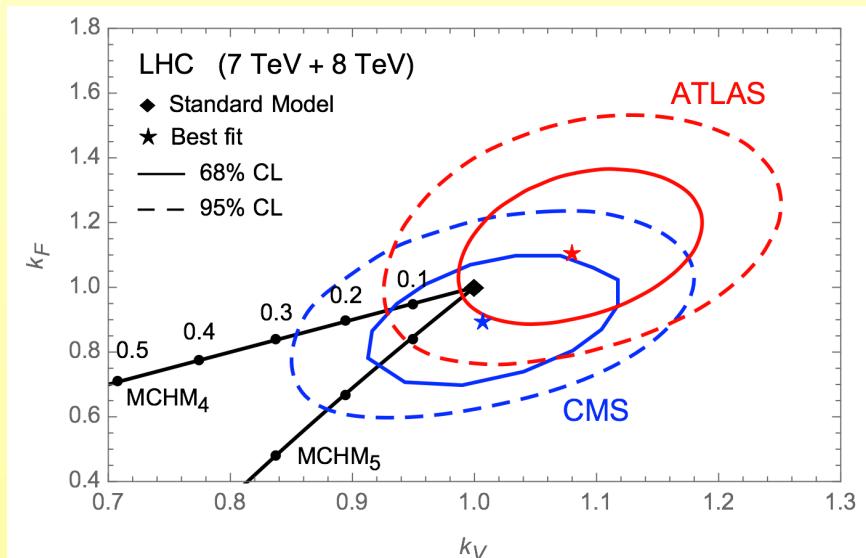
Experimental Signals of Composite Higgs


- Electroweak precision tests

- Universal (oblique)

- Non-universal (Zbb): fits favor small positive shift as in CH

$$\frac{\delta g_{Lb}}{g_{Lb}^{SM}} \sim \frac{y_t^2}{16\pi^2} \frac{v^2}{f^2} \log \frac{\Lambda^2}{m_\Psi^2}$$



• Higgs physics

Single Higgs production

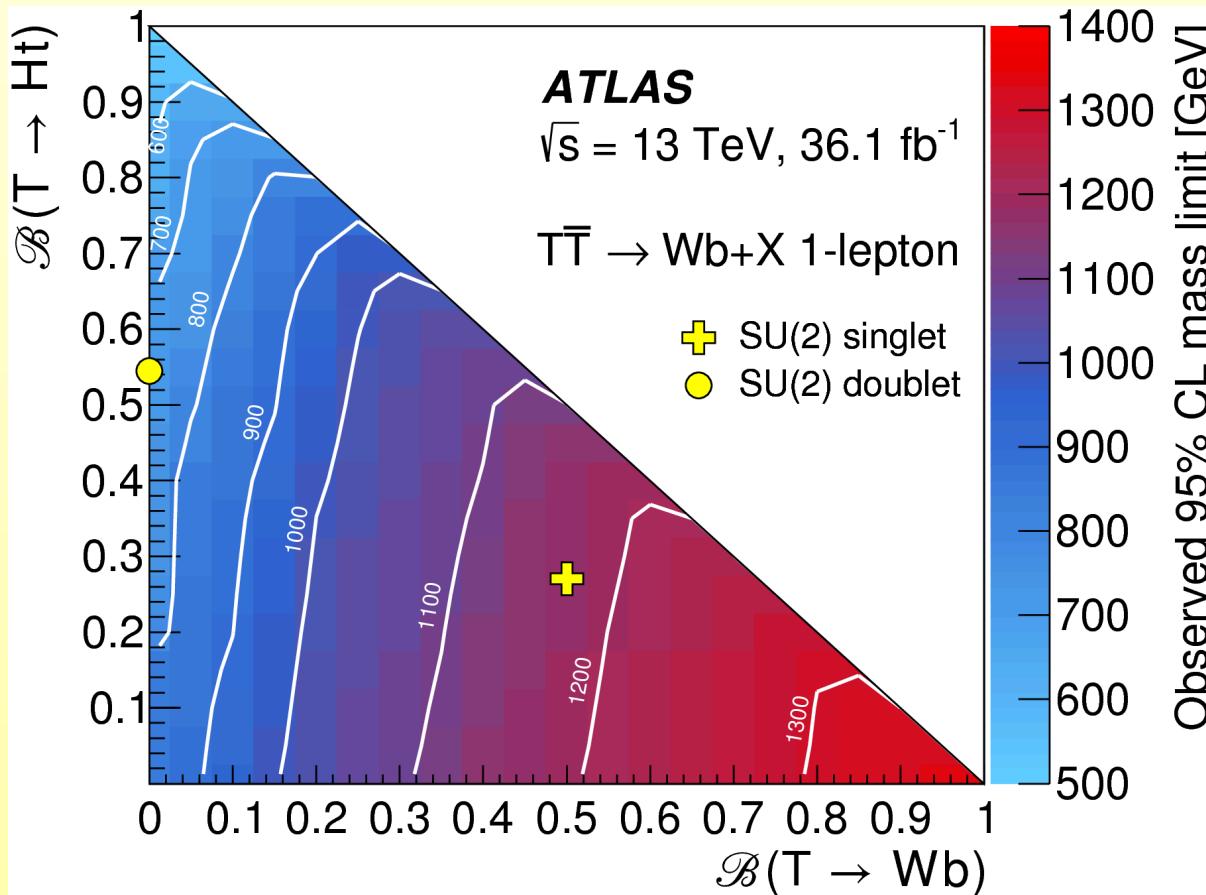
$$\begin{aligned}\mathcal{L}_{eff}^{(h)} = & \left(c_V (2m_W^2 W_\mu^+ W^{-\mu} + m_Z^2 Z_\mu^2) - c_t m_t \bar{t}t - c_b m_b \bar{b}b - c_\tau m_\tau \bar{\tau}\tau \right) \frac{h}{v} \\ & + \left(\frac{c_{\gamma\gamma}}{2} A_{\mu\nu} A^{\mu\nu} + c_{Z\gamma} Z_{\mu\nu} \gamma^{\mu\nu} + \frac{c_{gg}}{2} G_{\mu\nu}^a G^{a,\mu\nu} \right) \frac{h}{v},\end{aligned}$$

coupling	SM	MCHM	Dilaton
c_V	1	$\sqrt{1 - \xi}$	$\sqrt{\xi}$
c_ψ	1	$\frac{1 - (1 + n_\psi)\xi}{\sqrt{1 - \xi}}$	$(1 + \gamma_\psi)\sqrt{\xi}$
$c_{\gamma\gamma}$	0	0	$\frac{\alpha}{4\pi} (b_{IR}^{(EM)} - b_{UV}^{(EM)}) \sqrt{\xi}$
$c_{Z\gamma}$	0	0	$\frac{\alpha}{4\pi t_W} (b_{IR}^{(2)} - b_{UV}^{(2)}) \sqrt{\xi}$
c_{gg}	0	0	$\frac{\alpha_s}{4\pi} (b_{IR}^{(3)} - b_{UV}^{(3)}) \sqrt{\xi}$

taken from 1506.01961

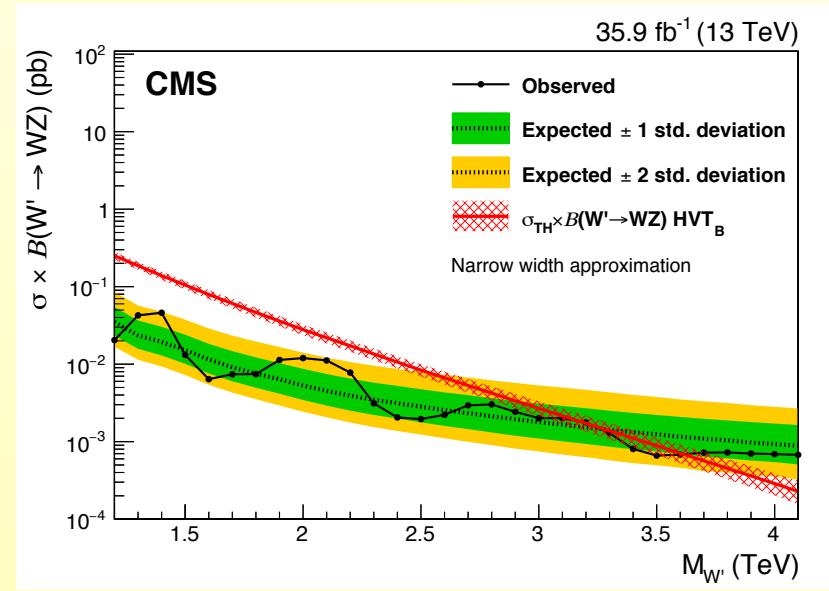
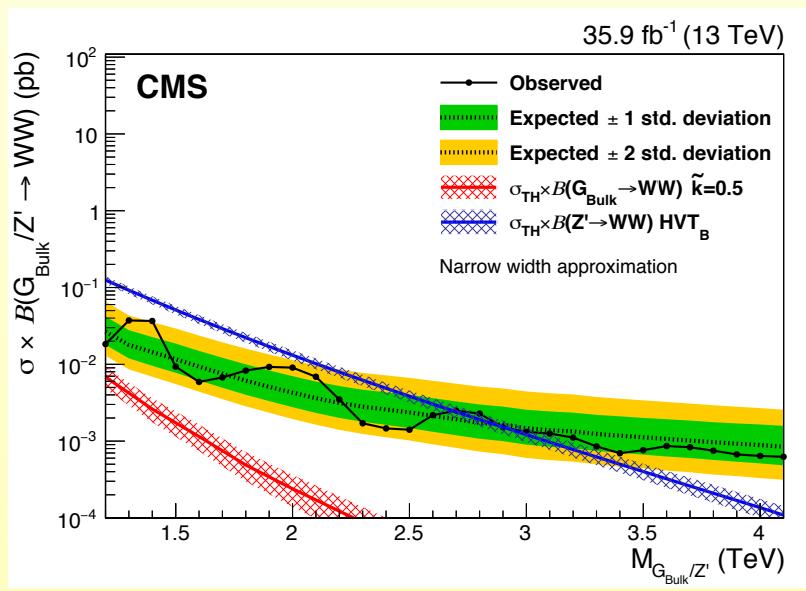
- Higgs physics

Double Higgs production


$$\begin{aligned}\mathcal{L}_{eff}^{(h^2)} = & \left(\frac{d_V}{2} (m_W^2 W_\mu^+ W^{-\mu} + m_Z^2 Z_\mu^2) - d_t m_t \bar{t}t - d_b m_b \bar{b}b - d_\tau m_\tau \bar{\tau}\tau \right) \frac{h^2}{v^2} \\ & + \left(\frac{d_{gg}}{2} G_{\mu\nu}^a G^{a,\mu\nu} \right) \frac{h^2}{v^2} - \frac{c_3}{2} \frac{m_h^2}{v} h^3,\end{aligned}$$

coupling	SM	MCHM	Dilaton
d_V	1	$1 - 2\xi$	ξ
d_ψ	0	$\frac{-\xi(1+3n_\psi-(1+n_\psi)^2\xi)}{2(1-\xi)}$	$\frac{1}{2}\gamma_\psi\xi$
d_{gg}	0	0	$-\frac{\alpha_s}{8\pi}(b_{IR}^{(3)} - b_{UV}^{(3)})\xi$
c_3	1	$\frac{1-(1+\tilde{n}_\psi)\xi}{\sqrt{1-\xi}}$	$\frac{1}{3}(5 + d\beta/d\lambda)\sqrt{\xi}$

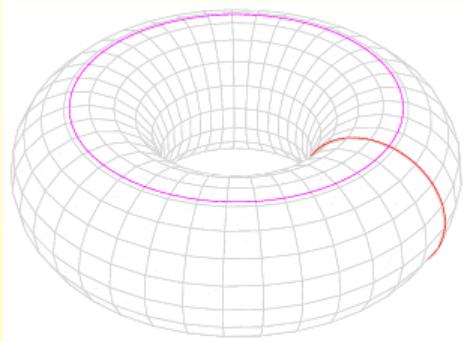
- Direct bounds



Spin 1/2 top partners

Recent CMS bound > 1.3 TeV

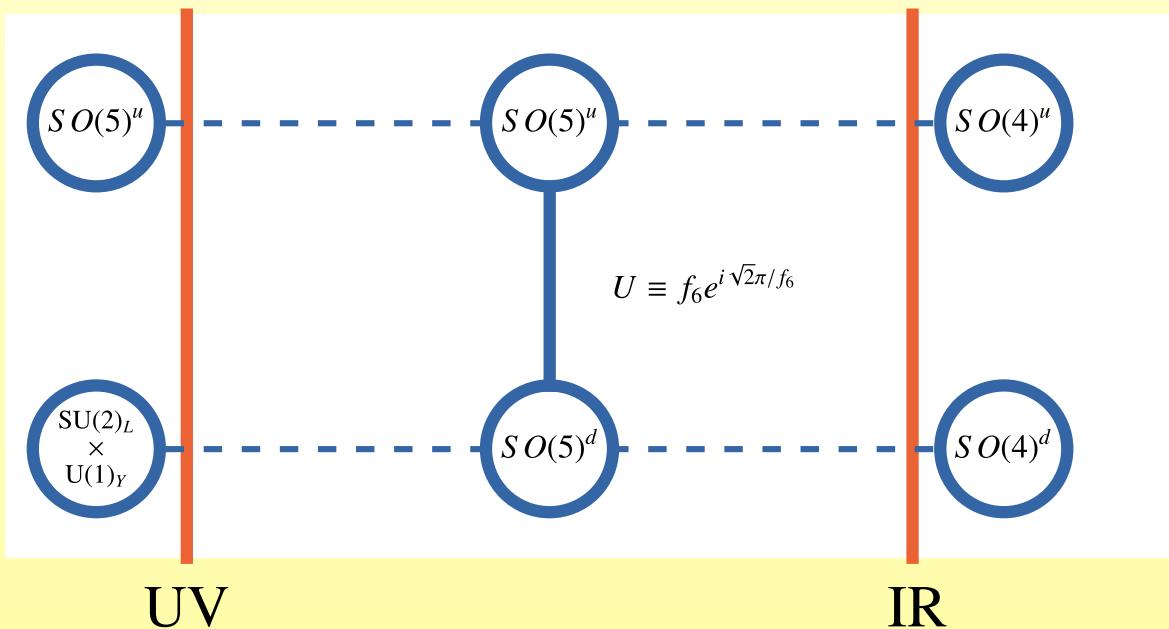
- Direct bounds

Spin 1 partners W' , Z'


Recent new directions

- First holographic CH with tree-level quartic - will help with tuning. Based on deconstruction of 6D model
- Maximal symmetry - a remnant of chiral symmetry of fermions will ensure minimal tuning of Higgs potential

Tree-level quartic for composite Higgs

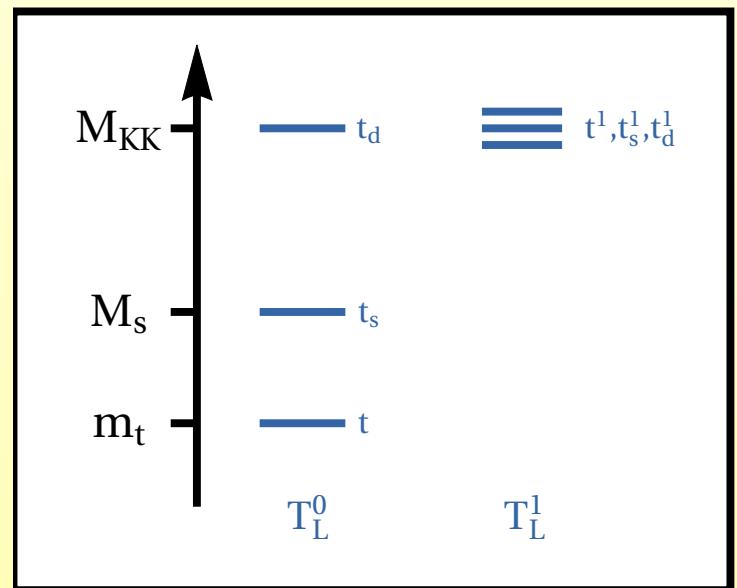

(Geller, Telem, C.C.)

- From the original 6D model

$$\text{Tr}[A_5, A_6]^2 \in F_{56}F_{56}.$$

- Can find a simple warped 5D model version

Tree-level quartic for composite Higgs


(Geller, Telem, C.C.)

- Tree-level quartic adjustable in model but need two Higgs doublets!
- Top sector can easily lift the second Higgs doublet

- Also double KK spectrum

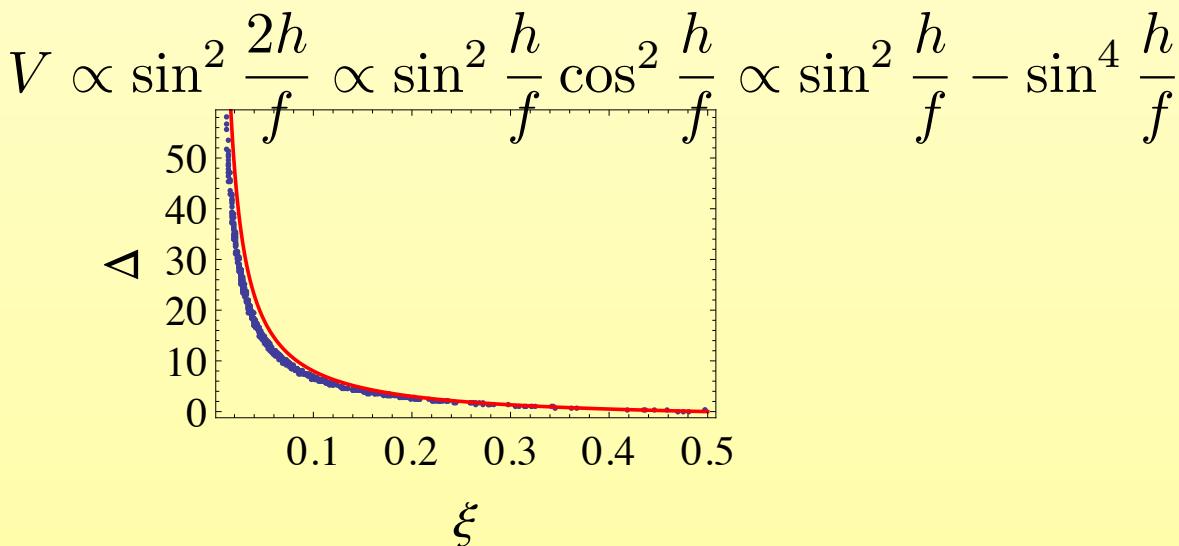
- New charged Higgses

(2HDM model in the decoupling limit, 300-500 GeV states)

Maximal symmetry for Composite Higgs

- A novel symmetry in the top sector (Ma, Shu, C.C.)
- In many constructions there is an object called ``Higgs-parity'' where $H \rightarrow -H$ implemented by V .
Eg. in $SO(5)$ $V = \text{diag}(1, 1, 1, 1, -1)$ flips sign of Higgs
- In some interesting cases there could be novel kind of symmetry breaking patterns involving V
- Assume that composites fill out complete representation of $SO(5)$ (in MCH implementation)
- Possible explicit breaking patterns:
 - $M_Q - M_S = 0 \Rightarrow SO(5)_L \times SO(5)_R / SO(5)_V$
 - $M_Q + M_S = 0 \Rightarrow SO(5)_L \times SO(5)_R / SO(5)_{V'}$
 - $|M_Q| \neq |M_S| \Rightarrow SO(5)_L \times SO(5)_R / SO(4)_V$

Maximal symmetry for Composite Higgs


- A novel symmetry in the top sector (Ma, Shu, C.C.)
- In many constructions there is an object called ``Higgs-parity'' where $H \rightarrow -H$ implemented by V . Eg. in $SO(5)$ $V = \text{diag}(1, 1, 1, 1, -1)$ flips sign of Higgs
- In some interesting cases there could be novel kind of symmetry breaking patterns involving V
- Assume that composites fill out complete representation of $SO(5)$ (in MCH implementation)
- Possible explicit breaking patterns:
 - $M_Q - M_S = 0 \Rightarrow SO(5)_L \times SO(5)_R / SO(5)_V$
 - $M_Q + M_S = 0 \Rightarrow SO(5)_L \times SO(5)_R / SO(5)_{V'}$
 - $|M_Q| \neq |M_S| \Rightarrow SO(5)_L \times SO(5)_R / SO(4)_V$

Maximal symmetry for Composite Higgs

(Ma, Shu, C.C.)

- An unusual symmetry $SO(5)_V$ given by $L \vee R^+ = V$
- Important: an explicit breaking (since it does NOT agree with the original $SO(5)$) but **automatically collective!** In fact Higgs potential automatically finite
- Turns out Higgs potential also automatically has **minimal tuning** (has Z_2 symmetry **similar to Twin Higgs**)

$$\Delta \simeq \frac{1}{2\xi}$$

Conclusions

- Composite pNGB Higgs may **solve** the hierarchy problem
- Need **collective breaking** for Goldstone's thm to actually help with divergences +**partial compositeness** for flavor
- **Same spin** partners would cancel divergences - this is what LHC is searching for (so far no luck)
- As bounds get stronger **tuning** will soon start increasing from those set by LEP
- **New directions** based on adjustable quartic/maximal symmetry could help reduce the tuning